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Abstract
Using Remote Direct Memory Access (RDMA) is the trend in data
centers for achieving high throughput and low latency due to the
benefits of hardware offloaded stacks. However, RDMA cannot
provide consistently high performance at scale due to the limited
RDMA NIC (RNIC) hardware state capacity. We observe that the
scalability issue is due to the coupled design of host-RNIC com-
munication channels (queue pairs), and the network connections.
In this paper, we propose a novel RDMA transport concept, SRC,
which decouples the network connections from queue pairs. SRC
introduces a lightweight mapping scheme for efficient forwarding
between QPs and connections on the RNIC. Besides, SRC lets soft-
ware manage the mapping between QPs and connections, which
enables inter-application connection sharing, and compatibility
with existing RC-based applications. Our results show that SRC
can reduce RDMA state size from 146.198 MB to 0.190 MB in a
512-server cluster running RDMA applications.

CCS Concepts
•Hardware→ Networking hardware; • Networks→ Network
adapters; Data center networks; • Software and its engineer-
ing → Input / output.

Keywords
Remote Direct Memory Access, Network Hardware, Network In-
terface Controller, Data Center Networks
ACM Reference Format:
Yiren Zhao, Ran Shu, Yongqiang Xiong. 2025. SRC: A Scalable Reliable
Connection for RDMA with Decoupled QPs and Connections. In 9th Asia-
Pacific Workshop on Networking (APNET 2025), August 07–08, 2025, Shang
Hai, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3735
358.3735366

1 Introduction
Remote Direct Memory Access (RDMA) has become the corner-
stone of modern data center networks due to its high throughput,
low latency, and low CPU overhead provided by the hardware
offload transport to RDMA Network Interface Cards (RNICs). It
has been widely adopted in current applications including Online
Transaction Processing (OLTP) [4, 6, 8, 16], in-memory key-value
stores [15, 17, 25], distributed file systems [1, 12, 27], and distributed
machine learning [9, 19].
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The RNIC manages the hardware offloaded network stack and
thus achieves extremely high performance. However, storing the
stack states is very challenging. The RNIC only has several MBs of
on-chip SRAM using current technology [14] which is far less than
the up to GB level state size [26]. Thus, RNIC stores states in host
memory and uses on-chip memory as a cache. However, at large
scale, frequent RNIC cache misses lead to performance degradation.
This is a well-known issue of RDMA for decades and can greatly
impact application performance at scale [5, 8, 18, 23, 26].

RDMA provides both connection-oriented and datagram-based
communications in both reliable and unreliable mode. Among these,
Reliable Connection (RC) is the most desired and widely used due
to its offloaded reliable delivery, and support for full set of RDMA
operations. To fully exploit RDMA’s performance advantages, appli-
cations often maintain a large number of concurrent connections,
which in turn require substantial on-NIC states. Hosts communicate
with RNICs through Queue Pairs (QPs), and RC communication is
established by connecting a pair of QPs between two nodes. On the
other hand, as the QPs are separately owned by different processes
running on the same node, it requires a pair of QPs between each
pair of processes to enable the full mesh communication between
processes. Assuming a cluster of 𝑁 nodes where each node runs
𝑃 processes, it requires 𝑃 × 𝑃 × (𝑁 − 1) QPs on each node for a
fully connected communication. Moreover, to fully make use of the
multi-core CPU capability, RDMA applications usually setup dedi-
cated QPs for each thread to avoid lock overhead for inter-thread
synchronization which makes the QP scaling requirement even
higher.

Many approaches have been proposed to reduce the number
of required QPs thus mitigate RDMA scalability issues. Solutions
including sharing RC connections [8, 18, 23], connection grouping
to control concurrency [5], proposing new reliable connected QPs
with lower scale requirements including XRC [11] and DCT [7],
using UD instead of RC [15, 16], reducing on-NIC states [26], and
storing states at lower load side [24]. However, all existing solu-
tions have their drawbacks. Software-based solutions (sharing RC
[8, 18, 23], connection grouping [5], and using UD [15, 16]) intro-
duce extra CPU overhead which counteract the RDMA benefits.
XRC cannot scale well to large clusters, and DCT suffers from fre-
quent connection switching and increased latency, often requiring a
large pool of QPs to mitigate runtime delays [16, 21]. Architectural
optimizations [26] reduced on-NIC state size, but cannot compress
the QPC itself, which remains the dominant contributor to per-
connection state. Finally, approaches that store states on the other
side require asymmetric number of connections [24].

We try to look at this problem from another aspect by asking:
Is such a high number of QPs (connections) required by nature? We
find that the root cause lies in the tightly coupled design of QP
and network connection in RDMA RC. Each QP is treated as an
individual pair of host-NIC channel and a network connection. Such
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redundancy wastes valuable RNIC on-chip storage space which
severely limits RDMA scalability. QPs are originally designed as
communication channels between the CPU and peripherals, while
connections are meant to ensure reliable communication between
nodes. If their roles are distinct by design, why not separate QPs and
connections and let them work as originally intended?

We propose a novel RDMA transport concept, Scalable Reliable
Connection (SRC) which has decoupled network connections and
QPs. Applications use SRC QPs as the channel to communicate
with RNIC. The connections are established only between RNICs
rather than directly between applications. By this design, multiple
applications can share the same connection, and an application can
communicate with multiple peers using the same QP. An on-NIC
forwarder switches packets between QPs and connections in both
directions.

Separating connections from QPs introduces extra states for
managing end-to-end connectivity and securing RDMA communi-
cation. To eliminate extra states overhead on RNIC, SRC let RNIC
driver manages the states of mappings between QPs and connec-
tions in software. SRC library specifies the required connection in
the request with the connection index for request sending. SRC NIC
only stores minimal connection states in an packed array to enable
fast lookups. For the packet receiving path, mapping from connec-
tion to QP is only required for 2-sided operation (SEND/RECV). To
eliminate table lookup overhead, SRC slightly modifies the RDMA
packet format to carry the destination QP number.

SRC supports two connection management modes, depending
on whether connections are managed by the application or by the
RDMA driver, allowing developers to balance compatibility and
optimization flexibility. The SRC managed mode is designed for
RDMA driver, which provides compatibility as existing RC inter-
faces to minimize application modifications. SRC library stores the
user QP to SRC QP and connection mappings so that additional
data operations overheads are minimized. For connection establish-
ment/termination, states in SRC driver helps identify the existence
of connections and help setting up the mappings between user QPs
and connections. The application managed mode gives applications
the flexibility to deeply optimize for SRC system, but it does not
allow sharing connections across applications.

Our evaluation shows that SRC significantly reduces RDMA
state size from 146.198 MB to 0.190 MB for a 512-server cluster
running RDMA applications. While DCT reduces state size to 0.014
MB per node, it suffers from performance degradation compared to
RC due to frequent connection switching. In contrast, SRC achieves
substantial state reduction, while further improving upon RC by
delivering better performance without such overhead.

2 Background and Motivation
This section outlines the foundational principles of RDMA com-
munication and the challenges faced in scaling RDMA systems,
particularly focusing on the limitations of current coupled QP-to-
connection design. We then motivate the need for decoupling QPs
from connections as a more scalable approach.

2.1 RDMA Communication and QP
Management

Remote Direct Memory Access (RDMA) has emerged as a pivotal
technology for enabling high-speed, low-latency communication
in modern data centers [1, 4, 6, 8, 12, 15–17, 25, 27], cloud [3, 10],
and AI [9, 19]. By bypassing traditional networking stacks and
allowing direct memory access between hosts, RDMA minimizes
CPU overhead and achieves high throughput.
RDMA Primitives. RDMA supports two types of communica-
tion, one-sided and two-sided operations. The WRITE, READ and
ATOMIC are one-sided primitives, which allows directly access
memory on a remote node without involving the remote node’s
CPU. In contrast, the SEND/RECV is two-sided primitive, both the
sender and receiver participate in the data transfer. Specifically,
when the sender issues a SEND operation, the receiver must have
already posted a matching RECV request to hold the incoming data.
Queue Pair (QP). RDMA hosts communicate through Queue Pairs
(QPs), which consist of a Send Queue (SQ) and a Receive Queue (RQ).
The SQ manages outgoing Work Requests (WRs), such as SEND,
WRITE, and READ operations, while the RQ handles RECV op-
eration to receive incoming SEND requests. Each QP maintains
state information that dictates how RDMA operations are exe-
cuted, including queue status, queue pointers, connection state
(for connection-oriented communications), memory protection in-
formation, etc.
Transport Modes. RDMA supports both connection-oriented and
datagram-based communications in reliable and unreliable mode,
including Reliable Connection (RC), Reliable Datagram (RD), Un-
reliable Connection (UC), and Unreliable Datagram (UD). RC is
the most widely used transport type in RDMA deployments due
to its strong guarantees of reliability, in-order message delivery,
and support for a full set of RDMA operations [5, 18]. In RC, each
QP must connect to a single remote QP before communication. UC
also follows a one-to-one connection model but does not provide
guarantee reliable transmission. Application needs additional com-
putation overhead to deal with communication reliability. RD1 and
UD are datagram QPs which allow one-to-many communication
models, enabling communicating with multiple remote endpoints
using a single shared QP. However, application needs to handle
message dispatching with extra processing overhead.

2.2 RNIC Scalability Issue
Today’s RDMA applications require a large number of QPs to fully
exploit the performance benefits of RDMA. Figure 1(a) shows the
conceptual diagram of the required RC QPs. Each process has its
own group of QPs. As a QP is dedicated to a single connection, a
process needs to set up multiple QPs to communicate with multi-
ple processes even on a single remote node. The total number of
QPs required scales quadratically as 𝑃 × 𝑃 for each pair of nodes.
Assuming a cluster with 𝑁 nodes, the total number of QPs required
is 𝑃 × 𝑃 × (𝑁 − 1). Moreover, a process may allocate per-thread
QPs to avoid synchronization overhead and fully make use of the
multi-core CPU capability. Given the high number of CPU cores
per node today, the number of required QPs can be extremely large.

1RD is not supported by any commodity RNICs. AWS has developed SRD which has
the similar concept as RD but with some minor difference in usage [20].
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Figure 1: Comparison of different RDMA reliable connection solutions.

Assuming each node runs 20 processes, even a cluster with 32 nodes
requires 12,400 of QPs.

The QP states (and other states) are stored and managed by the
RNIC for the offloaded network stack. However, due to inherent
hardware limitations, RNIC cannot provide consistent high perfor-
mance at scale. Current chip manufacturing technologies and cost
considerations limit the expansion of on-chip memory in RNICs.
The RNIC is typically equipped with a few MBs of on-chip SRAM
[14], which is far less than the up to GB level state size [26]. Expand-
ing memory capacity with off-chip DRAM is theoretically possible
but impractical due to the long DRAM access latency. RNIC pro-
cessing pipelines need to be completely redesigned to adapt to the
long memory access latency and the required circuit size will be
greatly increased.

As a result, RNICs store states in the host’s DRAM and use
on-chip SRAM as a cache [22]. However, as the number of QPs
increases, the limited SRAM size leads to frequent cache misses.
When a cache miss occurs, the RNIC must fetch the required state
from the host DRAM over the PCIe bus which has much higher
latency than on-chip SRAM. The RNIC pipeline is hard to absorb all
the pending requests. Thus, frequent cache misses cause significant
performance degradation of RNICs. The RNIC scalability issue is
well known and has been widely studied [5, 8, 14–16, 18, 23, 24, 26].

To mitigate RDMA scalability issues, several solutions have been
proposed to reduce the number of required QPs. Software-based
approaches aim to reduce QP overhead by sharing QPs across mul-
tiple processes/threads [8, 18, 23]. As shown in Figure 1(b), the
software-based QP sharing can reduce the number of required QPs.
However, sharing QPs introduce contention and software over-
heads are paid for multiplexing/demultiplexing. Prior work reports
that QP sharing reduces per-core one-sided READ throughput by
up to 5.4× due to contention and synchronization overheads [16].

RNIC vendors have also introduced new reliabile connection
transport modes, eXtended Reliable Connection (XRC) [11] and

Dynamic Connected Transport (DCT) [7], to improve QP scalabil-
ity. XRC optimizes QP usage by allowing a target QP to distribute
incoming messages to multiple processes. In the previously men-
tioned fully connected cluster setting, this capability reduces the
per-node QP requirement to 𝑃×(𝑁 −1). However, XRC cannot scale
well to large clusters [21]. DCT further reduces the QP count by
dynamically establishing and maintaining a single reliable QP that
connects to multiple remote QPs as needed, allowing each process
to maintain only 𝑃 QPs. The DCT conceptual model is shown in
Figure 1(c). However, when communicating with multiple desti-
nations, it frequently switches connections, leading to increased
latency and bandwidth inefficiency [16]. Additionally, as a DCT QP
can only be connected with a single remote QP, applications often
manage a large number of DCT QP pool to reduce waiting time.
Thus, the number of required QPs is normally much more than 𝑃 .

Some approaches try to mitigate the scalability issue with soft-
ware or hardware enhancements. ScaleRPC [5] reduces RNIC cache
misses through connection grouping which limit the concurrency
of active connections. Again, software overheads are introduced
and the optimizations are application specific. StaR [24] enables
storing RDMA states of a connected pair on a single side, but its ef-
fectiveness highly depends on asymmetric requirements on number
of connections. SRNIC [26] optimizes on-NIC states management
through RNIC architecture improvements, however, it cannot re-
duce the size of connection states.

Other approaches abandon RC QPs but use UD QPs [15, 16] or
even not using RDMA [14]. Such a design requires moving the
connection and reliability management to host software which
introduces high software overhead. Moreover, UD lacks support
for one-sided RDMA operations and message size is restricted by
not exceeding MTU. Such limitations further increase the software
overhead.
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2.3 Motivation
The scalability limitations of existing connection-oriented RDMA
transports stem from the tight coupling between QPs and connec-
tions. It is essential to decouple QPs from connection semantics, and
let them handle their original design purposes. QP, by its original
concept, is the communication channel between CPU and periph-
erals like normal NIC [13] and NVMe SSD [2]. The primary goal of
supporting multiple QPs is to avoid synchronization between CPU
cores and improve the software efficiency. Decoupling QPs from
connections allows each of them to work independently as their
originally intended. The decoupling can reduce the total number of
QPs and connections required, thereby decreasing the storage space
required on the NIC and significantly mitigating the RDMA scala-
bility issue. However, achieving this decoupling presents several
design challenges that must be carefully addressed.
• Challenge #1: Minimize Additional States. Although decou-
pling QPs and connections can reduce the required number of
QPs and connections, extra states are required to manage the
end-to-end connectivity and protect RDMA against malicious
users. To maintain consistent high performance, the size of these
additional states should be small enough to be stored in RNIC’s
on-chip SRAM.

• Challenge #2: Efficient State Lookup. State lookup is required
when RNIC maps a request from a QP to its corresponding con-
nection and vice versa when receiving packets from the network.
To support fast lookups and meet high performance require-
ments, efficient system architectures and data structures must be
designed.

• Challenge #3: Efficient and Friendly Abstraction. Introduc-
ing new types of QPs like XRC [11] and DCT [7] come with
new application programming abstractions. The new abstrac-
tion must be efficient for application programming. Moreover,
there are already many RDMA applications designed with the
current RDMA RC conceptual model. Reducing programming
modifications is also a challenge in the design.

3 Design
The issues of native RDMA outlined in the previous section stem
from the per-QP connection tracking burden on the limited on-
NIC memory, which severely constrains scalability in large-scale
deployments. This section presents SRC, a novel RDMA architec-
ture that fundamentally redesigns RDMA by decoupling QPs from
network connections. The following subsections provide a detailed
description of SRC’s design and architecture.

3.1 Architectural Overview
As SRC decouples the QP and connection, it redefines their respec-
tive roles. The following explains how each component functions
independently under the new design.
SRC QP. A SRC QP serves as a communication channel between
the host and the RNIC. Specifically, the SRC QP acts as an interface
for submitting work requests (WRs) and receiving completions,
without storing any connection-specific information (e.g., address
or remote QP information). Like in RC, multiple SRC QPs can be
created by applications to support multi-threaded execution and
optimize performance.
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Application Managed 
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Figure 2: SRC Architecture.

Connections. A connection refers to a network channel between
two RNICs, responsible for reliable RDMA data transmission. Mul-
tiple connections can exist between the same pair of endpoints.
The number of connections is determined by software and can be
configured based on application requirements.

Figure 2 illustrates the architecture of SRC, which includes both
hardware and software modifications to RDMA. On the RNIC, SRC
QPs and connections are decoupled and connected through the
forwarder that selects the appropriate connection for each SRC QP
and vice versa. The SRC QPs data path is exposed to the SRC library
to support kernel-bypassing I/O. Both SRC QPs and connections
expose management interfaces to the RDMA driver, which handles
queue initialization and release, as well as connection establish-
ment and termination. Applications manage SRC QPs through a
management API provided by the SRC library.

SRC provides two operation modes for connection management:
SRC managed and application managed. Supporting both modes
allows developers to trade off compatibility and flexibility.

The SRC managed mode is designed to be highly compatible
with traditional RC. In this mode, applications use user QPs (uQPs)
as handles for the SRC managed connections. The uQP follows
a conceptual model similar to that of RC. From the application’s
perspective, each uQP behaves same to a standard RC QP, where the
application assumes a one-to-one mapping between a local QP and
a remote QP, as well as between a QP and a connection. Internally,
however, a uQP does not directly map to a physical connection in
SRC. Instead, it is an abstraction that the RDMA library translates
into a connection. Multiple uQP instances can share the same SRC
QP with minimal overhead. The mapping between uQP and SRC
QP is managed by the SRC library.

The application managed mode exposes a simpler interface,
where applications directly manage both SRC QPs and connec-
tions. This mode gives applications the flexibility to co-optimize
application and RDMA system. For example, eliminating the uQP
to QP mapping overhead. However, it lacks the ability to share
connections across applications, which may limit scalability under
extreme scale.
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3.2 SRC RNIC
With the decoupling of QP and connection, the SRC QP no longer
contains any connection-related states. A mechanism is needed to
determine which connection to use for the WRs, and to manage
connection states and authentication. To achieve such manage-
ment, connection contexts must be stored and maintained. The
key question is whether the RNIC should store and maintain such
information. Although SRC successfully reduces memory usage
compared to RC QPs by decoupling QPs from connections, the
mapping between QPs and connections is still considerably large.
As the number of connections increases, the state requirements
inevitably exceed what the RNIC can efficiently handle. In addition,
managing connection states on the RNIC introduces unnecessary
complexity. The RNIC needs to update the states at connection
establishment and termination, requiring additional hardware logic.
Instead, this complexity is better handled in software, which of-
fers greater flexibility in managing connection reuse and policy
enforcement.

Efficient connection lookup is crucial, as RNICs run at extremely
high speeds. The RNIC needs to map requests from SRCQPs to their
corresponding connections, and vice versa when processing incom-
ing network packets. The remote address is not a good connection
indicator due to its sparsity. Instead, SRC packs all connection states
into an array and uses the index to locate a connection. Specifically,
when the RDMA driver calls RNIC for a new connection, RNIC
returns an idle connection ID. The RDMA driver then uses this con-
nection ID to establish a connection with the remote side. When a
SRC QP’s WR needs to access its corresponding connection, it uses
the connection ID to directly locate the entry in the connection
state table, ensuring constant-time (O(1)) retrieval.

3.3 Connection Management and SRC QP
SRC provides two connection management modes. Here, we mainly
introduce our design for nearly compatible RC QPs, whose con-
nections are managed by the SRC Connection Manager in RDMA
driver. The SRC library includes special designs for both connec-
tion establishment and request processing. For application managed
mode, the main difference is the absence of connection manage-
ment related features in SRC driver and library. The rest parts are
the same.

When an application requests to connect a local uQP to a remote
uQP, it calls the SRC library. The SRC library forwards the call to
the RDMA driver as the connection management is done in the
kernel driver. The SRC Connection Manager first checks whether
an existing connection to the specified remote address is already
established. If not, the SRC Connection Manager informs the RNIC
to establish a new connection. Once the connection is established,
or if it already exists, the connection information and remote uQP
are stored in the local uQP’s metadata for fast mapping in request
processing.

When a user posts a WR to an uQP as using RC, the RDMA
library maps the WR in the appropriate SRC SQ and connection
before submitting the request to the RNIC. The translation process
relies on metadata stored within the library for each RC QP.

For SRC QP design, we do not add additional Completion Queue
(CQ) mapping for scalability improvements. CQ management re-
mains unchanged from the existing RDMA conceptual model. The
main reason for this is that the QP to CQ mapping is managed by
applications. Applications usually map multiple QPs to the same
CQ for efficient completion dispatching and processing. Adding an-
other layer of mapping not only introduces extra overhead but also
harms the existing software efficiency optimizations. In existing
RC QPs, the mapping between QP and CQ is stored in the QPC and
cached by the NIC for fast lookup. In contrast, in SRC, NIC does
not maintain such information in the QPC to save storage space.
Instead, we let packets carry the selected CQ number.

The RDMA responder for SRC have different workflows for one-
sided and two-sided operations. For one-sided operations, since
the connection alone is sufficient for providing reliable delivery,
QP is not involved at responder side for one-sided operations. For
two-sided operations, handling the RECV operation is more com-
plicated. We choose not to share the RQ as we do not share CQ, for
similar reasons. First, for users who care about scalability, RDMA al-
ready provides SRQ to reduce the number of required RQs. Second,
although we can reduce the number of RQs by sharing, the RNIC
needs to map the incoming SEND operation to the corresponding
uQP. As a result, RNIC still have to maintain states at the scale of
the number of uQPs to avoid head-of-line blocking.

3.4 Discussion and Open Questions
Although SRC can greatly mitigate the RDMA scalability issue,
there are still several unsolved problems and opportunities for
further improvement. We list them here and discuss possible ap-
proaches.

Security. SRC slightly modifies the RDMA system architecture,
and the changes introduce new security considerations. First, denial-
of-service (DoS) attacks may occur when multiple uQPs share the
same SRC QP or connection. Amalicious user can intentionally stall
its ownWRs, for example by not polling completions or exhausting
buffer resources. This stalls the shared queue and indirectly denies
service to other legitimate users sharing the same resource. Second,
because connection and QP mappings are managed in software,
a malicious application could potentially manipulate these map-
pings using a modified SRC library. For example, it may redirect
its uQPs to unauthorized connections or SRC QPs, impersonating
another application or violating RDMA memory access boundaries.
These threats are mitigated in traditional RC, where all connec-
tion bindings are enforced in hardware. Although SRC currently
does not provide strong defenses against these attacks, exploring
lightweight isolation and mapping validation mechanisms is an
important direction for future enhancement.

Head-of-Line Blocking. The use of shared QPs and connec-
tions in SRCmay introduce head-of-line (HoL) blocking risks.When
multiple uQPs are mapped to the same SRC QP, a work request
at the front of the send queue may be stalled due to flow control,
network congestion, or RNIC resource constraints. In such cases,
all subsequent requests in the queue are also delayed, including
those from other uQPs that target uncongested destinations. Simi-
larly, when several SRC QPs share the same connection, congestion
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Nodes (N) RC (MB) XRC (MB) DCT (MB) SRC (MB)
32 8.869 0.443 0.014 0.019
128 36.335 1.817 0.014 0.053
512 146.198 7.310 0.014 0.190

Table 1: Memory usage per node for different RDMA trans-
port models (20 threads per node).

on that connection can pause the transmission of all packets as-
signed to it. Addressing such head-of-line blocking is an important
direction for future system design.

QoS model. The original RDMA RC transport uses QP as the ba-
sic unit of QoS management. However, as we decouple the QPs and
connections, the QoS management unit becomes QPs and connec-
tions. For example, multiple QPs have a fair sharing of bandwidth
in existing RDMA. However, in SRC, some of the QPs can share
the same connection and the current SRC is unable to provide fair
sharing among QPs. In future enhancement of SRC, we should ei-
ther design schemes to preserve the original QoS model or propose
new QoS models with application requirement analysis.

Compatible with RNIC architectures. Existing RNIC archi-
tecture is highly optimized for the current RDMA workflow [26].
Although SRC achieves a simple architecture for decoupling QPs
and connections on the RNIC, integrating these modifications into
existing commodity RNICs with minimal changes without affecting
the current RDMA workflow remains one of the key problems to
be solved in the future.

Application RNIC co-design. ScaleRPC [5] and Flock [18]
provide specialized application-aware software optimizations for
efficient RPC over RDMA. The current SRC is designed as a general
scalability enhancement for RDMA RC. However, it is possible
to achieve greater performance gains with Application RNIC co-
design. This is one of the future directions we plan to explore.

4 Preliminary Results
Table 1 presents the memory consumption per node for different
RDMA transport models as the number of nodes increases. RC
requires the highest memory usage due to its per-QP connection
model, leading to quadratic growth in memory consumption as the
cluster scales. For example, with 512 nodes, RC consumes 146.198
MB per node, compared to only 8.869 MB for 32 nodes, illustrat-
ing the severe scalability limitations of RC. XRC reduces memory
overhead by allowing multiple processes to share a single QP per
destination node, thereby lowering memory consumption to 7.310
MB per node with 512 nodes, a 20 × reduction compared to RC.
While DCT reduces state size to 0.014 MB per node, it suffers from
performance degradation compared to RC due to frequent connec-
tion switching. In contrast, SRC achieves substantial state reduction,
while further improving upon RC by delivering better performance
without such overhead. SRC significantly reduces RDMA state size,
decreasing memory consumption from 146.198 MB (RC) to just
0.190 MB per node for a 512-server cluster.

5 Conclusion
We propose a novel RDMA transport concept, Scalable Reliable Con-
nection (SRC), which has decoupled network connections and QPs
to improve RDMA scalability. By introducing a software-managed
multiplexing mechanism, SRC reduces RNIC state overhead and
eliminates the need for per-QP connection tracking on the NIC.
SRC employs a handle-based connection resolution mechanism,
removing expensive lookup operations and minimizing processing
overhead. Our evaluation shows that SRC can reduce RDMA states
size from 146.198 MB to 0.190 MB for a 512-server cluster running
RDMA applications.

Acknowledgments
The authors gratefully acknowledge the anonymous reviewers for
their valuable and constructive comments.

References
[1] 2017. Crail: A Fast Multi-tiered Distributed Direct Access File System. In

Proceedings of the 2017 IEEE International Conference on Big Data (Big Data).
https://github.com/zrlio/crail

[2] 2022. NVM Express Base Specification 2.1. https://nvmexpress.org/wp-
content/uploads/NVM-Express-Base-Specif ication-Revision-2.1-2024.08.05-
Ratified.pdf.

[3] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir
Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
et al. 2023. Empowering azure storage with RDMA. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). 49–67.

[4] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi, Yanzhe Chen, Zhaoguo Wang,
Binyu Zang, and Haibing Guan. 2017. Fast in-memory transaction processing
using RDMA and HTM. ACM Transactions on Computer Systems (TOCS) 35, 1
(2017), 1–37.

[5] Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on reli-
able connection with efficient resource sharing. In Proceedings of the Fourteenth
EuroSys Conference 2019. 1–14.

[6] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast
and general distributed transactions using RDMA and HTM. In Proceedings of
the Eleventh European Conference on Computer Systems. 1–17.

[7] Diego Crupnicoff, Michael Kagan, Ariel Shahar, Noam Bloch, and Hillel Chapman.
2012. Dynamically-connected transport service.

[8] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast remote memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 401–414.

[9] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, et al. 2024. RDMA over ethernet for distributed training at meta scale. In
Proceedings of the ACM SIGCOMM 2024 Conference. 57–70.

[10] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. 2021. When cloud storage
meets RDMA. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). 519–533.

[11] InfiniBand Trade Association. 2009. InfiniBand Architecture Specification,
Release 1.2.1, Annex A14: Extended Reliable Connected Transport Service.
https://www.infinibandta.org

[12] Nusrat Sharmin Islam, MdWasi-ur Rahman, Xiaoyi Lu, and Dhabaleswar K Panda.
2016. High performance design for HDFS with byte-addressability of NVM and
RDMA. In Proceedings of the 2016 International Conference on Supercomputing.
1–14.

[13] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a highly scalable user-
level TCP stack for multicore systems. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 489–502.

[14] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can
be general and fast. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). 1–16.

[15] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA
efficiently for key-value services. In Proceedings of the 2014 ACM Conference on
SIGCOMM. 295–306.

[16] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST: Fast, scalable
and simple distributed transactions with Two-Sided RDMA datagram RPCs. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). 185–201.

https://github.com/zrlio/crail
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-2024.08.05-Ratified.pdf
https://www.infinibandta.org


SRC: A Scalable Reliable Connection for RDMA with Decoupled QPs and Connections APNET 2025, August 07–08, 2025, Shang Hai, China

[17] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13). 103–114.

[18] Sumit Kumar Monga, Sanidhya Kashyap, and Changwoo Min. 2021. Birds of a
feather flock together: Scaling rdma rpcs with flock. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 212–227.

[19] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang
Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, et al. 2024. Alibaba HPN: A data center
network for large language model training. In Proceedings of the ACM SIGCOMM
2024 Conference. 691–706.

[20] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A cloud-optimized
transport protocol for elastic and scalable hpc. IEEE micro 40, 6 (2020), 67–73.

[21] Hari Subramoni, Khaled Hamidouche, Akshey Venkatesh, Sourav Chakraborty,
and Dhabaleswar K Panda. 2014. Designing MPI library with dynamic connected
transport (DCT) of InfiniBand: early experiences. In International Supercomputing
Conference. Springer, 278–295.

[22] Sayantan Sur, Abhinav Vishnu, H-W Jin, DK Panda, and W Huang. 2005. Can
memory-less network adapters benefit next-generation infiniband systems?. In
13th Symposium on High Performance Interconnects (HOTI’05). IEEE, 45–50.

[23] Shin-Yeh Tsai and Yiying Zhang. 2017. LITE kernel RDMA support for datacenter
applications. In Proceedings of the 26th Symposium on Operating Systems Principles.
306–324.

[24] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bojie Li, Binzhang Fu, and
Kun Tan. 2021. StaR: Breaking the scalability limit for RDMA. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP). IEEE, 1–11.

[25] Yandong Wang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin, Xiaoqiao
Meng, and Shicong Meng. 2015. HydraDB: a resilient RDMA-driven key-value
middleware for in-memory cluster computing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–11.

[26] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen
Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al. 2023. SRNIC: A scalable
architecture for RDMA NICs. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 1–14.

[27] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu, and Jiwu Shu. 2021. Octo-
pus+: An rdma-enabled distributed persistent memory file system. ACM Trans-
actions on Storage (TOS) 17, 3 (2021), 1–25.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RDMA Communication and QP Management
	2.2 RNIC Scalability Issue
	2.3 Motivation

	3 Design
	3.1 Architectural Overview
	3.2 SRC RNIC
	3.3 Connection Management and SRC QP
	3.4 Discussion and Open Questions

	4 Preliminary Results
	5 Conclusion
	Acknowledgments
	References

