
PROTORAIL: A RISK-COGNIZANT IMITATION AGENT
FOR ADAPTIVE VCPU OVERSUBSCRIPTION IN THE CLOUD

Lu Wang * 1 Mayukh Das * 2 Fangkai Yang 1 Bo Qiao 1 Hang Dong 1 Si Qin 1 Victor Ruehle 3 Chetan Bansal 4

Eli Cortez 4 Inigo Goiri 4 Saravan Rajmohan 4 Qingwei Lin 1 Dongmei Zhang 1

ABSTRACT
Safe optimization of operating costs is one of the holy grails of successful revenue-generating cloud systems
and capacity/resource efficiency is a key factor in making that a reality. Among other strategies for resource
efficiency across major cloud providers, Oversubscription is an extremely prevalent practice where more virtual
resources are offered than actual physical capacity to minimize revenue loss against redundant capacity. While
resources can be of any type, including compute, memory, power or network bandwidth, we highlight the scenario
of virtual CPU (vCPU) oversubscription since vCPU cores are primarily the billable units for cloud services and
has substantial impact on business as well as users. For a seamless cloud experience, while being cost-efficient
for the provider, suitable policies for controlling oversubscription margins are crucial. Narrow margins lead to
redundant expenditure on under-utilized resource capacity, and wider margins lead to under-provisioning where
customer workloads may suffer from resource contention. Most oversubscription policies today are engineered
either with tribal knowledge or with static heuristics about the system, which lead to catastrophic overloading or
stranded/under-utilized resources. Smart oversubscription policies that can adapt to demand/utilization patterns
across time and granularity to jointly optimize cost benefits and risks is a non-trivial, largely, unsolved problem.
We address this challenge with our proposed novel Prototypical Risk-cognizant Active Imitation Learning
(PROTORAIL) framework that exploits approximate symmetries in utilization patterns to learn suitable policies.
The active knowledge-in-the-loop (KITL) module de-risks the learned policies. Our empirical investigations and
real deployments on Microsoft’s internal (1st party) cloud service, show orders of magnitude reduction (≈≥ 90×)
in risk and significant increase in benefits (saved stranded resources: in a range of ≈ 7 to 10%).

1 INTRODUCTION

Oversubscription is popular and widely used practice across
the professional services (logistics, travel, cloud etc.) indus-
try. It is the scenario where a system offers more resources
or services, such as virtual compute resources, to users or
entities than its available physical capacity, assuming not all
users would simultaneously fully utilize the allocated capac-
ity. In cloud services, Virtual Machines (VMs) having some
quantum of virtual resources such as virtual cores/memory
etc. are hosted on Physical Machines (PMs). Oversub-
scription here allocates fewer resources for a VM than the
requested amount, assuming that a VM may use an extra
margin beyond its allocated amount if needed (as shown in
Fig 1). As a result the platform can leverage unused physical
capacity by packing more VMs as an effective way to avoid

1Microsoft, Beijing, China 2Microsoft, Bangalore, India
3Microsoft, Cambridge, UK 4Microsoft, Redmond, USA. Cor-
respondence to: Mayukh Das <mayukhdas@microsoft.com>, Lu
Wang <wlu@microsoft.com>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

Figure 1. vCPU oversubscription example. After VCPU oversub.
for VM3, one more VM (VM4) can be allocated in the physical
machine and the stranded memory is reduced (Wang et al., 2024).

unnecessary resource wastage and maximize profits (Baset
et al., 2012; Breitgand & Epstein, 2012).

CPU bottlenecks are impactful in cloud (Mahapatra &
Venkatrao, 1999) vCPUs are the sellable billing units. As
illustrated in Fig. 1, three VMs are placed in the same node
(PM), where we observe with unused memory, i.e., stranded

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

memory (grey box) even when CPU dimension is fully
packed. If oversubscribed, additional VMs can be allocated
reducing stranded memory. Hence, we focus on vCPU
oversubscription. However, designing a suitable oversub-
scription policy is both crucial and challenging— once a
system is oversubscribed, overloading or under-utilization
may happen (Baset et al., 2012) arbitrarily.

Challenges: (1) Benefits vs Risk - Aggressive policy leads
to denser VM packing and may cause arbitrary overload-
ing in cloud (Williams et al., 2011),leading to higher risk
towards user experience and revenue losses through com-
pensations (Wittman, 2014). Conservative policies result in
redundant capacity and inefficient resource usage (wastage).
(2) Dynamic patterns - Demand and utilization patterns
vary across time (VMs, users, services/groups). Static poli-
cies cannot adapt to such dynamic load patterns (Cortez
et al., 2017). Designing adaptive policies is also not trivial
since forecasting just user demand pattern is not enough. (3)
Policy Granularity - Demand may vary with granularity,
i.e. at what level the oversubscription is enforced (per VM,
subscriptions/users, or user groups).

The problem: We address the problem of vCPU oversub-
scription by alleviating overloading risks while maximiz-
ing utilization against temporally varying demand patterns
across time and granularity. Existing research usually deals
with specific scenarios instead of principled generalized
formalism. Some approach oversubscription in cloud plat-
forms as online constrained bin-packing problem (Baset
et al., 2012; Breitgand & Epstein, 2012; Householder et al.,
2014), focusing more on resource allocation rather than
oversubscription policy. Others propose migration strategies
to mitigate overload situations (Wang & Tianfield, 2018;
Li, 2019). Yet, a generalized oversubscription policy, that
addresses the above challenges is under-explored.

Oversubscription, resource allocation, scheduling, and op-
timal packing are all related concepts in resource manage-
ment. However, they each address different aspects of the
problem. Oversubscription occurs when the demand ex-
ceeds the available supply, whereas resource allocation and
scheduling deal with management and mapping of demand
to resources within a system. Optimal packing, on the other
hand, is an approach that seeks to minimize fragmentation.

Proposed Solution: In this paper, we pose the adaptive
oversubscription question as a sequential decision-making
problem with resource limits. Predicting future utilization
behaviors given historical observations through traditional
supervised learning approaches is insufficient since they are
unaware of the interactions between the users and the envi-
ronments (De Haan et al., 2019). Alternatively, traditional
online reinforcement learning (RL) with constraints (Garcıa
& Fernández, 2015), it is challenging to optimize different
competing objectives with convergence guarantees, due to

non-convexity (Achiam et al., 2017; Paternain et al., 2019;
Mazyavkina et al., 2021). Also, it is not practically feasible
to train RL policies online on deployed systems. Imitation
learning (IL), however, can solve MDP constraint prob-
lems (Hussein et al., 2017) from offline telemetry where the
expert’s policy induces the constraints by nature. In partic-
ular, we propose a prototypical imitation learning method
(PROTORAIL) that learns to take actions by a set of learned
prototypes, where prototype is a data instance that is repre-
sentative of an equivalence class of expert trajectories (Kim
et al., 2016; Molnar, 2020). Hence, our approach can lever-
age approximate symmetries in patterns, allowing us to
learn adaptive policies for any granularity. One caveat is
that the utilization data is usually noisy or sparse, result-
ing in sub-optimal prototypes and policies. Facilitated by
the interpretability of prototypes, we leverage efficient ac-
tive knowledge-in-the-loop infusion to de-risk the policies
against overloading.

Contributions and Impact: We make the following con-
tributions: (1) We propose a novel prototypical imitation
learning approach to solve the vCPU oversubscription ratio
prediction problem for cloud system to maximize utilization
(COGS1) efficiency and minimizing risk; (2) Efficient active
knowledge-in-the-loop (KITL) training technique mitigates
overloading risk from systematic noise; (3) Extensive evalu-
ations, both offline and in practice on Microsoft’s internal
cloud, show how PROTORAIL learns oversubscription poli-
cies with ≈ 0% risk and ≈ 7 to 10% higher benefit; (4) We
also show how our PROTORAIL seamlessly generalizes to
other domains beyond cloud services. Airline ticket over-
booking dataset is curated from static periodic reports of
U.S. Department of Transportation (DOT).

2 PRELIMINARY AND BACKGROUND

2.1 Optimal oversubscription problem

We formally describe optimal oversubscription problem as
identifying optimal oversubscription rate ζ∗e |0 ≤ ζe ≤ 1,
where ζe = Ae/ℜe is the fraction of requested virtual re-
sources (ℜe) by an entity e ∈ E (a VM, or a user) that is
actually allocated (Ae) by the cloud platform. We need to
optimize on two competing objectives, “COGS benefit” β
and “overloading risk” χ.

Semantically, benefit β is a function of denser VM packing
and reduction in total provisioned nodes due to more har-
vestable stranded vCPUs made available better ζ. But that
cannot be computed at offline training time. We present a
simpler formulation tracking cost of physical CPU cores wrt
harvested vCPUs, β({ζe}e∈E) =

∑
e∈E(1−ζe).ℜe×k×C,

where k ∈ R is physical cores per vCPU and C is the cost

1Cost Of Goods Sold a well-known concept in service/product
industry (Franklin et al., 2019)

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

of a physical core. The risk of overloading arises if ζ is
too low, causing the allocator to pack too many requests
into a node, leaving no room for scaling up in case mul-
tiple VMs peak simultaneously. Thus risk χ({ζe}e∈E) =∑

η∈N I(
∑

e∈Eη
Ue.k ≥ size(η)) is the sum of node over-

load indicators, where Ue is the usage rate and N is the set
of nodes. Hence, the optimization problem becomes,

ζ∗ = argmax
{ζe}

β({ζe}e∈E) + argmin
{ζe}

χ({ζe}e∈E) (1)

There is no closed form solution to this problem. Also,
ζ∗ is not one value but adaptive values across time
based on demand patterns and granularity. We could
learn a policy π∗ = P (ζ∗|usage, time, . . .) via on-
line RL. But online RL methods (value-based or pol-
icy gradient) maximize some expected cumulative return
maxa∼π Es∼T (s|s,a)[

∑T
t=t Rt|S = s,A = a]. In our con-

text, we cannot reliably and efficiency compute/sample the
return/reward (multi-objective combinatorial β vs χ) on-
line. We also cannot safely train RL policies online on
deployed live cloud. We leverage imitation learning based,
PROTORAIL, to learn the policy from offline telemetry.

2.2 Prototype theory and its importance

Prototype theory emerged with the work of psychologist
Eleanor Rosch (Rosch, 1973). In prototype theory, any given
concept has a real-world example that best represents it. For
instance, for the concept fruits, an apple is more frequently
cited than a durian. Hence the presumed natural prototypes
are central tendencies of the categories. Prototype theory has
been applied in machine learning (Kim et al., 2016), where
a prototype indicates a data instance that is representative
of an equivalence class of samples (Molnar, 2020).

While there are many approaches to find prototypes, any
clustering algorithm that returns actual data points as clus-
ter centers is a good approximation. Harel et al. (Harel &
Radinsky, 2018) uses generative model-based clustering to
assign central points as prototypes. ProSeNet (Ming et al.,
2019) leverages constraints to learn simple, diverse, and
sparse prototypes with a sequence encoder which loosely
inspires our work. However, to our best knowledge, lever-
aging prototypes in IL is a novel area and can help achieve
ideal oversubscription granularity and better interpretability.

Why? In real cloud systems, there is no real ground truth
on ideal oversubscription. Hence we exploit historical work-
load/VM telemetry as expert (training) trajectories, and CPU
usage as proxy labels, assuming (ζe ∝ Ue). However, us-
age/demand patterns vary across granularity and impact
policy choice. Key idea is to smartly leverage different
equivalence classes of approximately symmetric vCPU us-
age patterns via prototypes. Oversub. policy is probabilistic
estimate based on nearest prototype’s policy for given en-

Figure 2. PROTORAIL overview

tity/context. IL with prototypes allow for interpretable and
effective oversubscription.

2.3 Active Knowledge-guided learning

Why? Sample sparsity or label noise (our case) result
in highly sub-optimal models and hence arbitrary risk.
Knowledge-guided training leverage domain knowledge
beyond data for better risk cognizance. The most generic
formulation of knowledge is an inductive bias (πknow) that
pushes sub-optimal models (distributions) learned from
noisy observations towards, possibly unknown, true dis-
tribution; π∗(·) = απdata(·)⊕ (1− α)πknow(·), where π∗ is
the optimal distribution and α is a trade-off.

Such knowledge may have 2 modes — (1) passive priors or
constraints, (2) active feedback during the training which we
adopt, as it is difficult to design/compute priors/constraints
in prototypical IL. While conceptually motivated from ac-
tive learning (Cohn et al., 1994), we (and other related
works (Neider et al., 2021; Brown et al., 2018; Deng et al.,
2020)) show that the knowledge we acquire is richer than
mere data labels. Knowledge can be represented in many
ways, such as explanations (Minton et al., 1989), preference
rules (Odom & Natarajan, 2015; Das et al., 2021), pseudo-
labels (Jiang et al., 2018; Goldberger & Ben-Reuven, 2017;
Patrini et al., 2017; Miyato et al., 2018; Lee, 2013). We
represent feedback with simple voting on predictions and
prototypes making our approach efficient and interpretable.
We infuse such knowledge into training via loss scaling
inspired from KCLN (Das et al., 2021). Knowledge can
be elicited from either domain experts (humans) as seen in
above mentioned literature or, more recently, from genera-
tive models such as LLMs (Du et al., 2023; Ma et al., 2024;
Cao et al., 2024).

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

3 METHOD

3.1 Problem Formulation

We formulate the oversubscription problem in Cloud as
a prototypical imitation learning problem. Since there
there are no true labels on oversubscription rate we as-
sume the CPU usage as proxy and use usage trajectories
τe∈E for training. Given input trajectory till timestamp t,
τet = (s1, a1, ..., st−1, at−1, st), The base IL problem is
LIL = D(π(τet)||π(θ)) where π(θ) is the learned policy.
and π(τe) is the expert policy induced by training data.
The expert policy distribution can be different at different
granularities. For example, CPU usage patterns of similar
distribution across different VMs/users/groups etc. or co-
located in the same region or serve same customer base.
Thus trajectories representing equivalence classes of CPU
usage patterns with approximate symmetry can be consid-
ered as different prototypes. Prototypical imitation learning
aims to identify these usage prototypes, then predict ideal
oversubscription via referring the nearest prototypes based
on the current context.

Definition 1 (Prototypical Imitation Learning). Formally
prototypical imitation learning as a kind of IL that learns
an oversubscription policy πθ by aligning with a reference
prototype trajectories argminpi∈P πθ ⇝

Distance
πpi . Each

prototype pi ∈ P intuitively represents equivalence classes
of patterns and prototypical IL learns a metric space in
which decision-making is conditioned on the distance to the
policies induced by prototypes. New prediction is computed
and explained by closest prototype trajectories.

3.2 Overview of Prototypical Imitation Learning

The architecture of Prototypical Risk-cognizant Active
Imitation Learning (PROTORAIL) is shown in Fig 2. There
are three main components: (1) discover prototypes, where
we classify the trajectories into K groups and learn proto-
typical representations pk; (2) learn πtheta by aligning with
its similar prototypes at different states; (3) obtaining active
feedback from the knowledge-in-the-loop for risk-cognizant
policy reducing ↓ χ(ζ) while enhancing benefit ↑ β(ζ).

For input trajectory τt, the trajectory encoder f maps τt into
an embedding vector h = f(τt), h ∈ Rm. The encoder
can be any sequence encoder, e.g., LSTMs or Transformers.
The prototype layer p contains K prototype embeddings
P = {p1, ..., pK}, where each pk ∈ Rm have the same
length as h. This layer scores the similarity between h and
each prototype pk. We consider L2 distance metric as the
similarity function for simplicity. With the computed simi-
larity vector [sim(f(τt), p1), ..., sim(f(τt), pK)], the policy
layer π computes the action with a linear layer with sigmoid
activation. In the end, an KITL module is leveraged to refine
PROTORAIL for better interpretability and performance by

validating and refining the prototypes.

3.3 Prototype Discovery

The prototype is defined as the representative instance τE,k

selected from a class of expert trajectories. Specifically, the
trajectory encoder is shared for encoding τt and τE,k to the
same embedding space, i.e., pk = f(τE,k) and h = f(τt).
Note that τE,k is the full expert trajectory and we omit the
time subscript. We consider three aspects as part of the
objective for learning prototypes 1 , i.e., representative,
diversity, and interpretability.

For representative aspect, we aim to learn prototypes that
can well represent a subset of trajectories with the regular-
ization term Lrep. It encourages a clustering structure in the
embedding space by minimizing the L2 distance between
an encoded trajectory and its nearest prototype embedding:

Lrep =
1

K

∑K

k=1

1

|Dk|
∑

τ∈Dk

||pk − f(τ)||22, (2)

where Dk indicates a subset of trajectories that could be
represented by pk.

Now, to improve the diversity and reduce redundancy
among prototypes, the term Ldiv penalizes the prototypes
that are close to each other:

Ldiv = − 1
KC2

∑K

i=1

∑K

j=i+1
||pi − pj ||22, (3)

where KC2 = K!
2!(K−2)! .

To give interpretability, we assign one expert trajectory in-
stance τE,k as one prototype via Lint. Then, each prototype
embedding can be explained by a real-world instance.

Lint =
1

K

∑K

k=1
||pk − f(τE,k)||22, (4)

where τE,k is the nearest expert trajectory instance to pk,
i.e., τE,k = argminτE∈T ||pk − f(τE)||22 and T is the set
of expert trajectories.

3.4 Imitation Learning over Prototypes

π(a|τt,P) is the policy layer that learns to take an action
aligning with the prototypes 2 from the experts’ policy:

π(a|τt,P) = ϕ([sim(f(τt), p1), .., sim(f(τt), pK)]) (5)

where P = {p1, ..., pK} is the set of prototypes embed-
dings, ϕ is a linear layer with sigmoid activation, and
sim(f(τt), pk) = −∥f(τt)−pk∥22 is the negative Euclidean
distance measuring the similarity between the embedded
vector and the prototype embedding pk and a = ζ

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

We consider prototypical imitation learning with two base
imitation learning models to learn the policy, i.e., behavior
cloning (BC) and adversarial imitation learning (AIL).

The goal of BC is to mimic the action of the expert at each
time step via supervised learning.

LIMBC =
∑

τE∈T

∑
(sE ,aE)∼τE

[πE(aE |τE
t) log π(a|τt,P)],

(6)

where τE is the expert’s trajectory, πE is the expert policy.

On the other hand, the goal of AIL is to minimize the JS
divergence between the expert trajectory distribution and
trajectory distribution generated by our policy.

LIMAIL = DKL

(
ρπ∥

ρπ + ρπE

2

)
+DKL

(
ρπE∥ρπ + ρπE

2

)
,

(7)

where ρπ and ρπE are discounted occupancy measures of
our policy π and the expert policy πE .

In summary, the full loss function we are minimizing is:

LFull = w1 · Lrep + w2 · Ldiv + w3 · Lint + w4 · LIMloss

(8)

where LIMloss
is the imitation learning loss with either BC

or AIL, and w1, w2, w3, w4,∈ [0, 1] are hyper-parameters
to balance the weights of the three kinds of loss. We conduct
grid-search to determine the value of these hyper-parameters
(shown in Appendix).

3.4.1 Reinterpretation as a Quadratic Model

The policy π is equivalent to a quadratic model with particu-
lar parameterization. By plugging in the similarity function,
Equation 5 can be re-written as,

π = −b1∥f(τt)− p1∥22 − ...− bK∥f(τt)− pK∥22 (9)

where bk, k = 1, ...,K are the values of the linear neurons
in the fully connected layer. By checking each term in π,
we can see its linear form:

−bk∥f(τt)− pk∥22 = −bkf(τt)
T f(τt)+2bkp

T
k f(τt)− bkp

T
k pk
(10)

where the first term is a quadratic term with regard to
f(τt), the second term can be treated as wT

k f(τt) where
wk = 2bkpk and the final term can be treated as a constant
term with regard to f(τt).

Starting from the above observation, we can treat the action
as a summation of K quadratic functions with the same
sign in quadratic coefficients with regard to f(τt), which
means the relationship between the action and f(τt) can be
decomposed to at most two pieces and within each piece
the relationship is monotonic. This observation makes our
learned policy easier to interpret.

Figure 3. Example plot: Risk increases due to noisy prediction of
oversub rate ≤ usage or COGS benefit decreases

3.5 Risk-cognizance via active knowledge-in-the-loop

Sample and label sparsity and noise leads to sub-optimal
prototype embedding, prototype selection, and policy model
resulting in either high risk when predicted oversubscription
rate goes too close or lower than actual usage or loss of
COGS benefit (Fig. 3). Our efficient KITL module 3
leverages additional knowledge via active feedback to refine
the learned noisy “policy over prototypes”. One essential
aspect is that the — (i) The query framework must elicit
relevant knowledge with minimum query budget

∑T
t=1 |Qt|,

since – a domain expert’s (cloud operator) time and effort is
expensive and state-of-the-art LLMs also have token/access
budgets or efficiency concerns (ii) Appropriate infusion of
obtained knowledge into learning to shape policies.

We cannot directly minimize query budget while expecting
effective knowledge infusion. We optimize the query sched-
ule instead. We implicitly get most relevant knowledge from
a knowledge source κ with minimum feedback calls. κ
can be a domain expert with rich understanding of cloud
resources and/or LLMs which are effective in reasoning
about generic temporal patterns. Active feedback can be of
two forms: (1) feedback about the quality of prototypes -
embedding, alignment and diversity, (2) feedback about the
risk of predicted actions.

3.5.1 Query Framework (active knowledge elicitation):

Posing focused queries at relevant points to κ is essential
for getting useful and relevant knowledge. In a traditional
active learning setting, just prediction/label uncertainty is a
sufficient heuristic to identify relevant query points. How-
ever, in our context, we need richer feedback on both rel-
evant prototypes and output actions. Thus queries at step
t is a set of tuples Qt = {⟨pqt , aqt⟩|pqt ∈ Pqt , aqt ∈ Aqt}
that comprises a set of prototypes embeddings Pqt ⊆ P
and predicted action(s) Aq(t) that need feedback. Q(t) = ∅
signifies there is no query at that step. Now Pqt = Pµ ∩Pd

where Pµ is defined as the set of uncertain prototypes,

Pµ = {pk ∈ P|µ(pk) ≥ Up},
µ(pk) = H(P (||f(τ)− pk||22)), τ ∈ Dk

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

where Up is the uncertainty threshold and uncertainty is the
prototype cluster entropy H via the distribution P (·) induced
over L2 distances. Pd comprises prototype embeddings with
‘top-N’ average distance of the form,

Pd = argmax
p⊂P

(
1

|Dk|
∑

τ∈Dk

||f(τ)− pk||22
)
, |p| = N

where p |= pk is the top-N set. Now, aqt is identified via
both prediction uncertainty µ(aqt) = H(π(a|τt,P)) ≥ Ua

(Ua is the action uncertainty threshold), and oversubscrip-
tion risk which indicates if output action is less than the
expert action a < aE . Note that lower oversubscription ac-
tion/rate means higher risk (cf. Section Domains(Datasets)).

This query formulation is aligned with the interpretable
quadratic form of policy (sec. 3.4.1). The square term in
trajectory embeddings (Eqn. 10) may lead to higher risk
from label noise requiring action feedback. Whereas,
feedback on prototypes pk essentially controls the coeffi-
cient of the second term 2bkp

T
k f(τt).

3.5.2 Feedback representation:

Given Qt, κ can provide feedback on prototype quality
and membership/diversity or on action predictions. Feed-
back on prototype quality at step t for a prototype embed-
ding pj is an up/down vote (F(pk|t) =↑ / ↓= +1/ − 1).
Then we use cumulative feedback (over previous iterations)
F(pk) =

∑t
t′=1 F(pk|t′). We obtain action feedback F(a)

in a similar fashion. Feedback on prototype diversity is
complicated. For a given pair pi, pj , expert may choose to
up/down-vote the pair or merge pi, pj or split them further.
(1) If the prototypes are merged, it gets the mean of the
embedding vectors of p⃗k ← 1

2 (p⃗i
⊕

p⃗j), (2) if a prototype
pk is split, the new prototype is initialized with embedding
f(τ) : maxτ∈Dk

||pk − f(τ)||22 and retrained.

3.5.3 Prototype/policy refinement:

In our context it is difficult to design either inductive bias
distribution or proper constraints from feedback. So we
allow the feedback to control and scale the loss via exponen-
tial ‘advice potential gates’ (cf. K-CLN (Das et al., 2021)).
Advice potentials selectively alter the loss such that training
moves in the direction that is expected to produce better
model parameters.

Definition 2 (Advice potential gate Φ). An advice poten-
tial gate is a product term of an exponential form Φ(x) =
e−G(F(x)) where −∞ ≤ F ≤ +∞ is the cumulative feed-
back. G scales the unbounded (cumulative) F to [−1,+1]

With the available feedback over a prototype (F(pk)), action
(F(a)) or between prototypes (F(pi, pj)) we modify the loss

function of PROTORAIL in Equation 8 as,

L′
Full =w1 · Lrep × Φ(pk) + w2 · Ldiv × Φ(pi, pj)

+w3 · Lint × Φ(pk) + w4 · LIMloss
× Φ(a), (11)

where operator × takes effect on related prototypes/actions
when computing loss. Advice potentials upscale or down-
scale the relevant loss components as per cumulative feed-
back and adaptively control their amplitude, appropriately
navigating the loss landscape towards de-risked models.

Impact of active knowledge-in-the-loop. Active KITL

Figure 4. Zoomed portions in Fig 3 after active KITL refinement.
We get de-risked (≈ 0) policy [left] w/ increased benefit [right]

softly guides the selection and learning of prototypes that
represent diverse oversubscription policies (Figure 2) lever-
aging κ (humans or generative AI). Intuitively, prototypes
project decision space (actual ζ) into a lower dimensional
manifold. So, feedback over prototype quality and diversity
as well as actions gives a much richer knowledge to strongly
de-risk, χ({ζe}) ↓, policies (Fig 4). Intelligent query sched-
ule elicits active feedback on prototypes or predicted actions
that need more information/help (knowing-what-it-knows),
thus minimizing budget

∑T
t=1 |Qt| implicitly.

4 EXPERIMENTS

We empirically evaluate our method on virtual CPU over-
subscription scenario in Cloud Sytstem cloud platform. Ad-
ditionally, to highlight the generality of PROTORAIL we
also evaluate on a novel airline ticket overbooking domain
described later. We collect real data from these domains
and propose respective simulators for evaluation that are
described next.

4.1 Domain (Data)

4.1.1 Primary: vCPU Oversub. in Internal Cloud.

We evaluate with real data (de-identified) from cloud plat-
form for internal users, i.e., owners of Microsoft’s services
and applications. We collect two-week data of VM features,
including the usage of vCPU, memory, and network, that be-
long to 30 randomly sampled services. As the vCPU usage
has a lot of fine-grained variances, we take the peak usage
in the one-hour bucket as the representative data point. Note
that in Figure 1, VMs are allocated onto nodes, and VMs
from different services can be collocated in the same node.
Then, we propose a simplified allocation simulator that al-
locates VMs via Best-Fit allocation policy (Hadary et al.,

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

2020). VMs are allocated after vCPU oversubscription. For
more details refer to Appendix B.2.

4.1.2 Other: Airline Overbooking

Even though vCPU oversubscription in cloud is the main
focus, our method generalizes to any oversubscription prob-
lem in other domains. We demonstrate that with airline
overbooking. We collect airline passengers’ data from the
overbooking reports of the U.S. Department of Transporta-
tion (DOT). The dataset covers overbooking information
of 32 airline companies in the U.S. from 1998 to 2021 2,
reported quarterly and train GBDT emulator (further details
in Appendix B.2).

4.2 Experiment Setting

State, Action, Reward In our vCPU oversubscription
problem, the state st consists of the feature of the historical
CPU usage rate, users’ memory, CPU, and network requests
qt for each VM, Nodes’ capacity and etc. At time step t, the
action at ∈ [0, 1] indicates the oversubscriptio rate which
indicates we will allocate a VM with at ∗ qt resources. The
reward rt = −ht +mt, where ht indicates the number of
hot nodes and mt indicates the number of saved vCPUs or
remain Core. In the flight tickets oversubscription problem,
the state st indicates the historical sold tickets, the number
of onboarding customers, the number of seats et in the air-
plane. The action at ∈ [0, 1] indicates the oversubscription
rate. The reward function rt = −ct+ot , where ct indicates
the compensation cost and ot indicates the profits. In sum-
mary, the state space is factored with a hybrid feature vector,
including temporal features. The action/decision space is
continuous, i.e., the oversubscription level. This makes our
problem complex to be solved in a straightforward behavior
cloning way. Instead, PROTORAIL embeds into a latent
space of equivalence prototypes and exploiting approximate
symmetries in the trajectory patterns.

Configuration settings of KITL: Some of the settings
of the KITL module as follows, use kitl toggles the
human-in-the-loop feedback system, which is set to True in
experiments. FREQUENCY parameter in the feedback sub-
module of PROTORAIL allows for additional control on the
frequency of queries to the human if needed, which defaults
to 10 iterations. It does not necessarily mean that a query
will always be generated at every 10 iterations. Queries
are subject to the query generation framework (sec. 3.5.1).
However, if this parameter is set to 10 and if≥ 2 queries are
generated between consecutive 10 iterations then extras will
be skipped allowing stricter budgeting. Uncertainty
Threshold Tr, (defaulted to 0.8) in experiments based
on empirical observation.

2https://www.bts.gov/denied-confirmed-space

Other hyperparameters are inherited from the base proto-
typical IL module. KITL experiments on vCPU domain
has been performed with a batch size = 128, which
also the default in base protoypical IL. In case of airplane
ticket overbooking, we performed KITL experiments with
batch size = {32, 64, 128}, all of them giving us the
same results that have been reported in the paper. Base IL
uses are batch size of 1 due to the way the training loop has
been designed for this domain, however in KITL batch size
of 1 does not allow proper prototype uncertainty computa-
tions so we experimented with batch sizes > 1 and we made
sure the performance is not affected. Another important
aspect is the number of epochs/iterations are same as default
values in based code IL (e.g. 300 in vCPU experiments).
However, if a split or merge feedback is given and the
prototype structure is altered, we introduce 30 extra training
iterations after such feedback.

Choice of knowledge source κ . We primarily leverage
human domain experts (cloud operators, developers, and pro-
visioning specialists) as κ for active feedback in de-risking
policy learning in vCPU oversubscription. The choice of
human experts over LLMs is motivated by – (1) LLMs are
computationally heavy to be used for active feedback (2) As
shown later with additional studies that zero-shot (non fine-
tuned) LLMs cannot provide better feedback than human
experts. (3) Compliant LLMs that are needed to experiment
on deployed internal cloud come with token budgets. Thus
designing proper prompts that represent the current proto-
types, predictions, queries to get policy or prototype level
feedback is difficult since off-the-shelf LLMs are not good
at symbolic/logical reasoning yet. We do show some studies
with LLMs as the knowledge/feedback source.

4.3 Experimental Settings

We evaluate our approach on the vCPU oversubscription
as well as the ticket overbooking domains, focusing on the
interpretability and effectiveness from three aspects: (1)
learned prototypes visualization: We visualize prototypes
to analyze the policy learned by our method. (2) Task in-
ference. We show how PROTORAIL learns to compose the
prototypical options to solve both continuous and discrete
control tasks. (3) The performance of PROTORAIL in these
tasks. In particular, we outline two evaluation metrics for
vCPU oversubscription task based on pracitcal behavior, i.e.,
hot node and remain core. Specifically, a node hosts several
VMs (Appendix A) and reserves 15% resources. If the node
CPU utilization is higher than 85%, it is a hot node (Qiao
et al., 2021) which diminishes the performance of hosted
services (risk). Remain core as the other metric measures
the benefits, defined as the remaining cores that could be
potentially used by additional VMs after oversubscription
(benefit). Adapting to the flight ticket overbooking, com-
pensation cost refers to the monetary compensations for

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

Table 1. Results of different learning strategies on vCPU oversub-
scription and generalization to flight tickets overbooking.

Approach
vCPU Oversubscription Flight Tickets

Hot Node/Risk↓ Core (Benefit)↑ Cost/Risk↓ Profit↑
Grid-search 0% 7450 0M 0M
Moving Average 1.39% 7628 0.96M 6.79M
DDPG 1.47% 5030 12.37M 2.35M
Behavior Cloning 1.19% 7870 1.47M 7.21M
GAIL 1.2% 6980 2.74M 4.56M
Dagger (20 time steps) 0.96% 7938 0.47M 6.95M
LSTM 1.27% 7749 1.82M 4.98M
Coop. Multi-Agent RL 0.89% 7897 0.59M 8.17M
PROTORAIL (w/o KITL) 0% 8153 0.31M 8.79M
PROTORAIL 0% 8161 0.14M 13.65M

offloaded passengers (risk), and profit refers to the extra
revenues gained by overbooking (benefit).

Fewer hot nodes or lower compensation costs (χ) with
more remain cores/ more profits (β) on vCPU and airline
oversubscription resp., (shown in Table 1) highlight how
PROTORAIL outperforms baselines. Our detailed ablation
studies in section 4.5 on the learned prototypes and policies
as well as the KITL module highlight how, (1) learned pro-
totypes are interpretable representatives of an equivalence
classes of trajectories and (2) efficient KITL refinement
leads to de-risked policies.

Additional studies on (1) hyper-parameter tuning, such as
evaluations against a discretized sweep over the number
of prototypes/options, (2) pressure tests on reduced “hot-
node ratio level/threshold as well as (3) more details on the
datasets are presented in Appendix3 A.1, A.2 & B.2.

4.4 Comparisons against SOTA Baselines

Baselines: We compared three baselines, (1) Heuristic
policy: Grid-search, which searches for the overall over-
subscription rate to improve the benefits by reducing the
costs/risk. Moving average, which averages the historical
usage rate as the current time step’s oversubscription action.
(2) Imitation learning: BC (Pomerleau, 1991), GAIL (Ho
& Ermon, 2016) and human-guided IL such as Dagger (with
20 steps of human guidance). (3) Reinforcement learn-
ing: DDPG (Lillicrap et al., 2016) for continuous action
space. We also compare against two recent, closely re-
lated frameworks for VM provisioning, namely, (4) LSTMs:
ScroogeVM (Jacquet et al., 2024) which uses LSTM-driven
supervised learning of usage patterns, and (5) Coop. Multi-
agent RL: Cooperative MARL framework (Sheng et al.,
2023) for optimizing oversub. strategies, treating each VM
as an agent with cooperative updates.

Results: We run five seeds to conduct Wilcoxon signed-
rank tests to check the statistical significance of the results.
It shows that all the p-values of Wilcoxon signed-rank tests

3All Appendices at https://aka.ms/protorail

at 95% confidence level are smaller than 0.05. We fur-
ther observe that: (1) DDPG (RL) fails in both scenarios
as it is hard to optimize two competing objectives simul-
taneously in standard RL. (2) The heuristic policies, i.e.,
Grid-search and Moving Average, show robust performance
on vCPU oversubscription. But Grid-search fails on airline
overbooking due to the high risk of that problem, i.e., the
ticket sales are highly dynamic, and a static oversubscrip-
tion rate fails to adapt to different situations. (3) BC beats
GAIL, possibly because BC has better sample efficiency
and, in oversubscription scenarios, training samples are lim-
ited. Furthermore, the human-guided approach (Dagger)
shows the second-best performance, demonstrating the ben-
efits of human guidance in this domain. We set 20 steps of
human guidance in Dagger, which is fair enough because it
accounts for almost 1/6 of the trajectory length on average.
Also, in our model, the number of queries to humans in
KITL is much smaller than 20 (e.g., 6 queries on average
in the vCPU experiments and 8 queries on average in the
Air Ticketing experiments). (4) Sequential methods such as
LSTM models fail to do anything remarkable, and, in fact,
the risks are quite high with no improvement in benefits.
Multi-agent RL does try to minimize the risk as far as possi-
ble, but with no improvement in benefits. However, that is
not even at par with PROTORAIL. (5) PROTORAIL outper-
forms all, both with and without KITL, as it captures differ-
ent classes of patterns via learning a set of prototypes, and
KITL refinement of such classes further improves benefit
(Core/Profit) and mitigates risk (Hot node/Cost). Although
grid-search, the most conservative policy, is at par in terms
of risk mitigation, PROTORAIL achieves both the least risk
and highest benefit in both domains.

4.5 Additional Studies

4.5.1 Analysis of the Learned Prototypes:

We learn 3 and 4 prototypes in vCPU oversubscription and
airline overbooking, respectively. PROTORAIL learns these
prototypes and represents them via finding the nearest tra-
jectories. In Figure 5(a), different sub-figures show the
trajectories in different prototype clusters. The prototype
embedding is highlighted, and the trajectories are in trans-
parent color. We analyze the interpretability of the policy via
the learned prototypes: prototypes with hourly patterns are
email/work-related services (P0), non-user-facing services
that do not show temporal patterns (P1), and social me-
dia/gaming services (P2). This demonstrates the capability
of PROTORAIL in learning interpretable prototypes.

As for airplane tickets (Figure 5(b)), PROTORAIL learns
4 prototypes with different trends. P0 indicates policies
within a stable constant range. P1 indicates continuously in-
creasing levels with occasional drops. P2 indicates policies
that are sensitive to the environment and quickly increase

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

(a) Prototypes in vCPUs oversubscription

(b) Prototypes in airplane tickets overbooking

Figure 5. Learned prototypes vizualized on top of equivalence
classes of usage patterns they represent

action value. P3 indicates a smooth increase over time.

Limitation: Airline ticket data does not show a clear pattern
due to demand drop in COVID-19 (Amankwah-Amoah,
2021) and change in the distribution over booking patterns.

4.5.2 Analysis of active feedback:

As Table 1 illustrates, KITL module further de-risks (and
enhances benefits) policies with minimal queries to the
human by, (1) Querying only at relevant stages and (2)
Effective refinement. In vCPU domain, we initialize with
6 prototypes, as per prior insights, which may do well
during early stages of training. However, once the learning
plateaus we observe, (1) for prototype P1 cluster, the
predicted oversubscription rate remains significantly higher
than usage (2) in P5, predicted oversubscription is less
than usage, an overloading risk (3) P4 has almost no
services in the cluster, hence redundant. PROTORAIL
automatically detects such nuances and poses targeted

queries, at only certain stages, to actively get feedback,
as shown below. Note that this is one particular example
during one training run. A query can vary in “what” is
being asked about and “when” during the training process is
the query fired, based on how earlier queries were answered.

STEP 110; Query: P=[5, 1]=[0.9904377

1.0770873] seem unstable. Please

suggest: (1=good, 0=none, -1=bad OR

"split ⟨prototype#⟩").
$ input: 1 = -1

STEP 240; Following prototype pairs seem

redundant [(4,1), (2,0), (2,5)]. Wish to

merge any (merge ⟨prototype#⟩)?
$ input: merge 4 1

It automatically identifies P5/P1 as problematic and P4
as redundant (symmetric with P1); probes about possible
merging. Feedback on predicted actions with overloading
risk queried and obtained similarly. In our experiments, the
total number of queries required to reach stable performance
was ≤ 10 showing active feedback efficiency. The feedback
is then used to jointly refine both the prototype member-
ships and the embedding function. Figure 5(a)/5(b) shows
how # prototypes have reduced to 3 and 4 post-refinement.
Additionally, the queries may be sensitive to hyperparam-
eters such as thresholds(Up & Ua). So we performed a
grid search and observed that any threshold in a range of
(0.5, 0.75) led to a stable performance on average. Reported
results are with 0.55 as thresholds.

4.5.3 LLMs as knowledge source κ

“Cost of domain experts” is common concern for human-
knowledge guided learning and so, LLMs could prove to be
good alternative knowledge source κ . However the cost is
a holistic measure of the difference between β and monetary
value of expert’s time, which is impossible to track. A
practical measure is query budget. Our analysis shows a
minimal number of queries (6-8), significantly lower than
other methods, suggesting that the expert’s cost is offset by
substantial benefits and risk reductions.

But we have also analyzed if LLMs are reasonable κ for
policy and prototype refinement. Preliminary studies (ta-
ble 2) indicate LLMs offer promising results in terms of
clustering accuracy and response speed, yet require fur-
ther fine-tuning and prompt engineering to fully leverage
their potential. Note that clustering accuracy as a metric
has a certain amount of ambiguity. There exists cluster
quality measures Davies-Bouldin index that quantify in-
tra and inter cluster densities together. However, such
measures did not prove useful in our case because the
notion of usage prototype quality needs to be domain-
aware. Thus, we use expert evaluations to measure ac-

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

Table 2. Perf. Comparison between Human Experts and LLMs
Metric Human LLM
Accuracy in Clustering ↑ 98% 87%
Answers per Second ↑ 0.35 0.57
Prototype Restructuring ↑ 30% 21%
Risk Mitigation ↑ 100% 46%
Overhead Cost ↓ CH CLLM

curacy here. We use an open source LLM, Llama-3.1-
70B (Meta, 2024), in zero-shot fashion without any task-
specific fine-tuning. The prompts were designed but com-
bining usage telemetry clusters, prototypes or predictions
and queries. where CH (Human Cost) would be calculated
as [Query budget × Expert time/query × $/unit time] and
CLLM (LLM Cost) as [Hosting $ + ((Compute $/token +
API $/token)× tokens/query)× Query budget].

These findings underscore the continued value of human
input in risk-cognizant training, while also highlighting
the potential of integrating LLMs as low-latency low-cost
knowledge sources complementing domain experts. Also
finetuned LLM on oversubscription domain could do a better
job than querying zero-shot ones. Further experimentation
with more advanced API based models like GPT4-o series or
task-specific tuned versions of the models is an immediate
future work.

5 APPLICATION IN PRACTICE

The vCPU oversubscription policy learned by PROTORAIL
was successfully deployed in several scenarios (ser-
vices/applications/features) within Microsoft’s internal
cloud services, but with limited blast radius. Our policy
improves vCPU utilization by 9.4% and maintains a 0%
hot node rate. The following case study demonstrate the
effectiveness on real workloads.

5.1 Case Study

0

200

45
%

Our Method Baseline

0

100

55
%

0

50

65
%

0

20

75
%

0 20 40 60 80 100
Time Step

0.55

0.58

D
en

si
ty

Figure 6. A/B test Results

We illustrate comparison between our policy and strongest
baseline, behavior cloning on Microsoft’s internal cloud.

The observation was made from one of services over a
two-week period. This service has been deployed in ap-
proximately 300 clusters. Since these are real workloads,
although the usage rate telemetry exhibit patterns it has a
lot of sample noise as well. Appendix B.1 discusses more
details about usage patterns.

The results are shown in Figure 6. The y-axis shows the
cumulative number of hot nodes during the test time at dif-
ferent hot thresholds (45%, 55%, 65%, and 75%). Density
is the average node density, calculated as usedCPU

totalCPU , which
corresponds to the remaining core capacity. Lesser hot
nodes and larger densities indicate a more effective over-
subscription policy. We observe that (1) our method results
in fewer hot nodes and a larger node density. The risk-
congizant policy helps to quickly adjust the policy when hot
nodes are detected. (2) we see that a larger node density
does not necessarily mean more hot nodes. With the right
oversubscription rate and risk-cognizant mechanism, we
can effectively coordinate VMs over the long term. This
indicates significant potential for optimizing the oversub-
scription policy. In fact, there are no hot nodes when the
threshold is set to 85%, and less than 10% of clusters have
a usage rate above 75%.

Table 3 also abstracts our VM-level benefits and risk obser-
vations on our internal deployment, where “VMs w/ β” are
VMs which show ore than 1K vCore savings, and “VMs at
Risk” are VMs running on hot nodes, BRR is the Benefit
to Risk Ratio. This result here is computed from two-week
long observations on the clusters of only 2 regions and
not all 300 clusters. In the approaches “Manual” indicates
manually decided oversubscription, “Heuristics” indicate
statistical non-adaptive prediction model based on collected
heuristics. We see that PROTORAIL has the best BRR.

Table 3. Observations from deployment on internal cloud
Method MSE ↓ VMs w/ β ↑ VMs at Risk ↓ BRR ↑
Manual –NA– 109 14 7.79
Heuristics 0.065 3502 185 18.95
PROTORAIL 0.042 3542 113 31.34

6 RELATED WORK

Guided imitation learning. Learning decision-making policy
can be challenging in the presence of (1) “systematic noise”
which include sample/feedback sparsity/noise, delayed sig-
nals (Rauber et al., 2021), cognitive bias, sub-optimal tra-
jectories, etc.),

Pure data-driven learning can be risky. Even in offline
training, such as IL, inverse RL, or offline RL, trajecto-
ries could be noisy and catastrophic failure can occur in
out-of-distribution cases. Knwoledge-guided IL is an active
area of research. Some approaches exploit prior knowl-

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

edge (Syed & Schapire, 2007; Kunapuli et al., 2013), some
design constraints based on domain knowledge (Eppner
et al., 2009; Perico et al., 2019; Kim & Park, 2018) or use
reward-shaping functions (Judah et al., 2014) and some use
statistical models as priors (Englert et al., 2013). Brantley
et al. (Brantley et al., 2020) propose an active learning form
of IL with imperfect human guidance and is the closest in
spirit to our formulation. Guided Behavior Cloning, DAG-
GER, and HgDAGGER (Sasaki & Yamashina, 2021; Ross
& Bagnell, 2010; Kelly et al., 2019) are some popular in-
teractive human-in-the-loop IL frameworks; however, their
feedback elicitation is naive, inefficient and not suitable for
rich multi-level feedback.

Interpretable Modeling. Interpretable modeling mainly falls
into two ways (Molnar, 2020): (1) intrinsic explanation
which transparentizes the model by restricting the complex-
ity, e.g., decision tree or case-based model (Li et al., 2018;
Ming et al., 2019; Kim et al., 2016), (2) post-hoc explana-
tion which is achieved by analyzing the model after training

(Mott et al., 2019), distilling a black-box policy into a
simple structure (Verma et al., 2018). A set of post-hoc
imitation learning approaches were proposed for generat-
ing meaningful policy. However, the intrinsic explanation
model is sometimes desirable since post-hoc explanations
usually do not fit the original model precisely (Rudin, 2019).
Prototype learning (Newell et al., 1972; Cohen et al., 1996;
Kolodner, 1992) which draws conclusions for new inputs by
comparing them with a few exemplar prototype belongs to
the intrinsic explanation method.

7 CONCLUSION

We presented our novel prototypical imitation learning
framework with active knowledge-guided refinement (lever-
aging human domain experts) that addresses a critical
decision-making problem of adaptive oversubscription with
competing objectives of efficient capacity utilization with
minimal risk. We show via extensive and ablation stud-
ies on real Microsoft’s internal could service how learned
prototypes discover implicitly interpretable classes approxi-
mately symmetric demand patterns. This results in effective
oversubscription ratio at any granularity, i.e. VMs, services
or any other grouping. Efficient active KITL refinement of
prototypes and actions substantially de-risks policies with
enhanced COGS benefit. Through extensive empirical evalu-
ation and case studies we have exhibited how our framework
is extremely effective on cloud platform and can be general-
ized seamlessly to other oversubscription domains as well.
Our studies also show how LLMs are promising in comple-
ment to domain experts but needs more investigation.

In future, we plan to extend PROTORAIL to other provision-
ing problems with similar properties. We also plan to infuse

knowledge about characteristics of workloads (application
level metrics) running or hosted on these VMs for even
better decision making. Finally a holistic KITL framework
that can leverage both LLMs and domain experts together
organically is of extreme interest to us.

REFERENCES

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International conference on ma-
chine learning, pp. 22–31. PMLR, 2017.

Amankwah-Amoah, J. Covid-19 pandemic and innovation
activities in the global airline industry: A review. Envi-
ronment International, 156:106719, 2021.

Baset, S. A., Wang, L., and Tang, C. Towards an understand-
ing of oversubscription in cloud. In 2nd USENIX Work-
shop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (Hot-ICE 12),
2012.

Brantley, K., Sharaf, A., and Daumé III, H. Active imitation
learning with noisy guidance. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 2093–2105, 2020.

Breitgand, D. and Epstein, A. Improving consolidation
of virtual machines with risk-aware bandwidth oversub-
scription in compute clouds. In 2012 Proceedings IEEE
INFOCOM, pp. 2861–2865. IEEE, 2012.

Brown, D. S., Cui, Y., and Niekum, S. Risk-aware active
inverse reinforcement learning. In Proceedings of The
2nd Conference on Robot Learning, 2018.

Cao, M., Shu, L., Yu, L., Zhu, Y., Wichers, N., Liu, Y.,
and Meng, L. Drlc: Reinforcement learning with dense
rewards from llm critic. arXiv preprint arXiv:2401.07382,
2024.

Cohen, M. S., Freeman, J. T., and Wolf, S. Metarecog-
nition in time-stressed decision making: Recognizing,
critiquing, and correcting. Human Factors, 38(2):206–
219, 1996.

Cohn, D., Atlas, L., and Ladner, R. Improving generaliza-
tion with active learning. Machine learning, 15:201–221,
1994.

Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fon-
toura, M., and Bianchini, R. Resource central: Un-
derstanding and predicting workloads for improved re-
source management in large cloud platforms. In SOSP.
Association for Computing Machinery, 2017. ISBN
9781450350853. doi: 10.1145/3132747.3132772.

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

Das, M., Dhami, D. S., Yu, Y., Kunapuli, G., and Natara-
jan, S. Human-guided learning of column networks:
Knowledge injection for relational deep learning. In
COMAD/CODS, 2021.

De Haan, P., Jayaraman, D., and Levine, S. Causal confu-
sion in imitation learning. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Deng, C., Ji, X., Rainey, C., Zhang, J., and Lu, W. Integrat-
ing machine learning with human knowledge. iScience,
23(11):101656, 2020.

Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel,
P., Gupta, A., and Andreas, J. Guiding pretraining in
reinforcement learning with large language models. In
International Conference on Machine Learning, pp. 8657–
8677. PMLR, 2023.

Englert, P., Paraschos, A., Deisenroth, M. P., and Peters, J.
Probabilistic model-based imitation learning. Adaptive
Behavior, 2013.

Eppner, C., Sturm, J., Bennewitz, M., Stachniss, C., and
Burgard, W. Imitation learning with generalized task
descriptions. In 2009 IEEE International Conference on
Robotics and Automation, pp. 3968–3974. IEEE, 2009.

Franklin, M., Graybeal, P., and Cooper, D. Principles of
accounting. Volume 1: Financial accounting. OpenStax,
2019.

Garcıa, J. and Fernández, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning
Research, 16(1):1437–1480, 2015.

Goldberger, J. and Ben-Reuven, E. Training deep neural-
networks using a noise adaptation layer. In ICLR, 2017.

Hadary, O., Marshall, L., Menache, I., Pan, A., Greeff, E. E.,
Dion, D., Dorminey, S., Joshi, S., Chen, Y., Russinovich,
M., et al. Protean:VM allocation service at scale. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pp. 845–861, 2020.

Harel, S. and Radinsky, K. Accelerating prototype-based
drug discovery using conditional diversity networks. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
331–339, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In NeurIPS, volume 29, 2016.

Householder, R., Arnold, S., and Green, R. On cloud-based
oversubscription. arXiv preprint arXiv:1402.4758, 2014.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. Im-
itation learning: A survey of learning methods. ACM
Computing Surveys (CSUR), 50(2):1–35, 2017.

Jacquet, P., Ledoux, T., and Rouvoy, R. Scroogevm: Boost-
ing cloud resource utilization with dynamic oversub-
scription. IEEE Transactions on Sustainable Computing,
2024.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. Men-
tornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In ICML, 2018.

Judah, K., Fern, A., Tadepalli, P., and Goetschalckx, R. Imi-
tation learning with demonstrations and shaping rewards.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 28, 2014.

Kelly, M., Sidrane, C., Driggs-Campbell, K., and Kochen-
derfer, M. J. Hg-dagger: Interactive imitation learning
with human experts. In ICRA, 2019.

Kim, B., Khanna, R., and Koyejo, O. O. Examples are not
enough, learn to criticize! criticism for interpretability. In
Advances in neural information processing systems, pp.
2280–2288, 2016.

Kim, K.-E. and Park, H. S. Imitation learning via kernel
mean embedding. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

Kolodner, J. L. An introduction to case-based reasoning.
Artificial intelligence review, 6(1):3–34, 1992.

Kunapuli, G., Odom, P., Shavlik, J. W., and Natarajan, S.
Guiding autonomous agents to better behaviors through
human advice. In ICDM, 2013.

Lee, D.-H. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks.
In Workshop on Challenges in Representation Learning,
ICML, 2013.

Li, O., Liu, H., Chen, C., and Rudin, C. Deep learning
for case-based reasoning through prototypes: A neural
network that explains its predictions. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Li, Z. An adaptive overload threshold selection process
using markov decision processes of virtual machine in
cloud data center. Cluster Computing, 22(2):3821–3833,
2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR, 2016.

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

Ma, R., Luijkx, J., Ajanovic, Z., and Kober, J. Explor-
llm: Guiding exploration in reinforcement learning with
large language models. arXiv preprint arXiv:2403.09583,
2024.

Mahapatra, N. R. and Venkatrao, B. The processor-memory
bottleneck: problems and solutions. Crossroads, 5(3es):
2, 1999.

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev,
E. Reinforcement learning for combinatorial optimiza-
tion: A survey. Computers & Operations Research, 134:
105400, 2021.

Meta. https://huggingface.co/meta-llama/
Llama-3.1-70B, 2024.

Ming, Y., Xu, P., Qu, H., and Ren, L. Interpretable and
steerable sequence learning via prototypes. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 903–913,
2019.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka,
D. R., Etzioni, O., and Gil, Y. Explanation-based learning:
A problem solving perspective. Artificial Intelligence, 40
(1-3):63–118, 1989.

Miyato, T., Maeda, S.-i., Ishii, S., and Koyama, M. Virtual
adversarial training: a regularization method for super-
vised and semi-supervised learning. TPAMI, 2018.

Molnar, C. Interpretable machine learning. Lulu. com,
2020.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., and
Rezende, D. J. Towards interpretable reinforcement
learning using attention augmented agents. In Advances
in Neural Information Processing Systems, pp. 12329–
12338, 2019.

Neider, D., Gaglione, J.-R., Gavran, I., Topcu, U., Wu, B.,
and Xu, Z. Advice-guided reinforcement learning in a
non-markovian environment. In AAAI, 2021.

Newell, A., Simon, H. A., et al. Human problem solving,
volume 104. Prentice-Hall Englewood Cliffs, NJ, 1972.

Odom, P. and Natarajan, S. Active advice seeking for inverse
reinforcement learning. In AAAI, 2015.

Paternain, S., Chamon, L., Calvo-Fullana, M., and Ribeiro,
A. Constrained reinforcement learning has zero duality
gap. Advances in Neural Information Processing Systems,
32, 2019.

Patrini, G., Rozza, A., Menon, A. K., Nock, R., and Qu, L.
Making deep neural networks robust to label noise: A
loss correction approach. In CVPR, 2017.

Perico, C. A. V., De Schutter, J., and Aertbeliën, E. Com-
bining imitation learning with constraint-based task spec-
ification and control. IEEE Robotics and Automation
Letters, 4(2):1892–1899, 2019.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural computation,
1991.

Qiao, B., Yang, F., Luo, C., Wang, Y., Li, J., Lin, Q., Zhang,
H., Datta, M., Zhou, A., Moscibroda, T., et al. Intelligent
container reallocation at microsoft 365. In Proceedings of
the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, pp. 1438–1443, 2021.

Rauber, P., Ummadisingu, A., Mutz, F., and Schmidhuber, J.
Reinforcement learning in sparse-reward environments
with hindsight policy gradients. Neural Computation, 33:
1498–1553, 2021.

Rosch, E. H. Natural categories. Cognitive psychology, 4
(3):328–350, 1973.

Ross, S. and Bagnell, D. Efficient reductions for imitation
learning. In AISTATS, 2010.

Rudin, C. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1:206–215,
05 2019. doi: 10.1038/s42256-019-0048-x.

Sasaki, F. and Yamashina, R. Behavioral cloning from noisy
demonstrations. In International Conference on Learning
Representations, 2021.

Sheng, J., Wang, L., Yang, F., Qiao, B., Dong, H., Wang,
X., Jin, B., Wang, J., Qin, S., Rajmohan, S., et al. Learn-
ing cooperative oversubscription for cloud by chance-
constrained multi-agent reinforcement learning. In Pro-
ceedings of the ACM Web Conference 2023, pp. 2927–
2936, 2023.

Syed, U. and Schapire, R. E. Imitation learning with a
value-based prior. In UAI, 2007.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
arXiv preprint arXiv:1804.02477, 2018.

Wang, H. and Tianfield, H. Energy-aware dynamic vir-
tual machine consolidation for cloud datacenters. IEEE
Access, 6:15259–15273, 2018.

Wang, L., Das, M., Yang, F., Du, C., Qiao, B., Dong, H.,
Bansal, C., Qin, S., Rajmohan, S., Lin, Q., Zhang, D., and
Zhang, Q. Coin: Chance-constrained imitation learning
for safe and adaptive resource oversubscription under un-
certainty. In Proceedings of the 33rd ACM International

PROTORAIL: A Risk-cognizant Imitation Agent for Adaptive vCPU Oversubscription In the Cloud

Conference on Information and Knowledge Management,
CIKM ’24, 2024.

Williams, D., Jamjoom, H., Liu, Y.-H., and Weatherspoon,
H. Overdriver: Handling memory overload in an oversub-
scribed cloud. ACM SIGPLAN Notices, 46(7):205–216,
2011.

Wittman, M. D. Are low-cost carrier passengers less likely
to complain about service quality? Journal of Air Trans-
port Management, 35:64–71, 2014.

