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Abstract—In the rapidly expanding domain of cloud comput-
ing, a variety of software services have been deployed in the
cloud. To ensure the reliability of cloud services, prior studies
focus on the prediction of failure instances, such as disks, nodes,
switches, etc. The mitigation actions are initiated to resolve the
underlying issue once the prediction output is positive. However,
our real-world practice in Microsoft Azure revealed a decline
in prediction accuracy, approximate 9%, subsequent to model
retraining. The decrease is attributed to the mitigation actions,
which can result in uncertain positive instances. Since these
instances cannot be verified after mitigation, they may introduce
additional noise into the model updating process. To the best
of our knowledge, we are the first to identify this Uncertain
Positive Learning (UPLearning) issue in the real-world cloud
failure prediction scenario, and we design an Uncertain Positive
Learning Risk Estimator (Uptake) approach to address this
problem. By utilizing two real-world datasets for disk failure
prediction and conducting node prediction experiments in Azure,
which is a top-tier cloud provider serving millions of users, we
demonstrate that our Uptake method can significantly enhance
failure prediction accuracy by an average of 5%.

Index Terms—Failure Prediction, Cloud Systems, PU Learning

I. INTRODUCTION

Failure prediction and mitigation are vital across various
domains, such as cloud computing [1]–[6], autonomous driv-
ing [7] and automatic control [8], where swift and precise
responses are critical for maintaining reliability and efficiency
[9]–[14]. By employing real-time data analysis combined
with predictive models, these fields can proactively manage
potential disruptions, minimizing risks before they escalate
into significant issues and ensuring operational continuity and
safety against unforeseen incidents [15]–[19].

In the context of cloud computing, similar predictive and
mitigation strategies are employed to manage substantial
workloads on platforms, such as Microsoft Azure, Amazon
Web Services, and Google Cloud Platform. These providers
continuously monitor and analyze thousands of metrics across
their cloud infrastructures to deliver high-quality service for
billions of users worldwide [20]–[24]. These metrics enable
the detection and prevention of component failures within the
cloud system, such as memory [25], disk [26], [27], nodes
[28]–[30], and switches [31]. By employing machine learning
and deep learning techniques on these metrics, it is possible
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to predict failures and proactively mitigate them. This not
only boosts the availability and performance of cloud-based
software systems but also reduces operational costs and risks.

At the forefront of cloud system reliability is the prediction
of node failures, a critical step that enables us to anticipate
problems before they fully manifest. Numerous previous stud-
ies aim to design better machine learning models to improve
the performance of cloud failure prediction tasks. Commonly
employed models are used, such as Recurrent Neural Network
(RNN) [32], Long Short-Term Memory (LSTM) [33], Trans-
former [26], and Temporal Convolutional Network (TCNN)
[34]. Prediction is the first step to manage the cloud failures.
Once a prediction indicates a potential failure, swift mitigation
actions are taken automatically to refresh and change the
node’s status. Failure auto-mitigation here means to attempt to
make the failure alert disappear by taking automatic mitigation
actions (e.g., refresh the node) after the failure prediction
is positive, without necessarily diagnosing and fixing the
underlying bugs first. For example, if a computing node
is predicted to fail, we might reboot it automatically [35].
This auto-mitigation alters the node’s status, however, cannot
provide insights into the root cause of the potential failure.
Consequently, we cannot be certain whether the predicted
failure will occur, which we call an uncertain positive instance.

The limitations of these auto-mitigation actions highlight
the need for advanced prediction and mitigation techniques.
Based on our experience with deploying prediction models
for cloud failures in Microsoft Azure, we have observed
significant challenges in updating these models during real-
world online usage. Model updating is the process of re-
training the machine learning model over time (weekly or
monthly) to adapt to the changing cloud environment (new
hardware and software) [36]. An empirical study conducted
on both open datasets and Azure (see Section III), suggests
that the prediction accuracy of updated models may decrease
by about 9% over time because the uncertain positive instances
bring noise to the model updating. This effect is compounded
when using a continuously updated model that accumulates
uncertain positive instances over time.

More specifically, Fig. 1 illustrates a toy example of the
model updating scenario in the cloud failure prediction. The
figure has two parts, i.e., the offline updating and the online
updating. The offline updating is an ideal scenario in which
we can access the oracle of cloud instance status (shown as



Fig. 1. Toy example of cloud failure prediction model with offline updating
and online updating. The prediction model (M) is updated by training with
data in the dashed box in each time stage (T). The number on the top of each
sub-figure illustrates the instance ID.

the disk icons in black color). We may collect the monitoring
metrics and status of the cloud instances in each period (T1,
T2, T3, etc.). Then we train the model (M1, M2, M3, etc.)
in each period without any concern. When it comes to the
online scenario, however, we lack access to the oracle of
instances status after T1, mirroring the conditions of the office
scenario. In practice, we train a model in the T1 and make
online inferences in the T2 stage, some instances (#7, #8, and
#9) are predicted as failure and highlighted in blue. These
instances are subsequently mitigated, and cannot access their
actual status, which is noted as uncertain positive instances.
Finally, together with the known failure instance (#10), we
may retrain the model M2. Clearly, the #7 instance is a False
Positive one that may introduce noise to model M2. Similarly,
we may obtain a less accurate model (#11, #12 are uncertain
positive instances, and #14, #15 are true positive instances) in
the T3 stage since the model noise may be accumulated.

To the best of our knowledge, we are the first to identify
the Uncertain Positive Learning (UPLearning) challenge in
the real-world scenario of cloud failure prediction. The most
closely related research topic to UPLearning is the Positive
Unlabeled Learning (PULearning) [37]–[45]. PULearning is a
machine learning scenario for binary classification where the
training set consists of a set of positively labeled instances and
an additional unlabeled set that contains positive and negative
instances in unknown proportions (so no training instances are
explicitly labeled as negative). The risk estimator-based ap-
proach, which estimates the distribution of negative instances
in the unlabeled set, is widely used to solve the PULearning
problem [38], [39], [45]. However, our UPLearning involves
uncertain positive instances, which are similar to the unlabeled
set in the PULearning scenario, but also includes both positive
and negative instances that system operators investigate after
failures occur (see Section II). As a result, it is infeasible to

directly apply the risk estimator approach used in PULearning.
In this paper, we propose an Uncertain Positive Learning

Risk Estimator (UPTAKE), a novel approach for various cloud
failure prediction models to achieve high prediction accuracy
even with uncertain positive instances. UPTAKE regards uncer-
tain positive instances as both positive and negative through
a specially designed risk estimator during the model updating
procedure. Besides, UPTAKE only improves the loss function
which makes it easy to integrate with various machine learning
models, such as RNN, LSTM, Transformer, and TCNN. To
evaluate the effectiveness of our proposed UPTAKE approach,
we conduct extensive experiments to compare UPTAKE against
three model updating approaches on two public disk datasets,
Alibaba and Backblaze, which both contain tens of thousands
of disks over months. In addition, we apply UPTAKE to the
scenario of node failure prediction in Azure, which is a top-
tier cloud provider and serves millions of customers around
the world. The experiment results on those three datasets
demonstrate that UPTAKE outperforms any other model up-
dating approaches over different prediction models (i.e., RNN,
LSTM, Transformer and TCNN). The F1-scores of UPTAKE
are 45.26%, 70.16%, and 69.33% in scenarios of Alibaba,
Backblaze and Azure, which are 4.85%, 4.17%, and 5.13%
better than those achieved by the best baseline approaches,
respectively.

To sum up, this work has the following contributions:

• We introduce the UPLearning problem in the context of
cloud failure prediction and auto-mitigation, marking a
pioneering effort to tackle this substantial challenge in the
practical deployment of machine learning models in real-
world cloud scenarios.

• To solve the UPLearning, we propose an uncertain positive
learning risk estimator approach, dubbed UPTAKE, which is
easy to integrate with various machine learning models.

• To illustrate the generality and effectiveness of UPTAKE,
we conduct experiments on different cloud failure prediction
scenarios, i.e., two public disk failure datasets and the node
failure from Azure. UPTAKE outperforms any other online
model updating approach over four widely used failure pre-
diction models. Moreover, UPTAKE has been successfully
applied to Azure and it is proven to improve the reliability
of cloud platforms.

II. BACKGROUND

Cloud failure prediction. Cloud failure refers to a state
where cloud instances become unavailable due to hardware
interruptions, code bugs, or high workload demands. Cloud
failure can be categorized based on the affected instances,
such as node failure [28], network issue [46], disk failure [26],
service overloading [47], etc. In the following, we introduce
two typical cloud failure prediction scenarios, i.e., disk failure
prediction and node failure prediction.

• Node failures may occur for a variety of reasons (e.g., OS
crashes, application bugs, misconfigurations, memory leaks,
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TABLE I
EXAMPLES OF NODE & DISK MONITORING METRICS.

Type Description Examples (Feature belongs to Disk/Node)

Operation Timer
The implementation of a timer for various operations of hard disk drives,
e.g., magnetic head seeking and spindle activation, plays a crucial role in
optimizing the performance of these devices.

SpinUpTimeNorm (Disk)
SpinRetryCountRaw (Disk)
Spin Retry Count VALUE (Disk)
Spin Up Time VALUE (Disk)

Operation Counter Count of common operations, e.g., CPU utilization and power
consumption, etc.

PowerCycle (Node)
PowerOnHours (Node)
PowerConsumption (Node)

Physical Characteristics The measurement of physical characteristics, e.g., temperature and
humidity, etc.

AirflowTempRaw (Node)
TemperatureRaw (Node)
Temperature (Node)

Error Counter
A count of specific, identifiable errors is maintained. This count typically
remains unchanged unless an error occurs, at which point the count is
updated to reflect the occurrence of the error.

Program Fail Cnt Total RAW VALUE (Disk)
Seek Error Rate RAW VALUE (Disk)
TotalErrors (Node)
IOEDCErrorCountRaw (Node)
MediaErrors (Node)
ErrorInfoLogEntryCount (Node)

EVENT Windows event are typically used for indicating exception handling for
Windows servers.

WindosStorportEvent 534 (Node)
WindosStorportEvent 554 (Node)

software incompatibility, overheating, and service excep-
tions). The node failure can be predicted by a wide range
of monitoring metrics (signals indicating their temporal and
spatial information). MING [28] predicts node failure by
taking into account both spatial and temporal signals. Table I
presents several monitoring metrics of a node, which are
classified into six distinct categories: operation timer, phys-
ical characteristics, operation counter, error counter, logical
input/output, and EVENT data. A detailed explanation of
these categories, including examples, is illustrated in Table I.
The collection of these metrics is conducted at regular
intervals, except for EVENT data. To analyze these metrics,
a sliding window technique is employed in the prediction
model, transforming of the metrics into feature vectors.

• Disk failure in cloud systems is a type of hardware failure
that can lead to service downtime. Disk failure can be
predicted based on its status data, known as the SMART
(Self-Monitoring, Analysis and Reporting Technology) [48],
[49]. The monitoring metrics of a disk are SMART (Self-
Monitoring, Analysis, and Reporting Technology) [48], [49].
These attributes, which include metrics such as temperature,
spin-up time, and reallocated sectors (examples shown in
Table I), are employed to predict potential failures. By
providing early warning of such failures, SMART technol-
ogy enables proactive maintenance and replacement to be
performed prior to a failure occurring.

Based on insights gained from previous studies, we in-
troduce and implement four widely used machine learning
models for cloud failure prediction.

• RNN [32]: RNN is a widely-used deep learning model
designed for sequential data. During prediction, RNN uses
its recurrent unit to feature the difference between the
normal state and failure state from the input sequential data.

• LSTM [33]: LSTM is an advanced version of recurrent
neural network architecture that was designed to model

chronological sequences and their long-range dependencies
more precisely than conventional RNNs. With long-term
features, LSTM can always perform better than RNN and
can typically class difficult examples in RNN.

• Transformer [26]: The Transformer Model is a novel deep
learning-based approach to failure prediction tasks with the
attention mechanism, which can capture the temporal nature
from instance status data. Transformer utilizes not only a
single instance’s status data but also considers its neighbors’
status data to optimize its prediction performance.

• TCNN [34]: TCNN is a variation of Convolutional Neural
Networks (CNN) for sequence modeling tasks, by combin-
ing aspects of RNN and CNN architectures.

Model updating. The distribution of online monitoring met-
rics changes with dynamic software and hardware updates
in cloud systems, which causes the distribution learned by
the previous model to deviate significantly from the online
distribution [36]. As a result, the prediction performance of
the model may degrade. To ensure prediction performance,
machine learning models deployed online need to be up-
dated over time (weekly or monthly). Model updating needs
a considerable number of failure instances. Updating cloud
failure prediction models using pre-training and fine-tuning
[50] strategies is not feasible due to the imbalance between
positive and negative instances, as well as the insufficient
number of positive instances in real-world scenarios.

III. AN EMPIRICAL STUDY OF PREDICTION ACCURACY
OVER TIME

In this study, we aim to uncover the problem based on our
experience in deploying failure prediction models in Azure.
We address the following research questions:

• RQ1: How does the accuracy of failure prediction change
over time?

• RQ2: Why does the prediction accuracy decrease over time?
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Fig. 2. Cloud failure prediction average F1-score over time.

A. Subjects

We adopt two public datasets [26], [27] for disk-level
failure prediction, i.e., Alibaba Cloud and Backblaze datasets.
Besides, Azure provides large-scale datasets for node-level
failure prediction.

Alibaba is collected from large-scale data centers and
published by Alibaba Cloud for PAKDD 2020 Alibaba AIOps
Competition [51], which contains millions of disks with a
period of more than 16 months. In our experiment, we adopt
the dataset within 10 months and split it into five continuous
time phases of equal length. Each time phase contains more
than 8,000 disk records with a period of two months and
each record has 30 days long monitoring metrics. We use 17-
dimension features for failure prediction.

Backblaze is a public dataset published by Backblaze,
based on the hard drives in Backblaze data center [52]. Each
disk of the dataset has a label indicating its status. In our
experiment, we use five months from 2021Q4 to 2022Q1, and
it contains over 90,000 disks in total. We split the dataset into
five continuous time phases of equal length. Each time phase
contains approximately 16,000 disk records and each record
contains 38 dimension features with a period of 30 days.

Azure is a large-scale cloud system that includes node-level
monitoring metrics. Over 500,000 node recordings overall
from a period of 35 days are employed in our experiment.
We divide all records into five continuous time phases of
equal length. Each time phase comprises more than 100,000
node records. The feature input is the 23-dimension monitoring
metrics of nodes in a 48-hour time window.

To demonstrate the generality and robustness of our inves-
tigation, we employed different periods for model updating:
two months for Alibaba, one month for Backblaze, and one
week for Azure. These periods were selected based on the
number of positive instances available in each, as positive
instances are significantly less frequent than negative ones
in real-world datasets, as noted by Ntam [26]. We aim to
ensure that each period contains a relatively sufficient number
of positive instances, maintaining an imbalance rate (#Positive
to #Negative ratio) of approximately 1%.

B. RQ1: Prediction Accuracy over Time

We undertake a detailed investigation on prediction perfor-
mance trends across a continuous long range of time, which

TABLE II
MITIGATION ACTIONS TO CLOUD FAILURES.

Action Description

Live Migration Move running VMs from to other failure-free nodes

VM Preserving
Soft Reboot Reboot the host OS kernel and preserve the VM states

Service Healing Disconnect current VM and generate new assignment
of the VM to healthy nodes

Mark
Unallocatable Block allocation of new VMs to a node

Avoid Reduce the weight to allocate a new VM to a node

is divided into 5 equal-length time phases. At the start of
each phase (except for the first training phase T1), model
updating is performed using monitoring data collected from
the previous phase, then deployed for online prediction. The
average prediction performance of the model is calculated at
each time phase.

The prediction F1-score (see Section V-A4) on 3 datasets
across 4-time phases is illustrated in Fig. 2. The time in the
figure starts from T2, which is because monitoring data in
the T1 phase is used for the initial model training. Overall,
there is a significant and consistent decrease in the accuracy
of the failure prediction model over time for all datasets. Per-
formance on Azure decreases from 78.22% on T2 to 57.46%
on T5, a decrease of 20.66%. Backblaze and Alibaba also
show decreases of 8.34% and 13.77%, respectively. The results
on Alibaba do not show a decreasing trend in performance
on T3 and T4 because the percentage and performance of
failures are not completely consistent across time, but the
performance of failure prediction on Alibaba also shows a
significant decreasing trend of 13.77% when observed over
the entire experimental time.

The decrease in prediction accuracy over time can be at-
tributed to changes in the distribution of online data. However,
it is important to note that this accuracy decrease is observed
consistently across all three cloud systems and time phases.
Furthermore, the retrained model is trained using the latest
collected data, which has the least bias compared to the online
data. We refer to this decrease in prediction accuracy after
retraining as the UPLearning problem.

C. RQ2: Explanation of Accuracy Decrease

It is mitigation actions that contaminate the training data and
lead to a decrease in prediction accuracy (i.e., UPLearning)
during model retraining. In the context of failure prediction in
cloud systems, when a cloud component is anticipated to fail,
mitigation actions [35] in Table II are promptly undertaken to
either resolve the underlying failure or minimize the impact
on services. The effectiveness of these mitigation actions,
however, makes it impractical to verify the accuracy of the
predictions. For instance, in the case of applying live migration
to a predicted failing node, all run-time state is migrated to a
new node, resulting in the release of workload on the original
node [53]. This operation alters the original state, rendering it
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Fig. 3. Example of positive, negative, and uncertain positive in the scenario
of online cloud failure prediction.

unverifiable whether the failure would have indeed occurred
in the original state.
UPLearning problem. The UPLearning problem in cloud
systems is mainly due to mitigation actions, which change
the state of the instances and make it impossible to verify the
accuracy of the predictions. In the context of cloud failure
prediction, an online model (M) is initially trained using
historical data with true labels (oracle labels) during period T1.
This model predicts instances that are likely to fail, represented
by blue-filled instances in period T2, applying mitigation
actions to address the potential failure. However, it remains
unknown whether these predicted instances will actually fail
or not, as indicated by the black-bordered instances (#6-#10).
Uncertain positive instances are those predicted as failures by
the online model, such as instances #7, #8, and #9 in Fig. 3.
However, the true labels (oracle labels) for these instances (#7:
Negative, #8 and #9: Positive) cannot be verified after applying
failure mitigation actions, because mitigation actions change
the original state of the instances.

IV. APPROACH

In this section, we introduce a model updating approach to
solve the UPLearning problem, named UPTAKE, which still
consumes uncertain positive instances during model updating
and significantly improves the online model updating perfor-
mance for cloud failure prediction.

A. Problem Settings

Before diving into the approach details, we present a formal
definition of the cloud failure prediction task. We define
the cloud failure prediction task as a binary classification
problem based on monitoring metrics. Essentially, we collect
feature vectors with d dimensions, which contain different
types of monitoring metrics from cloud infrastructures, at
regular intervals (e.g. hourly or daily). These feature vectors
are used to create a continuous time series of features, denoted
as X = [x1, x2, ..., xl] ∈ Rd, where l is the number of
timestamps in the feature X . For each feature X , we assign a
label Y ∈ 0, 1 based on whether it represents a failure instance
(Y = 1) or a normal instance (Y = 0) in the cloud system.
The goal of cloud failure prediction is to train a classifier
fX → Y that can predict the class label Y when given a
feature X with uncertain positive labels.

The training set is a collection of features X with their cor-
responding label Y , denoted as N = {(X1, Y1), ..., (Xn, Yn)},
where n = |N |. Our target is to minimize prediction loss L,
(e.g., the binary cross-entropy loss), on the training set.

In the scenario of cloud failure prediction, some labels
Yi(i ∈ {1, ..., n}) in the training set are uncertain, specifically,
we have to use the training set which contains uncertain label
Ŷ to train and update the online model. The training loss to
be minimized is represented as:

L = − 1

n

n∑
i=1

l(f(Xi), Ŷi) (1)

where l is the loss function, f is the binary classifier, and
(Xi, Ŷi), i ∈ {1, ...n} is the sample from the training set. Ŷ
is the uncertain label (i.e., the predicted label collected from
the online model).

B. UPTAKE

Typically, the model’s performance is assessed using the
risk function [54]. A precise risk function enhances the
performance of the failure prediction model. The UPTAKE
approach ensures high prediction accuracy, especially when
handling uncertain positive instances, and effectively addresses
the UPLearning problem.

Risk estimator. In this section, we describe the binary
classification representation of the risk function [54], [55].
Consider a feature set X ∈ Rd and its corresponding label
Y ∈ {0, 1}. Let p(x, y) be the underlying joint density of
(X,Y ), pp(x) = p(x|Y = 1), and pn(x) = p(x|Y = 0)
represent the positive and negative marginals, respectively.
Additionally, define πp = p(Y = 1) as the class-prior
probability and πn = p(Y = 0) = 1− πp.

Let fX → Y be the decision function, and l : R ×
{0, 1} → R be the loss function, where l(f(X), Y ) measures
the loss between the predicted output f(X) and the actual
label Y . Define R(f) as the risk function for the given
decision function fX → Y , R+

p (f) = Ep[l(f(X), 1)], and
R−

n (f) = En[l(f(X), 0)], where Ep[·] = EX∼pp [·] and
En[·] = EX∼pn

[·], denoting the expectations of positive and
negative variables. In standard binary classification, the risk of
the decision function fX → Y is denoted as:

R(f) = E(X,Y )∼p(x,y)[l(f(X), Y )] = πpR
+
p (f) + πnR

−
n (f)

(2)

UPTAKE. In the context of cloud failure prediction, we en-
counter instances not only labeled as positive or negative but
also instances with uncertain positive labels predicted by the
online model. UPTAKE treats uncertain positive instances as
having both positive and negative labels with different weights.
The risk function for this scenario is represented as follows:

R(f) = πpR
+
p (f)+πnR

−
n (f)+ (πpR

+
u (f)+πnR

−
u (f)) (3)
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where R+
u (f) = Eu[l(f(X), 1)] and R−

u (f) = Eu[l(f(X), 0)]
represent the expectations of the decision function f(X) when
dealing with uncertain positive instances.

It is crucial to note that πp and πn are hyper-parameters
in this study. πp estimates the proportion of real positive in-
stances among uncertain positive instances, while πn = 1−πp

estimates the percentage of negative instances. In this paper, πp

is set to the Precision value obtained during the T1 validation
stage of hyper-parameter tuning. When πp approximates the
proportion of uncertain positive instances with true positive la-
bels, UPTAKE demonstrates improved performance. In Section
V-F, we discuss the parameter sensitivity of πp.
Implementation in various models. UPTAKE is a generic
approach that can be integrated with any machine learning
model for cloud failure prediction.

Algorithm 1 illustrates the core implementation of UPTAKE.
The input training data subscripted with p, n, and u are
the instances labeled with positive, negative, and uncertain
positive, respectively, and θ indicates the model parameter
for decision function f(X; θ). To reduce the interference
of uncertain positive instances to the direction of gradient
descent, UPTAKE improves the loss function in the model
updating procedure by adjusting the direction of the gradient.

Since UPTAKE only improves the original loss function
without changing its property, it is suitable for a wide range
of machine learning models across various applications.

Algorithm 1 Introducing UPTAKE in the gradient descent
Input: training data (Xp, Xn, Xu);

hyperparameter 0 ≤ πp ≤ 1, and πn = 1− πp;
decision function f(X; θ); loss function l(f(X), Y )

Output: gradient ∇θ to update θ for f(X; θ)
1: Improved loss

L = πpl(f([Xp, Xu]), 1) + πnl(f([Xn, Xu]), 0)
2: Set gradient ∇θL and update θ

V. EXPERIMENT

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our UPTAKE approach when in-
tegrated with existing failure prediction models. First, we
present the experimental settings, including datasets, the fail-
ure prediction models, and three comparative approaches.
Following the setup, we conduct experiments to verify the
following research questions:

• RQ3: How does UPTAKE perform for UPLearning problem
in cloud failure prediction?

• RQ4: How does UPTAKE perform in the scenario of online
cloud systems?

• RQ5: Does UPTAKE exhibit consistent performance across
different base models?

• RQ6: What is the impact of UPTAKE on predicting effi-
ciency?

• RQ7: How do UPTAKE’s parameters impact its prediction
performance?

A. Settings
1) Datasets: To evaluate the reliability and applicability

of UPTAKE, we employ two publicly accessible datasets: the
Alibaba Cloud and Backblaze datasets [26], [27], for predict-
ing disk failures. Furthermore, we integrate a vast industrial
cloud system dataset to predict node failures. These datasets
together form the foundation of our assessment and analysis.
The specific configuration and details of these datasets align
with what we outlined in Section III-A.

2) Implementations and Environments: Four deep learning
models, i.e., RNN, LSTM, Transformer, and TCNN, are
implemented based on Python 3.8.13 and PyTorch 1.11.0
[56]. Identical parameter values are used as in the previous
works for the compared approaches. The model was selected
based on the epoch that achieved the highest F1-score on the
validation set. All the experiments are conducted on Linux
Dev Node with Ubuntu 20.04 LTS 64-bit operating system,
24 cores AMD Epyc 7V13, 220 GB memory, and NVIDIA
Tesla A100 with 80 GB GPU memory.

3) Important Hyper-parameters: As explained in Section
IV-B, the parameter πp plays a crucial role in this study. Its
value is derived from the Precision metric obtained during the
T1 validation stage.

4) Evaluation metrics: The cloud failure prediction task is a
binary classification task, aligning with existing research. The
performance of UPTAKE is assessed using Precision, Recall,
and F1-score, following standard conventions. Instances are
labeled as either normal or failure based on their practical
performance, with failure considered positive and normal
considered negative. True Positive (TP) represents the number
of correctly predicted failure instances, while True Negative
(TN) represents the accurately predicted normal instances.
Conversely, False Positive (FP) and False Negative (FN)
indicate instances that were incorrectly predicted as normal
and failure, respectively.

5) Compared Approaches: In the experiment section, we
compare UPTAKE with two model updating approaches, which
are offline updating (offline), and online updating with certain
positive labels (certain). To the best of our knowledge, UP-
Learning has not been proposed before. Therefore, there are
no state-of-the-art solutions for model updating. We design the
two model updating approaches as compared with UPTAKE.

• Offline updating employs ground truth labels for model
training, which contain no uncertain labels. However, this
approach is not feasible in practice because part of the
ground truth labels are uncertain positive labels. It serves
as an upper bound of the performance for UPTAKE and
other subsequent approaches.

• Online updating with certain positive labels accumulates
all records with certain labels for model updating. For
instance, when updating the model for predicting phase T4,
the certain approach collects all records with certain labels
from phase T1 to phase T3. This includes all records in
phase T1, as well as true negative (TN) and false negative
(FN) records in phases T2 and T3.
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TABLE III
PERFORMANCE COMPARISON OF APPROACHES ON ALIBABA DATASET. P, R, AND F1 DENOTE PRECISION, RECALL AND F1-SCORE, RESPECTIVELY.

Model Approach T2 T3 T4 T5 Avg.

P R F1 P R F1 P R F1 P R F1 F1

RNN
Offline

57.84 33.33 42.29
40.12 50.00 44.52 76.92 35.71 48.78 43.89 49.07 46.33 46.54

Certain 35.95 42.31 38.87 79.59 23.21 35.94 49.12 17.39 25.69 33.50
UPTAKE 40.30 41.54 40.91 47.65 42.26 44.79 35.96 39.75 37.76 41.15

LSTM
Offline

65.31 36.16 46.55
65.82 40.00 49.76 74.71 38.69 50.98 63.11 40.37 49.24 49.99

Certain 54.22 34.62 42.25 80.43 22.02 34.58 59.09 24.22 34.36 37.06
UPTAKE 56.18 38.46 45.66 64.76 40.48 49.82 58.72 39.75 47.41 47.63

Trans
-former

Offline
62.41 46.89 53.55

61.80 42.31 50.23 68.47 45.24 54.48 61.42 48.45 54.17 52.96
Certain 53.92 42.31 47.41 79.66 27.98 41.41 61.76 26.09 36.68 41.83
UPTAKE 53.04 46.92 49.80 46.70 50.60 48.57 41.24 49.69 45.07 47.81

TCNN
Offline

57.72 40.11 47.33
43.59 52.31 47.55 60.38 38.10 46.72 58.88 39.13 47.01 47.09

Certain 46.25 28.46 35.24 72.41 25.00 37.17 42.86 22.36 29.39 33.93
UPTAKE 63.24 33.08 43.43 36.84 54.16 43.85 68.29 34.78 46.09 44.46

Avg.
Offline

60.82 39.12 47.43
52.83 46.16 48.02 70.12 39.44 50.24 56.83 44.26 49.19 49.15

Certain 47.59 36.93 40.94 78.02 24.55 37.28 53.21 22.52 31.53 36.58
UPTAKE 53.19 40.00 44.95 48.99 46.88 46.76 51.05 40.99 44.08 45.26

TABLE IV
PERFORMANCE COMPARISON OF APPROACHES ON BACKBLAZE DATASET. P, R, AND F1 DENOTE PRECISION, RECALL AND F1-SCORE, RESPECTIVELY.

Model Approach T2 T3 T4 T5 Avg.

P R F1 P R F1 P R F1 P R F1 F1

RNN
Offline

50.88 84.67 63.56
62.75 73.56 67.73 74.29 73.24 73.76 76.33 62.32 68.62 70.04

Certain 57.89 50.57 53.99 80.91 41.78 55.11 83.67 39.61 53.77 54.29
UPTAKE 59.31 69.54 64.02 62.21 87.32 72.66 57.73 81.16 67.47 68.05

LSTM
Offline

63.59 85.40 72.90
70.79 82.18 76.06 76.71 78.87 77.78 70.71 81.64 75.78 76.54

Certain 71.81 61.49 66.25 86.79 43.19 57.68 82.86 42.03 55.77 59.90
UPTAKE 63.32 83.33 71.96 61.72 74.18 67.38 54.79 80.19 65.10 68.15

Trans
-former

Offline
71.60 84.67 77.59

74.87 85.63 79.89 76.23 79.81 77.98 72.44 78.74 75.46 77.78
Certain 69.54 69.54 69.54 83.48 45.07 58.54 82.41 43.00 56.51 61.53
UPTAKE 71.36 87.36 78.55 71.31 81.69 76.15 64.77 82.61 72.61 75.77

TCNN
Offline

63.54 83.94 72.33
67.35 75.86 71.35 74.24 79.81 76.92 79.63 62.32 69.92 72.73

Certain 77.45 45.40 57.25 79.07 47.89 59.65 80.92 51.21 62.72 59.87
UPTAKE 59.26 73.56 65.64 62.45 81.22 70.61 63.49 77.29 69.72 68.66

Avg.
Offline

62.40 84.67 71.60
68.94 79.31 73.76 75.37 77.93 76.61 74.78 71.26 72.45 74.27

Certain 69.17 56.75 61.76 82.56 44.48 57.75 82.47 43.96 57.19 58.90
UPTAKE 63.31 78.45 70.04 64.42 81.10 71.70 60.20 80.31 68.73 70.16

B. RQ3: Performance of UPTAKE

We assess our proposed UPTAKE, using two public datasets
referred to as Alibaba and Backblaze. The results are presented
in Table III and Table IV respectively. In these tables, the last
column displays the average F1-score for each row. The final
three rows depict the average results of all four models across
different time phases and using different approaches.

In the rest of the table, every set of three columns showcases
the performance metrics (Precision, Recall, and F1-score) for
different time phases. Notably, the time phases in Table III
and Table IV commence from T2, as the data in T1 is utilized
for the initial model training. It is observed that the three
approaches yield identical results at T2 since it marks the first
stage to obtain model inference results without encountering
any UPLearning problem (as illustrated in Fig. 1).

The performance of these models remains competitive with
previous work [27], despite the inherent challenges of cloud
failure prediction tasks in real-world scenarios. Notably, online
disk failure prediction often faces limitations due to low F1-
scores. This challenge largely stems from the prevalence of
missing data and significant imbalances in the data distribu-
tion, posing significant obstacles to improvement.

Upon analyzing Table III and Table IV, we observe that
UPTAKE performs admirably on these two public datasets.
The average F1-scores are 45.26% for Alibaba and 70.16%
for Backblaze. According to the results shared above, we have
the following findings. The results of various methods applied
to Alibaba’s data demonstrate low performance due to the
complexity of the dataset. The highest F1-score achieved on
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TABLE V
PERFORMANCE COMPARISON OF APPROACHES ON AZURE. P, R, AND F1 DENOTE PRECISION, RECALL AND F1-SCORE, RESPECTIVELY.

Model Approach T2 T3 T4 T5 Avg.

P R F1 P R F1 P R F1 P R F1 F1

RNN
Offline

88.31 86.96 75.16
88.59 67.11 76.36 71.43 59.14 64.71 82.24 68.75 74.89 71.99

Certain 93.94 46.62 62.31 83.16 43.82 57.39 93.50 48.70 64.04 61.25
UPTAKE 94.62 49.62 65.10 84.65 51.88 64.33 93.28 57.81 71.38 66.94

LSTM
Offline

80.60 79.67 80.13
66.19 78.76 71.93 77.44 68.28 72.57 80.79 63.54 71.14 71.88

Certain 47.45 61.28 53.49 78.95 56.45 65.83 68.65 93.69 68.65 62.66
UPTAKE 59.58 79.51 68.12 65.05 75.54 69.90 84.00 60.16 70.11 69.38

Trans
-former

Offline
65.60 96.55 78.12

75.27 78.95 77.06 76.45 67.20 71.53 71.03 73.44 72.22 73.60
Certain 80.54 56.02 66.08 82.63 52.42 64.14 91.28 51.82 66.11 65.44
UPTAKE 72.38 77.82 75.54 65.37 72.04 68.54 71.74 68.75 70.21 71.43

TCNN
Offline

80.87 75.70 78.20
67.89 79.89 73.40 84.69 66.94 74.77 64.25 76.30 69.76 72.64

Certain 45.24 57.14 50.50 86.51 50.00 63.37 91.08 50.52 64.99 59.62
UPTAKE 63.72 77.26 69.84 71.28 73.39 72.32 57.77 78.39 66.52 69.56

Avg.
Offline

78.85 84.72 77.90
74.49 76.18 74.69 77.50 65.39 70.90 74.58 70.51 72.00 72.53

Certain 66.79 55.27 58.10 82.81 50.67 62.68 86.13 61.18 65.95 62.24
UPTAKE 72.58 71.05 69.65 71.59 68.21 68.77 76.70 66.28 69.56 69.33

the leader-board is only 49.07%. 1

Comparison with different updating approaches. When
examining the last column of Table III and Table IV, it
becomes evident that offline updating consistently outperforms
other approaches. It achieves an average F1-score of 49.15%
in Alibaba and 74.27% in Backblaze. However, it is impor-
tant to note that offline updating, while showing the best
performance, is not practically applicable as it requires the
access to all certain labels, which is often unavailable in
real-world scenarios. Therefore, we present this approach as
the ”upper bound” of the prediction model, representing the
best possible performance using all certain labels. Among the
practical and feasible approaches, UPTAKE demonstrates the
best performance. It achieves an average F1-score of 45.26%
in Alibaba and 70.16% in Backblaze. In contrast, Certain
performs the worst, with an average F1-score of 36.58% in
Alibaba and 58.90% in Backblaze. We attribute the lower
accuracy of Certain to the accumulation of phases, which
causes the proportion of positive and negative instances to
deviate from the actual distribution. Specifically, the Certain
method disregards all uncertain positive samples, even though
only an average of 60.84% in Alibaba and 19.27% in Back-
blaze of positive labels are certain positive. This discrepancy
in handling uncertain positive samples results in a distribution
drift, leading to less accurate performance.

Model comparison. Analyzing the UPTAKE results for each
model displayed in Table III and Table IV, we observe that
UPTAKE consistently demonstrates different performance im-
provements compared to the Certain approach across various
models. In general, each model in our experiment experiences
enhancements when using UPTAKE. Specifically, RNN ex-
hibits the most substantial improvement, achieving an average
F1-score increase of 7.02% across all datasets, while LSTM

1https://tianchi.aliyun.com/competition/entrance/231775/rankingList

shows the smallest improvement, with an average F1-score
increase of 1.64%. However, when compared with offline
updating, we do not observe a consistent pattern in model
performance across all datasets. This discrepancy can be
attributed to biases introduced in the data distribution among
different stages, which affect the performance of various mod-
els in distinct ways. In summary, UPTAKE consistently out-
performs Certain model updating approaches and approaches
the performance of the Offline (i.e., the upper bound) across
different prediction models. This consistency underscores its
generality and robustness in enhancing model performance.

C. RQ4: Online Performance

We have deployed UPTAKE to one of the top-tier cloud sys-
tems in the world, Azure, which suffer from the UPLearning
problem before using our approach. We have conducted an
online experiment (in the A/B testing environment to obtain
ground truth) for a period of time over five weeks from July
2022 to August 2022.

Table V presents a comparison of model performance for
the model updating approaches mentioned before, following
the same format as the tables in Section V-B. UPTAKE out-
performs Certain, achieving an average F1-score of 69.33%.
This performance surpasses Certain by an average of 7.09%
and falls slightly below the Offline performance by 3.2% in
terms of F1-score.

The accumulation of uncertain positive labels impacts the
performance of node failure prediction. Unlike failure predic-
tion on public disk datasets, the node failure prediction model
is more concerned with the quality of labels rather than the
proportion of positive samples to negative samples. In this
context, the accuracy and reliability of labels are important in
determining the effectiveness of the prediction model.

In summary, UPTAKE excels in handling the UPLearning
problem compared to previous online updating approaches.
Additionally, it proves effective in mitigating performance
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Fig. 4. The average F1-score comparison of UPTAKE and its two compared
approaches on three datasets: Alibaba, Backblaze, and Azure. Each sub-figure
corresponds to a specific type of base model. The error bar in the figure
represents the upper and lower bounds of the results, indicating the robustness
of UPTAKE across different base models.

TABLE VI
EFFICIENCY COMPARISON OF UPTAKE AND ITS TWO COMPARED

APPROACHES ON ALIBABA, BACKBLAZE AND AZURE DATASET. EACH
VALUE INDICATES THE AVERAGE TIME (S) TAKEN OF THE TRAINING

EPOCH IN THE MODEL UPDATING PROCESS.

Offline Certain UPTAKE

Alibaba 5.38 12.58 4.31
Backblaze 4.38 12.75 4.12

Azure 11.54 27.90 10.95

degradation over time, showcasing its robustness and relia-
bility in real-world applications.

D. RQ5: Robustness

To further empirically evaluate the performance of UPTAKE,
we counted the results of UPTAKE for different base models
(i.e., the model in Section V-A2) on different cloud systems
(i.e., Alibaba, Backblaze and Azure).

The provided Fig. 4 displays the average F1-score across all
time phases for different model update strategies on diverse
base models and datasets. It is essential to clarify that “Offline”
denotes the theoretical optimal performance of the current
system at a given time, assuming ideal conditions. However,
achieving this theoretical best performance in practical appli-
cations is hindered by the UPLearning problem.

Fig. 4 clearly demonstrates UPTAKE’s superior performance
over other model update strategies across all scenarios and
models. Notably, it closely approaches the theoretical best
performance (Offline). UPTAKE exhibits greater stability over
time, as indicated by the smaller fluctuations in performance
metrics, highlighting its robustness and reliability compared to
other model updating strategies.

0.0 0.2 0.4 0.6 0.8 1.0
p

10

20

30

40

50

60

F1
-s

co
re

 (%
)

Transformer
LSTM

TCNN
RNN

(a) Alibaba

0.0 0.2 0.4 0.6 0.8 1.0
p

30

40

50

60

70

80

F1
-s

co
re

 (%
)

Transformer
LSTM

TCNN
RNN

(b) Backblaze

Fig. 5. F1-score of UPTAKE under different πp on two public datasets. The
dots are the parameters chosen by our solution.

E. RQ6: Efficiency

Besides prediction performance, efficiency is also a critical
metric for online model updating. Consequently, we compare
the running time of UPTAKE with other approaches proposed
in Section V-A5. Since the difference between different ap-
proaches only exists in the training step, we compared the
average time cost of an epoch with the same hyper-parameters
on each time phase.

From the results in Table VI, these approaches perform
almost similarly in efficiency except Certain, and UPTAKE
take the least time to train during an epoch with 4.31s in
Alibaba, 4.12s in Backblaze, and 10.95s in Azure. The Certain
approach is slowest because Certain accumulates instances
with certain labels in all former phases, which leads to a larger
training set. The larger the dataset it uses, the longer time it
takes to train.

F. RQ7: Parameter Sensitivity

We investigate the impact of the only parameter πp used
in UPTAKE. It reflects the ratio of positive instances in all
uncertain positive instances. Our algorithm suggests using
the Precision value on the T1 stage to set πp, which is an
estimation using historical information.

In this experiment, we grid search the value of πp from 0 to
1 on a 0.1 base step. Fig. 5 shows the effectiveness of different
πp in terms of F1-score. In this figure, each line is the average
F1-score of the prediction model (RNN, LSTM, Transformer,
and TCNN) on the Alibaba and Backblaze datasets, respec-
tively. The dots represent the πp chosen by our solution.
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Despite minor perturbations under different πp, the overall
performance is stable, and our selected πp consistently yield
near-optimal performance, which indicates UPTAKE is robust
in practice without the need to tune parameters extensively.

VI. DISCUSSIONS

A. Threats to Validity

Internal threats. Our implementation choices are a potential
internal threat. To address this, we utilize established imple-
mentations for our deep learning models, detailed in Section
V-A2. Moreover, our implementation is openly accessible,
ensuring transparency and enabling future research replication.

External threats. External threats stem from model and data
selection, as well as comparisons with other methods. We
mitigate selection bias by incorporating diverse datasets from
three distinct cloud systems, covering both node and disk-level
data. These datasets align with industry standards, enhancing
the representativeness of our results. Additionally, this study
pioneers investigations into the UPLearning problem, selecting
standard model updating strategies and a theoretical optimal
strategy, as explained in Section V-A5. We remain open to
exploring new cloud component data and model updating
techniques in future research to enhance our study’s depth.

Construct threats. Construct threats concern our chosen met-
rics and parameters. We utilize widely-accepted metrics such
as precision, recall, and F1-score for effectiveness evaluation,
and training time for efficiency measurement. Future evalua-
tions will incorporate additional metrics for a more compre-
hensive assessment. Parameters in UPTAKE are defined based
on established rules (Section V-A3), with detailed discussions
about the primary parameter, πp, in Section V-F, ensuring a
well-informed evaluation framework.

B. Deployment

Our UPTAKE framework is deployed on Azure, a platform
with millions of nodes serving a wide customer base. The
process consists of three core phases: data preparation, model
retraining, and model deployment.

Data preparation. During this phase, collected data is cleaned
and engineered to ensure completeness and quality. These
steps are essential for enhancing the reliability and effective-
ness of subsequent model retraining.

Model retraining. In this stage, the failure prediction model
undergoes retraining. To address challenges related to the
UPLearning problem, UPTAKE is integrated into the retraining
process, effectively mitigating associated issues.

Model deployment. The retrained model is deployed on
AzureML, a platform designed for seamless management and
deployment of online models. Once deployed, the model
actively performs online cloud failure prediction, providing
insights into potential failure events within the cloud system.

To gauge UPTAKE’s effectiveness in terms of business
impact, we conduct A/B testing, measuring reduced mitigation
action times and improved service availability. Compared to

the online retraining strategy discussed in Section III, UPTAKE
significantly reduced required mitigation actions and enhanced
service availability. These results demonstrate UPTAKE’s sub-
stantial benefits for online failure prediction models, highlight-
ing its effectiveness and positive business impact.

C. Future Directions for Model Evaluation

Evaluation over long running periods. The current scope of
our research primarily focuses on demonstrating the efficacy
of our predictive model through short-term, controlled experi-
ments designed to mirror real-world scenarios. This approach
was chosen to provide a clear, immediate comparison between
traditional models and our proposed method. We acknowledge
the importance of evaluation on long time periods and consider
it an essential direction for future research, intending to extend
our analysis to cover more periods and assess the sustainability
and adaptability of our model over time.
Changing proportions of failures over time. Our research
acknowledges that failure rates and their patterns are not
static, but vary across different time windows, reflecting the
dynamic nature of cloud environments. The initial focus on
specific real-world ternaries was to establish a baseline for
immediate impact and measurement. Moving forward, we plan
to systematically investigate the model’s response to varying
failure proportions over extended periods, aiming to develop
more adaptive predictive strategies that can accommodate the
evolving conditions of cloud infrastructures.

VII. RELATED WORK

Failure prediction. In recent years, various approaches for
predicting cloud failure have appeared, including hard drive
disk failure and node failure prediction [25], [29], [30], [57].
As a binary classification problem, machine learning and deep
learning mechanisms are widely used for failure prediction.
Machine learning approaches for cloud failure prediction, such
as support vector machine [33] and tree models [58]–[61],
use several monitoring metrics collected in a time window to
predict whether the cloud component will fail soon. However,
these machine learning approaches struggle to handle the
complex temporal information of cloud systems [34]. Deep
learning approaches such as RNN [32], LSTM [28] and
TCNN [34] can better capture the temporal correlation of the
complex monitoring metrics than classical machine learning
approaches. In recent years, Transformers have outperformed
conventional deep-learning approaches. The state-of-the-art
performance is achieved by NTAM [26], which incorporates
both temporal and spatial information into failure prediction.
Our research is orthogonal to previous failure prediction
approaches since we aim to solve the model updating issue
and boost the overall performance of failure prediction.
Uncertain Labels. UPLearning solves uncertain/unlabeled
problems for classification tasks [37]–[43]. It defines positive
samples and unlabeled ones for the training phase. For ex-
ample, an unbiased risk estimator [44] is proposed to solve
this problem. Different from PULearning, the UPLearning is
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identified in the model updating phase, where the samples for
retraining have three classes: positive, negative and uncertain
positive samples. This approach allows the model to refine
its predictions by incorporating the uncertainty of samples,
thereby enhancing its overall robustness and accuracy.

VIII. CONCLUSION

Cloud failure prediction and auto-mitigation are crucial
to maintain the reliability of cloud systems. Through our
practical experience from deploying cloud failure prediction
models on Azure, we identify a significant issue known as
UPLearning, which arises during the model updating process.
This issue critically impairs the prediction performance in real-
world scenarios. To address this, we introduce a novel model
updating approach, referred to as UPTAKE, which enhances
the performance of various predictive models including RNN,
LSTM, Transformer, and TCNN. Our experiments on both
public and private cloud datasets have shown that UPTAKE
substantially outperforms baseline methods, achieving signif-
icantly improved performance. Furthermore, by integrating
UPTAKE into our cloud platforms, we have proven tangible
benefits in practical applications and demonstrated the robust-
ness of UPTAKE in enhancing the failure prediction and auto-
mitigation in the real-world cloud environments.
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