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Abstract

This paper presents a comprehensive review of the 1st

Challenge on Video Quality Enhancement for Video Con-
ferencing held at the NTIRE workshop at CVPR 2025, and
highlights the problem statement, datasets, proposed solu-
tions, and results. The aim of this challenge was to design a
Video Quality Enhancement (VQE) model to enhance video
quality in video conferencing scenarios by (a) improving
lighting, (b) enhancing colors, (c) reducing noise, and (d)
enhancing sharpness — giving a professional studio-like ef-
fect. Participants were given a differentiable Video Quality
Assessment (VQA) model, training, and test videos. A to-
tal of 91 participants registered for the challenge. We re-
ceived 10 valid submissions that were evaluated in a crowd-
sourced framework. Additional materials can be found on
the project website 1,2.

1. Introduction
Light is a crucial component of visual expression and is
the key to controlling texture, appearance, and composi-
tion. Professional photographers often have sophisticated
studio lights and reflectors to illuminate their subjects such
that the true visual cues are expressed and captured. Sim-
ilarly, tech-savvy users with modern desk setups employ

∗ These members were participants who co-authored this report de-
tailing their methodologies, not the challenge organizers. Please refer to
Appendix A for their correspondence details.

1https : / / www . microsoft . com / en - us / research /
academic-program/ntire-2025-vqe/

2https://github.com/varunj/cvpr-vqe/

a sophisticated combination of key and fill lights to give
themselves control over their illumination and shadow char-
acteristics. However, many users are constrained by their
physical environment, which may lead to poor positioning
of ambient lighting or lack thereof. It is also commonplace
to encounter flares, scattering, and specular reflections that
may come from windows or mirror-like surfaces. Problems
can be compounded by poor-quality cameras that may in-
troduce sensor noise. This leads to poor visual experience
during video calls and can have a negative impact on down-
stream tasks such as denoising, super-resolution, segmenta-
tion, and face detection.

The current light correction solution in Microsoft Teams,
called AutoAdjust, finds a global mapping of input to output
colors which is updated sporadically. Since this mapping
is global, it gives more importance to foreground colors,
which may lead to improper exposure of or color shifts in
the background. On the other hand, popular single-image
portrait relighting methods [48] estimate local correction in
only the foreground and preserve the background by an im-
plicit in-network matte layer. A possible side effect of local
correction can be the reduction of local contrast, which of-
ten serves as a proxy to convey depth in 2D images, making
people appear dull in some cases.

We conducted P.910 [26] studies totaling 350,000 pair-
wise comparisons that measured people’s preference for
AutoAdjust and portrait relighting over no effect and im-
ages manually edited by experts in Adobe Lightroom. We
used the Bradley–Terry model [1] to estimate the scores for
each method and observed that people preferred AutoAd-
just more than any other method.

To take the next step towards achieving studio-grade
video quality, one would need to (a) understand what people

https://www.microsoft.com/en-us/research/academic-program/ntire-2025-vqe/
https://www.microsoft.com/en-us/research/academic-program/ntire-2025-vqe/
https://github.com/varunj/cvpr-vqe/


Figure 1. Ground truth from (top) our synthetics framework, (bottom) the AutoAdjust solution. The top row shows the input with
suboptimal foreground illumination which is fixed by adding a studio light setup in front of the subject which is simulated in synthetics
and predicted via global changes in the real data.

prefer and construct a differentiable Video Quality Assess-
ment (VQA) metric, and (b) be able to train a Video Quality
Enhancement (VQE) model that optimizes this metric. To
solve the first problem, we have trained a VQA model that,
given a pair of videos x1 and x2, gives the probability that
x1 is better than x2 as described in Sec. 2.5. Given a stan-
dard test set, this information can be used to construct a
ranking order of a given set of methods.

We invited researchers to participate in a challenge
aimed at developing Neural Processing Unit (NPU) friendly
VQE models that leverage our trained VQA model to im-
prove video quality.

This challenge was one of the NTIRE 2025 3 Work-
shop associated challenges on: ambient lighting normaliza-
tion [33], reflection removal in the wild [40], shadow re-
moval [32], event-based image deblurring [30], image de-
noising [31], XGC quality assessment [23], UGC video en-
hancement [29], night photography rendering [10], image
super-resolution (x4) [5], real-world face restoration [6], ef-
ficient super-resolution [28], HR depth estimation [43], ef-
ficient burst HDR and restoration [16], cross-domain few-
shot object detection [11], short-form UGC video quality
assessment and enhancement [18, 19], text to image gen-
eration model quality assessment [12], day and night rain-
drop removal for dual-focused images [17], video quality
enhancement for video conferencing, low light image en-

3https://www.cvlai.net/ntire/2025/

hancement [24], light field super-resolution [37], restore
any image model (RAIM) in the wild [20], raw restoration
and super-resolution [7] and raw reconstruction from RGB
on smartphones [8].

2. Challenge
2.1. Problem Statement
The task was to enhance video quality in video conferencing
scenarios. We only looked at the following properties of a
video to judge its studio-grade quality:
1. Foreground illumination – the person (all body parts and

clothing) should be optimally lit.
2. Natural colors – correction may make local or global

color changes to make videos pleasing.
3. Temporal noise – correct for image and video encoding

artefacts and sensor noise.
4. Sharpness - to ensure that correction algorithms do not

introduce softness, the final image should at least be as
sharp as the input.
We understand that there may be many other aspects to

a good video. For simplicity, we discounted all except the
ones mentioned above. Specifically, we did not measure the
following:
1. Egocentric motion – unstable camera may introduce

sweeping motion or small vibrations that we did not aim
to correct.

https://www.cvlai.net/ntire/2025/


2. Makeup and beautification – it is commonplace for users
to apply beautification filters that alter their skin tone
and facial features such as those found on Instagram and
Snapchat. We did not aim for that aesthetic.

3. Removal of reflection on glasses and lens flare - although
it is a common occurrence in video teleconference sce-
narios, we did not aim to remove reflections that may
come from screens and other light sources onto users’
glasses due to the risk associated with altering eye ap-
pearance and gaze direction.

4. Avatars – A solution that synthesizes a photorealistic
avatar of the subject and drives it based on the input
video would score the highest in terms of noise, illumi-
nation, and color. If it indeed minimizes the total cost
function that takes into account all these factors, it would
be acceptable.

2.2. Baseline Solution
Since the AutoAdjust model was ranked higher than expert-
edited images and portrait relighting methods, we provided
participants a baseline solution so that they could reproduce
the AutoAdjust feature as currently shipped in Microsoft
Teams. It was provided as a Python script that calls the Au-
toAdjust executable, and includes code for post-processing.

2.3. Compute Constraints
The goal was to have a computationally efficient solution
that can be offloaded to NPU for CoreML inference. We
established a qualifying criterion of CoreML uint8 or fp16
models with at most 20.0x109 MACs per frame for an input
resolution of 1280×720. We estimate such a model to have
a per frame processing time of 9 ms on an M1 Ultra powered
Mac Studio and 5 ms on an M4 Pro powered Mac Mini for
the given input resolution. Submissions that did not meet
this criterion were not considered for the P.910 evaluation.

2.4. Dataset
2.4.1. Unpaired Real Data
We host a web service that reaches users all over the world
and prompts them to sit in front of a laptop or a PC. We
then record minute-long videos while users perform hand
gestures and body movements. We sampled 13, 000 videos
from this dataset for training, validation, and testing of VQE
methods. The videos are 10 s long, encoded at 19 FPS on
average, and amount to a total of 3, 900, 000 frames. We
kept 3, 000 (23%) videos for testing and ranking submis-
sions and make 10, 000 (77%) available to the teams. They
could choose to split it between the training and validation
sets as they desire. The teams were also free to use other
publicly available datasets, while being mindful about data
drift.

Of the 13, 000 videos, we selected 300 high quality
videos where P.910 raters voted strongly in favor of the Au-

Figure 2. Comparison of lighting setup in the Synthetic Portrait
Relighting dataset. (left) Lighting from the HDRI, (center) key
light with HDRI lighting turned off, and (right) key and fill lights
with HDRI lighting turned off. Note that the HDRI is only used
as a background when using the studio lighting and does not con-
tribute to the illumination of the subject.

0 50 100 150 200 250

Grayscale Pixel Color Intensity

0.000

0.002

0.004

0.006

0.008

0.010

0.012

P
ro

b
ab

il
it
y
 D

en
si

ty

Histogram of Face Color Intensity Values

source

target

Figure 3. Color intensity in source and target images of our Syn-
thetic Portrait Relighting dataset. The source images are dark with
intensity centered around 50. The target fixes this by boosting il-
lumination – making it more uniform and span a larger range.

toAdjust result, as shown in the bottom half of Figure 1. We
assumed these to be the ground truth. P.910 done on these
videos shows a Mean Opinion Score (MOS) [26] of 3.58 in
favor of the target.

2.4.2. Paired Synthetic Portrait Relighting Data
In addition to these data, we also provided paired data for
fully supervised learning as shown in the top half of Fig-
ure 1. Note that it is possible to learn a correction which is
different from these ground truth labels and achieve a higher
MOS. Hence, these labels had to be treated as suggestive
improvements, and not as global optima.

We use a physically-based path tracer and photorealistic
assets in Blender to render 1, 500 videos for training and
500 videos for testing. Each video is 5 s long encoded at
30 FPS. The source image has lighting only from the High
Dynamic Range Image (HDRI) environment. For the target,



Teamname Input Resolution Inference Resolution Training Time Epochs Ensemble LUT Attention #MACs/frame Latency/frame GPU/NPU
TMobileRestore (720, 1280, 3) (720, 1280, 3) 1 day 100 Yes Yes No 16.8× 109 200ms V100

Summer (720, 1280, 3) (720, 1280, 3) 2 days 120 Yes Yes No 15.4× 109 180ms V100
XTeam (720, 1280, 3) (720, 1280, 3) 6 hrs 25 Yes Yes No 16.8× 109 200ms V100
Velta (720, 1280, 3) (720, 1280, 3) 12 hrs 30 Yes Yes No 15.4× 109 180ms V100

DeepView (720, 1280, 3) (720, 1280, 3) 7 days 80 Yes No Yes 106.4× 109 238ms V100
Auv (720, 1280, 3) (720, 1280, 3) 1 day 5 Yes No Yes 106.4× 109 238ms V100

Meeting (720, 1280, 3) (720, 1280, 3) 3 hrs 10 Yes Yes No 16.8× 109 200ms V100
Maqic (720, 1280, 3) (720, 1280, 3) 7 days 157 No Yes No 13.0× 103 28 ms V100
LUT (720, 1280, 3) (720, 1280, 3) 4 days 80 No Yes No 13.0× 103 27 ms V100

Wizard (720, 1280, 3) (720, 1280, 3) 15 days 50 Yes No Yes 114.2× 109 170ms V100

Table 1. Final results of the NTIRE 2025 Challenge on Video Quality Enhancement for Video Conferencing held at CVPR 2025.

we added 2 diffuse light sources to simulate a studio light-
ing setup. Refer Figure 2 to visualize the effect of these
light sources and Figure 3 for statistics on the color inten-
sity values on the face. These are the same images that were
used to finetune the portrait relighting method.

To ensure that these data generalize well in the wild,
we refer to the image-level degradations used in Real-
ESRGAN [36] and applied them to the source image. To
simulate out-of-focus blur, we applied generalized Gaus-
sian blur kernels [25] that have ramp edges and flat top areas
– better modeling the combined effects of lens defocusing
and light diffraction. For color noise, we used channel-
independent additive Gaussian noise, and gray noise was
added by applying the same Gaussian noise to all 3 chan-
nels. Finally, sensor noise was modeled by sampling from
a Poisson distribution. Lastly, we applied random resizing
and JPEG compression.

P.910 done on these videos shows a MOS of 4.06 in fa-
vor of the target indicating that these make for a better target
compared to the baseline AutoAdjust solution. Some exam-
ples of these pairs are shown in Figure 1 and more details
about the rendering framework can be found in [13].

2.5. VQA Model

px1,x2 , Ax1 , Ax2 = V QAθ(x1, x2) (1)

We provided teams with a pre-trained Siamese [15]
Video Quality Assessment model V QAθ that was trained
on 22, 553 videos and 11 enhancement models. Ground-
truth was collected by prompting human raters with
315, 636 side-by-side video comparisons. For high-level se-
mantic understanding, we used our own models that were
pre-trained on a collection of real and synthetic images for
the tasks of person segmentation, face quality and image
aesthetics. For low-level features such as noise, flicker and
video coding artifacts we used the DOVER [38] model.
We took the penultimate feature maps of both models, per-
formed average pooling across temporal and spatial dimen-
sions and concatenated them. We then used a set of projec-
tions to predict the final logits.

Given a pair of images or videos x1 and x2, the model
predicts the probability of x1 being preferred over x2 in a

P.910 study. It also provides 11 auxiliary scores for each
input A = [a1, a2, ...a11] that correspond to factors such as
image aesthetic, color harmonization, color liveliness, key-
lighting, noise, image composition, face capture quality etc.
These are supervised with metrics obtained from publicly
available Apple Vision APIs.

2.6. Metrics and Evaluating Submissions
The final goal was to rank the submissions according to the
P.910 scores. We asked the teams to submit their predic-
tions on the 3, 000 real-video test set. We then compared
the submissions to the given input, the baseline, and against
each other. As shown in Figure 4, comparison using the
Bradley–Terry model gives us the score for each submission
that maximizes the likelihood of the observed P.910 voting.
Our P.910 framework has a throughput of 210, 000 votes
per week. In case two methods had statistically insignifi-
cant difference in subjective scores, we used the objective
score shown in Equation (4) to break ties.

Sreal
obj (Ŷ , X, θ) =

1

12n

n∑
i=1

{pŷi,xi
, Aŷi

}|V QAθ(ŷi,xi) (2)

Ssynth
obj (Ŷ , Y ) =

1

1
n

∑n
i=1

√
E[(Y − Ŷ )2]

(3)

Sobj(Ŷ , Y,X, θ) = Sreal
obj (Ŷ , X, θ)× Ssynth

obj (Ŷ , Y ) (4)

Due to the infeasibility of getting P.910 scores in real-
time, teams could use the objective score Sobj for contin-
uous and independent evaluation. For the 3, 000 unsuper-
vised videos, teams were required to submit the per-video
VQA score pŷi,xi along with the 11 auxiliary scores Aŷi

predicted by the VQA model as shown in Equation (1). For
the synthetic test set, the teams reported the Root Mean
Squared Error (RMSE) per video. These scores were also
published on the leaderboard so that participants could track
their progress relative to other teams. However, we did not
rank the teams based on these objective metrics since it was
possible to learn a correction that is different from and sub-
jectively better than the ground truth provided.
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Figure 4. Interval plots illustrating the mean P.910 Bradley-Terry scores and their corresponding 95% confidence intervals for the 10
submissions, input videos, and the provided baseline. (Top) Overall preference, and (bottom) factors influencing preference.

3. Results

We received 5 complete submissions for both the mid-point
and final evaluations. For each team’s submission, we uti-
lized our crowd-sourced framework to evaluate their 3, 000-
video test set. This involved presenting human raters with
270, 000 side-by-side video comparisons. The raters were
asked to provide their preference on a scale of 1 to 5, where
1 and 5 represent strong preference for the left and right
video respectively, and 2 and 4 represent weak preference.
A rating of 3 indicates no preference. Furthermore, raters
were prompted to specify if their decision was primarily in-
fluenced by (a) image colors, (b) image brightness, or (c)
skin tone. The Bradley–Terry scores for each team that
maximize the likelihood of the observed P.910 voting are
shown in Figure 4.

4. Challenge Methods

This section outlines the methodologies and datasets used
by the highest-ranking submissions. We observe that Look-
Up Table (LUT) based solutions TMobileRestore and Deep-
View scored the highest. This can be attributed to the effi-
cient, yet temporally stable nature of the correction when
compared to methods that predict dense pixel-to-pixel map-

ping between the input and output image pairs.

4.1. TMobileRestore

Figure 5. Two stage video conferencing enhancement framework
proposed by team TMobileRestore.

4.1.1. Description
They propose a video enhancement algorithm designed to
tackle common issues found in video conferencing videos,
such as noise, compression artifacts, pathological illumina-
tion, and visual inconsistencies. Their algorithm employs
a two-stage training process to achieve optimal results: the
first stage uses a LUT for brightness and color correction,
while the second stage focuses on removing compression
noise, sensor noise, and enhancing the overall video qual-
ity, as shown in Figure 5.

The first stage of the video enhancement framework is
designed to tackle color distortions that are typically found
in video conferencing footage, such as inconsistent lighting
and color shifts, which considerably lowers visual quality.



To effectively rectify these distortions, they use a combi-
nation of Clookup table (CLUT) based methods [46] and
convolutional neural network structures. During this phase,
the network processes input frames by extracting features
at multiple levels, allowing it to concurrently extract image
features. They implement a CLUT, where the neural net-
work predicts content-dependent weights from downsam-
pled input to merge basic CLUTs into an image-adaptive
one, thereby enhancing the original input image.

The second stage is dedicated to rectifying low-level dis-
tortions such as noise and compression artifacts. To address
these problems, they utilize a lightweight U-Net architec-
ture with skip connections, specifically engineered for ef-
fective and robust restoration. The network extracts fea-
tures at various scales, enabling it to concurrently address
both local artifacts (like blocky compression noise) and
global degradations. Skip connections between the encoder
and decoder ensure the preservation of fine-grained details
throughout the restoration process. The first phase includes
21 convolutional layers that have the ability to broaden re-
ceptive fields and carry out both global and local refinement
for image distortions. This allows the network to restore the
natural and visually pleasant context throughout the video.

4.1.2. Datasets
To train the two-stage network, they used a combination
of public datasets, including LDV3 [41], REDS [22], and
datasets provided in this competition. For realistic degra-
dation simulation, they model mixed distortions to create
training data that closely resembled real-world scenarios.
The training data for the first stage incorporated color dis-
tortions, such as random saturation shifts and contrast ad-
justments. For the second stage, the training data included
randomized degradations such as Poisson-Gaussian noise,
motion blur, and H.265/H.264 compression. The degrada-
tion parameters were dynamically sampled per batch to im-
prove robustness. For both stages, they applied spatial aug-
mentations such as rotation, flipping, and chromatic aber-
ration, as well as temporal jitter techniques such as frame
dropping and shuffling to prevent overfitting.

4.1.3. Experiments & Results
In stage 1, the CLUT is trained with a hybrid loss func-
tion combining L1 loss and cosine color shift loss, over
200, 000 iterations with a batch size of 32 and a patch size
of 512×512. The initial learning rate was set to 0.0002 and
halved every 10, 000 iterations, using the Adam optimizer
with β1 = 0.9 and β1 = 0.99.

For the second stage, the sub-network was optimized us-
ing a combination of L2 loss, perceptual loss, LPIPS and
GAN loss to enhance textures without over-smoothing, over
300, 000 iterations with a batch size of 16 and a patch size
of 512 × 512. After pretraining both stages independently,
they jointly fine-tuned the network for an additional 20, 000

iterations with a reduced learning rate of 0.00001. Details
are listed in Table 1. XTeam and Meeting are similar to
this method with early training termination at 50, 000 and
10, 000 iterations respectively.

4.2. Summer
This method also consists of the color enhancement sub-
network and the video restoration sub-network. The color
enhancement network uses a set of five pre-trained 3D
LUTs to dynamically adjust the color and tone of video
frames in real-time [44]. These LUTs are trained using the
provided supervised VQE dataset, which ensures that each
LUT represents a distinct style of color and tone transforma-
tion tailored for video content. To predict the optimal com-
bination of these LUTs for each frame, the method employs
a convolutional neural network (CNN) with seven convolu-
tional blocks. This CNN extracts global features from the
downsampled video frames, capturing essential characteris-
tics that influence the color-enhancement process. By ana-
lyzing these features, the network predicts the weights for
blending the five 3D LUTs, resulting in a final LUT that is
adapted to the specific content of each video frame.

The video restoration sub-network utilizes seven resid-
ual blocks that progressively refine video frames, reducing
noise, correcting blurriness, and restoring details. This deep
learning approach effectively learns to map from degraded
images to high-quality images, ensuring clear and detailed
video frames. Velta is similar to this method, with training
ending early in 30, 000 iterations.

4.3. DeepView
They propose a video conference enhancement network that
addresses both degradation distortion repair and color en-
hancement to ensure high-quality video communication.
For distortion repair, it is the same as TMobileRestore.

For color enhancement, they adopt the HVI-CIDNet ap-
proach [39], which includes the HVI color space and the
CIDNet architecture. The HVI color space minimizes noise
and compresses low-light regions, while CIDNet’s dual-
branch network handles chromatic denoising and brightness
enhancement. By processing images in the HVI color space
and applying cross-attention mechanisms, this approach re-
stores natural colors and details, providing vibrant and ac-
curate color representation in video conferencing. Auv is
similar to this method, with training ending early in 5, 000
iterations.

4.4. Maqic
4.4.1. Description
Online video streams suffer from the physical environ-
ment, including poor positioning of ambient lighting or
lack thereof, leading to poor visual experience during video
calls and may perturb the downstream tasks. Considering



Figure 6. Typical 3DLUT-based retouching pipeline.

that human-region should be the focus of the video calls,
they interpreted this challenge as the task of video por-
trait retouching, which aims to improve the aesthetic qual-
ity of input portrait photos and especially requires human-
region priority [45]. While deep learning-based meth-
ods [4, 9, 14, 47] largely elevate the retouching efficiency
and provide promising retouched results, most of them con-
centrate on the image tasks, which leads to the efficiency
bottleneck when translating to the video task. Therefore,
they consider an efficient solution, i.e., a look-up table
(LUT) based retouching, which performs fast inverse tone
mapping according to the trained look-up table for each
pixel value.

For the video portrait retouching task, to improve the
temporal consistency, existing video-based enhancement
methods [3, 21] typically include an additional optical
flow estimator (e.g., SpyNet [27]) to propagate informa-
tion from adjacent frames. However, this is not suitable
for a highly efficient LUT-based solution, where the online
SpyNet inferencing inevitably slows down the whole re-
touching pipeline. Therefore, they choose the image-based
ICELUT [42] (as shown in Figure 7) as the retouching back-
bone. Their contributions can be summarized as choosing
an efficient backbone for video portrait retouching and the
stage-wise training strategy to achieve perceptual satisfying
retouched results.

The typical LUT solution (as shown in Figure 6) pro-
vides only the LUT-based pixel value transfer to accelerate
the retouching process. For the portrait scenario, the re-
touching should be two-fold: (a) retouching for both the
background and foreground, and (b) the focus on highlight-
ing the human region instead of the background. There-
fore adopting a solution with a region-wise adaptation (e.g.,
ICELUT [42]) is necessary to filter out the background and
focus on the portrait region. As shown in Figure 7, given
the low-quality input frame, the adopted method adaptively
performs the fusion of multiple LUTs and composes the 3D
LUT, which then performs tone mapping to obtain the visu-
ally satisfying result for each frame.

4.4.2. Datasets
They notice that the given dataset contains limited image
resolution, with degradations such as noise, motion blur,
and flicker. Training with these data complexes the tar-

get goal, requiring the model to simultaneously perform
retouching and video restoration. Therefore, they adopt a
stage-wise training strategy to separate the aforementioned
goals.

In the first stage, they train with MIT-Adobe FiveK [2],
which is a high-quality tone mapping dataset without im-
age degradations. This enables the LUTs to retouch input
videos, which adaptively changes the tone of frames and
adjusts the light condition. Then based on the pre-trained
LUTs, they conduct fine-tuning on the supervised subset
given in the challenge to equip the LUTs with restoration
ability.

Figure 7. The adopted ICELUT used by Maqic constructs
weighted 3D LUT with multiple lookup table candidates to per-
form real-time video retouching.

4.4.3. Experiments & Results
The model is implemented with the PyTorch framework,
they conduct all the experiments on a single NVIDIA Tesla
V100 GPU. They include additional details in Table 1. LUT
is similar to this method with early training termination.

4.5. Wizard

4.5.1. Description
Their approach [34] integrates both technical and aesthetic
quality assessment algorithms with the video enhancement
task. Building upon the HVI-CIDNet [39] framework,
they introduce a perceptual quality-aware color and inten-
sity decoupling network that leverages the Lighten Cross-
Attention (LCA) mechanism. In addition, they incorporate
a quality loss function based on CLIP-IQA metrics to en-
hance the perceptual quality of the output video, ensuring
alignment with human visual preferences.

To accelerate convergence and enhance performance,
they initialize the model with pretrained HVI-CIDNet [39]
weights, leveraging prior knowledge for effective spatial
and chromatic feature handling in video frames. A major
limitation of traditional image enhancement models is that
they often prioritize technical fidelity over perceptual qual-
ity. However, in video conferencing applications, visual ap-
peal is just as important as technical accuracy. To address
this, they introduce a perceptual quality loss function that
incorporates metrics from CLIP-IQA [35], in combination
with the Video Quality Assessment metrics (Equation (1)).



Figure 8. Overview of the quality-aware CIDNet proposed by
Wizard. During training, they use extracted frames as input.
These inputs are first passed through HVI transform network,
the obtained HVI features are then processed in CIDNet, and
lastly Perceptual-inverse HVI Transform (PHVIT) is applied to
get sRGB-enhanced image. The outputs from the VQE model are
evaluated using CLIP-IQA for perceptual quality assessment, and
the resulting scores are utilized as a quality loss. The Lcolorspace

is constructed as combination of L1 Loss (L1), Edge Loss (Le),
and Perceptual Loss (Lp).

The quality loss component encourages the model to prior-
itize aesthetic factors, ensuring that the output video frames
align closely with human visual preferences.

As given in the block diagram Figure 8, during training,
let xi be the input frames and x̂i be the enhanced frames
generated by the enhancement network. Enhanced frames
are fed into the CLIP-IQA model, which computes the qual-
ity scores Qx̂i

. Scores typically range between [0 − 1],
where a higher score indicates better perceptual quality,
the objective is to maximize the score. To incorporate this
into the loss function while ensuring optimization, the mean
quality score Q̄(x̂i) across a batch is normalized as follows:

Lclip
quality = 1− Q̄c(x̂i), (5)

and Q̄c(x̂i) is given as,

Q̄c(x̂i) =
1

N

N∑
i=1

Qc(x̂i), (6)

where, N represents the batch size. Here, a value of 1 cor-
responds to the highest quality, in the same manner, another
term from VQA model (Equation (1)) is constructed as:

LV QA
quality = 1− Q̄v(x̂i) (7)

Finally, quality loss is given as:

Lquality = Lclip
quality + LV QA

quality (8)

The term Lquality is then integrated into the overall loss
function to guide the training process. The total loss func-
tion used during training is a weighted sum of the standard
colorspace loss and the perceptual quality loss :

Ltotal = Lcolorspace + λ · Lquality (9)

where Lcolorspace is the loss term used in base-
model [39]. The hyperparameter λ controls the contribution
of the perceptual quality term, ensuring a balance between
technical accuracy and visual quality.

Figure 9. Inference pipeline of proposed quality-aware CIDNet.
First the frames are extracted from input video, extracted frames
are fed to Q-CIDNet for enhancement.

4.5.2. Datasets
To develop and evaluate the Video Quality Enhancement
(VQE) model, they selectively utilized subsets of the real
and synthetic datasets provided in this challenge. Out of the
total 10, 000 real videos and 1, 500 synthetic videos, they
opted for a focused approach to training by leveraging rep-
resentative samples from each dataset:
• Real Dataset Utilization: From the 10, 000 real videos

provided for training and validation, they selected 300
videos for training. This subset was chosen to capture
diverse lighting conditions, variations in ambient reflec-
tions, and noise characteristics while maintaining a bal-
ance between complexity and model training efficiency.

• Synthetic Dataset Utilization: From the 1, 500 synthetic
videos provided for training, they selected 300 videos for
training. These synthetic samples were curated to include
a variety of lighting configurations generated by adding
diffuse light sources to simulate a studio setup. This data
was instrumental in fine-tuning the model’s ability to han-
dle lighting corrections and improve visual appeal.

4.5.3. Experiments & Results
After initializing the model with pretrained weights from
HVI-CIDNet, they fine-tuned it using the Adam optimizer
with hyperparameters β1 = 0.9 and β2 = 0.999 for 50
epochs. The parameter λ is set to 0.75 for quality loss in-
clusion. The learning rate was initially set to 1 × 10−4

and gradually decreased to 1 × 10−7 using a cosine an-
nealing schedule during the training process. On an input
of 3 × 720 × 1280, the model requires 114.249 GMACs,
equivalent to 228.498 GFLOPs, with 1.973M parameters.
The measured inference latency is 170 ms per frame. De-
tails are listed in Table 1 and inference detailed in Figure 9.
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