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Abstract

While the capabilities of frontier text-to-image models are rapidly improving, they
often fail to represent the low data, long tail concepts that matter to historically
marginalized communities. Effective measurement is a critical first step towards
identifying and addressing these errors, yet little work has validated if existing
T2I evaluation metrics work for the long tail. In this paper, we draw upon two
community-based case studies to identify challenges with applying best practices
to validate T2I metrics using human preference data. We show that available
approaches to create and validate evaluation metrics break down when applied to
tail concepts because of the need for community knowledge (scaling community
annotations) and challenges achieving a range of good and bad images (shades of
bad). We take the position that methodological innovation is needed to develop
measurement practices that work for the long tail. We outline directions for future
work that moves beyond traditional approaches to measurement towards imagining
new ways to center community expertise throughout the measurement process.

1 Introduction

The capabilities of today’s generative AI models are stunning, but they do not work for many
marginalized communities [9, 24, 25, 30, 57, 82]. A growing body of work has surfaced how
text-to-image (“T2I”) models can contribute to errors of representation that can be upsetting to
view, perpetuate stereotypes, or result in cultural erasure [13, 42, 45, 59, 73]. To name a few
examples, state-of-the-art T2I models often fail to generate accurate and dignified depictions of
people with disabilities [57], African dishes [59], or scenes of everyday life in South Asia [72].
Research has shown that despite their cultural significance to communities, many cultural artifacts
are systematically excluded from large web-scraped pretraining datasets [31, 37, 60, 63] and
consequently end up in the “long tail” of machine learning [85, 100].

Measurement is critical to identifying and addressing errors of representation for marginalized
communities. Effective measures enable practitioners to compare and select models [32, 90] and
to “guide the development of AI systems themselves” [90], e.g., by using the measure as a reward
model [48, 93]. Not least, valid measures help to reveal underperformance and the progress being
made toward addressing it. For these reasons, there are increasing calls to develop a “mature
evaluation science for generative AI systems” [91], recognizing that commonly used “one size fits all”
benchmarks fail to account for a range of factors that matter to those who use these models [75, 87, 91].
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Figure 1: State-of-the-art text-to-image models fail to generate accurate depictions of artifacts
from marginalized communities. Reference photos and AI-generated images (from Stable Diffusion
3 [22] and DALLE-3) of two cultural artifacts. (Left) A braille notetaker is a small portable electronic
device that provides braille users with a means to write and read digital text. (Right) A Mridangam is
a popular South Indian percussion instrument from Tamil Nadu. Alt text is available in Appendix A.
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Figure 2: CLIPScore favors inaccurate and offensive depictions of a braille notetaker. Generated
images of a braille notetaker that had the 10 highest and lowest CLIPScores. Images were generated
by Stable Diffusion 3 and DALLE-3 (Appendix B). Images that depict notetaking using ink on
paper are assigned higher scores than images that depict notetaking using an electronic device. An
independent two-sample t-test using the full sample of 60 images produced a statistically significant
difference in the CLIPScores assigned to the two groups (p < 0.01). Community members found
depictions that used paper to be the most inaccurate and offensive, indicating misalignment with the
metric.

One important dimension of T2I evaluation is measuring image-prompt alignment (sometimes called
consistency or faithfulness): the extent to which a generated image matches its input prompt [51,
77, 80]. Popular image-prompt alignment metrics increasingly rely on secondary large pretrained
vision-language models to score T2I outputs [77, 80] — part of a larger trend towards reliance on
secondary models throughout model development and evaluation [44]. Despite their wide usage, little
work has been done to understand how well these metrics work when applied to depictions of the
people, places, or things that are bound up with marginalized communities’ culture or identity [45, 81].
This lack of scrutiny is especially concerning given that large pretrained models have been shown to
encode biases against, or lack knowledge about, underrepresented groups [60].

As an illustrative example, we compared a set of AI generated images based on CLIPScore, a popular
T2I evaluation metric that uses OpenAI’s CLIP model [34, 51, 74]. Figure 2 displays the ten highest-
and lowest-scoring images for the prompt “braille notetaker,” an electronic device commonly used by
blind people to take notes [78]. The CLIPScores display a clear trend: images showing notetaking
with ink on paper are consistently assigned higher scores than those showing an electronic device.
However, ink-on-paper depictions were consistently ranked as least preferred by blind community
members, who found these depictions inappropriate because ink is not tactile, and cannot be read by
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someone who is blind. This example shows how without proper validation, available T2I metrics
may mistakenly favor representations of tail concepts that are inaccurate or even offensive.

Yet, current approaches to validating T2I metrics for the long tail are problematic. To argue this
point, we draw on a project researching community-engaged T2I evaluation of cultural artifacts with
two marginalized communities: (1) members of the blind and low vision community in the United
Kingdom, and (2) residents of two South Indian nation-states: Tamil Nadu and Kerala. Following
existing approaches to validate metrics by correlating metric scores with human preferences, we
uncover two significant methodological challenges that arise in marginalized contexts (Section 4).
First, we struggled to “scale community annotations” (Section 4.1) to obtain the sample size needed
to make statistically meaningful claims about metric performance. Second, we found that frontier
models failed to produce accurate depictions of tail concepts, forcing annotators to rate and choose
between different types of errors, or “shades of bad” (Section 4.2).

Together, these challenges illustrate that validating a metric for the long-tailed context of marginalized
communities, let alone using such a metric to drive model improvement, remains an open challenge.
Therefore, we take the position that we need new measurement practices to push the frontiers
of representation in T2I models for marginalized communities. We use our case studies to
discuss how future work can investigate and address the challenges that we surface within existing
frameworks for metric design and validation. We emphasize the opportunity for future work that
moves beyond the status quo of how measurement is currently done, to imagine new ways to center
community expertise throughout the measurement process.

2 Background & Related Work

2.1 Existing approaches to T2I evaluation

Our position contributes to a growing number of studies examining how T2I models represent
marginalized communities and cultures [9, 18, 31, 73, 81, 89]. By inviting community members
to respond to AI-generated images, qualitative studies have shaped how researchers understand
representational harms in specific contexts [57, 61, 72]. Other efforts aim to make existing harms
legible by crowdsourcing datasets of input prompts so that future evaluations can include content that
matters to marginalized communities [42, 59, 69, 82, 102]. However, even when representational
errors are qualitatively surfaced (e.g., frontier models often produce “errors in rendering assistive
technologies” [57]), only a small subset of this work includes quantitative evaluations that propose
operational measures that can be used to score image outputs (e.g., a metric that can detect if an
assistive technology is rendered inaccurately in an image) [18, 31, 87].

To measure model performance, practitioners often default to using available image-prompt alignment
metrics [32, 33, 87]. Given a model input x (e.g., a text prompt) in set X of all possible inputs, and
a model output y (e.g., a generated image) in set Y , an evaluation metric µ : X × Y → R maps
the input-output pair to a score that reflects a construct of interest (e.g., image-prompt alignment).
Saxon et al. [80] groups existing image-prompt alignment metrics into three classes: (1) methods
that compare image and prompt embeddings (such as CLIPScore [51]), (2) VQA-based approaches
that check if a generated image y meets a set of requirements derived from input prompt x (such as
TIFA [38]), and (3) caption-based approaches that first generate captions for images y, which are
compared to input prompts x (such as LLMScore [55]). Often conceived as a more efficient and
scalable alternative to reference-based metrics [34], these reference-free metrics make use of “the
relationships learned by pretrained vision-language models” [34] to score generated images.

However, recent work suggests that these metrics can replicate the biases of underlying models,
limiting their effectiveness for marginalized groups [29, 49, 50, 94]. For example, in the context
of image captioning, Kreiss et al. [49] found that CLIPSscores did not align with blind and low-
vision users’ preferences between captions. Thus, uncritical application of existing metrics can
obfuscate underperformance or even lead practitioners to select models that perpetuate exclusion for
marginalized groups [21, 32]. Recognizing the potential limitations of widely-used metrics, in this
work we contribute an understanding of how existing measures might be validated to see if they are
appropriate for evaluating depictions of concepts that matter to a community.
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Figure 3: Existing approaches to T2I metric validation. An overview of typical metric validation
studies that use human preference data in three steps. (Step 1) The study designer uses text prompts
and a T2I model to generate a dataset of images. (Step 2) The study designer shows the generated
images to an annotator, who provides annotations in the form of ratings (numeric scores) or rankings
(ordered preferences between generated images). (Step 3) The study designer compares metric scores
to human annotations by running a correlation test (for ratings), or by calculating whether the metric
preferences the same images as humans (the metric’s “win rate”, for rankings).

2.2 Validating T2I evaluation metrics

The dominant approach to validating measures for T2I models involves crowdsourcing “true prefer-
ence” data from human annotators to compare to metric scores [21, 38, 48, 64]. As shown in Figure
3, a typical workflow involves: 1) generating images using a set of prompts and chosen models; 2)
developing task(s) for collecting human annotations; and, 3) running statistical tests to compare the
collected preference data (taken as gold standard) to metric scores in order to validate the metric.
Intuitively, a metric is valid if it is empirically aligned with human preferences, assigning higher
scores to text-image pairs that annotators prefer.

Human preference annotation tasks (Step 2) can take two possible forms: rating tasks and ranking
tasks [64]. Rating tasks instruct annotators to assess the quality of individual text-image pairs
(x, y), such as asking “On a scale of 1 to 5, how well does the image y match the description
x?” [51, 64]. Given a dataset of n text-image pairs {(xi, yi)}ni=1, metric scores {si := µ(xi, yi)}ni=1,
and average ratings {ri}ni=1, the metric is typically validated by reporting the rank correlation
(e.g., using Spearman’s Rho or Kendall’s Tau) between the human ratings {ri} and metric scores
{si} [34, 38, 64] (Figure 3, Right). The resulting correlation captures the extent to which the
generated images with higher ratings are assigned higher scores by the metric.

In contrast, ranking tasks ask annotators to make comparative judgments between multiple outputs,
such as asking “Which of these two images (y or y′) best matches the prompt x?” [79, 97]. Other
ranking tasks ask annotators to rank 3 or more images in order of most to least preferred [93]. For a
fixed input prompt x and outputs y, y′, the metric “wins” if it assigns a higher score to the image that
the majority of annotators preferred, p(y, y′) ∈ {y, y′}:

1 (µ(x, y) ≥ µ(x, y′) ⇐⇒ p(y, y′) = y) (1)

The “win rate” metric averages these indicator variables 1(·) across the dataset of input prompts
(Figure 3, Right). Thus, the win rate captures how frequently the metric favors the generated images
that are preferred by the majority of annotators.

Prior studies that validate T2I metrics use common datasets of prompts such as captions written
for real photographs from MS-COCO [52], handwritten prompts designed to assess specific T2I
capabilities (e.g., spatial reasoning) [79, 80, 97], or “in-the-wild” prompts written by T2I users [48].
While handwritten prompt datasets aim to broaden evaluation beyond the “common scenarios”
captured in MS-COCO captions [79], existing efforts to make prompt datasets more “challenging”
prioritize compositional reasoning (e.g., “a kangaroo in a blue hoodie”) over the inclusion of long-tail
concepts or marginalized cultures [39, 79, 80, 97]. In this paper, we join calls for “contextual metric
meta-evaluation” [21] in examining the performance of evaluation metrics within specific contexts.
Specifically, we explore how to validate whether metrics are meaningful and useful measures for
depictions of the tail concepts that matter to marginalized communities.
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2.3 Generative AI evaluation as a human crowdsourcing task

Work on human evaluations of generative AI outputs, while nascent, shares many of the long-studied
challenges of other crowdsourcing or collaborative computing tasks [2, 3, 20, 88]. A growing body
of literature has established how annotators of AI outputs often disagree with each other, posing
challenges for obtaining “gold” labels of a construct of interest [4, 27, 28, 36]. Variance across
annotators can come from many underlying causes that emerge from relationships between the
annotator, the construct being measured (by the annotation task), and the media being annotated [67].
Scholars have shown that disagreement is common in tasks where annotators are asked to make
subjective judgments [2, 27, 47], such as whether a generated image is “harmful” [46, 76]. Variance
can also arise when different annotators hold varying levels of prerequisite knowledge about the media
being annotated, even for seemingly “objective” tasks such as recognizing whether a photograph
contains a species of bird [67]. To address this variance, scholars have developed several best
practices, such as using multiple annotators to report disagreement and reduce noise [36, 64, 70].

While many AI evaluations engage human annotators as “anonymized crowdworkers” [64], several
researchers have advocated for alternative models of recruitment and participation in generative AI
evaluation [8, 31, 43, 73, 84]. Recent studies reveal the critical role that annotators’ identities and
interpretations play in shaping how data is annotated [35, 43, 73]. For example, Hall et al. [30]
found that annotators who live outside of a country are more likely to rate exaggerated, stereotypical
depictions of the region as being “representative.” In contrast, annotators who live in that region
can draw upon on their experiences to provide more accurate annotations. This illustrates the value
in directly engaging with community members to evaluate AI images. Our work draws upon these
perspectives from past work to highlight the role of community knowledge in validating measures.

3 Case Studies

Our research team conducted a series of workshops with members of two marginalized communities
that past work has shown are represented poorly by T2I models: members of the blind and low vision
community in the UK [57], and residents of two South Indian nation-states: Tamil Nadu and Kerala
[72, 73, 82]. For each, we selected objects that are culturally significant to the community but not com-
monly known outside of the culture, placing them in the long tail. Specifically, we selected a braille
notetaker, a portable electronic device used daily by many people who are blind; and a Mridangam, a
percussion instrument from Tamil Nadu that is central to South Indian classical music. See Figure 1.

During online synchronous workshops, community members were shown 5 AI-generated images
of each object and asked to (1) rate whether the image was a correct depiction of the object on a
scale of 1 to 3; and (2) rank the images in order from most to least preferred. Images were shown
one at a time, and participants were invited to reflect on the motivations for their decisions for each
image. We conducted 14 interviews with blind and low vision community members (using manually
generated alt text for the images we presented), and ran focus groups with 17 total residents of Tamil
Nadu or Kerala. We provide our complete study protocol for both communities in Appendix B.

4 Methodological Challenges of Validating Measures at the Long Tail

In attempting to correlate image-text alignment metrics for the generated images with the human pref-
erence data from our two case studies, following standard practices, we encountered two significant
challenges.

Here we discuss each challenge and its implications for validating metrics at the long tail.

4.1 Challenge: Scaling community annotations

Annotators require community knowledge. Blind community members consistently drew upon their
embodied knowledge of how a braille notetaker is used to assess if an AI depiction was plausible. For
example, a braillist would know that a tactile braille display must be a single horizontal line of cells
positioned below the keys. Otherwise, a user may accidentally “knock the keys” when trying to read
with their hands. This embodied knowledge helped community members prioritize functional charac-
teristics, while accounting for legitimate variation in the visual characteristics of color, shape, and size.
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In ranking tasks specifically, annotators had to make value judgments about which errors were “most
wrong.” To achieve this, blind community members often drew upon their situated experiences as
disabled individuals in the world. We learned that depictions of braille on an electronic screen, for
example, are substantially less preferred because electronic screens are inaccessible to blind users.
Thus, annotators’ rankings were influenced not only by their knowledge about each object, but by the
historical context of exclusion that they and their community had experienced.

When working with residents of Tamil Nadu, we found that annotators similarly drew upon both
embodied knowledge and historical context for the Indian classical music percussion instrument,
the Mridangam. For example, community members noted that the Mridangam is always played
horizontally and typically placed on one’s lap during a performance. Images that show the instrument
standing upright or resting on the floor (Figure 1) were dismissed as implausible, as the instrument’s
shape does not support such positioning. As one community member said, “It can’t be placed on
floor like this. It will roll due to its steeper curve and imbalance between the two ends.” This
understanding extended to how people were depicted with the artifact. Images where individuals held
the instrument incorrectly were seen as misrepresenting cultural norms, with community members
noting that such portrayals gave the impression of a different instrument, such as a kick drum, rather
than a Mridangam.

Common practices assume that data annotation, including rating and ranking tasks, can be completed
by any cognizant annotator. Yet, these two examples challenge this assumption, highlighting how
embodied knowledge and historical context are essential for accurate annotation — particularly in
cases where that knowledge is unfamiliar to mainstream groups. This finding augments the growing
body of literature (Section 2.3) that calls for situated knowledge and expertise in AI evaluation tasks.

Annotations place burdens on communities. Validating a metric using human preference data requires
a minimum sample size to ensure statistical reliability [36, 41, 64]. In conventional crowdsourced
annotation pipelines, this typically large workload is distributed across a pool of annotators, mini-
mizing the burden on any individual [64]. However, annotators with community knowledge, which
we’ve argued above is necessary, might be a much smaller pool [56, 65]. As reliability of conclusions
depends on both the number of images annotated and the number of annotators per image, this could
raise the burden substantially for any one individual.

Consider an example estimate for the number of annotations that would be required to validate a
metric using a dataset of prompts (e.g., depictions of cultural artifacts) curated by a community
(Figure 3, Left), using Spearman’s rank correlation. Suppose we aim to confirm that a computed
ρ = 0.7 falls within a ±0.05 margin of error at a 95% confidence interval. Using a standard error
approximation (Appendix C), this would require at least 402 samples (i.e., generated images with
human preference labels). To account for inter-annotator disagreement, each sample typically receives
labels from three annotators, with the majority (or average) vote used as the final label [64]. This
would amount to a total requirement of 1206 individual annotations.

While collecting this number of annotations might be feasible, the time and effort required to do so
will vary significantly across communities, especially for marginalized communities who may require
specific accommodations. In our study with the blind and low vision community, we observed that
most community members spent a minimum of 5 minutes reviewing and providing annotations (both
rankings and ratings) for each generated image. Assuming that we would need a minimum of 1206
annotations, this would amount to a total of around 100 hours of community member time annotating
images of relevant concepts.

Although the blind and low vision community has unique accessibility needs (e.g., requiring images
to be described in words [16, 40]), this level of effort is not unique to this community. Other groups
may require language translation support [5] or technical support [31] to facilitate participation.
Community annotators may not be familiar with AI and may need a tutorial to provide appropriate
annotations [68, 98]. These time estimates also do not include the additional effort required for
recruitment, on-boarding, and training. All of these provisions are essential to ethical and effective
engagement with marginalized communities [10, 14, 31, 68, 98].

This example is likely a significant underestimate of the time and effort that would be needed to
make this work in practice. In real-world scenarios, the correlation ρ between metric scores and
human preferences is often lower than the above idealized example [38, 51]. This would require
more samples to achieve the same level of statistical significance, given that ρ and n are inversely and
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quadratically related. Moreover, when comparing models with similar performance, the evaluation
metric must be precise enough to detect subtle differences — often necessitating a higher bar for
metric validation. For example, recent work [36] has shown that for models whose outputs are
stochastic, between 25,000 and 50,000 total ratings were needed to achieve statistical significance.
This would be untenable for communities from whom even the conservative estimates are already
substantial. In such cases, metric validation would become impossible.

4.2 Challenge: Navigating “shades of bad”

Existing metric validation approaches that use human preferences assume that the annotated images
reflect a meaningful range of representations, so that annotators can distinguish between good and
bad depictions [33, 64]. However, current state-of-the-art T2I models often fail to generate accurate
depictions of tail concepts. In both of our case studies, we were unable to generate even semi-accurate
depictions of braille notetakers or the Mridangam, despite attempting interventions (e.g., using prompt
engineering techniques [66, 71]) detailed in Appendix B. Instead of displaying a meaningful range of
good and bad depictions, all the generated images had at least one substantial error: a phenomenon
we term “shades of bad.”

Only having bad representations available to show annotators poses fundamental challenges in using
collected rating and ranking data. For rating tasks, if annotators consistently provide low ratings,
the data will lack the meaningful variance needed to validate metrics. In our case studies, members
of both communities consistently assigned low scores to generated images (Table 1). All generated
images of both objects had average ratings (on a 3-point scale) between a 1 (“The image is totally
unlike the object”) and a 2 (“The image is partially correct”). None of the generated images of either
object were rated as accurate depictions of the object. While a rank correlation can be calculated
from heavily imbalanced ratings, because there are no highly rated images, the correlation would fail
to capture if a correct depiction would be scored higher. Thus, while we may be able to validate if a
metric can assign low scores to poor depictions, we cannot confirm that it would preference correct
depictions, a necessary behavior to be able to steer models towards improved representations.

For ranking tasks, shades of bad poses even more foundational challenges for metric validation.
If all generations are poor, ordering them becomes a task of “which error is worse.” While blind
community members were quick to assess that these images were wrong, they often struggled to make
what often felt like arbitrary judgment calls. This uncertainty was reflected in very high variance
across annotators’ rankings (detailed in Appendix D), despite high consistency in their ratings.

Shades of bad poses fundamental challenges to the utility of data collected from all available rating
and ranking tasks, resulting in imbalanced ratings and arbitrary rankings. As a result, while we can
use the collected data to validate if our metrics can assign low scores to poor depictions, we still do
not know whether our metrics can tell us if we’re making progress towards improved depictions — a
prerequisite to address critical errors. Moreover, community members who were repeatedly exposed
to incorrect or even offensive depictions found the annotation task to be difficult and demoralizing.
As a result, the collected data leaves us in the same place we started: without validated metrics.

5 Call to Action: Rethinking T2I Measurement Practices

State-of-the-art T2I evaluation metrics often rely on secondary models that systematically fail to
recognize tail concepts [60, 85], underscoring the need for robust validation. Yet, our analysis reveals
how existing validation methodologies that rely on crowdsourced rating or ranking annotations break
down when applied to tail concepts. Capturing preferences of generated images of tail concepts
requires annotators with cultural knowledge, which standard crowdsourcing pipelines are not designed
to support [43]. Recruiting such annotators at scale is resource-intensive and in some cases, infeasible.
Furthermore, when the available generations are all misrepresentations (“shades of bad”), annotations
offer limited value beyond confirming that a metric penalizes errors. Our work has confirmed this to
be the case for two independent marginalized communities we engaged.

While these challenges may not appear in all low-data contexts, they are likely to resonate with practi-
tioners engaging with populations currently underserved by frontier models. As such, the challenges
we’ve surfaced offer a useful lens for practitioners to critically examine their own approaches to
measure validation. Before collecting data, practitioners should consider both the domain-specific
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knowledge required and number of annotations needed, as well as whether available T2I model out-
puts provide a meaningful range of good and bad representations to annotate. These challenges may
manifest differently across contexts – e.g., some communities may be easier to engage than others
– but without reasonable depictions to annotate, annotations offer limited utility in validating metrics.

In this section, we discuss directions for future research in light of the methodological challenges we
have surfaced. Our first set of research directions seeks to incrementally address these challenges by
modifying existing evaluation practices. Our second set of research directions explores fundamentally
different ways to think about T2I evaluation by centering community expertise.

5.1 Innovating within our existing measurement practices

We first propose directions for methodological innovations that may lead to improvements within
existing measurement processes.

Improving existing T2I metrics. Future research can further investigate how biases in large pretrained
models might propagate to downstream evaluation metrics, and explore how metrics might be
modified to address them. For instance, the CLIPScore metric works by calculating the cosine
similarity score between text and image embeddings [34]. Future research can experiment with
proposing modifications to the metric targeted towards improving performance for low data concepts,
similarly to [60, 103]. To name a few possibilities, one alternative metric could explore applying
bias mitigation techniques to modify the CLIP text embedding used to score output images [7],
e.g., so that the text embedding does not preference images that depict “notetaking” using paper.
Another alternative metric could use reference photos (e.g., of a braille notetaker) and their CLIP
image embeddings (in place of biased text embeddings) to score generated images [99].

Scaling up annotations. Future research can explore methods to reduce the annotation load for com-
munity members. Instead of asking the community to provide hundreds of annotations, researchers
can design alternative workflows. For example, to increase efficiency, researchers and community
members might first sort AI outputs into clusters that share common characteristics and then ask
community members to annotate each cluster with shared judgments (e.g., “depictions of writing with
ink on paper are all inaccurate depictions of a braille notetaker”). Future work can draw from HCI
methods to explore other collaborative workflows that combine in-group and out-of-group annotators
to leverage community expertise where it is most needed.

Exploring the affordances of real photographs for metric validation. To address “shades of bad,”
practitioners can explore alternative methods to confirm if metrics preference correct depictions of tail
concepts. One sanity check could involve designing controlled experiments to validate that a metric
assigns higher scores to actual photographs of the concept (e.g., a braille notetaker), relative to a
comparison group (e.g., photos of related objects such as a paper notebook), following Massiceti et al.
[60]. However, using real photographs as a proxy has several limitations. First, the distribution shift
between photographs versus AI images and its effect on metric scores is unclear [15]. Second, while
a real photograph either is or isn’t a braille notetaker, AI images exist in the world of the imaginary —
producing errors and depictions that do not exist in the real world [16]. Thus, further validation is
still needed to understand how an ideal metric would score AI depictions.

5.2 Re-imagining measurement for the long tail

Longer term, we advocate for exploring fundamentally different ways to think about T2I evaluation,
drawing on emerging calls for AI evaluation to learn from the social sciences [73, 87, 101] and
acknowledging that evaluation is iterative, with room for community engagement at multiple stages.

Drawing on the framework of Adcock and Collier [1], Wallach et al. [87] propose that approaches
to AI evaluation should clearly distinguish between the process of systematization — taking a broad
concept like “image-prompt alignment” or “appropriateness” and narrowing it down into an explicit
definition — from the process of operationalization — specifying the procedures or metrics that will
be used to obtain measurements of the concept. This allows the separation of conceptual debates (for
instance, does our definition of “appropriateness” reflect what we want it to reflect?) from operational
debates (does the metric we have chosen yield a valid measurement?). In addition to bringing more
rigor to the measurement process, Wallach et al. [87] argue that this approach can open up new
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opportunities for community participation in the measurement process by including people with
different expertise and experiences in conceptual debates.

In contrast, status quo approaches to evaluating T2I models bypass systematization, moving straight
from a background concept like “image-prompt alignment” to metrics that are typically chosen based
on convenience and availability with little thought to exactly what these metrics do or do not capture.
Any validation of these metrics occurs late in the process. Furthermore, because validation is at the
level of the metric only, it tends to be limited to quantitative approaches, like computing correlation
with crowdsourced ratings, as described in Section 2.2.

To move beyond crowdsourced annotations as a proxy for “ground truth,” we encourage future work
to explore alternative ways of eliciting (and translating) community knowledge at earlier stages of
the evaluation process. For example, researchers can incorporate community participation at the
systematization stage to define what accurate depictions of tail concepts should (and should not)
include. Inviting community members to participate in the iterative process of constructing and
critiquing a shared systematization may allow us to make better use of their unique expertise to
inform what metrics are designed in the first place.

While prior work on metric validation has relied on structured annotation formats such as ratings
or rankings [64], our community engagements surfaced rich forms of community expertise that
closed-form annotation tasks fail to capture. Thus, even when community members struggled to
rank inaccurate depictions of a braille notetaker, they still held a clear and shared understanding of
what it should look like, even if no such images were available to annotate. Such knowledge was not
reflected in the collected rating and ranking data, especially when all the images were bad. We urge
researchers to explore methods to incorporate such “thick descriptions” [73] of generated images
to create and validate new measures, rather than treating community members akin to anonymous
crowdworkers.

6 Alternative Views

In this section, we respond to alternative views to our work’s focus on improving measurement
practices for the long tail.

Q: Why should we care about evaluation at the long tail when the capabilities of frontier models
keep improving? Why don’t we just wait until capabilities get better? Frontier models are
improving, but this does not invalidate the reality that they underperform for many marginalized
communities today. Evaluation metrics that can reliably distinguish offensive from accurate outputs
can inform safety mitigations [90, 95] that can impact the millions of AI images generated each
day [25, 86]. Furthermore, achieving improved representations of tail concepts still remains an open
challenge. For instance, Massiceti et al. [60] showed that many assistive technologies appear fewer
than 20 times in large pretraining datasets, well below the threshold needed for models to learn them
effectively [85]. As a result, disparities between closed and open-source models may widen due to
the scarcity of publicly available data [53, 54, 80]. Thus, effective measurement remains essential not
only to mitigate harms in today’s deployed systems, but also to enable meaningful scientific progress
at making tomorrow’s models work better, for everyone.

Q: Won’t “Shades of Bad” be addressed by the release of new and improved frontier models?
While model capabilities may improve for some concepts, capabilities may be slower to improve for
others. Indeed, the concepts where measurement has the potential to be most impactful are the ones
that the frontier models continue to get wrong. Additionally, the existence of inherently low-data
scenarios, such as personalized generation tasks [12, 23, 83], ensures that long-tail problems will
persist. The need for valid evaluation at the frontier remains.

Q: Do we really need community members to participate as annotators? Why can’t I train
people outside of the community? While knowledgeable outsiders may be able to serve as
community “proxies” in some contexts, outsiders often lack the embodied experience and historical
understanding required to make informed judgements (Section 4.1). Research shows that without
this foundation, out-group annotators may project misguided assumptions when making judgments,
replicating existing patterns of oppression in media [25, 30, 58]. At stake is not only annotation
quality, but also the question of who gets to define how a community is represented: a central concern
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in participatory AI [19, 73, 84, 96]. Recognizing and centering community members’ expertise is a
key first step towards developing more inclusive AI systems.

Q: I don’t encounter these challenges in my context. Can’t I just follow the same blueprint
as everyone else? We anticipate that the challenges surfaced in Section 4 may not affect every com-
munity or tail concept. When such obstacles are absent, applying conventional validation techniques
using rating and ranking data is appropriate. Even in such settings, we believe that practitioners
may benefit from exploring alternative metric validation methods such as those we have proposed.
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A Figure Alt Text

Below, we provide alt text for Figure 1. For each cultural artifact (the braille notetaker and Mri-
dangam), the figure displays one reference photograph and two AI generated images. We provide
descriptions for each image below.

Braille notetaker:

• The reference photo for a braille notetaker shows a thin rectangular electronic device. The
top surface of the device has a tactile braille display: one horizontal line of around forty
braille cells. Above the display, the device has a braille keyboard and several other button
controls. The device is sitting on a table, and a person’s hands are resting on the tactile
display.

• The first AI image shows two hands holding a device with a large black screen on its surface.
The screen has small white dots that resemble braille, but are not tactile. The dots are
arranged irregularly in about thirty columns and thirty rows.

• The second AI image shows a device shaped like a folding laptop computer, with an
electronic screen display on top and a keyboard on the bottom. The screen of the device is
displaying rows of small white dots that resemble braille, but are not tactile. The dots are
also not arranged in valid cells. The keyboard of the device resembles a qwerty keyboard.

Mridangam:

• The reference image shows a Mridangam, a barrel-shaped percussion instrument, placed
across the lap of a person seated cross-legged. It has two drumheads, one slightly larger than
the other, and multiple thick strings laced along its body, connecting both ends. The playing
surface on the visible side features a black circular area in the center, where the person’s
hand is positioned for playing

• The first AI image shows a person seated on a raised surface with a cylindrical, kick drum-
like instrument placed horizontally on the floor in front of them. The instrument has a
wooden finish playing surface facing forward, with a black circular area in the center. It also
features strings running from one end to the other.

• The second AI image shows a close-up of a snare-like drum with a single drumhead on
top and metallic rims around the edges. The drumhead is light-colored, with a small black
pattern at the center.

18



B Study Protocol

In this section, we describe the study protocol (published elsewhere) that we followed to hold
workshops with both communities.

B.1 Recruitment & Workshop Preparation

Our position paper draws from our experiences conducting participatory research engagements with
two different communities: members of the blind and low vision (“BLV”) community in the UK, and
residents of Tamil Nadu or Kerala, two South Indian nation-states. These two communities have
distinct histories and material cultures. However, past research has surfaced that frontier models fail
to accurately depict both assistive technologies used by BLV community members [57] and South
Asian cultural artifacts [72, 82].

Our study was approved by our institution’s IRB. Community members were compensated an amount
appropriate to their local context: £75 for those in the UK and Rs. 500 for those in India.

Designing an accessible protocol Our study protocol was largely similar across the two com-
munities, but differed in two meaningful ways. First, we facilitated workshops with South Indian
community members in focus groups with multiple community members to encourage dialogue and
discursive evaluation [8, 73]. BLV community members participated individually, with a partner who
they already knew. Second, we provided BLV participants with alt text descriptions for each image.

We follow past work [62] that invites blind community members and sighted partners to work
together in pairs to evaluate AI-generated images. Past scholarship has demonstrated the benefits of
“cross-ability collaborative work” [6, 92], e.g., where a blind user and sighted partner work together to
complete a task. While past studies have shown that sighted strangers can misunderstand the access
needs of their collaborators, recent studies have adopted cross-ability protocols between participants
who already know each other well and have established trust and comfort working together [62].
Thus, we adapted our study activities (e.g., reacting to AI-generated images) to be formulated as a
cross-ability dialogue between two participants. Each workshop with the BLV community consisted
of 1 cross-ability participant pair.

When asking blind participants to evaluate AI-generated images, we began by providing an “alt text”
description of what is shown. The alt text was written collaboratively with our co-author who was a
community member. To encourage consistency in the amount of description given, our research team
created an alt text “template” of important characteristics to describe for each image, following alt
text best practices for photographs [62] (e.g., for each braille notetaker image, we always described
its shape, material, surfaces, and any displays, buttons or keys). During the study, we also invited
participants to further discuss what is shown in the images as a pair.

We began by presenting alt text prepared by the research team for two reasons. First, from a human-
centric perspective, past studies that asked blind participants to evaluate AI-generated images found
that participants found it difficult to ask questions about what was shown in the image and preferred
to be provided with a basic description first [40]. Second, from an experimental design perspective,
we wanted to standardize the information that participants were provided about each image so that
we could better compare participants’ reactions when presented with the same content.

Recruitment Like past participatory AI studies that center marginalized community members (e.g.,
[8, 57, 72]), we adopted a purposive sampling approach [65] to recruit members of both communities.

For the blind and low vision community, we recruited participants from two email lists: an internal
list of blind and low vision community members who had consented to receive information about
future studies at our institution, and an open list for blind and low vision technology users in the UK.
We asked each community member to invite their sighted partner to the study, following Muehlbradt
and Kane [62]. Relationships between blind community members and their partners included friends,
partners, siblings, and children.

For residents of Kerala and Tamil Nadu, we sent out the calls for participation via X.com and also
circulated it on WhatsApp. We received over 75 responses for both states combined. Based on
community members’ age bracket, familiarity with the culture, gender diversity, and their expe-
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riences/interaction with each artifact, we selected 5 community members to participate for each
artifact.

Generating images We generated images using two T2I models that achieved state-of-the-art
performance at the time we conducted our study: Stable Diffusion 3 Medium (“SD-3”) and DALLE-3.
SD-3 Medium was the most recent and most popular open source T2I model at the time we conducted
our study, with over 3 million downloads on HuggingFace. DALLE-3 is a popular closed-source
model and competitor to SD-3 that was widely in-use at the time of our study (e.g., is integrated into
ChatGPT Premium). The images generated by these models reflect the state-of-the-art in the field,
and are similar to those that participants may encounter “in the wild”.

To generate images, we used two different prompt templates. The first template is a basic template (“a
photo of a {object}”) that is frequently used in past work [71, 74] to prompt for photorealistic images
of objects in isolation. We also experimented with a few basic prompt engineering interventions
(e.g., [17, 71]) to append descriptive text to each prompt. We explored several strategies:

1. Append a suffix with a description of the community, e.g., “a photo of a braille notetaker
used by someone who is blind or low vision”

2. Append a description generated by GPT-4, following Pratt et al. [71], e.g., “a photo of a
braille notetaker. [LLM-generated description]”

3. Append a handwritten description of important visual components of the object, written by
community members on our team. e.g., “a photo of a braille notetaker. A braille notetaker
used by people who are blind is an electronic device shaped like a rectangle. The top of
the device has 8 round buttons and a space bar. The bottom of the device has a tactile
braille display with braille cells. Each braille cell on the display has 8 holes where tactile
braille pegs can come out. The sides of the device have other buttons and ports to charge
the device.”

Following past T2I user studies [57], we pre-generated AI images so that synchronous study time
could be spent eliciting participants’ feedback. Because participants only had time to review a small
number of images (shown one-at-a-time), the research team curated sets of images that reflected
meaningfully different depictions of each object. Images were chosen by the last author and a
community member on research team.

B.2 Workshop Activities

All workshops involved an activity where participants were invited to annotate and respond to AI
generated images.

We began the study by introducing the activity, and invited participants to reflect on their familiarity
with and knowledge about the artifact being evaluated.

Q1. Is this image a correct depiction of a [object]? (OUTPUT: 1-3)

1. The image is wrong – it is totally unlike the object
2. The image is partially correct – some aspects are correct
3. The image is correct

Q2. What are the 3 most important things that would have to change, for this image to be a
correct depiction of a object? (OUTPUT: Free text, three items)

ALT: What is good and what is bad about this image?

Q3. Can you rank whether you prefer this image, in comparison to the other image(s) from
before? (OUTPUT: Ranking order)

Q4. Why did you put it there? (OUTPUT: Free text, 2 sentences)

Q5: Say that you were using AI to add images to a presentation to share with your (class,
workplace, friends) about your summer holidays. Which of these five images would you be
worried about your peers seeing?

ALT: Did you find any of the images shown to be offensive or upsetting?
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C Scaling Community Annotations: Extended

Standard error approximation for Spearman’s rank correlation We use Bonett’s approximation
for the standard error [11, 26]: SEρ ≈ (1 − ρ2)/

√
(n − 3). We can then solve for the number of

samples n by rearranging the formula as: n ≈ ((1− ρ2)/(m/z))2 + 3, where ρ is Spearman’s rank
correlation coefficient (e.g. 0.7), m is the desired margin of error (e.g. ±0.05), and z is the z-score
corresponding to the desired confidence level (e.g., 1.96 for 95% confidence).
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D Shades of Bad: Extended

Object Total Annotations 1 (Wrong) 2 (Partially Correct) 3 (Correct)
Braille notetaker 15 8 (53%) 5 (33%) 2 (14%)

Mridangam 80 67 (84%) 13 (16%) 0 (0%)
Table 1: Distribution of rating annotations assigned to generated images. Three annotators were
shown 5 images of a braille notetaker. Five annotators were shown 16 images of a Mridangam.

Object img1 img2 img3 img4 img5
Braille notetaker 1.67 1.67 1.67 2 1

Table 2: Ratings averaged across 3 annotators for the 5 images of a braille notetaker.

Object Ratings
Mridangam [1.2, 1.8, 1, 1, 1.2, 1.4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1]

Table 3: Ratings averaged across 5 annotators for 16 images of a Mridangam.

Figure 4: Final ranked images fo Mridangam via group consensus. Although participants initially
ranked the images individually from best to worst, reflecting variation in their preferences, the final
set of rankings was determined through group deliberation and consensus.
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Figure 5: Variance in participants’ ranking preferences for images of a braille notetaker. While
all three participants consistently agreed that depictions of notetaking use paper were their least
favorite, we observed high variance in how participants ordered other inaccurate depictions of a
braille notetaker (e.g., images that depict a braille notetaker similarly to a handheld calculator, manual
typewriter, or laptop computer). This variance reflects the difficulty of making arbitrary judgments
between “shades of bad”.
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