
Rockhopper: A Robust Optimizer for Spark Configuration Tuning
in Production Environment

Yiwen Zhu
Microsoft

Mountain View, USA
yiwzh@microsoft.com

Rathijit Sen
Microsoft

Redmond, USA
rathijit.sen@microsoft.com

Brian Kroth
Microsoft

Madison, USA
bpkroth@microsoft.com

Sergiy Matusevych
Microsoft

Redmond, USA
sergiym@microsoft.com

Andreas Mueller
Microsoft

Mountain View, USA
amueller@microsoft.com

Tengfei Huang
Microsoft

Beijing, China
tengfeihuang@microsoft.com

Rahul Challapalli
Microsoft

Mountain View, USA
rachalla@microsoft.com

Weihan Tang
Microsoft

Beijing, China
weihantang@microsoft.com

Xin He
Microsoft

Beijing, China
xinhe1@microsoft.com

Mo Liu
Microsoft

Mountain View, USA
mol@microsoft.com

Estera Kot
Clouds on Mars
Warsaw, Poland

estera.kot@cloudsonmars.com

Sule Kahraman
Microsoft

New York, USA
sulekahraman@microsoft.com

Arshdeep Sekhon
Microsoft

Fort Mill, USA
asekhon@microsoft.com

Dario Bernal
Microsoft

Cambridge, USA
dariobernal@microsoft.com

Aditya Lakra
Microsoft

Redmond, USA
adityalakra@microsoft.com

Shaily Fozdar
Dynamo AI

New York, USA
shailyfozdar@gmail.com

Dhruv Relwani
Microsoft

Redmond, USA
dhrelwan@microsoft.com

Rui Fang
Microsoft

Beijing, China
rufan@microsoft.com

Long Tian
Microsoft

Beijing, China
ltian@microsoft.com

Karuna Sagar Krishna
Microsoft

Redmond, USA
karkrish@microsoft.com

Ashit Gosalia
Microsoft

Redmond, USA
ashitg@microsoft.com

Carlo Curino
Microsoft

Redmond, USA
ccurino@microsoft.com

Subru Krishnan
Microsoft

Barcelona, Spain
subru@microsoft.com

Abstract
Apache Spark, renowned for its scalability and ease of use, has
become the standard for big data processing. However, optimiz-
ing Spark performance in production environments poses signifi-
cant challenges. Traditional machine learning-based configuration
tuning methods often necessitate extensive resources, lengthy ex-
perimentation, and risk performance regressions. Observational
noise in production environments further complicates the tuning
process, leading to suboptimal results. This paper presents an adap-
tive, robust learning approach leveraging insights from benchmark
workloads to improve production tuning strategies. We propose a
Centroid Learning algorithm resilient to noise, minimizing regres-
sions and prioritizing promising configurations, combined with a
workload embedding technique for context-aware adaptation and

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGMOD-Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3724451

transfer learning. Evaluations using benchmark and customer work-
loads show consistent performance gains. Released in June 2024
as part of the Microsoft Fabric Spark offering, even with dynamic
and evolving workloads, the system delivers approximately a 20%
performance improvement in production for customer workloads
by only tuning three query-level configurations.

CCS Concepts
•Computingmethodologies→Machine learning algorithms;
Modeling and simulation; • Information systems→Autonomous
database administration.

Keywords
Bayesian Optimization, Autotuning, Performance Tuning, Gradient
Descend

ACM Reference Format:
Yiwen Zhu, Rathijit Sen, Brian Kroth, Sergiy Matusevych, Andreas Mueller,
Tengfei Huang, Rahul Challapalli, Weihan Tang, Xin He, Mo Liu, Estera
Kot, Sule Kahraman, Arshdeep Sekhon, Dario Bernal, Aditya Lakra, Shaily
Fozdar, Dhruv Relwani, Rui Fang, Long Tian, Karuna Sagar Krishna, Ashit
Gosalia, Carlo Curino, Subru Krishnan, et al.. 2025. Rockhopper: A Robust

743

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722212.3724451
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3722212.3724451&domain=pdf&date_stamp=2025-06-22

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yiwen Zhu et al.

Optimizer for Spark Configuration Tuning in Production Environment. In
Companion of the 2025 International Conference on Management of Data
(SIGMOD-Companion ’25), June 22–27, 2025, Berlin, Germany. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3722212.3724451

1 Introduction
Apache Spark has emerged as a formidable engine for big data
processing due to its speed, scalability, and ease of use. With the in-
creasing adoption of cloud computing, Spark has also found a place
in the cloud, with various Spark offerings on cloud platforms, such
as Google Cloud [9], Microsoft Azure [20, 21], Amazon AWS [2] and
others [10]. These offerings provide easy access to Spark clusters
and take away the burden of managing the infrastructure.

As Spark operates over distributed computing frameworks, the
configuration of runtime parameters significantly influences its
performance. Optimizing these settings remains a critical chal-
lenge [6, 16, 24, 46]. At the application level, for instance, parame-
ters like spark.executor.instances and spark.executor.memory deter-
mine the number and size of Spark executors. Although increasing
resources might expedite processing, insufficient allocations can
lead to overheads or failures, necessitating a balanced approach
to optimize resource use while adhering to customer expectations.
At the query level, parameters such as spark.sql.shuffle.partitions
crucially impact performance. As depicted in Figure 1, varying this
parameter can significantly alter execution times, with each query
reaching peak efficiency under different settings.

Several machine learning-based approaches have demonstrated
success in modeling and optimizing Spark’s performance through
configuration tuning, including Rover [34], DAC [47], LOCAT [46],
and others [11, 24, 28, 36]. Building on predictive models, our work
integrates advanced workload characterization techniques to auto-
mate the tuning of Spark configurations on cloud platforms such as
Microsoft Fabric, minimizing additional effort or cost for customers.
However, deploying these machine learning methods in production
environments presents several practical challenges:
You only run once—no access to customer workload (queries
or data). Prior research often requires multiple rounds of “explo-
ration” [24, 46], where customer workloads are executed under
various configurations to develop an accurate performance model
or to pinpoint critical tuning parameters. This method, although
effective in controlled settings, poses significant challenges in a
production environment, as it requires additional customer con-
sent and incurs further costs, thereby increasing the complexity
of system design. Moreover, repeated executions may lead to data
overwriting, potentially disrupting ongoing customer operations.
Risk of performance regression. Performance regressions can
lead to significant repercussions. Relying on machine learning as
a black-box approach introduces considerable risks, particularly
when the model is trained on inadequate or noisy data. Such scenar-
ios can result in the recommendation of unsuitable configurations,
leading to substantial performance declines or even complete fail-
ures of cloud jobs.
Extremely noisy data. Machine learning algorithms, such as
Bayesian Optimization [5, 13] and gradient descent approaches
like FLOW2 [44], often struggle in production environments due to

0 1000 2000 3000 4000
spark.sql.shuffle.partitions

10000

20000

30000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(a) Query 33.

0 1000 2000 3000 4000
spark.sql.shuffle.partitions

40000

60000

80000

100000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(b) Query 78.
Figure 1: Query execution time for TPC-DS.

0 200 400
Iteration

101

102

103

104

Pe
rfo

rm
an

ce

50th
Optimal

(a) Bayesian Optimization

0 200 400
Iteration

101

102

103

104

Pe
rfo

rm
an

ce

50th
Optimal

(b) FLOW2.

Figure 2: Performance convergence with noisy data.
the presence of extremely noisy observational data [8]. In our anal-
ysis within the Microsoft Fabric environment, two primary types of
noise have been identified that complicate the optimization process:
• Fluctuation Noise: Characterized by random, small varia-
tions in execution time. These frequent deviations contribute
to the variability in observational data, making it challenging
to achieve consistent performance.
• Performance Spikes: Occasional, severe slowdowns where
execution time increases by more than 2x, albeit with a lower
probability.

Figure 2 illustrates the performance convergence of Bayesian
Optimization and FLOW2, based on 200 runs of simulation. Query
execution time was modeled as a convex function of configuration
parameters, with noises incorporated to simulate real-world pro-
duction environments (see Section 6 for more details). The solid
line represents the median (50th percentile) performance, while the
shaded regions depict the confidence interval between the 5th and
95th percentiles. We can see that both methods exhibit poor conver-
gence, highlighting how noisy data with high variance and frequent
outliers significantly hinders the performance of the algorithms.
Constantly changing workloads. In production environments,
even with recurrent workloads, the outcomes often vary due to
changes in input parameters, underlying data, variations in data
skew and correlations, etc.. Such dynamics necessitate an auto-
tuning mechanism that can swiftly and effectively adapt to these
evolving conditions. Adding further complexity, the size of the data
is often unknown at the start of a job, and cardinality estimation
may either be unavailable or highly error-prone [46, 53].

Introduction to Rockhopper. To address the outlined challenges,
we developed Rockhopper, an autotuning system integrated into
Microsoft’s Spark offering [23]. It performs efficient and robust
online configuration tuning for recurrent workloads, requiring
no customer intervention or additional experimentation. To en-
sure data privacy, Rockhopper trains models individually for each
query, tailoring tuning to specific recurrent queries. While prior

744

https://doi.org/10.1145/3722212.3724451

Rockhopper: A Robust Optimizer for Spark Configuration Tuning in Production Environment SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

research has focused on reducing the dimensionality of tuning pa-
rameters [15, 39, 48, 51], our work emphasizes a tuning algorithm
that targets a small subset of configurations, enhancing conver-
gence efficiency in production environments.

Rockhopper implements a robust tuning algorithm that minimizes
the risk of severe performance degradation. In production settings,
avoiding performance regression is critical. Our novel tuning algo-
rithm introduces a Centroid Learning (CL) algorithm and guardrails
to prevent significant performance regressions during the tuning
process by restricting the exploration space for configuration candi-
dates and disabling the tuning process when regression is detected.
This approach reduces performance variability and ensures more
stable recommendations.

Centroid Learning incorporates an effective “de-noising” mecha-
nism. To mitigate the impact of noisy data, the Centroid Learn-
ing algorithm evaluates observations with reduced sensitivity to
noise, enhancing convergence during tuning. Our learning strat-
egy demonstrates exceptional robustness, even under conditions of
extreme data noise.

An offline learning phase boosts Rockhopper’s performance by ex-
perimenting with open-source benchmark queries. To understand the
impact of different configuration parameters on query performance,
we developed an offline exploration pipeline capable of executing ar-
bitrary benchmark workloads with varying Spark cluster sizes and
configurations. This pipeline trains a warm-start baseline model
using experimental data fromwell-known benchmarks, as customer
data is unavailable due to privacy constraints.

Rockhopper’s innovative workload embedding enables transfer
learning from benchmarks to production workloads. To integrate
knowledge collected offline, our Centroid Learning algorithm in-
corporates workload embeddings as additional “context” in the
surrogate model for candidate selection. While previous works
have used direct features such as data size in performance mod-
els [34, 46, 47], our implementation expands the feature set with
embeddings that capture detailed query characteristics, leveraging
insights from cutting-edge research [53].

Contribution. Our contributions are summarized as follows.

• We design a robust and efficient learning algorithm with
built-in safeguards to prevent performance regressions dur-
ing the tuning process.
• We utilize workload embeddings to enable transfer learning
from benchmarks to dynamic production workloads, accel-
erating convergence through warm-starts.
• We perform a user study to understand user preferences for
the autotuning feature and the tuning patterns employed by
domain experts.
• The proposed feature is integrated into Microsoft Fabric
Spark and publicly released in June 2024 [23], delivering ap-
proximately a 20% performance improvement in production
for customer workloads.

The remainder of this paper is organized as follows: Section 2
provides an overview of Azure Spark offerings and presents cus-
tomer survey results on autotuning. Section 3 outlines the design
and architecture of Rockhopper. Section 4 describes the configura-
tion tuning algorithm, while Section 5 details its implementation.

Section 6 presents experimental results, and Section 7 reviews re-
lated work. Finally, Section 8 discusses remaining challenges and
highlights directions for future research.

2 Background
In November 2023, Microsoft introduced Fabric, an all-in-one plat-
form designed to streamline various data-related tasks, including
database management, analytics, messaging, data integration, and
business intelligence. With its intuitive interface, Fabric aims to
provide seamless onboarding, provisioning, and autonomous man-
agement capabilities [54].

2.1 User Study
To evaluate Microsoft Fabric’s Spark performance and gain insights
into user preferences, we conducted a study using workloads from
an existing Microsoft Spark platform. The findings revealed that
over 95% of queries relied on default configuration settings, de-
spite the availability of customizable parameters. We conducted
extensive interviews with six key Microsoft customers whose work-
loads ranged from ad-hoc, large-scale jobs with complex DAGs and
vast data, to regular batch jobs running on monthly or hourly ca-
dences. Their workloads exhibited significant variance in job size,
from “micro-batch” jobs lasting a few minutes to long-running
jobs exceeding 20 hours, as well as exploratory notebook jobs and
streaming workloads. Our analysis yielded several key insights:

• Nearly all customers reported tuning configurations related
to memory and core size.
• Some customers mentioned tuning configurations related to
partitions, garbage cleaning, and heartbeat monitoring.
• All customers valued execution time, but some teams with
particularly large resource utilization or fixed budgets also
noted the importance of cost.
• All customers expressed enthusiasm for auto-tuning solu-
tions but emphasized the need for robust monitoring capa-
bilities and transparency in understanding the configuration
decisions and the underlying tuning algorithms.

These findings informed our design of an automated tuning
process aimed at improving performance and reducing costs while
enhancing the overall user experience.

2.2 Manual Tuning Experiments
We conducted an experiment to understand the manual tuning
process employed by our Spark experts. We developed a simulation
platform for Spark configuration tuning, where users select config-
urations and iteratively “execute” queries. Instead of running actual
queries, the platform predicts execution times using a baseline
model trained on data from over 275 configuration combinations
for all TPC-DS/TPC-H queries. After each configuration choice, the
platform provides the predicted execution time alongside a visual-
ization of the results from all prior choices, enabling participants to
assess the impact of their decisions in real-time. We recruited over
50 volunteers to tune 5 queries across 7 Spark configurations, result-
ing in more than 4,000 query execution records. The configurations
included spark.sql.files.maxPartitionBytes, spark.sql.autoBroadcast-
JoinThreshold, spark.sql.shuffle.partitions, spark.executor.instances,

745

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yiwen Zhu et al.

0 20 40
Iteration Number

200

250

300

350

Ex
ec

ut
io

n
Ti

m
e

(s
) model

user_mean
user_median

0

2

4

6

8

Us
er

 C
ou

nt

(a) Query 1.

0 20 40 60
Iteration Number

60

80

100

120

Ex
ec

ut
io

n
Ti

m
e

(s
) model

user_mean
user_median

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Us
er

 C
ou

nt

(b) Query 2.

Figure 3: Manual tuning versus Bayesian Optimization

spark.executor.memory, spark.memory.offHeap.enabled, and spark.-
memory.offHeap.size.

For each query, users typically performed between 0 and 40 tun-
ing iterations, generally achieving performance levels comparable
to those suggested by the model by the end of the process. The
tuning results for selected queries are illustrated in Figure 3, where
solid lines represent the average execution times across all users
per iteration. Dashed lines indicate the results obtained through
model-based tuning using vanilla Bayesian Optimization as the
baseline, in which each query is supported by a fine-tuned surro-
gate model. While the model generally converged faster, domain
experts occasionally achieved better results. However, the model
sometimes became stuck in local minima.

3 Overview
In this section, we present an overview of the Rockhopper design
principles and architecture.

3.1 Design Principles and Choices
The following core design principles guided the architectural de-
velopment of Rockhopper:

Reducing the number of experiments needed. We adopt two
strategies to reduce the number of experiments. First, an offline
phase leverages open-source benchmark queries to transfer knowl-
edge to customer workloads. Second, a model-guided search im-
proves convergence speed.

Reducing inference latency. The inference latency is on the crit-
ical path of the job submission/execution. We reduce the latency
by (i) constraining the candidate search areas using a Centroid
Learning algorithm, and (ii) pre-computing application-level con-
figurations for recurrent workloads based on query statistics.

Scalability. This work focuses on per-query tuning, which pro-
poses tailored configuration adjustments for each query. Given the
high volume of queries processed daily by Fabric, this approach
introduces significant scalability challenges. We consider two host-
ing options for the training pipeline—specifically, the feature ETL
streaming job and the ML training pipeline: (i) the customer’s Azure
workspace or (ii) the admin workspace managed by the engineering
team. Each option has trade-offs in terms of cost, maintainability,
and operational complexity. The admin workspace is typically eas-
ier to maintain since the engineering team has direct access to
resources. However, it poses challenges such as (1) increased com-
pliance requirements for accessing customer data, and (2) scalabil-
ity concerns, as it must handle models for all customer workloads.

Conversely, hosting in customer workspaces avoids privacy and
compliance issues but limits access.

Based on these considerations, we chose to host the pipeline in
the admin workspace, leveraging scale-up and scale-out options
for compute instances. To ensure compliance, we established a
comprehensive data privacy and security review process.

Choice between Scala and Python. Python fulfills most of our
requirements due to its API stability and extensive library support,
including: (i) feature construction (e.g., adding interactions and
permutations to the feature set), (ii) ONNX [25] model training
and saving (not available in Scala), and (iii) access to libraries like
Scikit-learn [27], NimbusML [22], and Bayesian Optimization [4].
For inference, to minimize and simplify communication between
Python and Spark, we retrieve model in Scala. Models are trained in
Python, converted to ONNX, and loaded in Scala using the ONNX
Spark runtime. This setup ensures efficient deployment of surrogate
models used in the Centroid Learning algorithm.

3.2 End-to-end Pipeline
The Rockhopper process consists of two phases: (1) an offline phase
and (2) an online phase. In the offline phase, we developed an ex-
periment platform to run open-source benchmarks (e.g., TPC-DS)
under various Spark configurations and pools. This process collects
extensive training data to analyze query performance across config-
urations. Using this data, we trained a baseline model, a regression
model that predicts performance based on query characteristics and
configuration settings. This model serves as the default surrogate
model in the Centroid Learning algorithm, similar to Bayesian Op-
timization [4], providing a warm-start at iteration 0. By leveraging
benchmark insights, the baseline model improves configuration
recommendations for customer workloads in early iterations. In
the online phase, when customers enable the “autotune” feature,
Rockhopper recommends optimal Spark configurations at query or
application start, applies them, and updates the surrogate models
with observations after execution.

4 Algorithm
In this section, we discuss the tuning algorithm. Inspired by Bayesian
Optimization and gradient descent methods, we develop an inno-
vative tuning algorithm that combines the two to avoid potentially
“risky” configurations and leverage ML models to improve effi-
ciency. Section 4.1 discusses the surrogate model that supports
the model-guided search. Section 4.2 discusses the offline phase.
Section 4.3 discusses the online phase, i.e., Centroid Learning algo-
rithm. Section 4.4 discusses the modification of the algorithm for
pre-computing of the app-level configurations at the app-startup
time where all the query-level characteristics are unknown.

4.1 Surrogate Model
In this section, we discuss the surrogate model used in the online
tuning process to select the optimal configuration from a set of
candidates. This approach is analogous to the surrogate model em-
ployed in Bayesian Optimization [4]. In Bayesian Optimization, a
surrogate model is trained to predict the performance of candidate
configurations, thereby guiding the search process. This regres-
sion model takes configuration values as input and predicts their

746

Rockhopper: A Robust Optimizer for Spark Configuration Tuning in Production Environment SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

corresponding performance:

𝑓 ([Configs]) = Perf. (1)

At each iteration of Bayesian Optimization, the configuration that is
expected to yield the best performance, according to the surrogate
model, is returned as the next suggested candidate.

To enable effective generalization across diverse workloads with
varying characteristics and input data sizes, we propose augment-
ing the input features with workload characteristics. This enhance-
ment supports transfer learning using extensive data collected from
benchmark workloads. The surrogate model in this work is formu-
lated as shown in Equation (2), where the workload embedding
encapsulates key characteristics of the workload, providing contex-
tual information for optimization:

𝑓 ([Workload embedding, Configs]) = Perf. (2)

At inference time, the configuration with the highest predicted
performance or the best performance guarantee is recommended.

Workload embedding. We utilize workload embedding to charac-
terize workloads as the “context” in the surrogate model defined
in Equation (2). Effective workload characterization significantly
enhances tuning performance for unseen workloads by capturing
their unique features. The key intuition is that workloads with
similar contexts are expected to exhibit comparable performance
behavior for a given set of configurations.

We leverage simple and efficient workload embedding schemes
as in [14, 53] to extract information related to the query optimizer
that is available at compile time, without requiring additional train-
ing for feature extraction. Each workload embedding, represented
as a vector, comprises three components: (1) the estimated cardi-
nality of the root node operator, (2) the total input cardinality of
all leaf node operators, and (3) the frequency of operator occur-
rences within the execution plan. For operator occurrences, each
vector entry corresponds to a distinct operator type. To enable a
finer-grained vectorization of execution plans, we further intro-
duce the concept of a virtual operator, which distinguishes physical
operators based on variations in input and output sizes. Specifically,
each physical operator is subdivided into multiple virtual operators
according to the optimizer’s estimates of input and output row
counts.

As illustrated in Figure 4, virtual operators are introduced for
the Filter operator to capture distinctions between input and out-
put sizes. For example, Filter1 and Filter2 may share a common
virtual operator type when their outputs are small relative to their
inputs. Conversely, Filter2 may also represent a second type of
virtual operator based on different size thresholds. In this case, the
execution plan contains two virtual operators of Filter-Type-I and
one virtual operator of Filter-Type-II. In our experiments, we fine-
tune the clustering thresholds for input and output sizes based on
end-to-end performance optimization. The virtual operator counts
are subsequently incorporated into the workload embeddings.

A potential direction for future work is to introduce more com-
prehensive workload characterization methods that incorporate
complex execution plan structures, such as those proposed in [43].
While the current approach fine-tunes the prediction model on
a per-query basis, more general predictors would require richer
embedding techniques to improve the model’s generalizability.

Log

Log

Fil1

Fil2

Fil3
Log

Pro

Pro

Pro

Joi JoiPro

Pro

Agg

Sor

Loc Glo Roo

Input Rows (1m)
Output Rows (10%)

Input Rows (0.5m)
Output Rows (8%)

Input Rows (10k)
Output Rows (80%)

Figure 4: Virtual operator.

4.2 Offline Phase: Training Baseline Model
To enhance the accuracy of the surrogate model, we propose an
offline process to gather observations from benchmark workloads,
thereby enriching the model’s knowledge base. This data is used
to train a baseline model, which serves as the initial iteration when
query-specific observations are unavailable. Subsequently, themodel
is fine-tuned with new observations during the tuning process.

The offline phase of Rockhopper consists of two main compo-
nents: (1) an experimental platform, referred to as the “flighting
pipeline,” which executes open-source benchmarks and collects data
points to train the surrogate model (see Equation (2)); and (2) a ma-
chine learning (ML) training pipeline used to construct the baseline
model.

The flighting pipeline operates based on a configuration file that
specifies essential parameters, including the benchmark database
(e.g., TPC-DS, TPC-H), query name, scaling factor, number of runs,
pool ID (linked to node configurations), and the Spark configuration
generation algorithm (currently set to “Random”). Future work may
explore enhancing the efficiency of configuration generation. After
executing the queries, the pipeline triggers an ETL job (see Figure 7)
to process logs and train the model.

For each region, we develop a baseline surrogate model using
execution traces. At the beginning of the tuning phase, the surro-
gate model is fine-tuned for the specific query signature [30] (each
corresponds to a distinct query execution plan), leveraging both
query-specific observations and benchmark workload data. To en-
sure data privacy, information sharing between users is restricted.
Models are trained exclusively with baseline data and query traces
originating from the same user and query signature.

4.3 Online Phase: Centroid Learning
In this section, we introduce the Centroid Learning algorithm, a
novel approach that seamlessly combines the strengths of two
prominent configuration optimization strategies: greedy search
(e.g., hill-climbing [26], FLOW2 [44], and OPPerTune [35]) and
model-guided search (e.g., Bayesian Optimization [4]). The algo-
rithm is designed to enhance the online tuning process.

Figure 5 depicts the online tuning process facilitated by the
Centroid Learning algorithm. Upon user submission of a query
(Step 0), the algorithm begins by leveraging the baseline model,
trained offline as a surrogate model (see Section 4.1), to select the
best configuration for the first iteration of tuning, where no query-
specific data is yet available to train ML models. Various acquisition

747

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yiwen Zhu et al.

3. Adding
Observation

2. Set Config

Improved
Performance

N Random
Neighbors

0. Submit a Query

Optimal Candidate

5. Update
Centroid

Centroid

Prev Configs, Perfs

Current config, Perf
New Centroid

Neighbor Generation

1. Optimize4. Update Model

ML Models

Centroid Learning

Figure 5: CBO with centroid learning.

functions, such as Expected Improvement (EI) [4], can be used as
selection criteria [7, 34, 46]. The search subspace is defined as the
neighborhood around the default configuration based on a step size
(Step 1). Using the surrogate model, the candidate configuration
with the highest acquisition function score is selected and applied
to the submitted query (Step 2).

After the query execution, the observed performance is recorded
as new entries in the storage system (Step 3), and the surrogate
model is subsequently updated with this new data (Step 4). Based on
the updated observations, the algorithm computes a new centroid
using statistical insights derived from the collected data (Step 5),
where the optimal descending direction is inferred statistically
from a group of observations. This centroid serves as the anchor for
generating the next set of configuration candidates for subsequent
query submissions. This iterative tuning process continues with
each new submission of the same recurrent workload, progressively
improving the configuration selection and performance outcomes.

Algorithm 1: Centroid Learning
Input: Initial centroid 𝑒0, centroid update step size 𝛼 , candidate

generation step size 𝛽 , observed performance 𝑟 of candidate
𝑐 with data size 𝑝 , acquisition function 𝑓 , at iteration 𝑡 latest
𝑁 observations for centroid updates
Ω (𝑡, 𝑁) = { (𝑐𝑖 , 𝑝𝑖 , 𝑟𝑖) | 𝑡 + 1 − 𝑁 ≤ 𝑖 ≤ 𝑡 }

𝑒𝑡 ← 𝑒0 ; while not stopping criterion do
Generate candidate set in the neighborhood of centroid 𝑒𝑡
based on 𝛽 :𝐶 (𝑒𝑡) = {𝑐 (1) , ..., 𝑐 (𝑛) } ;

Use surrogate model to select the best candidate:
𝑐𝑡+1 = argmax𝑐∈𝐶 𝑓 (𝑐) ;

Execute query with config 𝑐𝑡+1, obtain 𝑝𝑡+1, and 𝑟𝑡+1;
Find best candidates in the latest 𝑁 iterations:
𝑐∗ = FIND_BEST(Ω (𝑡 + 1, 𝑁)) ;

Using the latest 𝑁 observations, obtain the gradient for each
config dimension to descend towards:
Δ = FIND_GRADIENT(Ω (𝑡 + 1, 𝑁)) ;

Update centroid: 𝑒𝑡+1 ← 𝑐∗ − 𝛼 · Δ ;
Update time stamp: 𝑡 ← 𝑡 + 1 ;

Algorithm 1 provides a detailed overview of the Centroid Learn-
ing process. Starting from the default configuration, each iteration
involves selecting candidates within the neighborhood 𝐶 (𝑒𝑡) that
maximize the acquisition function 𝑓 , denoted as 𝑐𝑡+1. After exe-
cuting 𝑐𝑡+1, its performance 𝑟𝑡+1 and corresponding data size 𝑝𝑡+1
are recorded. The new centroid is determined based on two com-
ponents: (1) 𝑐∗, the best configuration observed over the latest 𝑁
iterations, evaluated using performance and associated data sizes,
and (2) the gradient Δ, learned by fitting a regression model to the

latest 𝑁 observations. A linear surface is employed to approximate
the small region explored in these iterations, enabling robust gra-
dient calculation that mitigates noise while excluding the effects
of data size variations. Specifically, the features include the config-
uration parameters in 𝑐 and the data size 𝑝 . The next centroid is
derived by advancing from the current optimal configuration 𝑐∗
in the direction of the learned gradient, scaled by a factor 𝛼 . This
approach deliberately overshoots the gradient direction at each iter-
ation, drawing inspiration from the momentum effect in gradient
descent algorithms for Deep Neural Networks (DNNs) [29, 37]. The
overshooting strategy enhances the algorithm’s ability to escape
local minima, improving the likelihood of converging to a glob-
ally optimal configuration. While this paper focuses on continuous
configurations, categorical configurations can be handled by em-
ploying embedding algorithms that map categorical values into a
continuous space to enable tuning [50].

FIND BEST. Algorithm 1 incorporates the FIND_BEST function,
which has undergone three iterations of refinement. Given the latest
𝑁 observations, Ω(𝑡, 𝑁), the simplest approach selects the candi-
date with the shortest execution time. While straightforward, this
approach is inadequate when data sizes vary, as it may favor candi-
dates with minimal data sizes, even if their overall performance is
suboptimal. To address variations in data size, the second version
of the function selects the candidate with the shortest normalized
execution time:

𝑐∗ = arg min
𝑐𝑖 ∈Ω

𝑟𝑖

𝑝𝑖
. (3)

This normalization penalizes candidates with smaller data sizes,
providing a fairer comparison. However, we observed that for the
same configuration, the ratio 𝑟𝑡

𝑝𝑡
often decreases as 𝑝𝑡 increases,

leading to biased comparisons across observations with different
data sizes. The final version employs machine learning (ML) to
model the relationship between configuration, data size, and per-
formance, enabling performance predictions under a uniform data
size. A regression model 𝐻 is trained using the observations in Ω:

𝑟𝑖 = 𝐻 (𝑐𝑖 , 𝑝𝑖) + 𝜖𝑖 , (4)

where 𝜖𝑖 represents the error term. Using the fitted model 𝐻 , per-
formance predictions for each candidate are made by fixing the
input data size to a constant value, such as 𝑝𝑡 . The best candidate
is then identified based on the predicted performance:

𝑐∗ = arg min
𝑐𝑖 ∈Ω

𝐻 (𝑐𝑖 , 𝑝𝑡). (5)

FINDGRADIENT. The intuition behind the gradient is to estimate
whether increasing or decreasing a specific configuration value will
lead to performance improvement or degradation based on observed
trends. It is important to emphasize that the derived gradient at this
step indicates only the direction of change (increase or decrease),
not the magnitude. To control the adjustment’s scale, we introduce
a parameter, 𝛼 , which can be fine-tuned to determine the step size
in the descent.

Figure 6 illustrates a simple example based on observations from
the last six iterations, Ω. In this example, we learn the performance
trend with respect to spark.sql.shuffle.partitions. The observed
trend shows that increasing the value of this configuration results
in performance degradation. As a result, the centroid should move

748

Rockhopper: A Robust Optimizer for Spark Configuration Tuning in Production Environment SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

ex
ec

_t
im

e
ShufflePartition

Figure 6: Learning the trend for the gradient.

in the direction of decreasing this configuration in subsequent iter-
ations. Learning performance trends in this manner helps mitigate
the impact of significant noise in the data, particularly when con-
figuration changes (x-axis) are relatively small.

To relax the assumption about the relationship between data size
and performance, we introduced a non-linear regression approach.
This method enables the reuse of theMLmodel fitted in Equation (4)
to learn the local gradient around the best candidate identified using
Equations (3), or (5):

Δ = arg min
𝛿∈D

𝐻
(︁
𝑐∗ (1 − 𝛼𝛿), 𝑝𝑡+1

)︁
, (6)

D = {(1, 1, 1), (1, 1,−1), . . . , (−1,−1,−1)}, (7)

where Δ represents the “candidate gradient”, determined based on
predictions from theMLmodel. This gradient reflects the local trend
around the best configuration identified from prior observations.

In production scenarios with varying data sizes, we observed
that the use of a learned ML model consistently outperforms linear
regression by avoiding additional assumptions about how data size
impacts performance. Furthermore, the number of observations 𝑁
should be sufficiently large (e.g., 10 or 20) to mitigate the influence
of significant noise often present in production data. This ensures
more reliable gradient estimation and robust tuning outcomes.

Additional guardrail. In the production system, we implemented
a guardrail mechanism to monitor performance changes for each
query over time. If continuous performance regression is detected
over several consecutive iterations, the system identifies the query
as unsuitable for autotuning. In such cases, the autotune feature is
disabled, and the default configuration is reinstated.

Building on the insights from Figure 6, we developed a simple
regression model to predict performance based on the iteration
number and input cardinality. Starting at iteration 30, the model
predicts the execution time for the next iteration. If this predicted
value exceeds the execution time of the previous iteration by more
than a predefined threshold, autotuning is deactivated for the query.
This approach strikes a balance in the exploration budget for each
query, ensuring that every query undergoes at least 30 iterations of
tuning, even in the presence of performance regressions. If perfor-
mance shows improvement over time, the tuning process proceeds
as usual, allowing the system to optimize configurations effectively.

Summary. The Centroid Learning algorithm, as outlined in this
section, provides several key advantages:
De-noising. The Centroid Learning algorithm leverages statistical
insights to enhance exploration by utilizing the latest 𝑁 obser-
vations to determine a statistically robust exploration direction,
thereby effectively mitigating noise. Unlike methods such as hill-
climbing [26], FLOW2 [44], or OPPerTune [35], which rely solely
on the last two rounds of observations, our approach incorporates
a broader set of observations to compute a descending gradient.
In noisy environments, performance improvements observed in a

single execution may be unreliable. By utilizing a larger pool of
observations, as demonstrated in Section 6, the Centroid Learning
algorithm achieves superior performance compared to traditional
methods that depend exclusively on recent executions, effectively
reducing the impact of noise.
Robustness: learning from failures. Through experimentation,
we observed that even when the ML model fails to recommend an
optimal candidate, the centroid update process still derives value
from those observations by learning the correct gradient direction
for the next iteration. This capability enables the algorithm to accel-
erate convergence, even when the surrogate model exhibits lower
accuracy (see more discussion in Section 6).
Robustness: avoiding performance regression. The Centroid
Learning algorithm restricts exploration to a smaller region defined
by the step size 𝛽 , minimizing the risk of significant performance
regressions. This focused search space not only enhances robust-
ness and safety but also reduces latency during model inference. By
avoiding drastic jumps to entirely different regions, the algorithm
prioritizes stability and ensures a more controlled and reliable opti-
mization process, even if this approach sacrifices some potential
performance gains.
Avoiding local minima. To prevent stagnation in local minima,
the algorithm incorporates a momentum-like mechanism that over-
shoots in the exploration direction during updates as used in train-
ing deep neural networks, which has been shown to enhance opti-
mization effectiveness [29, 37].

4.4 App-Level Configuration Optimization
Recall that in Spark, an application can execute one or more queries
during its lifecycle. Tuning configurations at the application level
(e.g., spark.executor.instances) differs fundamentally from query-
level configuration optimization due to the following reasons:
• Consistency requirements: Application-level configura-
tions must remain consistent across all queries within the
application, as they are fixed at startup. In contrast, query-
level configurations can be different across queries and are
set at the query start time.
• Limited information at startup:Workload embeddings,
which rely on input from the query optimizer (see Section 4.1),
are only available after query submission. At application
startup, details about upcoming queries and their embed-
dings are unavailable.

To address these challenges, we extend the existing tuning al-
gorithm by developing a joint optimization framework for both
application- and query-level configurations. This involves modi-
fying Step 1 in Figure 5 and the argmax𝑓 (𝑐) computation in Algo-
rithm 1. Additionally, we propose pre-computing application-level
configurations after each application completes, enabling better
initialization for future runs for the same recurrent workload.

Pre-compute app cache. We introduce a unique identifier, artifa-
ct_id, for each recurrent Spark application, derived from its arti-
fact, such as a hash of a PySpark notebook or a Spark job description
in JSON format. This identifier links each application to its histori-
cal observations within the same recurrent workload. At the end of
each application run, the optimal application-level configuration

749

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yiwen Zhu et al.

Algorithm 2: App_cache generation, modified argmax𝑓 (𝑐)
Input: Number of app-level configuration candidates𝑀 , number of

query-level config candidates 𝑁 , set of queries𝑄 , scoring
function 𝑓𝑞 (𝑐) for each 𝑞 ∈ 𝑄

Output: Best app-level configuration candidate
𝑉 ← generate𝑀 app-level config candidates around the
neighborhood of the current setting;

for 𝑞 ∈ 𝑄 do
𝑊𝑞 ← generate 𝑁 query-level config candidates around the
centroid of 𝑞;

𝐶𝑞 (𝑣) ← {𝑣 × 𝑤𝑞 | 𝑤𝑞 ∈𝑊𝑞 }, ∀𝑣 ∈ 𝑉 ; // Cartesian
product of app- and query-level config for each
query

𝑐∗𝑞 (𝑣) ← argmax𝑐∈𝐶𝑞 (𝑣) 𝑓𝑞 (𝑐) ; // config candidate with

the best acquisition function for query 𝑞 given
app-level config 𝑣

end
for 𝑣 ∈ 𝑉 do

𝐹 (𝑣) ← ∑︁
𝑞∈𝑄

𝑓𝑞 (𝑐∗𝑞 (𝑣)) ; // Score app-level config

candidate

end
return argmax𝑣∈𝑉 𝐹 (𝑣) // Return best app-level config

candidate

is computed from the observed query embeddings and stored in
app_cache under the corresponding artifact_id. When a new
application is submitted, its artifact_id is used to retrieve the
pre-computed app_cache for that job, bypassing additional compu-
tations and significantly reducing configuration inference latency.

Joint optimization. For applications consisting ofmultiple queries,
a joint optimization program is employed to compute the app_cache
after the application has completed execution. Algorithm 2 de-
scribes the process: first, candidates for app-level configurations
are generated. For each candidate, query-level configurations are
created using the centroid of each query. The per-query surrogate
model then selects the optimal query-level configuration, 𝑐∗𝑞 (𝑣),
for each app-level candidate 𝑣 by maximizing the acquisition func-
tion 𝑓𝑞 . The app-level configuration that achieves the highest total
acquisition function score across all queries is selected. If the acqui-
sition function is defined in terms of execution time, this approach
minimizes the overall execution time of the application.

5 Implementation
Figure 7 presents an overview of Rockhopper’s internals for the
online phase. The Autotune Backend leverages cloud resources to
process event files, train machine learning models, and infer opti-
mal Spark configurations. The Autotune Clients run on customers’
Spark clusters, retrieving model files and pre-computed configura-
tions from the Autotune Backend and executing ML inference.

When a Spark job is submitted (Step 0), autotune-specific config-
urations, such as the application ID and artifact_id, are included
in the job payload. These configurations enable Autotune Clients,
including the model loader and query listener, to authenticate (e.g.,
via SAS URLs in Steps 1 and 2) and retrieve pre-computed optimal
configurations, such as the number of executors and executor sizes,

from the app_cache (Step 3) along with ML model files (Step 5).
After query or application completion, Spark events are recorded
(Step 6) to retrain ML models and refine app-level configurations.
The Job Service applies these configurations to each Spark appli-
cation (Step 4). For individual queries, Rockhopper’s ML models
guide the Autotune Config Inference module to determine optimal
configurations before the physical planning stage. The following
sections detail the implementation of each module.
Autotune Backend. The Autotune Backend securely manages
storage for event files and models. Each Spark application is as-
signed a dedicated folder for event files, organized by its job ID, and
another folder for its artifact_id, used for jobs with the same
Spark definition. Restricted access is enforced through SAS URLs,
ensuring data integrity across jobs. A Storage Manager oversees
the cleanup of outdated event files to maintain GDPR compliance
and prevent misuse [38]. The backend hosts three key streaming
jobs: (1) the Embedding ETL, which processes Spark job logs; (2)
the App Cache Generator, responsible for managing app_cache;
and (3) the Model Updater, which updates query models and is
triggered by new events in the Event Hub.
Authentication. To secure communication between Autotune and
Spark jobs, theAutotune Backend generates SAS URLs for accessing
models andwriting event files. TheAutotuneManagerwithin Spark
Core integrates seamlessly with Autotune by retrieving SAS URLs
from the backend. It handles authentication, authorization, and
request validation, ensuring that all requests originate from Spark
clusters through the Fabric token service.
Autotune Client. Autotune Clients on Spark clusters manage con-
figuration inference through the model loader and query listener
components. These clients interact with Autotune storage to read
models and write event files using SAS URLs. The AutotuneCreden-
tialManager class handles SAS URL retrieval for both clients and
the backend, leveraging the token library to communicate with the
Autotune Manager. The URL of the Autotune Manager is provided
as a Spark configuration during job submission, with SAS URLs
being cached and refreshed as needed. Users can enable or disable
the Autotune feature via the spark.autotune.query.enabled Spark
configuration. The Autotune configuration inference client logs
the suggested configurations along with their rationale, enhancing
transparency and facilitating debugging.

6 Experiments
In this section, we present the experimental and deployment find-
ings of Rockhopper, focusing on: (1) the evaluation with synthetic
functions in Section 6.1, (2) the ablation study using standard
benchmark workloads in Section 6.2, and (3) the deployment
results with production workloads in Section 6.3.

6.1 Experiment with Synthetic Functions
To evaluate the tuning algorithms under significant noise levels, we
design a synthetic optimization function that models the relation-
ship between observed performance (e.g., execution time), data size,
and three tunable configurations as a convex function. Figure 8 il-
lustrates this function both before (dashed line) and after (solid line)
adding noise for one of the configurations represented on the x-axis.

750

Rockhopper: A Robust Optimizer for Spark Configuration Tuning in Production Environment SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

0. Run Spark Job
Spark Core Workload

3. Fetch App Config

App Config
Cache Store

Query Conf

1. Authentication

Driver

Autotune Config
Inference

6. Write Events

Autotune Query
Listener

Executors

Executors

Executors

Executors

4. Apply Config

Job Service

5. Get Model(s)

Model Store

Event Store

Model Updater

App Config
Generator

Embedding
ETL

State Store

2. Authentication

2. Authentication 2. Authenticate

Event Hub

Autotune Backend

Autotune Client
(Runs in Spark Cluster)

Figure 7: Architecture (online phase).

0 500 1000
Partition

20000

40000

60000

Pe
rfo

rm
an

ce

w/ Noise
w/o Noise

(a) High noise.

0 500 1000
Partition

5000

10000

15000

20000

25000

Pe
rfo

rm
an

ce

w/ Noise
w/o Noise

(b) Low noise.

Figure 8: A synthetic function for optimization, where high
noise corresponds to greater fluctuations and more frequent
spikes, and vice versa.

The function exhibits a simple convex shape, reflecting typical rela-
tionships between configurations (e.g., spark.sql.shuffle.partitions)
and execution time (y-axis), as shown in Figure 1.

We introduce two types of noise into the evaluation: (1) fluc-
tuation noise, modeled as a Gaussian-distributed slowdown with
a fluctuation level denoted by FL, and (2) performance spikes,
where the execution time doubles with a probability determined by
the spike level, denoted by SL. The observed execution time 𝑔 for
a configuration candidate 𝑐 with data size 𝑝 is modeled by inject-
ing noise into the baseline execution time 𝑔0. Drawing a random
number 𝑝 ∼ U[0, 1], the execution time is given by:

𝑔 =

{︄
𝑔0 (1 + |𝜖 |) if 𝑝 > SL

10 ,

𝑔0 (1 + |𝜖 |) × 2 otherwise.
(8)

Here, 𝜖 ∼ N(0, FL). For high noise levels, FL = 1 and SL = 1 (Fig-
ure 8a), whereas for low noise levels, FL = 0.1 and SL = 0.1 (Fig-
ure 8b).

Impact of surrogate models. To assess the impact of surrogate
models on the convergence to the optimal solution, we conduct
experiments using pseudo-surrogate models with varying accuracy
levels in predicting the “true” performance (i.e., performance in
the absence of noise). An ideal surrogate model should identify the
candidate within the set 𝐶 that optimizes true performance as a
function of data size. Conversely, an inaccurate surrogate model

may select suboptimal candidates. We define a “Level 1” model
as one that selects a candidate ranked approximately at the 10th
percentile in true performance as optimal, whereas a less accurate
“Level 8” model might recommend a candidate ranked near the
80th percentile. Such a decline in predictive accuracy can lead to
significantly suboptimal decision-making outcomes.

Constantworkloads. We employ different pseudo-surrogate mod-
els that suggest candidates at various percentiles within the set 𝐶
as specified by Algorithm 1. Figure 9 presents the convergence
results when the surrogate model consistently selects candidates
ranked at the 10 · 𝑋 th percentile of the true performance for con-
stant workloads with 100 runs. The solid line represents the median
(50th percentile) of the true performance at each iteration across all
runs. The shaded region illustrates the confidence interval, span-
ning from the 5th to the 95th percentiles. Notably, even when the
surrogate model identifies candidates at Level 5 (selecting from
the top 50% of the candidates), the algorithm demonstrates robust
convergence (see Figure 9c), outperforming the baseline vanilla
Bayesian Optimization algorithm (shown in Figure 2).

We replace the pseudo-surrogate model with a support vector
machine regression model [31] trained on noisy data. Figure 10
shows the convergence results. Compared to Figure 9, the model
tends to select candidates within the 30th to 50th percentiles for
true performance, indicating moderate accuracy. Despite this, con-
vergence remains satisfactory. The Centroid Learning algorithm
consistently avoids poor performance throughout iterations and
converges to the true optimum faster, as evidenced by the nar-
rowing upper boundary of the shaded area. Compared to vanilla
Bayesian Optimization (Figure 2a) and FLOW2 (Figure 2b), con-
vergence improves significantly, demonstrating the robustness of
the Centroid Learning algorithm even with a moderately accurate
surrogate model. However, the results also suggest potential for
further improvement in convergence by enhancing the surrogate
model’s accuracy (see Figure 9e).

Dynamic workloads. We simulate two types of dynamic work-
loads with high noise levels:

751

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yiwen Zhu et al.

0 200 400
Iteration

1.7×104
1.8×104
1.9×104
2×104

2.1×104
2.2×104
2.3×104
2.4×104
2.5×104

Pe
rfo

rm
an

ce

(a) Level 9.

0 200 400
Iteration

103

104

Pe
rfo

rm
an

ce
(b) Level 7.

0 200 400
Iteration

102

103

104

Pe
rfo

rm
an

ce

(c) Level 5

0 200 400
Iteration

102

103

104

Pe
rfo

rm
an

ce

(d) Level 3.

0 200 400
Iteration

101

102

103

104

Pe
rfo

rm
an

ce

(e) Level 1.

Figure 9: Convergence results with varied surrogate models for constant workloads. Level 𝑋 indicates that the model selects a
candidate in the 10𝑋 th percentile within the set. Lower levels correspond to better performance (shown on the right).

0 200 400
Iteration

101

102

103

104

Pe
rfo

rm
an

ce

(a) Performance.

0 200 400
Iteration

0

200

400

Op
tim

al
ity

 G
ap

(b) Optimality Gap.

Figure 10: Convergence of the Centroid Learning algorithm
for constant workloads, with accuracy comparable to Level 3
(Figure 9d) and Level 5 (Figure 9c). The results demonstrate
significant improvements over existing algorithms (Figure 2).

• Workloads with data sizes increasing linearly over time;
• Workloads with periodic changes in data size, where the
input data size follows 𝑓 (𝑡) = 𝑡%%𝐾 , a periodic function
based on 𝑡 with a period of 𝐾 .

For both types of workloads, Centroid Learning converges to the op-
timal configuration (see Figure 11). To measure the optimality gap,
we evaluate the absolute difference from the optimal value for the
most impactful configuration, such as spark.sql.files.maxPartitionB-
ytes as in Figures 10b and 11d.

6.2 Experiment with Standard Benchmark
Workloads

In this section, we discuss the performance of our algorithm on
standard benchmark workloads like TPC-DS. In particular, we: (1)
evaluate the impact of transfer learning, warm-starting from the
baseline model (described in Section 4.2), as opposed to developing a
new model based exclusively on the experimental data collected on
the target query; (2) compare the performance of Centroid Learning
and Bayesian Optimization algorithms; and (3) assess the impact of
the new embedding based on virtual operators compared with the
original embedding proposed by [53].

Transfer learning. We develop an experimental platform to test
the algorithm’s performance, specifically focusing on the vanilla
Contextual Bayesian Optimization (CBO) to evaluate the impact
of using the baseline model for a warm-start. The platform (V0)
implements a synthetic evaluation method that proactively gener-
ates a large set of configuration performance data for each query.

0 200 400
Iteration

101

103

Pe
rfo

rm
an

ce
(a) Linear increasing, normed-
performance.

0 200 400
Iteration

0

200

400

600

Op
tim

al
ity

 G
ap

(b) Linear increasing, optimality
gap.

0 200 400
Iteration

101
102
103
104

Pe
rfo

rm
an

ce

(c) Periodic, normed-performance.

0 200 400
Iteration

0

200

400

600

Op
tim

al
ity

 G
ap

(d) Periodic, optimality gap.

Figure 11: With dynamic workloads.

During inference, we restrict the candidate set to these pre-recorded
configurations and use cached results without live query execution.

Figure 12 presents the results of tuning query-level configura-
tions, where we evaluate over 275 configuration combinations per
query. To account for noise in the tuning process, we assess the total
execution time across all TPC-DS queries. We compare the results
to the optimal configuration chosen by the Spark team through
manual tuning (speedup = 1.0), which serves as the default for
all users. The baseline model is trained on data sampled from all
queries except the optimization target, using 100, 500, and 1000
random samples. We then fine-tune the baseline model by using it
as a warm-start for Bayesian Optimization.

Interestingly, with 500 samples, the model converges to a better
configuration than with 1,000 samples, resulting in performance
improvements of 15% and 7%, respectively1. This indicates that
additional samples beyond 500 reduce the model’s adaptability,
while insufficient samples limit the warm-start’s effectiveness, mak-
ing it harder to leverage existing insights. We also observe that

1Since we are tuning only three query-level configurations, this gain is expected.

752

Rockhopper: A Robust Optimizer for Spark Configuration Tuning in Production Environment SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

(a) 100 samples. (b) 500 samples. (c) 1000 samples.

Figure 12: For Contextual Bayesian Optimization, with different baseline training sample sizes, the convergence is different.

Figure 13: Centroid Learning vs. Bayesian Optimization (BO).

the speedup is below 1 in early iterations, meaning the tuned per-
formance is initially worse than the configuration hand-tuned by
experienced Spark engineers. Our Centroid Learning approach (Sec-
tion 4.3) avoids this problem by warm-starting the optimization
from the best-known configuration.

Centroid Learning. Motivated by the suboptimal performance ob-
served in the transfer learning experiments during early iterations
as above, we develop the Centroid Learning algorithm (Section 4.3)
to facilitate exploration from any configuration, ideally leveraging
a known good configuration from manual tuning. This section com-
pares the final convergence speed of Centroid Learning with that
of the traditional Contextual Bayesian Optimization (CBO).

We introduce a new version of the evaluation platform (V1),
referred to as the Lightweight Pipeline (LWP). The LWP integrates
a Synapse [21] pipeline to submit and execute queries via notebooks,
train machine learning models, recommend configurations, save
configurations to a file, and apply the Spark configuration for query
execution. Unlike the V0 platform, the LWP removes constraints
on the candidate set, directly executes queries, and more accurately
reflects the noisy environment of a real production setting.

Figure 13 illustrates the convergence results for both algorithms
starting from an intentionally poor configuration (speedup=1.0), en-
suring that the starting point does not influence the outcomes. The
results confirm that Centroid Learning achieves significantly better
final convergence than the CBO method, even under suboptimal
starting conditions.

New workload embedding. We evaluate performance using (1)
the workload embeddings proposed in [53], which are based on
the count of different operator types (e.g., join, scan) as query
features, and (2) the embedding method described in Section 4.1.
The experiments involve executing 18 TPC-DS queries with a scal-
ing factor of 1000G and assessing query-level configuration tuning

Figure 14: Total execution time for TPC-H queries.

using the LWP. Our results indicate that embeddings constructed
from both regular and virtual operator counts result in significant
performance gains for query-level configuration tuning. Starting
from iteration 5, these embeddings yield an additional 5–10% im-
provement in performance consistently.

6.3 Deployment Results
In this section, we evaluate the configuration autotuning solution as
deployed in Microsoft Fabric [23]. Starting very conservative about
such large-scale ML system deployment, the team limit the config-
uration tuning to only three query-level configuration parameters:
spark.sql.files.maxPartitionBytes, spark.sql.autoBroadcastJoinThres-
hold, and spark.sql.shuffle.partitions.

Benchmark workloads. In the production setting, we evaluate
the algorithm using TPC-H workloads with a scale factor of 100GB,
while the baselinemodel is trained on TPC-DS data. Figure 14 shows
the total query execution times across all 22 queries over multiple
iterations. Each query is tuned independently, with configurations
varying across iterations and between queries. Despite substantial
noise and occasional runtime spikes, performance improves over
time. For 10 queries, we observe performance gains exceeding 10%,
with 6 of these showing improvements greater than 15%. Three
queries exhibit minor regressions, with differences of less than 0.7
seconds, likely attributable to noise.

Internal customer workload—overall analysis. We also eval-
uate production performance using workloads from an internal
customer, achieving an average performance improvement of 17%
across more than 60 tested Fabric notebooks, with execution time
improvements reaching up to 100%. The recurring workloads in
production typically involve varying input sizes, adding complex-
ity to the tuning process. Figure 16 illustrates the distribution of
percentage speed-ups across all notebooks.

753

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yiwen Zhu et al.

0 50 100
SpeedUp (%)

0

5

10

15

Fr
eq

ue
nc

y
Mean: 16.53%

Figure 15: Percentage speed-up for customer workloads.

0 8 15 22 28 33 38 43 48

Query Signature

−20

0

20

40

60

Ne
t G

ai
n

(%
)

Figure 16: Speed-up for external customer workloads.

Internal customerworkload—posterior analysis. A key compo-
nent of Rockhopper is the monitoring dashboard, which facilitates
real-time analysis of query tuning performance, enabling issue
identification and deeper insights into workloads. The dashboard
provides the following features:
• Visualization of configuration changes across iterations;
• Visualization of performance trends; and
• Evaluation of additional performance-impacting metrics.

Specifically, we collect metrics directly influenced by configura-
tion suggestions, including: (1) partitions, (2) physical plans, (3)
task numbers, and (4) input data sizes. This data enables us to ex-
plain performance changes, validate Rockhopper’s configuration
recommendations, and support Root Cause Analysis (RCA) for
performance variations [1].

External customer workload—overall analysis. As the feature
entered public preview [23], we analyzed Fabric Spark usage data
from April 2024 to June 2024. During this period, over 300,000 query
runs were recorded, each with more than 30 iterations per query
signature. Autotuning was triggered in approximately 5% of these
runs, accounting for over 10,000 instances. In total, we identified
416 unique query signatures, 73 of which consistently maintained
autotuning throughout all iterations without being disabled by the
extremely conservative guardrail settings (see Section 4.3).

Figure 16 shows the percentage speed-up distribution for all
customer workloads with autotune enabled. The total execution
time improves by approximately 20%. Among the queries exhibit-
ing performance degradation exceeding 30%, one shows significant
variance in execution time. Additionally, two queries exhibit re-
gressions of more than 3× and 4×, likely due to factors unrelated
to configuration changes2. With further iterations, the guardrail
mechanism automatically disables autotuning for such queries. In

2Although we attempt to exclude external impacts—such as changes in data size—by
filtering queries with performance improvements associated with data size reduction,
and vice versa.

production, we employ a conservative guardrail policy that en-
ables autotuning only when query performance improves, which
contributes to the overall performance gains observed.

7 Related
Black-box algorithms such as Bayesian Optimization and Rein-
forcement Learning [12] address the challenges of adapting to
varying workloads and data sizes. LITE [18] and “You Only Run
Once” [28] optimize Spark workloads using offline analysis, while
UDAO [36], AutoExecutor [32, 33], and other studies [19, 45] focus
on multi-objective tuning and parametric performance models. To
reduce the dimensionality of tuning knobs, LOCAT [46] employs
configuration-sensitive queries along with a data-size-aware Gauss-
ian process surrogate model. Other approaches include Latin hy-
percube sampling [24], random sampling [11, 42], and SHAP-based
configuration generation with workload similarity metrics [34].
OtterTune [39, 48] applies Bayesian Optimization and neural net-
works for performance prediction, while DBTune [51, 52] utilizes
Lasso-based knob selection for efficient tuning.

Another line of research focuses on gradual tuning based on per-
formance observations. CDBTune [49] used Reinforcement Learn-
ing with an actor-critic framework, while RFHOC [3] combined ran-
dom forests and genetic algorithms forworkload profiling. DAC [47]
leveraged dataset size for workload comparison and genetic algo-
rithms for candidate search. [17] integrated Bayesian Optimization
with Gradient Descent and meta-learning for warm-starting sur-
rogate models. OPPerTune [35] employed reinforcement learning
with reward functions based on observed performance. Frameworks
like FLAML [40, 41, 44] enable hyperparameter tuning with gradi-
ent search but face limitations in production due to their reliance on
query execution and flighting. Our approach combines the strengths
of Bayesian Optimization and gradual tuning by leveraging a sur-
rogate model to guide exploration while using statistically derived
gradients to ensure efficient convergence, even in the presence of
noisy data and production constraints.

8 Conclusion
In this paper, we present Rockhopper, an end-to-end autotuning
system integrated into the Spark platform on Microsoft Fabric.
Rockhopper addresses key production challenges such as noisy
data, dynamic workloads, and limited information at application
startup. Leveraging the Centroid Learning algorithm, it minimizes
performance regression, accelerates convergence, and provides a
warm-start for customer workloads. Rockhopper also incorporates
workload embeddings for transfer learning, enabling efficient tun-
ing from benchmark to production workloads. Deployed in Fabric,
Rockhopper achieves a significant 20% improvement in total exe-
cution time for Spark workloads, delivering these gains without
requiring additional customer effort or compromising data privacy.
Future work will focus on enhancing learning algorithms, refin-
ing workload embeddings, and developing adaptive strategies for
dynamic workloads. Additionally, we aim to introduce more con-
figurable parameters to further optimize performance. Rockhopper
marks a major step forward in integrating autotuning into pro-
duction Spark platforms, paving the way for more efficient and
cost-effective big data processing in the cloud.

754

Rockhopper: A Robust Optimizer for Spark Configuration Tuning in Production Environment SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

References
[1] Anonymous. 2024. AutoDebugger: Efficient Root Cause Analysis for Anomaly

Jobs. (2024). Working paper.
[2] AWS. 2022. Amazon.com, Inc. Retrieved July 2, 2022 from https://aws.amazon.

com/emr/features/spark/
[3] Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong Xu, Lieven

Eeckhout, and Shengzhong Feng. 2015. RFHOC: A random-forest approach to
auto-tuning hadoop’s configuration. IEEE Transactions on Parallel and Distributed
Systems 27, 5 (2015), 1470–1483.

[4] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[5] Scikit-Optimize Contributors. 2023. Scikit-Optimize. Retrieved July 2, 2023 from
https://scikit-optimize.github.io/stable/index.html

[6] Carlo Curino, Neha Godwal, Brian Kroth, Sergiy Kuryata, Greg Lapinski, Siqi Liu,
Slava Oks, Olga Poppe, Adam Smiechowski, Ed Thayer, et al. 2020. MLOS: An
infrastructure for automated software performance engineering. In Proceedings
of the Fourth International Workshop on Data Management for End-to-End Machine
Learning. 1–5.

[7] Ayat Fekry, Lucian Carata, Thomas F. J.-M. Pasquier, Andrew Rice, and Andy
Hopper. 2020. Tuneful: An Online Significance-Aware Configuration Tuner
for Big Data Analytics. CoRR abs/2001.08002 (2020). arXiv:2001.08002 https:
//arxiv.org/abs/2001.08002

[8] Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, and Shivaram
Venkataraman. [n.d.]. Performance Roulette: How Cloud Weather Affects ML-
Based System Optimization.

[9] Google. 2022. Serverless Spark. Retrieved July 2, 2022 from https://cloud.google.
com/dataproc-serverless/docs

[10] Google. 2022. Spark through Vertex AI. Retrieved July 2, 2022 from https:
//cloud.google.com/vertex-ai-workbench

[11] Jing Gu, Ying Li, Hongyan Tang, and Zhonghai Wu. 2018. Auto-tuning spark
configurations based on neural network. In 2018 IEEE International Conference on
Communications (ICC). IEEE, 1–6.

[12] Xu Huang, Hong Zhang, and Xiaomeng Zhai. 2022. A Novel Reinforcement
Learning Approach for Spark Configuration Parameter Optimization. Sensors 22,
15 (2022), 5930.

[13] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In Learning and Intelligent
Optimization: 5th International Conference, LION 5, Rome, Italy, January 17-21,
2011. Selected Papers 5. Springer, 507–523.

[14] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen,
and Subru Krishnan. 2019. Peregrine: Workload optimization for cloud query
engines. In Proceedings of the ACM Symposium on Cloud Computing. 416–427.

[15] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino,
and Shivaram Venkataraman. 2022. LlamaTune: sample-efficient DBMS configu-
ration tuning. Proceedings of the VLDB Endowment 15, 11 (2022), 2953–2965.

[16] Brian Kroth, Sergiy Matusevych, Rana Alotaibi, Yiwen Zhu, Anja Gruenheid,
and Yuanyuan Tian. 2024. MLOS in Action: Bridging the Gap Between Experi-
mentation and Auto-Tuning in the Cloud. Proc. VLDB Endow. 17, 12 (Nov. 2024),
4269–4272. https://doi.org/10.14778/3685800.3685852

[17] Yang Li, Huaijun Jiang, Yu Shen, Yide Fang, Xiaofeng Yang, Danqing Huang,
Xinyi Zhang, Wentao Zhang, Ce Zhang, Peng Chen, et al. 2023. Towards General
and Efficient Online Tuning for Spark. Proceedings of the VLDB Endowment 16,
12 (2023), 3570–3583.

[18] Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, and Guoliang Li.
2022. Adaptive code learning for spark configuration tuning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 1995–2007.

[19] Chenghao Lyu, Qi Fan, Philippe Guyard, and Yanlei Diao. 2024. A Spark Optimizer
for Adaptive, Fine-Grained Parameter Tuning. Proc. VLDB Endow. 17, 11 (Aug.
2024), 3565–3579. https://doi.org/10.14778/3681954.3682021

[20] Microsoft. 2022. Azure HDInsight. Retrieved July 2, 2022 from https://docs.
microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview

[21] Microsoft. 2022. Azure Synapse. Retrieved July 2, 2022 from https://docs.microsoft.
com/en-us/azure/synapse-analytics/spark/apache-spark-overview

[22] Microsoft. 2023. NimbusML. Retrieved April 5, 2023 from https://learn.microsoft.
com/en-us/nimbusml/overview

[23] Microsoft. 2024. Configure Autotune for Fabric Spark. Retrieved June 27, 2024
from https://learn.microsoft.com/en-us/fabric/data-engineering/autotune?tabs=
sparksql

[24] Nhan Nguyen, Mohammad Maifi Hasan Khan, and Kewen Wang. 2018. Towards
automatic tuning of apache spark configuration. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). IEEE, 417–425.

[25] ONNX.AI. 2023. Open Neural Network Exchange (ONNX). Retrieved April 5, 2023
from https://onnx.ai/

[26] Wiki Pedia. 2023. Hill Climbing. Retrieved Oct 18, 2023 from https://en.wikipedia.
org/wiki/Hill_climbing

[27] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. J. Mach. Learn. Res. 12 (Nov. 2011), 2825–2830.
http://dl.acm.org/citation.cfm?id=1953048.2078195

[28] David Buchaca Prats, Felipe Albuquerque Portella, Carlos HA Costa, and
Josep Lluis Berral. 2020. You only run once: spark auto-tuning from a single run.
IEEE Transactions on Network and Service Management 17, 4 (2020), 2039–2051.

[29] Ning Qian. 1999. On the momentum term in gradient descent learning algorithms.
Neural networks 12, 1 (1999), 145–151.

[30] Abhishek Roy, Alekh Jindal, Priyanka Gomatam, Xiating Ouyang, Ashit Gosalia,
Nishkam Ravi, Swinky Mann, and Prakhar Jain. 2021. SparkCruise: workload
optimization in managed spark clusters at Microsoft. Proceedings of the VLDB
Endowment 14, 12 (2021), 3122–3134.

[31] Scikit-learn. 2023. Support Vector Machine. Retrieved Nov 22, 2023 from https:
//scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

[32] Rathijit Sen, Abhishek Roy, and Alekh Jindal. 2023. Predictive Price-Performance
Optimization for Serverless Query Processing. In Proceedings 26th International
Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece, March
28-31, 2023. OpenProceedings.org, 118–130. https://doi.org/10.48786/EDBT.2023.
10

[33] Rathijit Sen, Abhishek Roy, Alekh Jindal, Rui Fang, Jeff Zheng, Xiaolei Liu, and
Ruiping Li. 2021. AutoExecutor: predictive parallelism for spark SQL queries.
Proceedings of the VLDB Endowment 14, 12 (2021), 2855–2858.

[34] Yu Shen, Xinyuyang Ren, Yupeng Lu, Huaijun Jiang, Huanyong Xu, Di Peng,
Yang Li, Wentao Zhang, and Bin Cui. 2023. Rover: An online Spark SQL tuning
service via generalized transfer learning. arXiv preprint arXiv:2302.04046 (2023).

[35] Gagan Somashekar, Karan Tandon, Anush Kini, Chieh-Chun Chang, Petr Husak,
Ranjita Bhagwan, Mayukh Das, Anshul Gandhi, and Nagarajan Natarajan. 2024.
{OPPerTune}:{Post-Deployment} Configuration Tuning of Services Made Easy.
In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). 1101–1120.

[36] Fei Song, Khaled Zaouk, Chenghao Lyu, Arnab Sinha, Qi Fan, Yanlei Diao, and
Prashant Shenoy. 2021. Spark-based cloud data analytics using multi-objective
optimization. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 396–407.

[37] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning. PMLR, 1139–1147.

[38] European Union. 2022. General Data Protection Regulation. Retrieved Feb 23,
2022 from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex.

[39] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[40] Chi Wang, Qingyun Wu, Silu Huang, and Amin Saied. 2021. Economical Hyper-
parameter Optimization With Blended Search Strategy. In ICLR.

[41] Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. 2021. FLAML: A Fast
and Lightweight AutoML Library. In MLSys.

[42] Guolu Wang, Jungang Xu, and Ben He. 2016. A novel method for tuning con-
figuration parameters of spark based on machine learning. In 2016 IEEE 18th
International Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 586–593.

[43] Lianggui Weng, Rong Zhu, Di Wu, Bolin Ding, Bolong Zheng, and Jingren Zhou.
2024. Eraser: Eliminating Performance Regression on Learned Query Optimizer.
Proc. VLDB Endow. 17, 5 (May 2024), 926–938. https://doi.org/10.14778/3641204.
3641205

[44] Qingyun Wu, Chi Wang, and Silu Huang. 2021. Frugal Optimization for Cost-
related Hyperparameters. In AAAI.

[45] Yixin Wu, Xiuqi Huang, Zhongjia Wei, Hang Cheng, Chaohui Xin, Zuzhi Chen,
Binbin Chen, Yufei Wu, Hao Wang, Tieying Zhang, et al. 2024. Towards Resource
Efficiency: Practical Insights into Large-Scale Spark Workloads at ByteDance.
Proceedings of the VLDB Endowment 17, 12 (2024), 3759–3771.

[46] Jinhan Xin, Kai Hwang, and Zhibin Yu. 2022. LOCAT: Low-Overhead Online
Configuration Auto-Tuning of Spark SQL Applications. In Proceedings of the 2022
International Conference onManagement of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 674–684. https:
//doi.org/10.1145/3514221.3526157

[47] Zhibin Yu, Zhendong Bei, and Xuehai Qian. 2018. Datasize-aware high dimen-
sional configurations auto-tuning of in-memory cluster computing. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 564–577.

[48] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,
Siyuan Sheng, Andrew Pavlo, and Geoffrey J Gordon. 2018. A demonstration of
the ottertune automatic database management system tuning service. Proceedings
of the VLDB Endowment 11, 12 (2018), 1910–1913.

[49] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic

755

https://aws.amazon.com/emr/features/spark/
https://aws.amazon.com/emr/features/spark/
https://scikit-optimize.github.io/stable/index.html
https://arxiv.org/abs/2001.08002
https://arxiv.org/abs/2001.08002
https://arxiv.org/abs/2001.08002
https://cloud.google.com/dataproc-serverless/docs
https://cloud.google.com/dataproc-serverless/docs
https://cloud.google.com/vertex-ai-workbench
https://cloud.google.com/vertex-ai-workbench
https://doi.org/10.14778/3685800.3685852
https://doi.org/10.14778/3681954.3682021
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://learn.microsoft.com/en-us/nimbusml/overview
https://learn.microsoft.com/en-us/nimbusml/overview
https://learn.microsoft.com/en-us/fabric/data-engineering/autotune?tabs=sparksql
https://learn.microsoft.com/en-us/fabric/data-engineering/autotune?tabs=sparksql
https://onnx.ai/
https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Hill_climbing
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://doi.org/10.48786/EDBT.2023.10
https://doi.org/10.48786/EDBT.2023.10
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex.
https://doi.org/10.14778/3641204.3641205
https://doi.org/10.14778/3641204.3641205
https://doi.org/10.1145/3514221.3526157
https://doi.org/10.1145/3514221.3526157

SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Yiwen Zhu et al.

cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

[50] William Zhang, Wan Shen Lim, Matthew Butrovich, and Andrew Pavlo. 2024.
The Holon Approach for Simultaneously Tuning Multiple Components in a Self-
Driving Database Management System with Machine Learning via Synthesized
Proto-Actions. Proc. VLDB Endow. 17, 11 (July 2024), 3373–3387. https://doi.org/
10.14778/3681954.3682007

[51] Xinyi Zhang, Zhuo Chang, Yang Li, HongWu, Jian Tan, Feifei Li, and Bin Cui. 2022.
Facilitating database tuningwith hyper-parameter optimization: a comprehensive
experimental evaluation. Proceedings of the VLDB Endowment 15, 9 (2022), 1808–
1821.

[52] Xinyi Zhang, Hong Wu, Yang Li, Jian Tan, Feifei Li, and Bin Cui. 2022. Towards
dynamic and safe configuration tuning for cloud databases. In Proceedings of the
2022 International Conference on Management of Data. 631–645.

[53] Yiwen Zhu, Matteo Interlandi, Abhishek Roy, Krishnadhan Das, Hiren Patel,
Malay Bag, Hitesh Sharma, and Alekh Jindal. 2021. Phoebe: a learning-based
checkpoint optimizer. Proceedings of the VLDB Endowment 14, 11 (2021), 2505–
2518.

[54] Yiwen Zhu, Yuanyuan Tian, Joyce Cahoon, Subru Krishnan, Ankita Agarwal,
Rana Alotaibi, Jesús Camacho-Rodriguez, Bibin Chundatt, Andrew Chung, Ni-
harika Dutta, et al. 2023. Towards Building Autonomous Data Services on Azure.
In Companion of the 2023 International Conference on Management of Data. 217–
224.

756

https://doi.org/10.14778/3681954.3682007
https://doi.org/10.14778/3681954.3682007

	Abstract
	1 Introduction
	2 Background
	2.1 User Study
	2.2 Manual Tuning Experiments

	3 Overview
	3.1 Design Principles and Choices
	3.2 End-to-end Pipeline

	4 Algorithm
	4.1 Surrogate Model
	4.2 Offline Phase: Training Baseline Model
	4.3 Online Phase: Centroid Learning
	4.4 App-Level Configuration Optimization

	5 Implementation
	6 Experiments
	6.1 Experiment with Synthetic Functions
	6.2 Experiment with Standard Benchmark Workloads
	6.3 Deployment Results

	7 Related
	8 Conclusion
	References

