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ABSTRACT

Sample selection improves the efficiency and effectiveness of machine learning
models by providing informative and representative samples. Typically, samples
can be modeled as a sample graph, where nodes are samples and edges represent
their similarities. Most existing methods are based on local information, such as
the training difficulty of samples, thereby overlooking global information, such as
connectivity patterns. This oversight can result in suboptimal selection because
global information is crucial for ensuring that the selected samples well represent
the structural properties of the graph. To address this issue, we employ structural
entropy to quantify global information and losslessly decompose it from the whole
graph to individual nodes using the Shapley value. Based on the decomposition, we
present Structural-Entropy-based sample Selection (SES), a method that integrates
both global and local information to select informative and representative samples.
SES begins by constructing a kNN-graph among samples based on their similarities.
It then measures sample importance by combining structural entropy (global metric)
with training difficulty (local metric). Finally, SES applies importance-biased blue
noise sampling to select a set of diverse and representative samples. Comprehensive
experiments in three learning scenarios — supervised learning, active learning, and
continual learning — clearly demonstrate the effectiveness of our method.

1 INTRODUCTION

Data budgets that limit sample sizes are pervasive in machine learning applications (Liu et al.,
2025). For example, researchers and practitioners often face limited annotation and computational
resources, necessitating the use of fewer samples to enhance efficiency. Similarly, in continual learning
scenarios (Hou et al., 2019), the memory constraint requires fewer samples from previous tasks to
retain knowledge effectively. Consequently, effective sample selection becomes crucial to improving
efficiency and effectiveness in machine learning. It aims to select informative and representative
samples from large datasets to accelerate training and enhance the training performance. Informative
samples are those that significantly reduce model uncertainty and are crucial for improving the
accuracy and robustness of the training process, while representative samples are those that preserve
the diversity and overall distribution of the dataset (Huang et al., 2014). During selection, samples
can be modeled as a sample graph, where nodes are samples and edges represent their similarities.
Existing sample selection methods primarily focus on local information, such as the training difficulty
and the node degree (Maharana et al., 2024). Although these methods demonstrate promising
performance on many datasets, they overlook the global information inherent in the graph structure.
This global information, such as connectivity patterns, captures the structural properties of the
whole graph (Leskovec & Faloutsos, 2006) and has been shown to be effective in improving the
representativeness of selected samples (Zhang et al., 2023; Yuan et al., 2021; Zhao et al., 2021).
Therefore, we aim to incorporate global information into the sample selection process to improve the
quality of the selected samples.

∗Equal contribution.
†Corresponding author.
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The key to incorporating global information is to identify which specific metric(s) can accurately
capture the global structure of the sample graph. Entropy is a class of metrics well-suited for this
purpose, as it quantifies both informativeness and representativeness (Pan et al., 2005; Li & Guo,
2013). In particular, Li & Pan (2016) propose structural entropy to evaluate the amount of information
required to describe a given graph structure. The main feature of this metric is that it is robust and
sensitive. First, it remains stable against minor changes like the addition or removal of a few edges.
This ensures that the structural entropy reliably reflects the global structure of the graph despite
potential noise. Second, it is sensitive to topological changes, especially those affecting connectivity
patterns. This is essential for capturing the global structure in response to even small topological
changes. These two properties make structural entropy an effective metric for quantifying the global
structure and therefore valuable in sample selection. However, existing methods only provide a
single value for the whole graph. This presents a challenge in decomposing this metric to the level of
individual nodes, limiting its utility for fine-grained, node-level selection.

To address this challenge, we use the Shapley value (Shapley, 1951), a method that fairly decomposes
a metric among contributors based on their individual contributions. Specifically, it is calculated
by evaluating a node’s marginal contribution to structural entropy when adding this node to each
subgraph of the sample graph. This decomposition process is highly time-consuming as it requires
exponential-time computation to enumerate possible subgraphs. To accelerate this, we reformulate the
Shapley value for structural entropy, enabling linear-time calculation with respect to the edge number.
Based on this reformulation, we propose a node-level structural entropy metric that effectively
measures the importance of nodes in preserving the global structure. Building on the decomposition,
we present a Structural-Entropy-based sample Selection (SES) method that integrates both global and
local metrics to select informative and representative samples. This method begins by constructing
a kNN-graph among samples to describe their similarity relationships. Then, it measures sample
importance by combining node-level structural entropy (global metric) with training difficulty (local
metric). Finally, the importance-biased blue noise sampling method is employed to iteratively select
a set of diverse and representative samples.

We validate the effectiveness of our method through comprehensive experiments on three important
learning scenarios: supervised learning, active learning, and continual learning. The evaluation
covers many tasks, including image classification, text classification, object detection, and visual
question answering. The results clearly show that our method consistently improves state-of-the-art
methods across all scenarios and tasks. This indicates that our method of integrating global and local
information outperforms existing methods in selecting more informative and representative samples.

The main contributions of this work are threefold:

• We propose a node-level structural entropy metric that quantifies the importance of nodes in
preserving the global structure, and it can be calculated in linear time.

• We develop a structural-entropy-based sample selection method that integrates both global and
local metrics to select informative and representative samples1.

• We conduct experiments in supervised learning, active learning, and continual learning that
demonstrate the effectiveness of our method.

2 RELATED WORK

Existing sample selection methods primarily utilize local information. They can be classified into two
categories based on the information utilized: attribute-based methods and connection-based methods.

Attribute-based methods rely on the attributes of individual samples. A commonly used attribute is the
training difficulty, which is typically assessed from two perspectives: confidence and error. Metrics
that measure model confidence include the entropy of the prediction vector (Coleman et al., 2020) and
the variance of the predicted probabilities across training epochs (Swayamdipta et al., 2020). Metrics
that measure model error include EL2N (Paul et al., 2021), which calculates the L2 norm of the error
vector, and the Forgetting score (Toneva et al., 2019), which tracks the frequency of misclassifications
after initial correct classifications. AUM (Pleiss et al., 2020) combines both perspectives by measuring
the confidence for correct classifications and the error for misclassifications. Based on these metrics,

1The implementation is available at https://github.com/thu-vis/SE-based sample selection.
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several sample selection methods have been developed. One simple yet effective method is selecting
the most difficult samples, as they have a larger impact on the model performance (Paul et al., 2021).
However, this method overlooks easy samples, which are crucial for model training when data
budgets are limited (Sorscher et al., 2022). To address this issue, CCS (Zheng et al., 2022) divides
the dataset into strata based on training difficulty and performs random sampling within each stratum.
InfoBatch (Qin et al., 2023) retains some easy samples and enhances their influence by upscaling
their gradient. Another line of work uses the gradient as the attribute and aims to match the average
gradient of the selected samples with that of all samples (Mirzasoleiman et al., 2019; Killamsetty
et al., 2021). However, these gradients depend on the model’s current state during training, limiting
the applicability of the selected samples to other models.

Connection-based methods utilize local connections within the sample graph to optimize sample
diversity and coverage. GraphCut (Iyer et al., 2021) selects samples with weak connections among
them to promote diversity while maintaining strong connections to unselected samples for better
coverage. Moderate coreset (Xia et al., 2023) selects samples based on their distances from the
class centers. To enhance the generalizability across different scenarios, samples near the median
distance are selected. D2 Pruning (Maharana et al., 2024) aims to select difficult and diverse samples.
It employs forward message passing to integrate training difficulty and node degree, followed by
backward message passing to ensure diversity.

While these methods demonstrate promising performance on many datasets, they often overlook the
global information, which is crucial for increasing the representativeness of selected samples (Yuan
et al., 2021). Overlooking this global information can lead to suboptimal learning performance. To
address this gap, we propose a structural-entropy-based sample selection method that integrates both
global and local metrics to select informative and representative samples.

3 BACKGROUND: STRUCTURAL ENTROPY OF GRAPH

Structural entropy evaluates how the nodes and edges in a graph are hierarchically organized to form
communities at different levels (Li & Pan, 2016). Thus, it is effective in globally quantifying the
community structure of the graph regarding its overall connectivity patterns. The calculation of
structural entropy is based on an encoding tree that represents the graph’s hierarchical community
structure. In this tree, each node represents a community, and each leaf node corresponds to a
graph node that forms a single-node community. With this encoding tree, the entropy is aggregated
across communities of different levels, which provides insights into the hierarchical community
structure of the graph. Fig. 1 shows an undirected, weighted graph G and its encoding tree T .
The entropy is calculated for each non-root node α, which considers both intra-community and
inter-community connections to reflect the connectivity patterns of its community in the graph. Lower
entropy indicates denser intra-community connections and sparser inter-community connections. The
intra-community connection, vol(α), is quantified by the total weighted degrees of the nodes, while
the inter-community connection, g(α), is quantified by the total weight of the edges with exactly one
endpoint in the community (outer edges). Given an encoding tree T , the structural entropy of G is
the aggregation of the entropy values from all its non-root nodes:

H(G, T ) = −
∑
α∈T

g(α)

vol(V )
log

vol(α)

vol(α−)
, (1)

where α is a non-root node, α− is its parent node, g(α) is the total weight of its outer edges, and
vol(V ), vol(α), vol(α−) represent the total weighted degrees of the nodes in V , α, and α−.
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Figure 1: The structural entropy calculation for an undirected, weighted graph.
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In real-world applications, the encoding tree T may be unknown. To best capture the hierarchical
community structure in such cases, the encoding tree T is constructed by minimizing the structural
entropy. Obtaining an exact solution for the minimization is challenging, so greedy methods similar
to the Huffman tree construction have been developed (Li & Pan, 2016; Zhu et al., 2023). We
demonstrate in Appendix A that the choice of the construction method has a negligible effect on the
sample selection results. Therefore, we use the most recent method proposed by Zhu et al. (2023).

4 STRUCTURAL-ENTROPY-BASED SAMPLE SELECTION

Our sample selection method integrates global and local metrics to select informative and
representative samples. Given a large set of samples, an undirected, weighted sample graph G
is initially constructed to model their similarity relationships. Each sample, represented by its
embedding extracted by a deep neural network, corresponds uniquely to a node in the graph. To
avoid excessive edge connections, each sample is connected to its k nearest neighboring samples.
The edge weight between any two samples, u and v, is their cosine similarity normalized to [0, 1].
Based on this graph, we first propose a node-level structural entropy metric to globally measure
the importance of each sample. Then, it is combined with a local metric, training difficulty, to assign
an importance score to each sample. Using this score, we develop an importance-biased blue noise
sampling method to select a set of informative and representative samples.

4.1 NODE-LEVEL STRUCTURAL ENTROPY

The core of our scoring method is to define the metric at the node level. While local metrics are
well studied, global metrics have received little attention. An ideal global metric for fine-grained,
node-level selection should measure the connectivity patterns of a graph at the individual node level.
Previous research shows that the graph-level structural entropy effectively quantifies the global
connectivity patterns (Li & Pan, 2016), making it a valuable metric for sample selection. However,
it only provides a single value for the whole graph, thus failing to offer detailed insights at the node
level. Consequently, the key is to decompose the graph-level structural entropy to the node level.

Chen & Teng (2017) have shown that the Shapley value (Shapley, 1951) is an effective method to
decompose a value from the graph level to the node level. The key feature of this method is its
lossless and fair decomposition of the value, ensuring that the aggregate node-level value equals the
graph-level value. Inspired by this, we employ the Shapley value to derive the node-level structural
entropy. Specifically, the Shapley value of a node u reflects the average increase in structural entropy
when it is added to all possible subgraphs of G. As a result, this value captures the node’s contribution
to the global connectivity patterns.

To derive the Shapley value for each node, we first calculate the structural entropy for each possible
subgraph of G. Then, we calculate the node’s contribution to these subgraphs. Formally, let VS

denote a subset of the node set V , the Shapley value of node u is:

ϕ(u) =
1

|V |
∑

Vs⊆V \{u}

(
|V | − 1

|VS |

)−1(
H(G[VS ∪ {u}], T )−H(G[VS ], T )

)
, (2)

where G[VS ] is the subgraph of G that consists of nodes in VS and the edges between them, and(|V |−1
|VS |

)
is the binomial coefficient.

Directly calculating Eq. (2) requires an enumeration of all possible subgraphs of G, which becomes
intractable for a graph with a large number of nodes. To address this, we reformulate the Shapley
value by considering the contribution of edges.
Proposition 1. Let G=(V,E,W ) be an undirected, weighted graph. The Shapley value of node u is

ϕ(u) =
1

vol(V )

( ∑
⟨u,v⟩∈E

wu,v log vol(αu∨v)− d(u) log d(u)

)
, (3)

where wu,v is the weight of edge ⟨u, v⟩, αu∨v is the least common ancestor of node u and v in the
encoding tree T , and d(u) is the weighted degree of node u.
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Figure 2: Edges connecting: (a) nodes u and v across different communities; (b) nodes u and v′

within the same community.

The proof of Proposition 1 is provided in Appendix B. It indicates that the Shapley value can be
calculated in linear time with respect to the edge number. Thus, this reformulation enables an efficient
and exact calculation. Eq. (3) consists of two terms. The first decomposes the structural entropy from
the encoding tree to the node, and the second reflects local connectivity through node degree. Due to
the below theoretical and empirical advantages, we only use the first term to define the node-level
structural entropy (Se):

Se(u) =
1

vol(V )

∑
⟨u,v⟩∈E

wu,v log vol(αu∨v). (4)

As this definition is related to sample coverage, the first theoretical advantage lies in its ability to
enhance model performance. Following previous work (Zheng et al., 2022), we assume that samples
are drawn from a distribution Pµ with probability measure µ, and quantify the sample coverage as
P (u, r) =

∫
B(u,r)

dµ(x), where B(u, r) is a r-radius ball centered at u. We demonstrate theoretically
and empirically that Se(u) provides a lower bound for sample coverage:

1

nk2R
exp

(
1

kR
E[Se(u)]

)
≤ E[P (u, r)], (5)

where n is the number of samples, k is the parameter in kNN-graph construction, and R is the upper
bound of edge weights. This result indicates that maximizing Se(u) during selection inherently
improves sample coverage. Given the strong correlation between coverage ability and the empirical
loss (Zheng et al., 2022), selecting samples with high node-level structural entropy enhances model
performance. The mathematical proof and the empirical validation are detailed in Appendix C.

The second theoretical advantage is its ability in maintaining the overall graph structure. A higher
vol(αu∨v) indicates that the edge ⟨u, v⟩ connects the nodes that are more distantly located in T .
For example, in Fig. 2, the edge ⟨u, v′⟩ stays within the same community while the edge ⟨u, v⟩
spans different communities, resulting in a higher vol(αu∨v). Thus, vol(αu∨v) effectively quantifies
the extent to which an edge bridges different communities. Since Se(u) is the weighted sum of
vol(αu∨v), nodes with high structural entropy serve as boundaries between communities. Selecting
these nodes is crucial for maintaining the overall structure of the graph.

The empirical advantage of this definition is demonstrated through an ablation study, as detailed in
Appendix G. The results show that only using the first term slightly improves performance.

4.2 IMPORTANCE-BIASED BLUE NOISE SAMPLING

To select a set of high-quality samples, the developed global metric, node-level structural entropy,
needs to be combined with an appropriate local metric. Previous research has shown that training
difficulty (St) is an effective local metric in quantifying the sample’s impact on model performance,
as difficult samples are typically more informative for improving the decision boundary (Paul et al.,
2021; Sorscher et al., 2022). Therefore, we employ it as the local metric. Accordingly, the overall
importance score (S) is a combination of node-level structural entropy and training difficulty:

S(u) = Se(u) · St(u). (6)

Given the importance scores, a straightforward solution is to select the samples with the highest
scores. However, this significantly reduces the diversity of the selected samples, as the important
samples tend to cluster in several narrow regions (Zheng et al., 2022). An alternative is the message
passing mechanism employed by D2 Pruning: once a sample is selected, this method sends weighted
messages to decrease the importance scores of its neighbors in the graph. However, the message
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weights are sensitive to a hyperparameter and can lead to suboptimal results if not carefully tuned.
Previous research has shown that blue noise sampling achieves a good balance between randomness
and uniformity by excluding overly similar samples (Xiang et al., 2019; Liu et al., 2018). This
method increases sampling in low-density regions, which enhances the diversity of the selected
samples. Consequently, we develop an importance-biased blue noise sampling method to select a set
of informative and representative samples.

Our sampling process contains two steps: 1) identifying the candidate sample with the highest
importance score, 2) rejecting the sample if its similarity with any selected neighboring samples
exceeds a threshold θ; otherwise, accepting it as a selected sample. These two steps are performed
iteratively until no more samples can be selected. To determine the threshold θ for a given sampling
rate, we perform a binary search on θ.

5 EXPERIMENTS

In this section, we first demonstrate the effectiveness of our method in three learning scenarios:
supervised learning, active learning, and continual learning. We then conduct ablation studies to
provide insights into our method. Finally, we conduct a qualitative analysis of the selection results.

5.1 SUPERVISED LEARNING

In supervised learning tasks, we aim to reduce computational costs by selecting a subset of informative
and representative samples for training.

5.1.1 EXPERIMENTAL SETUP

Datasets and models. For image classification, we use the widely used datasets, CIFAR10, CI-
FAR100 (Krizhevsky, 2009), and ImageNet-1K (Deng et al., 2009). Following Maharana et al. (2024),
ResNet-18 (He et al., 2015) is used for CIFAR10 and CIFAR100, while ResNet-34 (He et al., 2015)
is used for ImageNet-1K. The models are trained from scratch on the selected subsets of the training
set, and we report the model accuracy.

For text classification, we use the ANLI dataset (Nie et al., 2020), which focuses on natural language
inference, and the IMDB Review dataset (Maas et al., 2011), which focuses on sentiment analysis.
Following Maharana et al. (2024), we fine-tune the RoBERTa model (Liu et al., 2019) and report the
accuracy on the test set for both datasets.

For object detection, we use the PASCAL VOC dataset (Everingham et al., 2010), which contains
bounding box annotations of objects and animals. Following Choi et al. (2021), we train SSD (Liu
et al., 2016) with VGG-16 (Simonyan & Zisserman, 2015) backbone from scratch and report the
mAP on the test set.

For visual question answering, we use the CC SBU Align dataset (Zhu et al., 2024), which con-
tains high-quality, aligned image-text pairs. Following Wei et al. (2023), we fine-tune MiniGPT-
4 (Zhu et al., 2024) on this dataset, and report the average accuracy of the model on five datasets:
OKVQA (Schwenk et al., 2022), IconVQA (Lu et al., 2021), DocVQA (Mathew et al., 2021),
GQA (Hudson & Manning, 2019), and ScienceQA (Saikh et al., 2022).

Please refer to Appendix D for more details on the dataset statistics and training hyperparameters.

Baselines. We compare our method with the state-of-the-art sample selection methods, which are
either applicable to all tasks or designed for a specific task. Baselines that are applicable to all tasks
include: 1) Random selection of samples, 2) Moderate coreset (Xia et al., 2023), 3) CCS (Zheng
et al., 2022), 4) D2 Pruning (Maharana et al., 2024), and 5) GraphCut (Iyer et al., 2021). For
image classification and text classification, the task-specific baselines include selecting the most
difficult samples based on: 1) Entropy (Coleman et al., 2020), 2) Forgetting score (Toneva et al.,
2019), 3) EL2N (Paul et al., 2021), 4) AUM (Pleiss et al., 2020), and 5) Variance (Swayamdipta
et al., 2020). We also include two widely used baselines that prioritize diversity in sample selection,
including k-means (Xu et al., 2003), which selects the samples closest to k-means clustering centers,
and k-DPP (Kulesza & Taskar, 2011), which employs a determinantal point process to encourage
diversity. For object detection, we include selection based on the AL-MDN uncertainty (Choi et al.,
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Table 1: Results for supervised learning on: (a) ImageNet-1K; (b) ANLI; (c) PASCAL VOC; (d) CC
SBU Align. The best one is bold, and the runner-up is underlined.

(a) ImageNet-1K

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.63 69.26 58.90 47.10 34.04 16.56 5.50
Moderate 71.33 68.72 55.23 40.97 25.75 11.33 4.52
CCS 70.74 69.23 60.04 50.41 36.92 19.92 9.43
D2 Pruning 71.29 70.32 58.91 50.81 37.12 18.97 11.23
GraphCut 68.91 68.72 55.28 44.79 33.54 20.07 11.49
Entropy 70.93 69.21 54.76 38.46 22.78 7.01 1.95
Forgetting 70.57 70.46 60.77 48.73 33.86 15.13 5.66
EL2N 71.68 65.98 31.90 12.57 6.50 3.25 1.90
AUM 69.94 65.36 21.91 10.50 6.42 3.58 2.24
Variance 70.12 66.09 35.15 13.85 7.13 4.72 1.81
k-means 70.33 69.47 59.23 48.12 35.51 18.67 9.65
k-DPP 70.84 69.85 59.92 46.10 34.41 16.33 7.49

SES (Ours) 72.80 71.05 63.24 53.59 41.88 25.59 13.43

(b) ANLI

Dataset ANLI (100%:49.25)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 47.08 45.20 42.13 39.52 38.82 37.50 35.96
Moderate 46.84 45.11 41.95 40.16 38.99 35.83 33.91
CCS 46.56 45.92 41.67 41.63 40.33 37.41 36.82
D2 Pruning 48.56 47.49 42.77 41.43 40.34 37.92 36.29
GraphCut 46.14 44.53 42.12 39.86 38.15 35.44 34.02
Entropy 46.32 45.53 41.45 39.67 38.54 36.69 36.40
Forgetting 48.73 42.29 39.82 38.37 35.95 35.78 35.03
EL2N 48.70 47.85 43.14 39.63 37.52 34.33 34.27
AUM 47.86 47.58 43.57 40.02 34.66 34.16 33.62
Variance 47.97 47.87 40.70 38.75 33.52 33.50 33.17
k-means 46.48 46.52 42.42 40.57 39.89 36.74 36.11
k-DPP 47.74 47.02 43.44 40.98 40.12 37.44 36.66

SES (Ours) 49.00 48.22 45.94 43.63 41.82 39.88 38.16

(c) PASCAL VOC

Dataset PASCAL VOC (100%:76.29)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 74.02 72.10 65.45 57.56 43.47 18.78 9.24
Moderate 73.42 72.03 65.12 54.71 40.20 15.97 5.13
CCS 74.64 72.27 65.72 57.35 39.01 17.26 8.49
D2 Pruning 74.46 72.55 65.59 55.73 44.04 19.16 10.75
GraphCut 67.45 64.15 53.12 38.29 26.81 8.56 8.16
AL-MDN 74.51 70.36 65.26 54.51 30.85 12.33 8.97
k-means 74.22 72.35 65.52 57.01 43.35 16.96 5.16
k-DPP 74.19 71.99 65.39 56.80 43.92 18.20 10.50

SES (Ours) 75.20 73.33 66.52 59.52 45.92 23.39 16.15

(d) CC SBU Align

Dataset CC SBU Align (100%:30.40)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 29.66 29.62 29.21 29.01 28.20 25.51 25.11
Moderate 29.96 29.67 29.53 29.11 27.30 24.85 26.54
CCS 29.93 29.90 29.94 29.91 27.71 25.31 25.59
D2 Pruning 30.09 29.97 29.44 29.30 26.44 25.03 26.29
GraphCut 29.86 29.73 29.53 29.11 27.30 24.85 26.54
Instruction 30.12 29.93 29.82 29.01 26.76 23.72 24.60
k-means 29.78 29.61 29.54 29.20 27.72 25.47 25.60
k-DPP 29.33 29.55 29.48 29.27 28.16 25.93 26.13

SES (Ours) 30.25 30.20 30.21 30.10 28.23 27.19 27.61

2021), which captures the detector’s overall uncertainty for an image. For visual question answering,
we include selection based on the Instruction score (Wei et al., 2023), which evaluates an image-text
pair based on image-text matching degree and text length.

Implementation. For all tasks, we extract image embeddings using CLIP (Radford et al., 2021)
and text embeddings using Sentence-BERT (Reimers & Gurevych, 2019) due to their demonstrated
performance in capturing the semantic similarities. For visual question answering, we concatenate
the image and text embeddings for each sample. To measure training difficulty, we use AUM for
image classification, Variance for text classification, AL-MDN uncertainty for object detection, and
Instruction score for visual question answering. We ablate the different training difficulty metrics in
Appendix G and observe no significant performance difference among them. We also perform a grid
search on the hyperparameters, such as k in the kNN-graph construction (see Appendix E for details).

5.1.2 RESULTS

To cover a wide range of sampling rates, we select subsets that contain 1%, 2%, 5%, 10%, 20%, 50%,
and 70% of the entire training set. All the results are averaged over 5 runs. Table 1 shows the results
on four datasets that cover all the four tasks. The full results are provided in Appendix F.

Baselines that select the most difficult samples, such as AUM and Forgetting, perform well in high-
sampling-rate settings. However, these methods fall behind in low-sampling-rate settings. This is due
to their limited coverage of easy samples, which are crucial for model training when fewer samples are
selected (Sorscher et al., 2022). Methods that prioritize sample coverage, such as CCS and D2 Pruning,
address this issue and perform well in low-sampling-rate settings. However, in high-sampling-rate
settings, they cannot accurately determine the most important samples that preserve global structure.
This results in a lack of representativeness in the selected samples and suboptimal performance.
Methods that prioritize diversity are competitive in low-sampling-rate settings because they ensure the
coverage of the dataset. However, in high-sampling-rate settings, they face challenges in balancing
diversity with sample importance, leading to suboptimal performance. In contrast, our method
integrates both global and local metrics to better identify important samples and employs importance-
biased blue noise sampling to ensure representativeness. Therefore, our method consistently performs
better than baselines across all sampling rates and datasets.

In text classification and visual question answering, we observe that decreasing the sampling rate
does not significantly affect performance. This is because we are fine-tuning pretrained models,
which provide sufficient knowledge for these tasks. By providing high-quality samples, our method
significantly accelerates fine-tuning with negligible performance loss. For example, as shown in
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Table 1(d), we achieve a 10x speedup by using only 10% of the dataset to fine-tune MiniGPT-4, with
only a 0.3% drop in accuracy compared to using the entire dataset. Specifically, our method reduces
the fine-tuning time on a single Nvidia Tesla V100 GPU from approximately 30 minutes to 3 minutes,
adding only a negligible selection overhead of 2 seconds.

5.2 ACTIVE LEARNING

Active learning (Settles, 2009) aims to reduce annotation effort by selecting a set of informative and
representative samples from an unlabeled pool. These samples are then labeled to train models. The
key difference between active learning and supervised learning lies in the absence of labels during
sample selection, which makes the selection process more challenging.

5.2.1 EXPERIMENTAL SETUP

Datasets and models. To evaluate the effectiveness of the selection methods in an active learning
task, we perform image classification on ImageNet-1K. To simulate an unlabeled pool, we remove the
labels from all samples during selection. After selection, we use the ground-truth labels to simulate
human annotations. We train ResNet-34 from scratch on these labeled images and report the accuracy
on the ImageNet-1K validation set.

Baselines. We include the baselines from Sec. 5.1 that are applicable to unlabeled datasets. Addition-
ally, we include Prototypicality (Sorscher et al., 2022) designed for unlabeled datasets. This method
selects the most difficult samples based on the prototypicality score, which is defined as the distance
between samples and their corresponding k-means cluster center. Difficult samples are those far from
the center, as they tend to be more ambiguous than the samples closer to the center.

Implementation. In the active learning scenario, using a pretrained supervised model like CLIP
for feature extraction is not suitable, because the domain of the unlabeled data may not be covered
by its pretraining data. Therefore, we extract the image embeddings with a self-supervised model,
SwAV (Caron et al., 2020). The prototypicality score is utilized to measure training difficulty.

5.2.2 RESULTS

We select unlabeled samples with rates of 1%, 2%, 5%, 10%, 20%, 50%, and 70% and report the
results averaged over 5 random seeds in Table 2. In low-sampling-rate settings, other baselines
perform worse than random selection due to the absence of labels, indicating their reliance on labeled
data to achieve optimal performance. In contrast, our method consistently performs better than
random selection and other baseline methods. This is because structural entropy compensates for
missing labels by capturing the community structure in the datasets.

5.3 CONTINUAL LEARNING

Continual learning (Kirkpatrick et al., 2017) aims to alleviate the catastrophic forgetting of previously
learned tasks when learning new tasks over time. We focus on the replay-based method (Hou et al.,
2019), which selects a small set of informative and representative samples from previous tasks and
replays them during the training of new tasks.

5.3.1 EXPERIMENTAL SETUP

Datasets and models. We use the datasets commonly used in continual learning, including Permuted
MNIST, Split MNIST, Split CIFAR10, Split CIFAR100, and Split Tiny-ImageNet. Permuted MNIST

Table 2: Results for active learning. The best one is bold, and the runner-up is underlined.

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.12 69.43 58.77 47.36 33.41 16.41 5.41
Moderate 71.48 68.68 56.35 42.29 26.77 11.37 4.22
CCS 71.46 69.50 58.85 45.06 28.02 9.03 2.33
GraphCut 71.50 69.16 56.08 40.99 24.30 7.90 2.46
D2 Pruning 71.62 69.02 59.65 45.97 28.08 14.24 4.79
Prototypicality 70.12 66.00 49.20 35.27 24.14 13.88 4.95

SES (Ours) 72.11 70.15 60.22 48.10 34.82 17.97 6.69
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Table 3: Results for continual learning. The best one is bold, and the runner-up is underlined.

Dataset Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

Memory size 100 200 100 200 100 200 100 200 100 200

D2 Pruning 78.25 79.94 96.79 97.69 64.54 66.08 51.86 54.50 19.08 19.50
GraphCut 76.98 78.61 91.34 94.25 61.02 61.66 53.35 54.66 19.76 20.53
k-center 78.17 79.75 94.39 96.61 61.47 62.74 51.16 53.10 18.87 18.90
Gradient Matching 77.30 79.27 95.39 97.54 61.65 62.65 54.13 56.29 19.19 19.00
FRCL 77.33 79.21 94.48 97.10 61.67 62.93 51.40 54.28 18.86 19.01
iCaRL 78.94 80.65 89.50 97.59 62.33 64.08 54.62 56.11 19.58 19.85
Greedy Coreset 78.71 80.13 96.07 97.76 63.18 62.98 56.17 57.72 19.24 19.98
BCSR 77.74 79.51 94.77 96.98 63.23 64.59 50.21 51.49 18.75 18.74

SES (Ours) 79.92 81.18 96.94 98.28 68.26 69.32 57.60 59.69 20.80 21.20

splits MNIST (LeCun et al., 1998) into 10 segments, where a fixed permutation of the pixel order
is applied to all images in each segment to simulate different distributions. Thus, it contains 10
classification tasks with samples from different distributions. The other four datasets split the image
classes in MNIST, CIFAR10, CIFAR100, and Tiny-ImageNet (Le & Yang, 2015) into 5, 5, 20,
and 20 segments, respectively, and each segment corresponds to a different classification task. In
alignment with prior studies (Borsos et al., 2020; Hao et al., 2024), we use increasingly complex
models as dataset complexity grows: a two-layer MLP for Permuted MNIST, a four-layer CNN for
Split MNIST, ResNet-18 for Split CIFAR10, and ResNet-18 with multi-head output (Zenke et al.,
2017) for Split CIFAR100 and Split Tiny-ImageNet. We conduct the experiments under three settings:
class-incremental, task-incremental, and task-free (Wang et al., 2024). In the task-incremental setting,
the models are trained sequentially for each task while maintaining a fixed-size replay memory that
contains an equal number of samples for each previous task. During training, samples from both the
replay memory and the current task are used, with the replay samples weighted by a hyperparameter
that controls their influence. After each task is completed, samples are selected from the current task
to replace a portion of the replay memory. We report the average accuracy on all tasks, with the model
unaware of a sample’s task during testing. The other two settings are introduced in Appendix F.

Baselines. We include baselines from Sec. 5.1 to select samples that update the replay memory. Ad-
ditionally, we include nine widely used selection methods for continual learning: 1) k-center (Sener
& Savarese, 2018), 2) Gradient Matching (Campbell & Broderick, 2019), 3) FRCL (Titsias et al.,
2020), 4) iCaRL (Rebuffi et al., 2017), 5) Greedy Coreset (Borsos et al., 2020), 6) BCSR (Hao
et al., 2024), 7) DER++ (Buzzega et al., 2020), 8) GSS (Aljundi et al., 2019), and 9) GCR (Tiwari
et al., 2022). Detailed introduction of these methods is provided in Appendix F.

Implementation. We extract the image embeddings with CLIP and measure training difficulty with
AUM. For all baselines and our method, we perform a grid search on the weight of replay samples to
determine its optimal value (see Appendix D for details).

5.3.2 RESULTS

We test replay memory sizes of 50, 100, 200, and 400 and report the results averaged over 5 random
seeds. Due to space limitations, Table 3 shows the results for replay memory sizes of 100 and 200
under the class-incremental setting, excluding baselines from Sec. 5.1 that are neither the best nor the
runner-up in any dataset or memory size. The full results are provided in Appendix F. Our method
consistently achieves better performance than baselines across all memory sizes and datasets. This is
because the combination of node-level structural entropy and training difficulty captures both the
global structure of samples and the model training dynamics in retaining knowledge.

Table 4: Ablation of modules. The best one is bold, and the runner-up is underlined.

Module Sampling rate
Avg.

Scoring Sampling 70% 50% 20% 10% 5% 2% 1%
TD HS 94.85 93.90 70.88 60.68 47.36 38.30 32.41 62.63
TD MP 94.86 94.28 87.88 77.68 65.30 49.69 41.41 73.01
TD BNS 94.88 94.05 88.06 79.55 68.05 53.37 43.07 74.43

SE+TD HS 94.92 94.39 82.03 70.42 57.63 40.64 33.68 67.67
SE+TD MP 95.08 94.67 88.54 80.14 69.34 54.26 44.51 75.22
SE+TD BNS 95.01 94.50 88.31 80.24 69.82 54.78 45.25 75.42
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5.4 ABLATION STUDY

We conduct ablation studies on supervised learning using CIFAR10 to evaluate the impact and
behavior of each module in our method. This section presents results on the effect of modules.
Additional ablation studies are provided in Appendix G.

Effect of modules. We ablate the two key modules in our method, node-level structural entropy (SE)
and importance-biased blue noise sampling (BNS), by replacing them with alternatives. Without SE,
we score samples based solely on training difficulty (TD). Without BNS, we either select samples
with the highest scores (HS) or use the message passing (MP) method from D2 pruning. The
hyperparameter controlling message weights in MP is determined through grid search as in the
original paper (Maharana et al., 2024). Table 4 shows the results. Using TD and HS yields the lowest
performance. Incorporating either SE, BNS, or MP largely improves performance, demonstrating their
individual effectiveness. Combining SE with either BNS or MP further improves the performance,
indicating that SE complements both methods in selecting informative and representative samples.
Notably, BNS achieves comparable performance to MP without the need for the time-consuming grid
search on the additional hyperparameter, demonstrating its effectiveness.

5.5 QUALITATIVE ANALYSIS

We visualize the selection results of different methods when selecting 2% of the samples from
CIFAR10 by projecting them onto a two-dimensional plane using t-SNE (van der Maaten & Hinton,
2008). Fig. 3 shows the results of AUM, D2 Pruning, and our method. Each point is a selected
sample, and the colored contours indicate the high-density regions for each class. The full results are
provided in Appendix H. Methods that select the most difficult samples, such as AUM, oversample
near several class boundaries and undersample in several classes that are easier to classify (Fig. 3(a)).
Methods that prioritize sample coverage, such as D2 Pruning, achieve a better sample coverage but
still miss critical samples near class boundaries (Fig. 3(b)). This gap indicates that these methods
may not effectively preserve the global structure of the samples. Our method well covers the data
distribution, providing a set of informative and representative samples for model training (Fig. 3(c)).

Oversample near
these boundaries

Well cover the
data distribution�

Undersample in
these classes

Undersample near
these boundaries

(a) (b) (c)

Figure 3: Visualizations of results when selecting 2% of the samples from CIFAR10 using: (a) AUM;
(b) D2 Pruning; (c) our structural-entropy-based sample selection method.

6 CONCLUSION

In this paper, we present a structural-entropy-based sample selection method for efficient and effective
learning. The key idea behind our method is to decompose graph-level structural entropy to a node-
level global metric using the Shapley value. This global metric is combined with a local metric,
training difficulty, for selecting informative and representative samples. The effectiveness of our
method is validated by comprehensive experiments in three learning scenarios. Although our method
has proven effective, future work on the following aspects is still promising. First, automating the
hyperparameter selection based on data characteristics can reduce the computational costs of the grid
search. Second, improving the support for multimodal data could strengthen its performance across
a wider range of tasks, such as infographics VQA (Mathew et al., 2022) and building foundation
models (Yang et al., 2024). Third, applying techniques such as hyper-class representation (Zhang
et al., 2022) to enhance the image and text embeddings can improve the quality of selected samples.
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A COMPARISON OF ENCODING TREE CONSTRUCTION METHODS

The construction of the encoding tree is an important step in our method. To the best of our knowledge,
there are two methods for constructing the encoding tree: the one proposed by Li & Pan (2016) and
the one proposed by Zhu et al. (2023). Both methods adopt the variations of the Huffman tree to
construct the encoding tree. The key difference is that Zhu et al. (2023) further compresses the tree
to a certain height to improve efficiency in subsequent processing. We assess the two methods by
calculating the Pearson correlation of the resulting node-level structural entropy. As shown in Table 5,
the correlations on CIFAR10, CIFAR100, and ImageNet-1K exceed 0.99. Therefore, the choice of
the construction method has a negligible effect on the sample selection results. In this paper, we
employ the more recent method proposed by Zhu et al. (2023).

Table 5: Pearson correlation of the node-level structural entropy obtained from the two methods on
CIFAR10, CIFAR100, and ImageNet-1K.

CIAFR10 CIFAR100 ImageNet-1K

Correlation 0.996 0.999 0.992

B PROOF OF PROPOSITION 1

We first present two lemmas essential for the proof of Proposition 1.

Lemma 1. Let G = (V,E,W ) be an undirected, weighted graph and T be its encoding tree. Then
the structural entropy H(G, T ) can be written as:

H(G, T ) =
1

vol(V )

(
2
∑

⟨u,v⟩∈E

wu,v log vol(u ∨ v)−
∑
u∈V

d(u) log d(u)

)
,

where wu,v is the weight of edge ⟨u, v⟩, u ∨ v is the least common ancestor of node u and v in T ,
and d(u) is the weighted degree of node u.

Proof of Lemma 1. According to Eq. (1), we can derive that:

H(G, T ) = −
∑
α∈T

g(α)

vol(V )
log

vol(α)

vol(α−)

= − 1

vol(V )

∑
α∈T

g(α) log
vol(α)

vol(α−)

=
1

vol(V )

∑
α∈T

(g(α) log vol(α−)− g(α) log vol(α)).

(7)

For a node α with k children, the contribution of each child βi to the summation is g(βi) log vol(α)−
g(βi) log vol(βi). The term g(βi) log vol(α) can be combined into −g(α) log vol(α) due to the
shared log vol(α) factor. By combining the terms with shared log vol(·) factors, Eq. (7) can be
rewritten as:

H(G, T ) =
1

vol(V )

( ∑
α is non-leaf

(( ∑
β∈children(α)

g(β)
)
−g(α)

)
log vol(α)−

∑
α is leaf

g(α) log vol(α))

)
.

(8)

Note that
∑

β∈children(α) g(β)−g(α) represents the difference between the total weight of outer edges
of α’s children and the total weight of outer edges of α. This difference is precisely twice the total
weights of edges between the communities represented by α’s children. Furthermore, each edge
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⟨u, v⟩ in the graph contributes only to the node α = u ∨ v. Therefore, we can transform the first term
into a sum over edges in the graph, yielding:

H(G, T ) =
1

vol(V )

(
2
∑

⟨u,v⟩∈E

wu,v log vol(u ∨ v)−
∑

α is leaf

g(α) log vol(α)

)
. (9)

The set of leaf nodes in the encoding tree corresponds to the set of nodes in the graph. Additionally,
for a leaf node α and its correpsonding graph node u, we have g(α) = vol(α) = d(u). We can
conclude that:

H(G, T ) =
1

vol(V )

(
2
∑

⟨u,v⟩∈E

wu,v log vol(u ∨ v)−
∑
u∈V

d(u) log d(u)

)
, (10)

which proves the lemma.

Lemma 2 (Winter, 2002). Eq. (2) is equivalent to:

ϕ(u) =
1

|V |!
∑
π∈Π

(
H(G[Vπ,u ∪ {u}], T )−H(G[Vπ,u], T )

)
, (11)

where Π is the set of all permutations of nodes in V , and Vπ,u denotes the set of nodes preceding u
in permutation π.

Based on the two lemmas, we develop a proof of Proposition 1.

Proof of Proposition 1. For brevity, we denote the subgraph G[Vπ,u∪{u}] by G+
π,u = (V +

π,u, E
+
π,u,W )

and G[Vπ,u] by Gπ,u = (Vπ,u, Eπ,u,W ). Lemma 1 gives:

H(G+
π,u, T ) =

1

vol(V )
(2

∑
⟨x,y⟩∈E+

π,u

wx,y log vol(x ∨ y)−
∑

x∈V +
π,u

d(x) log d(x)) (12)

and

H(Gπ,u, T ) =
1

vol(V )
(2

∑
⟨x,y⟩∈Eπ,u

wx,y log vol(x ∨ y)−
∑

x∈Vπ,u

d(x) log d(x)). (13)

Then

H(G+
π,u, T )−H(Gπ,u, T )

=
1

vol(V )

(
2(

∑
⟨x,y⟩∈E+

π,u

wx,y log vol(x ∨ y)−
∑

⟨x,y⟩∈Eπ,u

wx,y log vol(x ∨ y))

− (
∑

x∈V +
π,u

d(x) log(x)−
∑

x∈Vπ,u

d(x) log d(x))

)
.

(14)

Note that V +
π,u = Vπ,u ∪ {u} and E+

π,u = Eπ,u ∪ {⟨u, v⟩ : v ∈ N (u) ∩ Vπ,u}, where N (u) is the
set of neighbors of u in G. Therefore,

H(G+
π,u, T )−H(Gπ,u, T ) =

1

vol(V )

(
2

∑
v∈N (u)∩Vπ,u

wu,v log vol(u∨ v)−d(u) log d(u)

)
. (15)
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We can rewrite
∑

v∈N (u)∩Vπ,u
log vol(u ∨ v) as

∑
v∈N (u) I[v ∈ Vπ,u] log vol(u ∨ v), where I is the

indicator function. Then, the Shapley value in Eq. (11) can be rewritten as:

ϕ(u) =
1

|V |!
∑
π∈Π

(
H(G[Vπ,u ∪ {u}], T )−H(G[Vπ,u], T )

)
=

1

|V |!
∑
π∈Π

(
1

vol(V )

(
2
∑

v∈N (u)

I[v ∈ Vπ,u]wu,v log vol(u ∨ v)− d(u) log d(u)

))

=
2

vol(V )|V |!
∑
π∈Π

∑
v∈N (u)

I[v ∈ Vπ,u]wu,v log vol(u ∨ v)− 1

vol(V )
d(u) log d(u)

=
2

vol(V )|V |!
∑

v∈N (u)

wu,v log vol(u ∨ v)
∑
π∈Π

I[v ∈ Vπ,u]−
1

vol(V )
d(u) log d(u).

(16)

Note that
∑

π∈Π I[v ∈ Vπ,u] is |V |!
2 since there are |V |!

2 permutations where v precedes u. Thus, we
have:

ϕ(u) =
1

vol(V )

∑
v∈N (u)

wu,v log vol(u ∨ v)− 1

vol(V )
d(u) log d(u)

=
1

vol(V )

( ∑
v∈N (u)

wu,v log vol(αu∨v)− d(u) log d(u)

)

=
1

vol(V )

( ∑
⟨u,v⟩∈E

wu,v log vol(αu∨v)− d(u) log d(u)

)
,

(17)

which proves the proposition.

C THEORETICAL ANALYSIS OF NODE-LEVEL STRUCTURAL ENTROPY

C.1 NODE-LEVEL STRUCTURAL ENTROPY AND SAMPLE COVERAGE

In this section, we prove that node-level structural entropy serves as a lower bound for the sample
coverage. Following previous work (Zheng et al., 2022), we assume that the dataset S = {xi, yi}
contains n i.i.d. samples drawn from an underlying distribution Pµ with probability measure µ. We
discuss a certain sample u’s ability to cover the entire distribution, i.e., how well the sample can cover
the entire distribution. The sample coverage of a sample u can be quantified by the coverage of the
entire distribution by a ball B(u, r) centered at u with radius r (Zheng et al., 2022):

P (u, r) =

∫
B(u,r)

dµ(x).

When r is fixed, the larger P (u, r) is, the better sample covers the distribution. Directly calculating
P (u, r) is difficult because we do not know the underlying distribution Pµ. We next prove that
node-level structural entropy serves as a lower bound for the sample coverage.

We assume that the edge weights are in the range [L,R], where R > L > 0. Consider a node
u connected to k other nodes {v1, v2, . . . , vk} with edge weights {w1, w2, . . . , wk}. In the BFS
tree rooted at u, let the total vol of the subtrees of v1, v2 . . . , vk be vol1, vol2, . . . , volk. From the
perspective of u, the calculation of Se(u) is as follows: vol(u) is initially set to 0; For each node vi
connected to u, add voli of vi to vol(u), and then add wivol(u) to Se(u). If the nodes are connected
in the oreder {π1, π2, . . . , πk}, the results is:

Se(u) =

k∑
i=1

wπi
log(volπ1

+ volπ2
+ ...volπk

).
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In practice, the nodes are connected in a specific order to minimize Se(u). Consequently, Se(u)
is less than or equal to values obtained in any other order. Consider the order in which nodes are
connected from the smallest wi to the largest wi. We derive that:

Se(u) ≤
k∑

i=1

wπi
log(volπ1

+ volπ2
+ ...volπk

)

≤

(
k∑

i=1

wi

)
log

k∑
i=1

(
wπk∑k
i=1 wi

(volπ1
+ ...+ volπk

)

)
(Jensen’s Inequality)

=

(
k∑

i=1

wi

)
log

k∑
i=1

(volπk
(wπ1

+ wπ2
+ ...wπk

)/

k∑
i=1

wi)

≤ kR log

k∑
i=1

(volπk
(wπ1 + wπ2 + ...wπk

)/

k∑
i=1

wi)

≤ kR log

k∑
i=1

(kvolπk
wπk

/

k∑
i=1

wi)

(18)

Because volπk
∈ [kLnπk

, kRnπk
], where nπk

is the number of nodes in the subtree of vπk
. So we

have:

Se(u) ≤ kR log(k2R

k∑
i=1

nπiwπi/

k∑
i=1

wi)

Assume that all nodes in the subtree of vi are in B(vi, r
∗). Then we have:

E[nik ] = n

∫
B(vi,r∗)

dµ = nP (vi, r
∗)

which can then lead to:

E[Se(u)] ≤ E[kR log
(
k2R(

k∑
i=1

nπiwπi/

k∑
i=1

wi)
)
]

≤ kR logE
[
k2R

(
k∑

i=1

nπi
wπi

/

k∑
i=1

wi

)]
(Jensen’s Inequality)

= kR logE
[
nk2R

(∑
P (vπi , r

∗)wπi/

k∑
i=1

wi

)]
(19)

Since
k∑

i=1

P (vπi
, r∗)wπi

/

k∑
i=1

wi = P̂ (u, r)

is actually the Nadaraya–Watson estimator of P (u, r∗), we have:

E[Se(u)] ≤ KR logE
[
nK2RP̂ (u, r)

]
Thus, the following theorem is obtained:

Theorem 1. For r > r∗, Se(u) ensures an lower-bound of the Nadaraya–Watson estimator P̂ (u, r∗)
of P (u, r∗) with inequality:

1

nK2R
exp

(
1

KR
E[Se(u)]

)
≤ E[P̂ (u, r)] ≈ E[P (u, r)]

where r∗ is a constant related to the distribution Pµ and the location of u in the metric space.

Theorem 1 shows the correlation between Se(u) and P (u, r). For a certain sample u, a larger Se(u)
guarantees a stronger sample coverage.
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We further conduct an empirical validation to demonstrate that 1
nk2R exp( 1

kRSe(u)) provides a
relatively tight lower bound for P (u, r). To precisely calculate P (u, r), we simulate the data using a
Gaussian Mixture Model, where the class centers µ1, . . . , µC are drawn from a standard Gaussian
distribution N (0, I). For each class c, the samples are drawn from N (µc, I). We align the synthetic
data with real-world scales by generating 10 classes with 5,000 samples each, matching the statistics
of CIFAR10. Our results show that: 1) For 90% of the samples, P (u, r)/

(
1

nk2R exp( 1
kRSe(u))

)
lies between 1.00 and 1.45; 2) For 99% of the samples, P (u, r)/

(
1

nk2R exp( 1
kRSe(u))

)
is less than

1.97. These findings support the theorem that maximizing Se(u) during selection improves sample
coverage.

C.2 SAMPLE COVERAGE AND MODEL PERFORMANCE

Previous work (Zheng et al., 2022) has demonstrated that a better distribution coverage brings a lower
empirical loss, as depicted by the following theorem:

Theorem 2. Zheng et al. (2022) Given n i.i.d. samples drawn from Pµ as S = {xi, yi}i∈[n] where
xi ∈ X = Rd is the feature representation of example i and yi ∈ [C] is the class label for example
i, a coreset S′ which is a p-partial r-cover for Pµ on the feature space X , and an ϵ > 1− p, if the
loss function l(·, y, w) is λl -Lipschitz continuous for all y, w and bounded by L, the class-specific
regression function ηc(x) = p(y = c|x) is λη-Lipschitz for all c, and l(x, y;hS′) = 0, ∀(x, y) ∈ S′,
then with probability at least 1− ϵ:∣∣∣∣∣∣ 1n

∑
x,y∈S

l(x, y;hS′)

∣∣∣∣∣∣ ≤ r(λl + ληLC) + L

√
log p

p+ϵ−1

2n
(20)

Theorem 2 suggests that better sample coverage results in a tighter bound on the empirical loss for
the entire set. Given the relationship between Se(u) and sample coverage, selecting samples with
high node-level structural entropy effectively enhances model performance.

D DATASET STATISTICS AND DETAILED EXPERIMENTAL SETTING

D.1 SUPERVISED LEARNING

Image classification. The CIFAR10 and CIFAR100 datasets each consist of 50, 000 images of 32×32
pixels for the training set, with an additional 10, 000 images for testing. CIFAR10 includes 10 distinct
classes, while CIFAR100 includes 100 classes. The ImageNet-1K dataset includes 1, 281, 167 images
across 1, 000 real-world classes for training, along with 50, 000 images for validation. Following
common practice (Maharana et al., 2024), we trained ResNet-18 for 200 epochs on CIFAR10 and
CIFAR100, and ResNet-34 for 60 epochs on ImageNet-1K. The batch size is set to 64. We use an
SGD optimizer with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 0.0002.
We use a cosine annealing learning rate scheduler with a minimum learning rate of 0.0001.

Text classification. The ANLI dataset is a natural language inference dataset created through
multiple rounds of iterative human-and-model-in-the-loop adversarial procedures. We utilize the data
from the final round, which consists of 100, 459 training samples and 1, 200 test samples. Following
previous work (Maharana et al., 2024), we fine-tune the RoBERTa model for 10, 000 iterations with a
batch size of 16. We use the SGD optimizer with an initial learning rate of 0.1, momentum of 0.9, and
weight decay of 0.0005. We use a cosine annealing scheduler with a minimum learning rate of 0.0001.

The IMDB Review dataset contains 25, 000 movie reviews each in the training and test splits, with
each review labeled by sentiment (positive/negative). Following previous work (Maharana et al.,
2024), we randomly select 2, 000 samples from the original training set due to the excessive samples
in it, and use the original test set for evaluation. We fine-tune the RoBERTa model for 500 iterations
with a batch size of 16. The optimizer and scheduler settings are the same as that for the ANLI dataset.

Object detection. We train the model using the combined trainval sets of PASCAL VOC 2007 and
2012, which include 16, 551 images and 40, 058 objects across 20 categories. The model is evaluated
on the PASCAL VOC 2007 test set, which comprises 4, 952 images and 12, 032 objects. We train
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SSD (Liu et al., 2016) with VGG-16 (Simonyan & Zisserman, 2015) backbone from scratch for 80
epochs with a batch size of 64. We use an SGD optimizer with a learning rate of 0.001, momentum
of 0.9, and weight decay of 0.0005. The learning rate follows a linear warm-up strategy for the first 8
epochs and is then reduced by a factor of 10 at epochs 50 and 70.

Visual question answering. The CC SBU Align dataset contains 3, 439 high-quality, aligned image-
text pairs for the fine-tuning stage (stage 2) of Mini-GPT4 (Zhu et al., 2024). The visual question
answering datasets used for validation test the model’s abilities in various aspects, including logical
reasoning, visual reasoning, knowledge retention, and abstract understanding. We use the same
setting as the second-stage fine-tuning for Mini-GPT4 (Zhu et al., 2024). We fine-tune MiniGPT-4
for 400 iterations with a batch size of 12. We use an SGD optimizer with an initial learning rate of
0.00003, momentum of 0.9, and weight decay of 0.05. We use a cosine annealing scheduler with a
minimum learning rate of 0.00001.

D.2 ACTIVE LEARNING

We use the same setting as training on ImageNet-1K in Appendix D.1.

D.3 CONTINUAL LEARNING

For continual learning, we follow Borsos et al. (2020) for experiments on Permuted MNIST, Split
MNIST, and Split CIFAR10, and follow Hao et al. (2024) for experiments on Split CIFAR100 and
Split Tiny-ImageNet. We use increasingly complex models as dataset complexity grows: a two-layer
MLP for Permuted MNIST, a four-layer CNN for Split MNIST, ResNet-18 for Split CIFAR10, and
ResNet-18 with multi-head output (Zenke et al., 2017) for Split CIFAR100 and Split Tiny-ImageNet.
For each task, we first randomly select M samples from all available samples. Then, we train the
model on these samples for E epochs with a batch size of B. During each training iteration, all
replay samples are used with a weight of λ. The initial learning rate is set to lrt for the first task and
decays by a factor of η for each task. All hyperparameters, except λ, are fixed for all baselines and
our method. The value of λ is determined through a grid search over {0.01, 0.1, 1, 10, 100, 1000}.
Table 6 shows the fixed hyperparameters for different datasets. Table 7 shows the optimal λ for all
baselines and our method.

E SELECTION HYPERPARAMETER SETTINGS

E.1 SELECTION HYPERPARAMETERS

We conduct a grid search to optimize three hyperparameters: the number of neighbors k for construct-
ing the kNN graph, the cutoff ratio β to remove the most difficult samples, and the imbalance factor
γ to maintain the balance between different classes.

Selecting an appropriate value of k is crucial as it can significantly affect the quality of the sample
graph and thus affect the selection result. If k is too small, the graph becomes too sparse, making
the selection sensitive to noise and outliers. If k is too large, the graph will be too dense and contain
many edges connecting irrelevant neighbors, making it hard to identify the most important samples in
the dataset. Thus, the choice of k must strike a balance to preserve meaningful structures without
introducing noise or irrelevant information.

Table 6: Training hyperparameters for continual learning.

Hyperparameters Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

M 1000 1000 1000 2500 5000
Optimizer Adam Adam Adam SGD SGD

E 400 400 400 1 1
B 256 256 256 10 20
lrt 0.0005 0.0005 0.0005 0.15 0.20
η 1 1 1 0.875 0.875
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Inspired by Zheng et al. (2022), we also search the hard cutoff ratio β that removes β of the most
difficult samples because they are usually outliers and contain noisy samples in the dataset. In
addition, we also allow negative β during the grid search, which indicates that we will remove |β| of
the easiest samples to focus on difficult samples, which has been adopted by Sorscher et al. (2022).

Maintaining a balanced distribution of samples from different classes is also beneficial for model
training. A common strategy is to enforce strict class balance (Guo et al., 2022) by selecting an
equal number of samples from each class. However, this overlooks the difference between classes,
where some may be more easily confused with others and require more samples to distinguish. To
address this, we introduce an imbalance factor γ > 1, which allows for the selection of up to nγ̇
samples per class, rather than a strict count of n. This adjustment provides flexibility in addressing
class-specific complexities. In the active learning scenario, we treat the k-means clusters as the
classes for balancing.

E.2 PRELIMINARY EXPERIMENTS ON K

As k decides the sample graph and the range of possible k is large, we conduct preliminary experi-
ments on CIFAR10, CIFAR100, and ImageNet-1k to determine a candidate range where the structure
of the sample graph is effectively preserved by the kNN-graph.

Spectral clustering is an effective method for revealing the underlying structural features of a graph.
Therefore, we use the spectral clustering results to evaluate the choice of k in the preliminary
experiments. First, we perform spectral clustering on the kNN-graph. Based on the spectral clustering
results, we measure the structure preservation of the kNN-graph using both external and internal
metrics. The external metrics measure the consistency of the clustering results with the ground truth
labels of samples. We use the accuracy, the Rand Index, and the mutual information as the external
metrics. The internal metrics assess the quality of clustering by evaluating the compactness and
separation of clusters. We use the Silhouette Score and the Davis-Bouldin Index as the internal
metrics.

Directly applying spectral clustering to large-scale datasets is unsuitable due to its high complexity
of O(n3), where n is the number of samples in the dataset. To address this, we use growing neural
gas (Fritzke, 1995) to generate a reduced graph with fewer nodes. The key feature of this method
is the preservation of the topology of the kNN-graph. Specifically, this method generates neurons
representing the sample distribution of the kNN-graph. Then, it integrates the edges in the kNN-graph
into the neuron connections, resulting in a sparse, topology-preserving graph. We apply spectral
clustering to this reduced graph to accelerate the evaluation of the choice of k.

In the preliminary experiments, we test k in {1, 2, . . . , 100} on CIFAR10, CIFAR100, and ImageNet-
1K. Fig. 4 presents the results. As the value of k increases, the performance metrics initially
improve, then stabilize, and may eventually decline. This suggests that the first few nearest neighbors
effectively capture the structure of the original graph, while including too many neighbors may lead
to underfitting due to edges connecting vastly different nodes. We discover that the metrics begin to

Table 7: Optimal replay sample weight λ in continual learning.

Dataset Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

Memory size 100 200 100 200 100 200 100 200 100 200

Random 0.01 0.01 100 100 0.01 0.01 0.01 0.01 0.01 0.01
Moderate 0.01 0.01 100 100 0.1 0.1 0.01 0.01 0.01 0.01
CCS 0.01 0.01 1000 100 0.01 0.01 0.01 0.01 0.01 0.01
D2 Pruning 0.01 0.01 10 100 0.1 0.01 0.01 0.01 0.01 0.01
GraphCut 0.01 0.01 100 1 0.01 0.1 0.01 0.1 1 0.1
Entropy 0.01 0.01 1000 100 0.01 0.01 0.01 0.01 0.01 0.01
Forgetting 0.01 0.01 100 10 0.1 0.1 0.01 0.01 0.01 0.1
EL2N 0.01 0.01 100 100 0.01 0.1 0.01 0.01 0.01 0.01
AUM 0.01 0.01 100 100 10 1 0.01 0.01 0.01 0.01
Variance 0.01 0.01 1000 1000 0.01 0.01 0.01 0.01 0.01 0.01
iCaRL 0.01 0.1 100 100 1 1 0.01 0.01 0.1 0.1
Greedy Coreset 0.01 0.01 100 10 0.01 0.01 0.01 0.1 0.01 0.01
BCSR 0.01 0.01 100 10 0.01 0.01 0.01 0.01 0.01 0.01
SES (Ours) 0.01 0.1 100 100 1 1 0.01 0.1 0.01 0.1
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(a) CIFAR10 (b) CIFAR100 (c) ImageNet-1K

Figure 4: Results for the preliminary experiments on: (a) CIFAR10; (b) CIFAR100; (c) ImageNet-1K.
An increase in the accuracy, the Rand Index, the mutual information, and the Silhouette Score, as
well as a decrease in the Davis-Bouldin Index, indicates better structure preservation.

Table 8: Optimal hyperparameters of our method in supervised learning and active learning. The
three numbers in each tuple refer to the number of neighbors k, the cutoff ratio β, and the imbalance
factor γ, respectively.

Sampling rate CIFAR10 CIFAR100 ImageNet-1K ANLI IMDB Review PASCAL VOC VQA ImageNet-1K
(active learning)

1% (17,0.75,1.05) (14,0.85,1.2) (20,0.9,1.3) (15,0.35,1.05) (10,0.7,1.2) (15,0.7,/) (10,0.15,/) (25,0.25,1.05)
2% (14,0.7,1.1) (10,0.85,1.15) (25,0.75,1.2) (15,0.3,1.05) (10,0.85,1.1) (15,0.7,/) (10,0.1,/) (25,0.2,1.45)
5% (19,0.6,1.05) (21,0.8,1.2) (25,0.65,1.2) (15,0.25,1.05) (10,0.5,1.0) (15,0.5,/) (10,0.1,/) (25,0.4,1.35)

10% (11,0.35,1.1) (19,0.6,1.1) (25,0.4,1.15) (15,0.3,1.15) (10,0.4,1.05) (15,0.35,/) (10,0.15,/) (25,0.45,1.05)
20% (13,0.2,1.0) (15,0.45,1.15) (25,0.3,1.1) (15,0.0,1.05) (10,0.3,1.1) (15,0.1,/) (10,0.15,/) (25,0.35,1.15)
50% (15,-0.15,1.0) (15,0.15,1.0) (20,0.05,1.05) (15,0.0,1.1) (10,0.05,1.05) (15,0.15,/) (10,0.1,/) (25,0.0,1.1)
70% (24,0.0,1.0) (18,0.1,1.0) (20,0.0,1.0) (15,0.0,1.2) (10,0.05,1.0) (15,0.05,/) (10,0.0,/) (25,0.0,1.15)

stabilize around log2 n, where n is the number of samples in the dataset. Thus, we focus our grid
search for k values near log2 n.

E.3 GRID SEARCH RESULTS

For all experiments, we search β in {−1,−0.95, . . . ,−0.05, 0, 0.05, . . . , 0.95, 1} and γ in
{1, 1.05, . . . , 1.5}. For CIFAR10 and CIFAR100, we search k in {10, 11, . . . , 30}. For ImageNet-1K,
we search it only in {20, 25} due to computational costs. To save computational costs, we set k to
around log2 n for experiments on other datasets. With this choice, the kNN graph has O(n log2 n)
edges, resulting in a Shapley value calculation time complexity of O(n log2 n). This complexity is
comparable to sorting and is lower than or equal to that of typical sample selection methods, which is
at least O(n log2 n) when sorting is required and O(n2) when an enumeration of all pairs of samples
is required. For extremely large datasets (e.g. DataComp (Gadre et al., 2024) with billions of samples)
where this complexity becomes impractical, a potential solution is to split the dataset into bins
before selection. Determining an optimal splitting method remains an open question and a promising
direction for future research. We evaluate every possible combination of the hyperparameters. Table 8
presents the optimal hyperparameters for supervised learning and active learning. Table 9 presents
the optimal hyperparameters for continual learning.
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Table 9: Optimal hyperparameters of our method in continual learning. The three numbers in each
tuple refer to the number of neighbors k, the cutoff ratio β, and the imbalance factor γ, respectively.

Memory size Permuted
MNIST

Split
MNIST

Split
CIFAR10

Split
CIFAR100

Split
Tiny-ImageNet

100 (15,-0.15,1.25) (15,0.7,1.5) (15,-0.35,1.0) (15,-0.95,1.0) (15,-0.15,1.0)
200 (15,-0.45,1.5) (15,0.75,1.1) (15,-0.7,1.1) (15,-0.85,1.0) (15,-0.9,1.0)

F DETAILED EXPERIMENTAL RESULTS

F.1 SUPERIVISED LEARNING

We present detailed experimental results for supervised learning from Tables 10 to 16. Our method
consistently performs better than baselines across all tasks and sampling rates. Meanwhile, several
factors prevent us from achieving more significant improvements over the baselines in certain settings:

• In high-sampling-rate settings for simple datasets, such as the 70% setting for CIFAR10, all
methods perform closely to using the entire training set, leaving little room for improvement.

• In low-sampling-rate settings for challenging datasets, such as the 1% setting for ImageNet-
1K, the performance of all methods is limited due to the insufficient number of samples per
class.

• In scenarios where models are fine-tuned from pretrained weights, the knowledge within
these models anchors the performance at a certain level, leading to similar performance
across all methods.

Despite these factors, our method achieves significant improvement in many settings. For example, it
achieves a 5.52% increase in accuracy when selecting 2% of the samples from ImageNet-1K.

Table 10: Results on image classification (CIFAR10). The best one is bold, and the runner-up is
underlined.

Dataset CIFAR10 (100%:95.49)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 94.29± 0.08 92.33± 0.15 84.17± 0.62 71.95± 1.50 59.88± 2.45 45.51± 1.68 35.44± 1.49
Moderate 94.04± 0.26 92.36± 0.17 80.96± 2.56 63.91± 1.56 49.94± 0.70 32.00± 2.11 26.18± 1.94
CCS 94.23± 0.35 93.83± 0.15 83.85± 1.10 75.56± 2.39 65.89± 1.04 49.02± 1.35 40.24± 0.96
D2 Pruning 93.17± 0.11 93.70± 0.20 86.83± 0.48 76.56± 1.14 65.12± 0.88 45.44± 1.75 39.03± 1.69
GraphCut 94.38± 0.20 92.43± 0.23 81.98± 0.48 69.29± 0.57 59.36± 2.43 46.93± 2.21 39.68± 1.15
Entropy 94.13± 0.30 92.39± 0.40 75.34± 4.32 60.66± 6.23 46.17± 5.96 35.85± 4.33 29.28± 4.29
Forgetting 94.76± 0.38 94.34± 0.17 57.72± 1.17 35.21± 0.87 30.87± 0.57 27.22± 0.49 23.62± 0.74
EL2N 94.75± 0.32 94.10± 0.45 46.41± 4.84 22.40± 0.62 15.66± 0.18 13.05± 0.20 12.75± 0.56
AUM 94.90± 0.17 94.38± 0.20 51.98± 1.32 30.56± 0.42 22.92± 0.38 18.10± 0.47 14.50± 1.35
Variance 90.45± 0.09 85.81± 0.39 64.90± 0.53 53.64± 1.02 44.45± 0.77 36.61± 0.70 31.46± 0.92
k-means 93.87± 0.33 93.19± 0.36 83.68± 0.94 72.46± 0.51 62.68± 1.12 48.35± 2.29 38.73± 0.87
k-DPP 93.84± 0.10 92.72± 0.18 84.09± 1.21 74.62± 0.40 61.95± 4.87 46.58± 1.76 35.16± 2.92

SES (Ours) 95.01± 0.08 94.50± 0.05 88.31± 0.13 80.24± 0.72 69.82± 0.84 54.78± 1.36 45.25± 0.81
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Table 11: Results on image classification (CIFAR100). The best one is bold, and the runner-up is
underlined.

Dataset CIFAR100 (100%:77.90)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 74.72± 0.16 70.51± 0.43 52.29± 2.32 37.38± 0.80 23.03± 0.48 13.38± 0.36 8.57± 0.65
Moderate 74.61± 0.10 69.95± 0.32 49.37± 0.58 30.53± 1.44 17.68± 0.50 9.28± 0.34 5.97± 0.35
CCS 76.10± 0.29 73.12± 0.21 58.39± 1.04 44.92± 1.81 28.68± 0.99 15.93± 0.62 10.28± 0.54
D2 Pruning 76.00± 0.56 74.45± 0.36 59.08± 0.53 44.78± 0.78 26.68± 0.85 13.90± 0.66 9.61± 0.44
GraphCut 76.64± 0.13 68.79± 0.35 25.08± 1.10 16.46± 0.35 10.78± 0.52 7.84± 0.35 5.94± 0.16
Entropy 76.81± 0.12 62.52± 0.26 33.28± 7.01 21.85± 7.11 13.90± 4.75 8.31± 2.69 5.30± 1.71
Forgetting 76.64± 0.13 68.75± 0.34 25.17± 1.12 16.45± 0.37 10.70± 0.49 7.82± 0.37 5.90± 0.09
EL2N 76.15± 0.50 66.19± 0.48 14.85± 0.43 7.50± 0.27 5.28± 0.12 3.83± 0.07 3.17± 0.14
AUM 76.84± 0.40 67.81± 0.59 16.66± 0.90 8.54± 0.10 5.60± 0.18 4.35± 0.17 3.56± 0.10
Variance 73.69± 0.14 68.42± 0.16 49.60± 0.28 34.63± 0.42 22.70± 0.35 13.71± 0.38 9.18± 0.52
k-means 74.93± 0.12 72.86± 0.17 56.86± 0.88 42.69± 0.52 26.39± 0.73 14.92± 0.75 8.90± 0.31
k-DPP 75.34± 0.45 73.16± 0.45 56.88± 1.01 42.09± 0.41 26.55± 0.9 14.31± 0.33 8.23± 0.27

SES (Ours) 77.23± 0.10 74.63± 0.17 61.52± 0.76 48.02± 0.98 33.39± 0.27 19.68± 0.51 14.16± 0.48

Table 12: Results on image classification (ImageNet-1K). The best one is bold, and the runner-up is
underlined.

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.63± 0.12 69.26± 0.17 58.90± 0.12 47.10± 0.26 34.04± 0.42 16.56± 0.11 5.50± 0.28
Moderate 71.33± 0.04 68.72± 0.07 55.23± 0.27 40.97± 0.18 25.75± 0.16 11.33± 0.31 4.52± 0.24
CCS 70.74± 0.09 69.23± 0.09 60.04± 0.95 50.41± 0.11 36.92± 1.62 19.92± 1.36 9.43± 0.31
D2 Pruning 71.29± 0.07 70.32± 0.05 58.91± 0.04 50.81± 0.24 37.12± 0.09 18.97± 0.05 11.23± 0.26
GraphCut 68.91± 0.05 68.72± 0.07 55.28± 0.17 44.79± 0.06 33.54± 0.12 20.07± 0.21 11.49± 0.12
Entropy 70.93± 0.74 69.21± 0.12 54.76± 0.16 38.46± 0.34 22.78± 0.73 7.01± 0.24 1.95± 0.15
Forgetting 70.57± 0.04 70.46± 0.10 60.77± 0.02 48.73± 0.12 33.86± 0.15 15.13± 0.23 5.66± 0.30
EL2N 71.68± 0.04 65.98± 0.12 31.90± 3.64 12.57± 0.11 6.50± 0.36 3.25± 0.13 1.90± 0.09
AUM 69.94± 0.30 65.36± 0.11 21.91± 0.13 10.50± 0.19 6.42± 0.07 3.58± 0.07 2.24± 0.05
Variance 70.12± 0.09 66.09± 0.01 35.15± 0.09 13.85± 0.02 7.13± 0.05 4.72± 0.02 1.81± 0.06
k-means 70.33± 0.07 69.47± 0.11 59.23± 0.22 48.12± 0.21 35.51± 0.13 18.67± 0.08 9.65± 0.33
k-DPP 70.84± 0.09 69.85± 0.14 59.92± 0.33 46.10± 0.33 34.41± 0.07 16.33± 0.15 7.49± 0.17

SES (Ours) 72.80± 0.03 71.05± 0.09 63.24± 0.06 53.59± 0.09 41.88± 0.13 25.59± 0.17 13.43± 0.37

Table 13: Results on text classification (ANLI). The best one is bold, and the runner-up is underlined.

Dataset ANLI (100%:49.25)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 47.08± 0.26 45.20± 0.50 42.13± 0.54 39.52± 0.93 38.82± 1.06 37.50± 1.29 35.96± 1.04
Moderate 46.84± 0.31 45.11± 0.39 41.95± 0.33 40.16± 0.85 38.99± 0.45 35.83± 1.39 33.91± 0.62
CCS 46.56± 0.23 45.92± 0.70 41.67± 1.39 41.63± 0.97 40.33± 0.65 37.41± 0.05 36.82± 0.49
D2 Pruning 48.56± 1.22 47.49± 0.17 42.77± 0.36 41.43± 0.24 40.34± 0.07 37.92± 1.44 36.29± 0.59
GraphCut 46.14± 0.67 44.53± 0.55 42.12± 0.66 39.86± 0.27 38.15± 0.74 35.44± 0.80 34.02± 0.61
Entropy 46.32± 1.11 45.53± 0.44 41.45± 0.33 39.67± 0.28 38.54± 0.66 36.69± 0.53 36.40± 0.19
Forgetting 48.73± 0.35 42.29± 0.17 39.82± 0.16 38.37± 0.60 35.95± 0.33 35.78± 0.42 35.03± 0.77
EL2N 48.70± 0.65 47.85± 0.98 43.14± 1.68 39.63± 2.20 37.52± 1.05 34.33± 1.15 34.27± 0.42
AUM 47.86± 0.27 47.58± 0.37 43.57± 0.71 40.02± 1.51 34.66± 0.73 34.16± 0.12 33.62± 0.12
Variance 47.97± 0.30 47.87± 0.56 40.70± 0.16 38.75± 0.62 33.52± 0.03 33.50± 0.03 33.17± 0.12
k-means 46.48± 0.24 46.52± 1.06 42.42± 0.72 40.57± 0.65 39.89± 0.10 36.74± 0.29 36.11± 0.40
k-DPP 47.74± 0.07 47.02± 0.02 43.44± 0.59 40.98± 0.46 40.12± 0.26 37.44± 0.11 36.66± 0.23

SES (Ours) 49.00± 0.08 48.22± 0.54 45.94± 0.27 43.63± 1.00 41.82± 0.43 39.88± 0.7 38.16± 0.38

25



Table 14: Results on text classification (IMDB). The best one is bold, and the runner-up is underlined.

Dataset IMDB Review(100%:95.90)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 95.25± 0.21 95.04± 0.31 93.53± 0.68 91.89± 0.17 89.60± 1.89 83.25± 4.96 73.31± 1.94
Moderate 95.39± 0.19 95.31± 0.07 94.03± 0.73 92.55± 0.47 90.34± 0.43 58.34± 4.29 50.81± 0.55
CCS 95.22± 0.18 95.35± 0.19 93.44± 0.61 91.87± 0.23 89.89± 1.47 85.73± 4.76 82.05± 4.21
D2 Pruning 95.43± 0.16 95.40± 0.20 93.75± 0.46 92.44± 0.60 90.77± 0.33 87.40± 0.78 80.06± 0.85
GraphCut 95.39± 0.15 95.21± 0.29 93.37± 0.57 91.69± 0.66 90.93± 0.31 86.85± 1.81 82.26± 0.90
Entropy 95.39± 0.31 95.17± 0.22 93.92± 0.50 92.57± 0.97 90.30± 0.63 77.16± 4.52 59.41± 4.70
Forgetting 95.41± 0.11 95.31± 0.17 93.66± 0.30 89.41± 0.58 58.78± 2.28 55.81± 4.65 52.38± 1.03
EL2N 95.29± 0.19 95.34± 0.21 91.31± 0.19 60.29± 0.09 49.88± 1.35 47.18± 3.30 43.74± 0.81
AUM 95.27± 0.66 95.23± 0.16 90.60± 0.13 55.68± 0.21 49.81± 1.50 43.13± 4.53 36.29± 1.45
Variance 95.44± 0.16 95.40± 0.20 93.75± 0.46 92.44± 0.60 90.77± 0.33 87.40± 0.78 80.06± 0.85
k-means 95.34± 0.17 95.22± 0.23 93.98± 0.54 92.49± 0.74 90.21± 0.88 86.96± 1.84 81.51± 6.72
k-DPP 95.29± 0.37 95.13± 0.21 93.76± 0.59 92.50± 0.58 89.97± 1.42 86.14± 2.53 77.07± 3.31

SES (Ours) 95.60± 0.16 95.40± 0.12 94.57± 0.09 92.96± 0.56 91.42± 0.24 88.58± 0.47 83.14± 2.05

Table 15: Results on object detection. The best one is bold, and the runner-up is underlined.

Dataset PASCAL VOC (100%:76.29)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 74.02± 0.26 72.10± 0.32 65.45± 0.45 57.56± 0.45 43.47± 0.67 18.78± 0.21 9.24± 0.96
Moderate 73.42± 0.46 72.03± 0.52 65.12± 0.57 54.71± 0.10 40.20± 0.54 15.97± 0.36 5.13± 0.49
CCS 74.64± 0.15 72.27± 0.23 65.72± 0.59 57.35± 0.63 39.01± 0.81 17.26± 0.62 8.49± 0.57
D2 Pruning 74.46± 0.52 72.55± 0.23 65.59± 0.84 55.73± 0.34 44.04± 0.41 19.16± 0.14 10.75± 0.75
GraphCut 67.45± 0.35 64.15± 0.54 53.12± 0.30 38.29± 0.12 26.81± 0.32 8.56± 0.64 8.16± 0.54
AL-MDN 74.51± 0.35 70.36± 0.17 65.26± 0.82 54.51± 0.94 30.85± 1.71 12.33± 1.44 8.97± 1.33
k-means 74.22± 0.31 72.35± 0.19 65.52± 0.98 57.01± 0.49 43.35± 0.60 16.96± 0.78 5.16± 0.69
k-DPP 74.19± 0.38 71.99± 0.27 65.39± 0.53 56.80± 0.17 43.92± 0.53 18.20± 0.44 10.50± 0.62

SES (Ours) 75.20± 0.29 73.33± 0.33 66.52± 0.41 59.52± 0.14 45.92± 0.46 23.39± 0.22 16.15± 0.62

Table 16: Results on visual question answering. The best one is bold, and the runner-up is underlined.

Dataset CC SBU Align (100%:30.40)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 29.66± 0.15 29.62± 0.05 29.21± 0.26 29.01± 0.14 28.20± 0.12 25.51± 0.46 25.11± 0.42
Moderate 29.96± 0.14 29.67± 0.13 29.53± 0.27 29.11± 0.23 27.30± 0.25 24.85± 0.36 26.54± 0.41
CCS 29.93± 0.06 29.90± 0.05 29.94± 0.16 29.91± 0.25 27.71± 0.37 25.31± 0.37 25.59± 0.41
D2 Pruning 30.09± 0.13 29.97± 0.19 29.44± 0.22 29.30± 0.27 26.44± 0.23 25.03± 0.30 26.29± 0.37
GraphCut 29.86± 0.08 29.73± 0.06 29.53± 0.23 29.11± 0.25 27.30± 0.36 24.85± 0.41 26.54± 0.29
Instruction 30.12± 0.15 29.93± 0.25 29.82± 0.27 29.01± 0.28 26.76± 0.42 23.72± 0.49 24.60± 0.46
k-means 29.78± 0.14 29.61± 0.14 29.54± 0.11 29.20± 0.20 27.72± 0.35 25.47± 0.39 25.60± 0.41
k-DPP 29.33± 0.15 29.55± 0.12 29.48± 0.08 29.27± 0.12 28.16± 0.34 25.93± 0.46 26.13± 0.34

SES (Ours) 30.25± 0.10 30.20± 0.13 30.21± 0.18 30.10± 0.11 28.23± 0.40 27.19± 0.46 27.61± 0.39

F.2 ACTIVE LEARNING

We present detailed experimental results for active learning in Table 17. Our method consistently
performs better than baselines across all sampling rates.

Table 17: Results for active learning. The best one is bold, and the runner-up is underlined.

Dataset ImageNet-1K (100%:73.63)
Sampling rate 70% 50% 20% 10% 5% 2% 1%
Random 71.12± 0.25 69.43± 0.04 58.77± 0.35 47.36± 0.20 33.41± 0.15 16.41± 0.40 5.41± 0.23
Moderate 71.48± 0.05 68.68± 0.06 56.35± 0.01 42.29± 0.17 26.77± 0.01 11.37± 0.22 4.22± 0.17
CCS 71.46± 0.11 69.50± 0.07 58.85± 0.16 45.06± 0.22 28.02± 0.17 9.03± 0.40 2.33± 0.18
GraphCut 71.50± 0.21 69.16± 0.09 56.08± 0.24 40.99± 0.21 24.30± 0.17 7.90± 0.13 2.46± 0.08
D2 Pruning 71.62± 0.11 69.02± 0.21 59.65± 0.11 45.97± 0.32 28.08± 0.37 14.24± 0.11 4.79± 0.31
Prototypicality 70.12± 0.04 66.00± 0.06 49.20± 0.09 35.27± 0.04 24.14± 0.15 13.88± 0.08 4.95± 0.05

SES (Ours) 72.11± 0.07 70.15± 0.17 60.22± 0.34 48.10± 0.21 34.82± 0.22 17.97± 0.35 6.69± 0.62

F.3 CONTINUAL LEARNING

In addition to baselines from Sec. 5.1, we include nine widely used baseline selection methods
for continual learning: 1) k-center (Sener & Savarese, 2018), which iteratively selects samples
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that are least similar to those already selected, 2) Gradient matching (Campbell & Broderick,
2019), which selects samples whose average gradient closely approximates the average gradient
of all samples, 3) FRCL (Titsias et al., 2020), which optimizes a subset of samples to minimize
the posterior uncertainty of the Gaussian process induced from the embedding representations,
4) iCaRL (Rebuffi et al., 2017) that selects samples whose average embedding closely approximates
the average embedding of all samples, 5) Greedy Coreset (Borsos et al., 2020) that formulates the
selection as a bilevel optimization problem and greedily selects samples such that the model trained
on them minimizes the loss across the entire dataset, 6) BCSR (Hao et al., 2024) that formulates the
selection as a bilevel optimization problem on the probability simplex over samples and introduces a
regularizer to control the number of selected samples, 7) DER++ (Buzzega et al., 2020) that employs
reservoir sampling to select samples from the input data stream, and leverages both model logits and
ground-truth labels to mitigate the impact of distribution shifts, 8) GSS (Aljundi et al., 2019) that
selects samples with diverse parameter gradients to ensure that the model’s performance on previously
learned tasks does not degrade, and 9) GCR (Tiwari et al., 2022) that selects and weights samples to
minimize the discrepancy between their replay loss gradients and those of the entire dataset.

In addition to the aforementioned memory construction methods, there are methods that optimize the
usage of the replay memory. For example, GEM (Lopez-Paz & Ranzato, 2017) prevents an increase
in the loss on previous tasks by projecting the gradient updates onto a subspace that satisfies the
non-increasing loss constraint. These methods, when combined with memory construction methods,
effectively utilize replay memory to mitigate catastrophic forgetting of previously learned tasks.
However, our focus is primarily on memory construction, so these methods are not included in our
experimental scope.

We conduct the experiments under three settings: class-incremental, task-incremental, and task-free.
The class-incremental setting is introduced in Sec. 5.3.1. The task-incremental setting is similar to
the class-incremental setting, except that the model is aware of the task of each sample during testing.
This specificity allows the model to select labels appropriate for the given task rather than from a
pool of all tasks. The task-free setting is designed to simulate continuous shifts in data distribution,
where task boundaries are not known during model training. Consequently, the replay memory is
updated after each data batch rather than after each task. Specifically, we employ the merge-reduce
method for memory updates, as proposed by Borsos et al. (2020). This method divides the memory
into equally sized slots, and for each new data batch, representative samples are selected to fill a slot.
If all slots are full, two slots that represent the same number of original samples are merged. This is
done by selecting representative samples from both slots to form a single updated slot, which then
represents the combined samples of the original two. In our implementation, the memory is divided
into 10 slots for all memory sizes.

We present detailed experimental results for continual learning in Tables 18, 19, 20, and 21. Our
method consistently performs better than baselines across all settings, datasets, and memory sizes.

Table 18: Results for continual learning on Permuted MNIST and Split MNIST. The best one is bold,
and the runner-up is underlined.

Dataset Permuted
MNIST

Split
MNIST

Memory size 50 100 200 400 50 100 200 400
Random 75.99± 0.70 77.43± 0.41 79.69± 0.44 81.32± 0.33 92.66± 1.46 95.79± 0.30 97.16± 0.13 98.18± 0.50
Moderate 76.34± 0.59 78.29± 0.52 79.44± 0.31 78.88± 0.62 92.74± 0.59 95.34± 0.18 97.05± 0.07 97.61± 0.44
CCS 74.28± 0.75 75.48± 0.46 76.53± 0.53 81.64± 0.16 80.62± 1.01 89.50± 0.92 94.92± 0.76 98.34± 0.17
D2 Pruning 77.19± 0.46 78.25± 0.30 79.94± 0.36 80.93± 0.12 93.92± 0.22 96.79± 0.12 97.69± 6.88 98.07± 0.08
GraphCut 75.31± 0.42 76.98± 6.74 78.61± 0.36 80.39± 0.29 88.37± 0.37 91.34± 1.09 94.25± 0.71 98.44± 0.20
Entropy 76.74± 0.35 75.54± 0.35 78.18± 0.44 82.08± 0.19 94.33± 0.34 91.54± 0.73 96.16± 0.26 98.27± 0.11
Forgetting 74.38± 0.54 75.30± 0.25 77.47± 0.40 79.13± 0.70 89.00± 2.43 92.13± 0.43 96.37± 0.20 98.25± 0.18
EL2N 73.32± 0.80 75.57± 0.24 77.48± 0.20 80.34± 0.47 83.56± 1.05 88.54± 1.01 94.87± 0.48 97.45± 0.13
AUM 73.98± 0.79 75.54± 0.35 77.47± 0.33 79.90± 0.61 82.31± 2.15 90.38± 1.99 95.79± 0.34 98.07± 0.24
Variance 74.53± 0.47 75.67± 0.38 77.42± 0.32 78.70± 0.34 84.08± 3.14 91.90± 0.72 94.96± 0.88 97.49± 0.38
k-center 75.64± 0.40 78.17± 0.23 79.75± 0.17 80.94± 0.38 90.41± 1.23 94.39± 0.41 96.61± 0.64 97.80± 0.13
Gradient Matching 75.73± 0.57 77.30± 0.08 79.27± 0.38 80.71± 0.50 91.58± 1.06 95.39± 0.93 97.54± 0.23 98.39± 0.26
FRCL 75.78± 0.46 77.33± 0.26 79.21± 0.53 80.88± 0.30 88.46± 0.61 94.48± 0.93 97.10± 0.31 98.33± 0.20
iCaRL 77.01± 0.19 78.94± 0.46 80.65± 0.36 81.94± 0.14 92.92± 1.23 89.50± 0.92 97.59± 8.14 98.39± 0.05
Greedy Coreset 77.19± 0.56 78.71± 0.67 80.13± 0.11 82.17± 0.33 94.35± 0.35 96.07± 0.42 97.76± 0.85 98.18± 0.16
BCSR 75.92± 0.35 77.74± 0.39 79.51± 0.28 81.65± 0.09 93.83± 1.18 94.77± 0.56 96.98± 0.29 98.26± 0.11
DER++ 77.02± 0.40 78.25± 0.07 88.82± 0.05 81.66± 0.09 93.94± 0.18 96.00± 0.16 97.75± 0.08 98.20± 0.15
GSS 76.11± 1.12 78.32± 0.22 79.79± 0.22 81.69± 0.10 87.51± 0.98 95.37± 0.49 97.61± 0.03 98.29± 0.88
GCR 76.29± 0.34 78.12± 0.27 79.60± 0.25 80.81± 0.11 93.76± 0.68 95.82± 0.29 97.70± 0.12 98.06± 0.05

SES (Ours) 78.52± 0.25 79.92± 0.36 81.18± 0.26 82.69± 0.10 94.73± 0.33 96.94± 0.34 98.28± 0.10 98.54± 0.07
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Table 19: Results for continual learning on Split CIFAR10 and Split CIFAR100. The best one is bold,
and the runner-up is underlined.

Dataset Split
CIFAR10

Split
CIFAR100

Memory size 50 100 200 400 50 100 200 400
Random 62.49± 0.73 62.34± 0.89 63.69± 1.58 63.63± 0.86 46.59± 1.28 51.29± 0.77 54.22± 0.58 56.21± 0.46
Moderate 61.55± 0.61 61.51± 0.46 63.01± 0.58 65.42± 3.68 47.38± 0.39 51.91± 0.63 53.45± 8.69 55.06± 0.86
CCS 61.14± 0.92 60.56± 1.27 61.04± 1.73 59.33± 1.21 44.91± 0.35 48.70± 6.90 51.26± 0.39 52.69± 0.29
D2 Pruning 61.90± 1.41 64.54± 0.63 66.08± 1.45 65.23± 1.18 47.72± 0.61 51.86± 0.62 54.50± 0.46 57.14± 0.42
GraphCut 60.46± 1.29 61.02± 1.17 61.66± 1.67 63.51± 0.77 48.72± 0.56 53.35± 0.38 54.66± 0.28 56.74± 0.36
Entropy 61.78± 0.44 61.53± 0.72 62.72± 0.73 63.99± 1.01 45.08± 1.86 47.97± 1.34 51.51± 0.34 54.42± 0.69
Forgetting 60.81± 0.78 59.56± 0.24 61.38± 1.22 61.59± 1.07 50.60± 1.08 53.06± 0.57 54.68± 0.31 57.30± 0.30
EL2N 59.00± 0.54 57.79± 0.75 58.34± 0.68 58.58± 1.34 44.76± 1.10 46.47± 0.62 48.11± 1.01 50.59± 0.64
AUM 58.95± 0.77 58.32± 0.46 58.06± 0.86 59.01± 0.67 44.70± 0.73 46.14± 0.58 47.20± 0.40 49.24± 0.88
Variance 58.57± 0.57 58.69± 0.24 57.77± 0.34 58.50± 0.74 50.30± 0.84 52.83± 0.76 54.00± 0.85 56.91± 0.28
k-center 61.99± 1.36 61.47± 1.71 62.74± 1.31 64.45± 2.24 46.90± 1.86 51.16± 0.57 53.10± 0.17 55.77± 0.34
Gradient Matching 60.54± 0.92 61.65± 6.98 62.65± 1.11 63.26± 0.96 51.15± 0.66 54.13± 0.53 56.29± 0.26 57.24± 0.37
FRCL 61.22± 1.61 61.67± 1.02 62.93± 0.86 65.51± 1.57 46.81± 0.71 51.40± 0.44 54.28± 0.55 56.01± 0.62
iCaRL 61.95± 1.09 62.33± 0.89 64.08± 1.58 64.09± 1.15 51.67± 0.71 54.62± 0.51 56.11± 0.32 56.95± 0.26
Greedy Coreset 61.28± 1.74 63.18± 0.84 62.98± 0.91 65.02± 1.50 52.58± 0.39 56.17± 0.42 57.72± 0.23 55.27± 0.66
BCSR 61.88± 0.59 63.23± 2.60 64.59± 2.86 65.45± 0.70 47.37± 1.25 50.21± 1.14 51.49± 0.62 59.45± 0.42
DER++ 63.96± 0.51 62.65± 0.02 63.85± 0.38 66.66± 1.06 45.38± 0.10 50.00± 0.77 54.10± 0.04 56.19± 0.11
GSS 61.33± 0.12 62.73± 0.37 62.73± 0.37 65.17± 0.20 45.56± 1.23 50.06± 0.95 54.88± 0.22 56.07± 0.47
GCR 62.76± 0.51 63.12± 2.33 62.25± 0.02 66.39± 2.01 46.83± 0.50 52.78± 0.43 55.50± 0.35 56.31± 0.13

SES (Ours) 67.52± 0.56 68.26± 1.24 69.32± 0.99 70.76± 1.22 54.71± 0.53 57.60± 0.39 59.69± 0.31 61.06± 0.17

Table 20: Results for continual learning on Split Tiny-ImageNet. The best one is bold, and the
runner-up is underlined.

Dataset Split
Tiny-ImageNet

Memory size 50 100 200 400
Random 18.38± 0.26 18.52± 0.23 19.22± 0.29 19.22± 0.26
Moderate 18.08± 0.30 18.63± 0.36 19.47± 6.18 19.75± 0.24
CCS 18.47± 0.41 18.30± 0.17 18.90± 0.13 18.50± 0.22
D2 Pruning 18.98± 0.10 19.08± 0.39 19.50± 0.28 19.76± 0.14
GraphCut 19.50± 0.19 19.76± 6.15 20.53± 0.12 21.57± 0.36
Entropy 18.38± 0.42 17.99± 0.28 18.62± 0.22 19.20± 0.25
Forgetting 18.92± 0.19 19.55± 0.13 19.56± 0.33 19.85± 0.30
EL2N 18.04± 0.35 17.95± 0.31 17.98± 0.32 18.37± 0.24
AUM 18.36± 0.41 18.24± 0.10 17.89± 0.17 18.16± 0.21
Variance 19.66± 0.42 19.32± 0.07 19.50± 0.33 20.19± 0.13
k-center 18.81± 0.21 18.87± 0.18 18.90± 0.30 19.13± 0.14
Gradient Matching 19.20± 0.32 19.19± 8.72 19.00± 0.16 19.46± 0.18
FRCL 18.59± 0.21 18.86± 0.15 19.01± 0.27 19.55± 0.20
iCaRL 19.05± 0.45 19.58± 0.18 19.85± 0.16 19.86± 0.58
Greedy coreset 19.61± 0.28 19.24± 0.34 19.98± 0.17 20.62± 0.36
BCSR 19.04± 0.36 18.75± 0.17 18.74± 0.26 19.42± 0.17
DER++ 18.20± 0.34 18.86± 0.34 19.09± 0.10 19.63± 0.27
GSS 18.71± 0.11 19.40± 0.07 19.09± 0.25 19.64± 0.15
GCR 18.23± 0.02 19.60± 0.41 18.91± 0.24 19.85± 0.23

SES (Ours) 20.40± 0.34 20.80± 0.18 21.20± 0.12 21.82± 0.20

Table 21: Results for continual learning under the task-incremental and task-free settings. The best
one is bold, and the runner-up is underlined.

Setting Task-incremental Task-free
Memory size 50 100 200 400 50 100 200 400
Random 75.41± 0.52 75.44± 0.14 75.82± 1.99 79.78± 0.40 61.35± 0.60 61.54± 0.09 64.28± 2.09 65.19± 1.66
Moderate 74.79± 0.01 74.08± 0.30 75.67± 0.03 79.22± 0.34 60.61± 0.25 62.52± 2.70 62.90± 0.93 63.15± 1.86
CCS 69.14± 0.74 56.93± 0.01 58.81± 0.34 67.89± 0.73 64.33± 0.04 62.23± 0.45 64.14± 1.33 62.02± 0.59
D2 Pruning 76.75± 0.26 74.47± 1.11 77.03± 0.04 80.69± 6.64 61.16± 0.46 64.30± 0.40 66.15± 0.65 68.43± 8.17
GraphCut 73.14± 2.52 74.90± 0.73 75.22± 1.41 79.94± 0.71 60.01± 3.41 61.26± 0.38 63.30± 4.07 63.80± 3.35
Entropy 74.33± 0.30 73.86± 0.36 75.34± 0.82 79.10± 0.64 60.24± 1.77 63.28± 3.41 64.79± 1.86 63.56± 0.16
Forgetting 65.69± 1.03 58.62± 0.90 58.28± 0.85 71.47± 0.80 63.02± 0.67 62.72± 1.22 61.67± 0.70 64.77± 0.10
EL2N 56.38± 0.27 53.86± 0.74 53.92± 2.04 65.23± 0.03 58.95± 0.76 59.39± 2.75 60.51± 3.64 62.82± 0.53
AUM 56.17± 1.69 53.28± 1.64 57.43± 0.68 63.08± 0.33 60.78± 0.37 60.70± 4.02 61.63± 0.32 63.49± 2.52
Variance 60.07± 0.46 52.45± 1.13 54.89± 2.54 71.81± 0.34 61.63± 1.47 66.84± 1.21 63.93± 1.35 64.41± 1.37
k-center 75.27± 0.89 72.52± 0.35 74.76± 0.11 79.63± 0.77 63.67± 0.02 63.91± 1.33 65.19± 3.38 68.59± 0.50
Gradient Matching 75.19± 0.79 73.85± 0.30 76.31± 0.89 79.64± 1.21 64.58± 0.14 60.56± 1.86 60.53± 2.44 64.33± 1.30
FRCL 75.27± 0.55 74.80± 0.13 75.78± 0.95 80.06± 0.10 64.95± 0.40 62.18± 2.42 61.26± 0.79 62.54± 0.31
iCaRL 74.92± 0.66 72.95± 1.79 76.81± 0.71 80.62± 0.31 64.68± 0.52 61.37± 1.73 63.03± 2.75 62.86± 0.94
Greedy Coreset 76.04± 0.22 76.30± 1.56 79.35± 1.09 81.00± 0.15 61.97± 4.59 61.75± 0.87 62.63± 4.24 62.77± 0.80
BCSR 74.15± 0.01 75.68± 0.08 79.26± 6.28 79.80± 0.03 58.87± 0.13 59.54± 0.44 59.99± 3.41 63.87± 2.40
DER++ 74.59± 1.12 72.33± 1.38 76.86± 0.73 79.63± 8.07 60.65± 1.83 60.61± 1.48 64.00± 1.25 64.22± 0.88
GSS 75.16± 0.59 75.32± 0.14 76.79± 0.80 79.63± 0.14 60.47± 0.86 60.51± 3.09 62.85± 2.30 66.18± 2.11
GCR 72.08± 2.95 72.93± 0.30 75.09± 0.34 80.21± 0.12 63.04± 1.37 63.75± 1.71 64.07± 3.18 62.90± 0.62

SES (Ours) 78.71± 0.63 80.20± 1.17 81.61± 0.57 82.20± 6.86 66.55± 1.75 67.33± 0.73 66.56± 1.09 69.69± 0.53
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G ADDITIONAL ABLATION STUDY

Robustness to different training difficulty metrics. We test the effect of using different training
difficulty metrics, including Forgetting, EL2N, and AUM. We also include the identity baseline,
which assigns identical scores to all samples. Table 22 shows the results. Using identical scores leads
to inferior performance, indicating the importance of incorporating training difficulty. Meanwhile,
using AUM, Forgetting, and EL2N yields comparable performance, with average accuracies across
rates differing by no more than 0.5%. This demonstrates the robustness of our method to the choice
of the training difficulty metric.

Table 22: Ablation of training difficulty metrics. The best one is bold, and the runner-up is underlined.

Difficulty
metric

Sampling rate
Avg.

70% 50% 20% 10% 5% 2% 1%
Identity 94.58 92.66 86.67 78.50 67.68 53.21 44.43 73.96
Forgetting 94.86 93.99 88.11 79.06 70.45 53.99 46.43 75.27
EL2N 94.61 93.74 88.45 79.93 69.52 54.01 45.15 75.06
AUM 95.01 94.50 88.31 80.24 69.82 54.78 45.25 75.42

Quantification of node-level structural entropy. In Eq. (4), we quantify the node-level structural
entropy as Se(u) =

1
vol(V )

∑
⟨u,v⟩∈E wu,v log vol(αu∨v) by removing the second term from Eq. (3).

Alternatively, the node-level structural entropy can retain the second term and be quantified as
Se(u) =

1
vol(V ) (

∑
⟨u,v⟩∈E wu,v log vol(αu∨v) − d(u) log d(u)). As shown in Table 23, removing

the second term slightly increases performance across all sampling rates. This finding supports our
decision to remove the second term in the definition of node-level structural entropy.

Table 23: Ablation on the quantification of node-level structural entropy. The best one is bold, and
the runner-up is underlined.

Quantification
method

Sampling rate

70% 50% 20% 10% 5% 2% 1%
With the second term 94.51 93.39 88.01 79.73 67.75 53.88 43.02
Without the second term 95.01 94.50 88.31 80.24 69.82 54.78 45.25

Methods for combining global and local metrics. We explore possible alternative methods to
combine the global metric Se(u) and the local metric St(u) other than the proposed multiplication.
Specifically, we experimented with the sum (Se(u) + St(u)), the harmonic mean ( Se(u)St(u)

Se(u)+St(u)
), and

the maximum (max(Se(u), St(u))). As shown in Table 24, multiplication achieves the best average
performance, validating our choice for combining the two metrics.

Table 24: Ablation on different combination of Se and St. The best one is bold, and the runner-up is
underlined.

Combination
method

Sampling rate
Avg.

70% 50% 20% 10% 5% 2% 1%
Se(u) + St(u) 94.77 94.43 87.17 79.64 69.08 53.24 44.53 71.35
Se(u)St(u)
Se(u)+St(u)

94.84 94.64 88.11 79.97 69.75 53.95 44.88 71.88
max(Se(u), St(u)) 94.22 93.22 87.24 78.33 68.49 53.04 43.30 70.60
Se(u) · St(u) 95.01 94.50 88.31 80.24 69.82 54.78 45.25 72.15

Replacing graphs with hypergraphs. We have conducted an experiment using hypergraphs (Zhou
et al., 2006) to capture the relationships between samples. Following Feng et al. (2019), we construct
a hypergraph by adding a hyperedge for each node that contains the node itself and its k-nearest
neighbors. Due to the lack of the structural entropy theory for hypergraphs, we apply clique
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expansion (Agarwal et al., 2006), which creates an edge between every pair of nodes in a hyperedge,
to convert the hypergraph into a graph. We then apply our selection method to the resulting graph.
Table 25 shows the results. This hypergraph-based method slightly degrades performance compared
to the graph-based method, but still performs better than the baseline methods in low-sampling-
rate settings. We attribute this slight decline in performance to the information loss during clique
expansion, for which a straightforward alternative is not currently available. We see significant
potential for future work in developing structural entropy theories for hypergraphs and then applying
our method to sample selection.

Table 25: Ablation study on replacing graphs with hypergraphs. The best one is bold, and the
runner-up is underlined.

Graph
Type

Sampling rate

70% 50% 20% 10% 5% 2% 1%
Hypergraph 94.81 94.37 88.12 80.05 69.30 54.50 44.72
Graph 95.01 94.50 88.31 80.24 69.82 54.78 45.25

Effect of k in the kNN-graph construction. We test the effect of k in the kNN-graph construction.
Fig. 5 shows the results when selecting 10% of the samples from CIFAR10. As k increases, the
performance first increases and then remains relatively stable within a narrow range. This indicates
that the first few nearest neighbors effectively capture the global structure of the samples, which
aligns with prior research (Jaffe et al., 2020). Based on the grid search results across datasets, we
empirically determine log2 n to be an appropriate value for k, where n is the number of samples.

Figure 5: Ablation of k in the kNN-graph construction.
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H FULL QUALITATIVE RESULTS

Fig. 6 visualizes the results of different methods when selecting 2% of the samples from CIFAR10.
Methods that select the most difficult samples, such as AUM, oversample near several class boundaries
and undersample in several classes that are easier to classify. Methods that prioritize sample coverage,
such as D2 Pruning and CCS, achieve a better sample coverage but may undersample near several
class boundaries and fail to preserve the global structure. Our method well covers the data distribution,
providing a set of informative and representative samples for model training.

(a) Random (b) AUM (c) EL2N

(d) Forgetting (e) Entropy (f) Variance

(g) Moderate (h) GraphCut (i) CCS

(j) D2 Pruning (k) SES (Ours)

Figure 6: Visualizations of selection results of different methods when selecting 2% of the samples
from CIFAR10.
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