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ABSTRACT
Due to the popularity of deep neural networks (DNNs) and 
considerations over network overhead, data privacy, and 
inference latency, there is a growing interest in deploying 
DNNs to edge devices in recent years. However, the limited 
memory becomes a major bottleneck for on-device DNN de-
ployment, making it crucial to reduce the memory footprint 
of DNN. The mainstream model customization solutions re-
quire intensive deployment efforts and may lead to severe 
accuracy degradation, and existing deep learning (DL) frame-

works don’t take memory as a priority. Besides, recent works 
to enhance the memory management scheme cannot be di-
rectly applied because of several challenges, including the 
unbalanced memory footprint across layers, the inevitable 
overhead of memory management, and the memory budget 
dynamicity. To tackle these challenges, we introduce FlexNN, 
an efficient and adaptive memory management framework
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for DNN inference on memory-constrained devices. FlexNN

uses a slicing-loading-computing joint planning approach,

to achieve optimal memory utilization and minimal mem-

ory management overhead. We implemented FlexNN atop

NCNN, and conducted comprehensive evaluations with com-

monmodel architectures on various devices. The results have

shown that our approach is able to adapt to different mem-

ory constraints with optimal latency-memory trade-offs. For

example, FlexNN can reduce the memory consumption by

93.81% with only a 3.64% increase in latency, as compared

with the original NCNN on smartphones.
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1 INTRODUCTION
In recent years, deep neural networks (DNNs) have become

a popular technique used for a wide range of real-world

applications, including driving assistance [12, 14, 15, 24, 48],

traffic monitoring [2, 3, 25, 51], and face recognition [9, 30,

39, 43]. Due to considerations over network overhead, data

privacy, and inference latency, there is a growing interest

in deploying deep neural networks to edge devices, such as

smart cameras, smartphones, and tiny IoT devices. Today,

there are already many deep learning (DL) frameworks [1, 8,

22, 29] that support on-device inference.

Unlike the cloud-deployed DNN models that are based

on powerful GPU clusters, a major bottleneck for on-device

DNN deployment is memory. For example, a typical GPU

server may have eight interconnected NVIDIA A100 GPUs,

each of which has about 80GB of memory [46], but a high-

end Android smartphone like the Google Pixel 6 Pro only has

12GB of memory. Moreover, the operating system and the

applications may further limit the memory usage of DNN

inference to as low as 512MB or even 50MB (more details

in § 2.1). Therefore, reducing the memory footprint of DNN

inference is crucial, which directly determines whether or

not a model can be used in many mobile/edge applications.

The mainstream solution to deploy DL models to memory-

constrained devices is model customization. This involves

various techniques, including model compression [4, 17, 19,

27], efficient model architecture design [21, 36, 41, 52], and

neural architecture search (NAS) [5, 34, 40, 47, 50]. For exam-

ple, pruning and quantization are the most popular model

compression methods that shrink the model size by remov-

ing redundant parameters and reducing parameter precision,

respectively. Model architecture design and search aim to

produce more compact network structures that can fit into

limited memory. However, applying these techniques re-

quires intensive development efforts in model design and

training, and may lead to severe accuracy degradation due

to the reduced model capacity [26].

A more developer-agnostic solution is to reduce DNN

memory consumption through system design, which is or-

thogonal to the model customization approaches. However,

thememorymanagement design of existingmobile DL frame-

works is mostly inherited from the traditional frameworks,

which do not treat memory as a priority. For example, most

existing frameworks (e.g., MNN [22], NCNN [29], etc.) sim-

ply put all weights in memory during inference, and manage

non-persistent tensors through a coarse-grained memory

pool dynamically (e.g., with an on-demand strategy).

Due to the limited consideration of memory in existing DL

frameworks, researchers have proposed various techniques

to enhance the memory management scheme. A typical prac-

tice is to swap the non-urgent data to the storage to reduce

the memory footprint. Specifically, a straightforward mem-

ory swapping strategy for DNN inference is layer stream-

ing, which loads and executes one or multiple layers of the

model each time, thereby keeping only the active layer(s)

in the memory. There are also several approaches that con-

sider memory layout planning [44] and layer partitioning

[26] in on-device training or TEE-based inference scenarios.

However, directly applying these techniques to on-device

inference faces several challenges, as explained below.

A. Unbalanced memory footprint across layers. In
layer-wise streaming inference, the peak memory of model

inference is determined by the largest layer. Specifically, the

layer that consumes the most memory becomes the bottle-

neck for the peak memory of inference, which makes it less

meaningful to swap other smaller layers.

B. Inevitable overhead of memory management. Re-
ducing the memory consumption of DNN inference usually

requires extra operations over the normal inference process.

For example, to enable layer streaming, additional memory

I/O is required to load weights before computation. Due to

the Unified Memory Architecture (UMA) and limited storage

I/O bandwidth on edge devices, the overhead is usually non-

negligible. Meanwhile, partitioning the layers also causes

additional splitting/merging costs of weights and data. It may

also lead to more memory fragments that hinder memory

management.

C. Memory budget dynamicity. In real-world deploy-

ment, the same DNN inference may run on diverse devices

in various scenarios with diverse available memory. More-

over, the memory of a mobile/edge device is often shared

by multiple applications and functional modules, leading

to frequent changes in the available memory budget. This

dynamicity imposes challenges on the memory management

scheme to fully utilize the available memory. Specifically, us-

ing an on-demand memory management strategy may lead

to fragmentation and under-utilization of the available mem-

ory, while adjusting a static memory management strategy

with ahead-of-time planning on the fly may cause significant

adaption costs.

To this end, we introduce FlexNN, an efficient and adaptive

on-device DNN inference framework formemory-constrained

scenarios. FlexNN addresses the above challenges through a

slicing-loading-computing joint planning approach. The key

insights include (1) enabling optimal memory utilization

through a fine-grained co-design of the model execution

plan and memory management plan; and (2) suppressing

runtime memory management overhead via intensive offline

preparation.

Specifically, regarding the unbalanced memory footprint

between layers, we propose bottleneck-aware layer slicing to

partition bottleneck layers, which refer to the large layers

that determine the peak memory usage of the model. The
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layer slicing technique also selects the most suitable par-

titioning approach for each layer based on the intra-layer

memory bottleneck. The sliced model is accompanied by

a tailored preload-aware memory layout planner to reduce

memory fragments and achieve actual memory saving.

The overhead of memory management is reduced by care-

ful ahead-of-time planning. For example, we adopt static

memory management to achieve optimal memory layout

and reduce memory allocation costs, pre-transform model

weights to avoid runtime processing, preload weights to

reduce runtime I/O waiting time, and optionally retain a

portion of the model weights in memory to reduce repetitive

I/O operations.

Due to the extensive offline model preprocessing and

planning, the runtime cost of adapting to the new mem-

ory budget is significantly reduced. Each time the memory

budget changes, we can reuse the offline-generated profile

and weights, and use a lightweight algorithm to re-generate

the execution plan. Occasionally, when the original slicing

strategy fails to meet the current memory budget, the system

might repeat the preprocessing and profiling of models when

necessary. Through this, FlexNN is able to handle memory

budget dynamicity with minimal overhead while achieving

optimal inference latency.

We implemented FlexNN atop NCNN, a popular open-

sourced mobile inference framework. Although the design

is general, we target the mobile CPU in the current imple-

mentation due to its dominance in mobile/embedded AI ap-

plications. We evaluated FlexNN on various mobile devices,

including smartphones and single-board computers (SBCs)

with common model architectures. The results have shown

that our approach is able to adapt to different memory con-

straints with optimal latency-memory trade-offs. For exam-

ple, FlexNN can reduce the memory consumption by 93.81%

with only a 3.64% increase in latency, as compared with the

original NCNN on smartphones.

We summarize our main contributions as follows:

(1) We design FlexNN, an efficient and adaptive memory

management framework for memory-constrained on-

device DNN inference.

(2) We introduce a slicing-loading-computing joint plan-
ning method that can reduce memory consumption

of DNN inference with minimal increase in runtime

latency.

(3) We propose a preload-aware memory planning scheme

that can effectively reduce memory fragments and I/O

waiting time during inference.

(4) We implement FlexNN atop NCNN and conduct exten-

sive experiments on various edge devices and DNN

models. The results demonstrate that FlexNN is able

to adapt to different memory budgets with optimal

latency-memory trade-offs and minimal overhead.

2 BACKGROUND AND MOTIVATION
2.1 Limited Memory for On-device DNN

Inference
While there have been many existing optimizations focused

on reducing the computational cost, memory is the real bot-

tleneck for on-device DNN inference. Unlike computation

that may just slow down the inference, memory is often a

hard constraint that directly determines whether it is feasible

or not to run the model. The memory constraint manifests

in the following aspects:

Hardware. In the past decade, the growth in memory

capacity on mobile/edge devices has significantly lagged

behind the advances in computing power, while the compu-

tation and memory requirements of a DNN model usually

increase linearly with the model capability [33]. For example,

from the iPhone 4 in 2010 to the iPhone 14 in 2022, the GPU

performance has increased by nearly 1000 times (in terms of

FLOPS), and the CPU performance has improved by around

100 times (based on GeekBench 4 scores [23]), but the RAM

capacity has only increased by a factor of 8 [13].

Operating system. Since most mobile/edge devices are

not dedicated to single tasks, the operating system may im-

pose memory constraints on individual apps. For example,

Android imposes an app-wise heap size limit (e.g., 512MB)

and employs a Low-Memory Killer for memory management

[7].

Applications.Commercial apps are usuallymulti-functional

and may further limit the memory usage of individual in-app

functions including DNN inference, to ensure good perfor-

mance and smooth user experience. For example, it is re-

ported that the grammar-checker model in Microsoft Editor

must use less than 50 MB of memory [42].

To mend the gap between the limited memory budget

on edge devices and the increasing memory requirement of

DNNmodels, it is desirable to design an inference framework

that takes memory optimization as the first priority.

2.2 Memory Footprint of DNN Inference
We conduct in-depth memory profiling of DNN inference

from both inter-layer and intra-layer levels and obtain the

following observations:

A. Unbalanced layer-wise memory distribution. Re-
sults in Figure 1 indicate that DNN models exhibit a highly

unbalanced layer-wise memory distribution. For instance,

in ResNet-152, 79.6% layers consume no more than 5MB of

memory, and 99.4% layers consume no more than 20MB of

memory, while only 0.6% layers consume more than 70MB

of memory.

B. Latency-memory trade-off in kernel selection. “Ker-
nels” refer to different implementations of a layer in a DNN.

When inferring the same layer, a kernel with lower latency
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Figure 1: Layer-wise memory usage of DNNs. Few lay-
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Figure 2: Latency-memory trade-off among 3 kernels
of a 3× 3 Conv. There is a negative correlation between
latency and memory usage.

tends to consume more memory. For example, Winograd,

Im2col+GeMM, and Direct Conv are three common kernels

of convolutional (Conv) layers [29]. Direct Conv directly cal-

culates the convolution results by definition. Im2col+GeMM

flattens the input feature to convert the convolution into a

matrix multiplication, which is more hardware-friendly for

acceleration. Winograd reduces the runtime computational

complexity of 3 × 3 Conv by transforming weights at the

preparation stage. As is shown in Figure 2, Winograd has

the lowest latency, but consumes the most memory.

C. Different memory bottlenecks among layers and
kernels. The memory footprint of a layer consists of three

major parts: activations (i.e., the layer inputs and outputs),

weights (i.e., the model parameters), and intermediates (i.e.,

temporary results when calculating the layer outputs). Specif-

ically, the flattened input (e.g., in Im2col+GeMM Conv) is a

common type of intermediate, and the transformed weights

(e.g., in Winograd Conv) is a common type of weights. Our

profiling results indicate that weights and flattened inputs

are two major intra-layer memory bottlenecks. For example,

weights typically dominate the fully connected (FC) layers

(e.g., by 99.97% in VGG-19’s largest FC) and Winograd Conv

layers (e.g., by 83.63% in ResNet-152’s largest Conv), while

the flattened inputs dominate Im2col+GeMM Conv layers

(e.g., by 74.75% in VGG-19’s 2nd Conv).

2.3 Opportunities
The observations in 2.2 not only cause challenges to DNN’s

memory management, but also provide opportunities and

guide our bottleneck-aware layer slicing design. To address

Computing
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Figure 3: The system overview of FlexNN.

the unbalanced layer-wise memory distribution, it is neces-

sary to conduct intra-layer partitioning to reduce the mem-

ory footprint of bottleneck layers. Due to the diverse mem-

ory bottlenecks within different layers and kernels, differ-

ent partitioning approaches should be applied according to

layer/kernel characteristics. Besides, since different kernels

have different latency-memory trade-offs, it is important

to select the kernel that minimizes latency under the given

memory budget.

Besides, the unique characteristics of DNN inference work-

loads enable a better design space for memory swapping.

First, the control flow of DNN inference is deterministic

as compared with traditional software, making it possible

to reduce execution-time management overhead through

ahead-of-time planning. Second, the size and lifecycle of ten-

sors during DNN inference exhibit certain patterns, which

provide opportunities for optimizing the memory layout.

3 FLEXNN DESIGN
3.1 System Overview
As is shown in Figure 3, FlexNN consists of two stages: the of-

fline planning stage that performs slicing-loading-computing

joint planning according to thememory budget and the given

model, and the online execution stage that conducts model

inference based on offline-generated plans.

The offline planning stage involves two major modules:

bottleneck-aware layer slicing and preload-aware memory

planning. After profiling tensor-wise memory size and lifecy-

cle, layer slicing is conducted to reduce layer-wise memory

footprints. Besides weights slicing and input slicing which

are two slicing approaches, the layer slicing module also

involves kernel selection and weights pre-transformation

to reduce runtime overhead. The preload-aware memory

planning is conducted after the layer slicing to provide a

detailed memory plan. It uses a lightweight algorithm that

reduces fragments and I/O waiting time at runtime, as well

712



FlexNN: Efficient and Adaptive DNN Inference
on Memory-Constrained Edge Devices ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

1

5
6

4

2
3

1

original weights
memory size = 8x6

weights
slicing

6 slices

sliced weights (by rows)
memory size = 8

input
dot product

5

2

4

3

6

partial outputs

merge to
final output

slices outside memory

1 slice
in memory

Figure 4: Weights slicing example of 8 × 6 FC. The
weights are partitioned into six slices to save 83% of
memory usage in this example. The FC weight size
scales with input and output sizes, which can get very
large.

as avoiding large adaption overhead. When the memory bud-

get is sufficiently large, FlexNN also fixes a portion of model

weights in memory to further reduce the I/O cost.

In the online execution stage, FlexNN conducts model

inference efficiently with the offline-generated plans and pre-

transformedweights. Specifically, FlexNNuses a dependency-

based synchronization scheme and a type-based allocator to

ensure the correctness of runtime parallel execution.

Although a complete planning is required at initializa-

tion, the layer slicing part is usually skipped in subsequent

adaptions to avoid the overhead. When the memory budget

changes, FlexNN firstly checks if the previously sliced model

satisfies the new memory budget. If so, FlexNN will bypass

layer slicing, and only conduct memory planning. Otherwise,

the layer slicing is still required to meet the new memory

budget.

3.2 Bottleneck-Aware Layer Slicing
The goal of layer slicing is to reduce the memory consump-

tion of each individual layer with fine-grained partitioning,

and thus reduce the peak memory consumption. Moreover,

our bottleneck-aware layer slicing performs layer-wise peak

memory reduction with runtime latency consideration.

It involves 3 steps: (1) kernel selection that chooses themost

suitable kernel implementation, (2) weights/input slicing that

performs partitioning based on the selected kernel, and (3)

weights pre-transformation that avoids runtime processing

overhead.

Flattened inputs and weights are two major bottlenecks

of layer-wise memory footprint. To address the different

memory bottlenecks of layers and kernels, we introduce two

approaches of layer slicing with different latency-memory

trade-offs (evaluated in § 5.3):weights slicing and input slicing,
as described below.

Weights slicing partitions layer weights into several

slices, and loads one slice each time to reduce the mem-

ory footprint. As is shown in Figure 4, the FC weights are

partitioned by rows, while the input remains unchanged. The

sliced weights are loaded and multiplied with the input slice

by slice, producing a partial output for each slice. The partial

outputs are merged together to obtain the final output.

The number of slices in weights slicing should be mini-

mized under the memory budget. The reason is that weights

slicing divides a large I/O task into multiple smaller ones

interleaved with computations, which significantly increases

the scheduling overhead when the number of slices is large.

We implement weights slicing by splitting one layer into

several sub-layers in the computational graph, with each

sub-layer carrying one slice of weights.

Input slicing partitions the flattened input (e.g., in Im2col

+ GeMM Conv), and keeps one slice in memory each time

to reduce the memory footprint. In Figure 5, the Im2col-

flattened input is partitioned by flattened channels, without

changing the weights. The input is flattened and multiplied

with the weights slice by slice to produce partial outputs,

which are merged in the end to obtain the final output.

The number of slices in input slicing should be maximized

within a platform-dependent threshold, which is different

fromweights slicing. This is because input slicing is achieved

by generating a portion of the flattened input each time in-

stead of swapping with the disk, thus avoiding additional

I/O scheduling overheads. The total latency will not signif-

icantly increase with the number of slices unless the slice

size becomes too small to fully utilize hardware acceleration

(e.g., SIMD). This imposes a platform-dependent constraint

on the maximum number of slices.

The choice between the two approaches is determined by

the bottleneck of the target layer.Weights slicing is more suit-

able for weights-dominated layers such as FC and Winograd

Conv, while input slicing is more suitable for intermediates-

dominated layers such as Im2col+GeMM Conv.

Kernel selection is conducted before the actual partition-

ing process, because the choice of slicing approaches depends

on the selected kernel. Since there is a latency-memory trade-

off in the kernel selection of the same layer, the kernel with

optimal latency might not satisfy the memory constraint.

Therefore, FlexNN firstly calculates the expected memory

footprint of latency-saving kernels after slicing, and switches

to memory-efficient kernels if the latency-saving kernel fails

to meet the memory constraint.

For example, a 3 × 3 Conv has multiple available kernels

including Direct Conv, Im2col+GeMM Conv, and Winograd

Conv. FlexNN firstly tries the Winograd kernel with weights

slicing to minimize latency. If failed, FlexNN then tries the

Im2col+GeMM kernel with input slicing. If Im2col+GeMM

also fails, FlexNN falls back to direct convolution.
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Weights pre-transformation is conducted after kernel

selection and input/weights slicing, to transform specific

weights before execution. The transformation includes not

only reshaping or reformatting, but also matrix multipli-

cations for kernels like Winograd Conv, which cause non-

negligible overheads. The pre-transformation allows FlexNN

to directly load the transformed weights at runtime, and thus

avoids the runtime processing overhead.

3.3 Preload-Aware Memory Planning
Dynamic (e.g., on-demand) memory management strategies

in traditional DL frameworks may suffer from increasing

fragments due to a lack of global memory information, while

the static memory management strategies in existing works

don’t take preloading into consideration, leading to subop-

timal plans. To address both issues, FlexNN employs static

memory management with preload-aware memory planning,

thereby reducing both fragments and I/O waiting time (Fig-

ure 6). We will firstly formulate the preload-aware memory

planning problem, and then introduce our lightweight plan-

ning algorithm.

3.3.1 Problem Formulation. The memory layout planning is

commonly formulated to the 2D Bin Packing (2DBP) problem

with fixed time coordinate [28, 44]. In this formulation, each

tensor is abstracted as a rectangle (called “tensor block” in

the following formulation) on a two-dimensional plane of

memory address (y-axis) and time (x-axis). The 𝑥 range of

the tensor block represents the tensor’s lifecycle (the logical
time, i.e., layer ID from allocation to de-allocation), and the

𝑦 range represents the memory space it occupies. The goal

is to find an optimal layout for a given set of tensors with

known lifecycle and memory size.

Our preload-aware memory planning problem can also

be formulated as a variant of the 2DBP problem. The main
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difference is that, in the aforementioned formulation, all ten-

sors have known lifecycle, so the only objective is to decide

their memory addresses. However, in our problem, both the

allocated address and the allocation time (i.e., the logical time

to start preloading) of weights need to be determined by the

planning result. For example, in Figure 6.c, weights 9, 11, and

13 start preloading before they are required by computation,

and thus have a longer lifecycle than in Figure 6.b, which

don’t consider preloading. To address this, we formulate our

planning problem to a 2DBP problem with half-fixed time

coordinate as described below:

Given: (1) A list of 𝑛 tensors with known properties: the

allocation time without preloading (the starting layer IDs)

{𝑠𝑖 }, the de-allocation time (the ending layer IDs) {𝑒𝑖 }, the
memory size {𝑚𝑖 }, and the memory type {𝑡𝑦𝑝𝑒 (𝑖)}, which
includes weights, activations and intermediates. Specifically,

activations refer to inputs and outputs of all layers, and in-

termediates refer to the computational intermediates within

individual layers, which is different from activations. Since
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Figure 7: Plan activations first to avoid fragments. The
numbers in tensor blocks represent the layer IDs they
belong to.

we implement weights slicing by splitting layers into sub-

layers, we treat each sub-layer as an individual layer in the

memory planning, so the sub-layers have different layer IDs.

(2) A memory budget𝑀𝑚𝑎𝑥 .

Objective: Find an optimal memory plan that minimizes the

inference latency while satisfying the constraints. The plan is

represented as a list of time-address pairsΩ = {⟨𝑡𝑖𝑚𝑒𝑖 , 𝑎𝑑𝑑𝑟𝑖⟩},
where 𝑡𝑖𝑚𝑒𝑖 is the time of tensor 𝑖’s allocation with preload-

ing and 𝑎𝑑𝑑𝑟𝑖 is the allocated memory address.

Constraints: (1) Lifecycle constraint: 1 ≤ 𝑡𝑖𝑚𝑒𝑖 ≤ 𝑠𝑖 for

all weight tensors (allowing for preloading), and 𝑡𝑖𝑚𝑒𝑖 = 𝑠𝑖
for all other types of tensors. (2) Memory usage constraint:

for all time 𝜏𝑙 from 𝜏1 to 𝜏𝐿 , where 𝐿 is the number of time

steps, i.e., number of layers,

∑
𝑡𝑖𝑚𝑒𝑖≤𝜏𝑙 ≤𝑒𝑖 𝑚𝑖 < 𝑀𝑚𝑎𝑥 . (3)

Memory address constraint: 0 ≤ 𝑎𝑑𝑑𝑟𝑖 ≤ 𝑀𝑚𝑎𝑥 −𝑚𝑖 for all

𝑖, 𝑙 . (4) Memory non-overlapping constraint: either (𝑡𝑖𝑚𝑒𝑖 ≥
𝑒 𝑗 ) ∨ (𝑡𝑖𝑚𝑒 𝑗 ≥ 𝑒𝑖 ) (lifecycle non-overlapping) or (𝑎𝑑𝑑𝑟𝑖 +
𝑚𝑖 ≤ 𝑎𝑑𝑑𝑟 𝑗 ) ∨ (𝑎𝑑𝑑𝑟 𝑗 +𝑚 𝑗 ≤ 𝑎𝑑𝑑𝑟𝑖 ) (memory address non-

overlapping).

3.3.2 Planning Algorithm. We employ the lightweight Al-

gorithm 1, which leverages the memory access patterns of

DNN inference, to minimize both memory fragments and

I/O waiting time. The algorithm decomposes memory plan-

ning in a unified buffer into several steps, based on different

tensor types: weights, activations, and intermediates. As is

illustrated in Figure 8, the algorithm involves the following

key steps:

Plan activations. FlexNN prioritizes planning the activa-

tions due to their long lifecycle. Activations have longer life-

cycle than other types of tensors since they typically serve as

one layer’s output and one or multiple layers’ inputs. For ex-

ample, in Figure 7, layer 1’s output is layer 2’s input, marked

as “1,2”. As is illustrated in Figure 7, the activation-first plan-

ning effectively avoids fragmentation by firstly placing all

activations at both ends of the memory buffer, thereby main-

taining a continuous block of memory in the middle.

Plan weights with preloading (layer-wise). For each layer,

FlexNN plans the weights before intermediates. It greedily

Algorithm 1 Lightweight memory planning algorithm

Input: memory budget 𝑀𝑚𝑎𝑥 , tensors profiles: allocation

time {𝑠𝑖 }, de-allocation time {𝑒𝑖 }, memory size {𝑚𝑖 }, mem-

ory type {𝑡𝑦𝑝𝑒 (𝑖)}
Output: the memory plan Ω = {⟨𝑡𝑖𝑚𝑒𝑖 , 𝑎𝑑𝑑𝑟𝑖⟩}
𝑒𝑚𝑝𝑡𝑦 𝑝𝑙𝑎𝑛 Ω
Ω ←PlanActivations(Ω, {𝑠𝑖 }, {𝑒𝑖 }, {𝑚𝑖 }, 𝑀𝑚𝑎𝑥 )

for 𝑙 in range(𝑙𝑎𝑦𝑒𝑟 𝑐𝑜𝑢𝑛𝑡 ) do
𝑏𝑎𝑐𝑘𝑢𝑝 𝑝𝑙𝑎𝑛 Ω
Ω ←PreloadWeights(Ω, {𝑠𝑖 }, {𝑒𝑖 }, {𝑚𝑖 }, 𝑀𝑚𝑎𝑥 )

Ω ←PlanIntermediates(Ω, {𝑠𝑖 }, {𝑒𝑖 }, {𝑚𝑖 }, 𝑀𝑚𝑎𝑥 )

if Ω fails then
𝑟𝑒𝑠𝑡𝑜𝑟𝑒 𝑝𝑙𝑎𝑛 Ω
Ω ←PlanNoPreload(Ω, {𝑠𝑖 }, {𝑒𝑖 }, {𝑚𝑖 }, 𝑀𝑚𝑎𝑥 )

⊲ Re-schedule weights and intermediates w.o. preloading.

if Ω fails then
return Error. ⊲ Schedule fails.

end if
end if

end for
return Ω ⊲ Schedule succeeds.

searches available memory that minimizes the allocation

time of weights, thereby reducing I/O waiting time as much

as possible.

Plan intermediates (layer-wise). For each layer, after the

weights’ layout is determined, FlexNN greedily fills the re-

maining memory with intermediates.

Re-planweights and intermediates without preloading (layer-
wise). The greedy weights preloading strategy might also

cause fragments and lead to intermediate planning failures.

Therefore, for each layer, when preload-aware planning fails,

FlexNN will re-plan this layer’s weights and intermediates

without weights preloading.

3.4 Online Execution Design
The online execution stage aims to conduct the actual model

inference while correctly following the plans determined in

the offline planning stage. It mainly needs to address two

gaps between the planning results and the actual execution,

as described below.

The gap between tensor-wise planning and layer-wise exe-
cution. The memory plan determines fine-grained dependen-

cies between tensors, but the runtime conducts a relatively

coarse-grained layer-wise inference. Since the execution of

one layer involves multiple tensors with different lifecycle,

there might be tensor-wise memory conflicts if the loading

and computing order of layers is not carefully controlled.

The gap between logical time and actual execution time. The
plan determines only the logical time of memory allocation

and release for each tensor, but the actual time is unknown.
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This uncertainty may change the actual allocation order of

tensors, and thus cause wrong allocation results.

To mend the gaps, we introduce a dependency-based syn-
chronization scheme to schedule the loading and comput-

ing of layers, and a type-based static allocator to ensure the

correctness of allocations. The layer dependency plan for

dependency-based synchronization and the memory alloca-

tion plan for the type-based allocator are obtained from the

memory planning results with simple post-processing.

Dependency-based synchronization. FlexNN captures

thememory dependency between layers to convert the tensor-

wise memory plan to the layer-wise execution plan. Specif-

ically, we divide the execution of a layer into loading and

computing tasks, then manage the execution order of tasks

through layer dependencies.

The execution of one layer typically consists of three steps:

weights loading, preparation, and computing. Since FlexNN

conducts pre-transformation at the offline planning stage,

the preparation step can be skipped. We further abstract

the weights loading and computing processes of layers to

“loading” tasks that conduct only weights loading, and “com-

puting” tasks that conduct all other computations. Both the

computing threads and the loading thread are accompanied

by a task queue, i.e., the loading task queue and the com-

puting task queue, where they greedily fetch available tasks.

Computing and loading threads synchronize through task

queue management to satisfy the layer dependencies.

Specifically, there are two types of dependencies at the task

level. We denote the loading and computing tasks of layer

𝑖 as “𝑙𝑜𝑎𝑑 (𝑖)” and “𝑐𝑜𝑚𝑝 (𝑖)” respectively, and use > and <

to represent the dependency between tasks, e.g., 𝑙𝑜𝑎𝑑 (1) <
𝑐𝑜𝑚𝑝 (1) means layer 1’s computing depends on layer 1’s

loading. (1) Loading before computing, denoted as 𝑙𝑜𝑎𝑑 (𝑖) <
𝑐𝑜𝑚𝑝 (𝑖): layer 𝑖’s computing depends on layer 𝑖’s loading.

(2) Computing before loading, denoted as 𝑐𝑜𝑚𝑝 (𝑖) < 𝑙𝑜𝑎𝑑 ( 𝑗):
layer 𝑗 ’s loading depends on layer 𝑖’s computing if they

have intersection of memory address. Dependency (1) nat-

urally holds for all layers, while dependency (2) can be re-

solved from the memory planning results with simple post-

processing. Figure 9 shows an example of how our synchro-

nization scheme ensures the execution order through layer

dependencies.

Type-based static allocation. The key to ensuring cor-

rect memory allocation results at runtime is to define the or-

der of allocations, which may be challenging in multi-thread

execution. Fortunately, we observe that each thread will only

allocate the memory for certain types of tensors. Specifically,

the memory spaces of weights are allocated solely within

the loading thread, while the spaces of activations and inter-

mediates are allocated solely within the computing thread.

Hence, the memory allocation order within each type of ten-

sor is fixed. Therefore, we uniquely identify each tensor by

its type and the count within the type (e.g., Weights-5) to en-
sure the correct order of allocations. The mapping between

the assigned tensor ID and the allocated address can be ob-

tained through lightweight post-processing of the memory

planning results.
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4 IMPLEMENTATION
We implemented a prototype of FlexNN atop NCNN (commit

#4594) [29] with 12.3k LoC added. NCNN is an open-source

inference engine that has highly optimized kernels on Arm

CPUs and supports many real-world mobile apps on the

backend, and we target Arm CPUs in the current FlexNN

implementation. There are three main reasons for choosing

NCNN for the implementation: (1) NCNN is highly optimized

for mobile devices, outperforming most other frameworks

like TFLite [1]. (2) NCNN supports a good set of models,

including CNN, RNN, LSTM, Transformers, etc. (3) NCNN

also has good community support and a clear code structure,

which provides convenience for our development. Note that

our techniques focus on the general process of data loading

and computation of DNN inference and thus should be easy

to port to other frameworks.

Framework modifications. Except the lifecycle-aware
memory planner, which is framework-independent, all other

modules require modifications to the inference framework.

As for offline planning, we implement layer slicing based

on NCNN’s model writer tool to modify the computational

graph andwrite transformedweights. In terms of the runtime

engine, we implement the parallel preloading pipeline with

dependency-based synchronization and modify the native

NCNN allocators to a type-based static memory allocator,

which changes the original memory management scheme.

Specifically, the static allocator allocates a continuous buffer

at initialization and manages the buffer during inference.

We also modify a few of NCNN’s operators. For example,

we implement input slicing by adjusting the Im2col+GeMM

Conv kernel.

Cooperating with Armv8-A and NEON. Arm CPUs are

widely used on various types of edge devices, and the Armv8-

A architecture is now the de facto standard on smartphones.

Therefore, we target Armv8-A CPUs in our implementation

and deployment, although FlexNN’s design is compatible

with any other architecture. NEON is an advanced SIMD

architecture extension that can provide up to 32 128-bit regis-

ters in AArch64, the 64-bit execution environment of Armv8-

A [6]. Specifically, NEON supports up to 4×32-bit operations
per instruction, and NCNN’s kernels use basic computing

blocks of shapes such as 8 × 4 and 8 × 8 with NEON accel-

eration. Therefore, when slicing layers, we always keep the

widths/heights/channels of sliced inputs/weights as multi-

ples of 8 if possible, to fully leverage NEON’s acceleration

and thus avoid performance degradation.

5 EVALUATION
We evaluate FlexNN on six DNN models and three devices

to demonstrate its ability to achieve efficient and adaptive

DNN inference with constrained memory.

Device Name CPUs RAM (GB)

Google Pixel 6 Pro

2x2.80 GHz Cortex-X1

2x2.25 GHz Cortex-A76

4x1.80 GHz Cortex-A55

12

Xiaomi Mi Mix 2S

4x2.8 GHz Kryo 385 Gold

4x1.8 GHz Kryo 385 Silver

6

Raspberry Pi 4B 4x1.8 GHz Cortex-A72 8

Table 1: Device specifications in our evaluation.

5.1 Experimental Setup
Models.We evaluate FlexNNwith six widely-used DNNmod-

els, including ResNet-152 [18], VGG-19 [38], Vision Trans-

former (ViT) [10], GPT-2 [32],MobileNetV2 [36] and SqueezeNet

[21]. As FlexNN doesn’t modify the model weights, we use

the pre-trained models (FP32) and random inputs in our

experiments.

Platforms. We conduct the evaluations on two types

(single-board computers and smartphones) of edge devices

with different hardware specifications, all equipped with

Armv8-A CPUs. The detailed specifications are listed in Ta-

ble 1. We always use the big cores for computing in our

evaluations. Specifically, we use two big cores on Pixel 6 Pro,

four big cores on Mix 2S, and three cores on Raspberry Pi.

As for loading, we use one middle core on Pixel 6 Pro and

one little core on Mix 2S. Since Raspberry Pi doesn’t have

little cores, one big core is reserved for loading.

Metrics. The measurements cover most of the metrics that

indicate the actual performance of the system in real-world

applications, including memory usage, inference latency, and

energy consumption. The memory usage is measured via the

Linux pmap command, and the real-time power consumption

is estimated by multiplying the battery’s current and voltage,

which can be obtained through the sysfs interface in Linux.

Baselines. All of our baselines are based on NCNN for

two main reasons. (1) We implement FlexNN atop NCNN,

which is indeed one of the best performing mobile frame-

works as aforementioned in Section 4. (2) To the best of our

knowledge, FlexNN is the first mobile inference framework

to take memory as a priority, so there are no similar works

to compare with. We use the NCNN with the default configu-

ration (denoted as “NCNN-Default”) as one of our baselines.

One way to reduce the memory consumption in NCNN is

to disable the Im2col+GeMM and Winograd kernels, both of

which would increase memory usage for lower latency. We

call this baseline as “NCNN-Direct”. Another common strat-

egy to reduce memory footprint is layer-wise swapping and

on-demand loading. We also implement this strategy atop

NCNN and include it as a baseline, denoted as “On-Demand”.

All baselines use the same number of big cores as FlexNN for

computing. The little cores are not used in baselines, since
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Figure 10: End-to-end latency andmemory results on different devices and models.FlexNN’s curve on the down-left
side indicates the trade-offs under different memory budgets, while the other points of the baselines provide no
trade-offs. Therefore, FlexNN achieves better latency-memory trade-offs.

the unbalanced load would slow down the inference (e.g.,

by up to 48% on Mix 2S) in NCNN if the big cores and little

cores are used together.

5.2 End-to-end Performance
The end-to-end evaluation covers three edge devices and 6

DNN models of various types. In Figure 10, for each device

and model, the results of FlexNN are represented by a curve,

in which each data point represents the memory and latency

achieved by FlexNN under a memory constraint, while the

baselines are represented by individual data points as they

have fixed memory usage. We analyze the results from the

following aspects.

Peak memory reduction. The left end of a curve rep-

resents the minimum memory budget enabled by FlexNN.

FlexNN supports lowermemory budgets thanNCNN-Default

and NCNN-Direct on all models, and lower than On-Demand

inmost cases. For instance, when compared toNCNN-Default,

NCNN-Direct, and On-Demand on Pixel 6 Pro, FlexNN re-

duces the memory usage by up to 92.95%, 90.01%, and 85.13%

respectively on VGG-19, and by up to 93.81%, 85.45%, and

25.21% respectively on ResNet-152. As a straightforward way

of streaming, On-Demand requires less memory than other

baselines for most models. Due to our layer slicing tech-

niques, FlexNN reduces the layer-wise memory footprint,

further reducing the overall memory usage compared to the

On-Demand strategy.

Latency reduction. In addition to reducing memory us-

age effectively, FlexNN also achieves acceptable inference la-

tency. Under the same memory budgets, FlexNN consistently

achieves lower or at least comparable latency to the base-

lines, especially under low memory budgets. For example, on

Pixel 6 Pro, compared to NCNN-Default, NCNN-Direct, and

On-Demand, FlexNN reduces the latency by approximately

6.37%, 83.63%, and 58.33% on VGG-19, and by approximately

11.08%, 61.11%, and 63.33% on ResNet-152.
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FlexNN maintains latency comparable to NCNN-Default

even in low-memory situations through pre-transforming

and preloading weights. For instance, it achieves a 93.81%

peak memory reduction only at the cost of a 3.64% latency

increase on ResNet-152, Pixel 6 Pro.

It is noticed that FlexNN even outperforms NCNN-Default

when the memory budget is sufficiently large. This is because

FlexNN can fix all weights in memory when given the same

memory budget as NCNN-Default, which entirely avoids the

I/O cost. Then other latency-reduction designs including pre-

transformation and static memory management can further

reduce the latency.

Variance across models and devices. FlexNN achieves

good performance on CNNs of diverse model sizes, but the

improvement on transformer-based models is not significant.

It is also noticed that the performance of FlexNN on Rasp-

berry Pi is slightly poorer than on the other devices. Both

two observations originate from the change of system bot-

tleneck. On-device DNN inference is bound by computing in

most cases, so that FlexNN can hide the loading time with

computing time. However, when the model is dominated by

I/O (e.g., Transformers) or the device experiences I/O per-

formance bottlenecks (e.g., the Raspberry Pi has an average

reading speed of 257 MB/s, compared to 718 MB/s on Mix

2S) , the inference task becomes I/O-bound, which prevents

further reduction in latency.

5.3 Latency and Memory Trade-off
In addition to achieving better overall latency and memory

compared to the baselines, FlexNN itself exhibits a latency

and memory trade-off. As shown in Figure 10, when the

memory budget increases, FlexNN effectively utilizes the

spare memory to reduce latency. This trade-off comes from

two aspects: (1) With a larger memory budget, FlexNN can

use a larger slice size and faster computational kernels to
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Figure 12: Real-time power consumption of FlexNN
and NCNN on Pixel 6 Pro, both inferencing VGG-19 for
8 loops.

obtain layer-wise acceleration. (2) For a given slicing strat-

egy and kernel selection, a larger memory budget allows

FlexNN to preload more weights, resulting in model-wise

acceleration.

Figure 11 further demonstrates this trade-off using a single-

layer example. On one hand, both input slicing and weights

slicing exhibit lower latency when more memory is available.

For input slicing, as the slice size increases, the decrease

in latency becomes smaller. Hence, a fixed slice size (e.g.,

32 in our implementation) is chosen to leave more memory

space for preloading. For weights slicing, the latency without

preloading (“Latency Full”) noticeably increases as memory

decreases. However, when preloading is performed, the la-

tency (“Latency Preload”) remains almost unchanged as long

as the computing time could be hidden by the loading time.

5.4 System Overhead
The overhead of FlexNN consists of two major parts: offline

planning overhead and runtime preloading overhead. We

measure the system overheads and discuss them separately

in this subsection.

Offline planning overhead. The offline planning over-

head includes storage for transformed weights, time for pro-

filing, time for layer slicing, and time for memory planning.

We measure each term and list them in Table 2. On most

edge devices, there is sufficient storage capacity (typically

ranging from tens to hundreds of GB) to accommodate the

transformed weights. Regarding the time overhead, profiling

and layer slicing are typically performed only at initializa-

tion, and only memory planning needs to be repeated each

time the memory budget changes. Consequently, the time

overhead for adaptation typically remains within one second,

which satisfies most scenarios. However, the extra cost of

re-slicing and re-planning is required when the slicing result

fails to meet the new memory budget or when there is an

allocation error, which should occur rarely as our approach

effectively controls the memory usage.

Runtime I/O overhead. The runtime overhead of FlexNN

mainly comes from the additional I/O to load model weights.

Since we have made an end-to-end comparison of latency

in § 5.2, we will focus on the energy cost here. According to
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Model

Memory

Budget (MB)

Transformed Weights

Storage (MB)

Layer Slicing

Cost (ms)

Profiling

Cost (ms)

Memory Planning

Cost (ms)

VGG-19 100 781 2,458.96 689.25 5.27

ResNet-152 100 547 2,228.76 540.94 864.67

Vision Transformer 300 337 888.84 1,438.84 390.55

Table 2: Storage and time overheads of FlexNN. Profiling and layer slicing can be bypassed, while memory planning
(within 1s) is required each time the memory budget changes.
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Figure 13: Ablation study. “w.o.mem” stands for
FlexNN without static memory management;
“w.o.preload” stands for FlexNN without parallel
preloading; “w.o.both” stands for FlexNN without both
components.

Figure 12, the peak power consumption of FlexNN is similar

to NCNN, but the larger inference latency of FlexNN results

in higher total energy consumption. Specifically, FlexNN

increases the energy consumption on Pixel 6 Pro by 1.02% on

ResNet-152, and by 28.39% on VGG-19. The additional energy

cost is acceptable considering the highly limited memory.

5.5 Ablation Study
We also conduct an ablation study to separately demon-

strate the impact of static memory management and par-

allel preloading on reducing latency. “w.o.mem” replaces

FlexNN’s static memory allocator with NCNN’s native mem-

ory allocator, while “w.o.preload” replaces FlexNN’s preload-

ing with on-demand loading. “w.o.all” encompasses both

modifications. The results in Figure 13 demonstrate that

both the static memory management and parallel preloading

effectively reduce inference latency under given memory

budgets.

5.6 Adapting to Memory Budget Changes
We also implement a demo to demonstrate the real-time

performance of FlexNN under varying memory budgets. Fig-

ure 14 shows the real-time memory usage and inference

latency of FlexNN when sequentially adapting to four dif-

ferent memory budgets. When the memory budget changes,
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Figure 14: Real-time latency and memory usage of
FlexNN under changing memory budgets. FlexNN con-
ducts 32 times of inference on VGG-19 for each mem-
ory budget.

FlexNN pauses the inference process, releases memory, gen-

erates an execution plan for the new memory budget, re-

allocates memory, and finally resumes the inference. The

entire adaptation process takes approximately 1 second in

total. As is shown in Figure 14, FlexNN accurately meets

the memory budgets and achieves smaller inference latency

under larger memory budgets. Since there is no warm-up,

the first loop after each adaptation has a longer latency due

to the cold start overhead. Note that in the real-world deploy-

ment, we expect the memory budget changes and adaption

strategy to be controlled by the developer, which is not the

focus of this paper.

6 DISCUSSION
We hereby discuss the applicability and effectiveness of

FlexNN across other scenarios.

Different memory bottleneck. FlexNN adaptively deals

with the cases when the weights or inputs are the layer-

wise memory bottleneck, which is common across most

models. Its effectiveness may be limited when the activa-

tion becomes the major memory bottleneck (e.g., when the

weights/inputs have been highly compressed), because our

current design does not support activation slicing, and the

input slicing in § 3.2 is now restricted to flattened inputs such

as in Im2col+GeMM. This issue can be mitigated by further
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supporting activation partitioning and swapping, which we

leave for future work.

Different models. Our current implementation is mainly

focused on reducing the memory footprint of typical CNNs

(such as VGG, ResNet, and MobileNet) due to the dominance

of CNNs on mobile devices. Although we have tested FlexNN

on Transformer-basedmodels including ViT and GPT-2, their

results are less significant. There are two main reasons. (1)

The layer slicing support for theMulti-head Attention (MHA)

in Transformer-based models is not as well as the convolu-

tional layers, which requires non-trivial engineering efforts

to improve in future work. (2) The inference of Transformer-

based models requires more intensive weights loading as

compared to CNNs, which brings larger I/O overhead in the

streaming-based inference. Therefore, it is more challenging

to apply the memory swapping mechanism to these models.

Nevertheless, our slicing and memory management design

is applicable to all types of models.

Different precisions. Though we only implement and

evaluate FlexNN with FP32-based models now, FlexNN’s

design is agnostic to data precision. It does not require mod-

ification of the overall framework to add support for other

precision, while the transplantation of operators still entails

certain amounts of engineering effort. In general, FlexNN

possesses the ability to be compatible with compressed mod-

els.

Different hardware. The current implementation only

targetsmobile CPUs due to its dominance inmobile/embedded

AI applications, but it is feasible to migrate the implementa-

tion to different backends including mobile GPU, NPU, DSP,

and Tensor Cores, as the slicing and joint-planning design of

FlexNN is generic and doesn’t rely on specific hardware like

CPU. However, the following factors should be taken into

consideration for the migration and real-world deployment.

(1) Our approach involves fine-grained memory manage-

ment, which might require low-level APIs to support the

implementation. (2) The additional data movement cost of

utilizing heterogeneous hardware should be considered, as

the streaming-based inference design brings additional I/O

of model weights. (3) Higher energy consumption of FlexNN

might be a limiting factor for battery-operated devices.

7 RELATEDWORK
System support for memory-constrained inference. Al-
though the number of studies focusing on streaming infer-

ence on mobile devices is limited, there are other types of

relevant research. A typical line of work [20, 31, 35, 49] re-

duces the GPU memory requirement through swapping with

the main memory on cloud or edge servers. FlexGen [37]

further introduces disk swapping to support large gener-

ative models on a single GPU. Occlumency [26] conducts

layer partitioning and streaming to fit CNNs into the limited

TEE memory. Melon [44] reduces the memory footprint of

on-device training through offline planning with a lifetime-

aware memory pool. These works lack joint planning of

layer partitioning, memory layout, and computing-loading

overlapping, and directly applying these approaches in our

scenario may lead to suboptimal performance. Nevertheless,

they offer valuable insights onmemory optimization for edge

devices.

Model customization for memory-constrained infer-
ence. In order to support DNN inference under resource

constraints, numerous works have been devoted to model

customization techniques, including model compression [4,

17, 19, 27], efficient model structure design [21, 36, 41, 52]

and neural architecture search (NAS) [5, 34, 40, 47, 50]. Prun-

ing reduces the number of model parameters by selectively

removing unimportant connections, thereby reducing com-

putation and memory requirements. Similarly, quantization

reduces the model size and computation load by using low-

precision representations for its parameters. Meanwhile,

hardware-aware NAS automatically searches the most effi-

cient model architecture for given platforms and tasks. To ad-

dress the challenge of memory budget dynamicity on mobile

devices, researchers have also proposed to dynamically scale

the model on the device [11, 16, 45]. While these techniques

effectively reduce the computation and memory require-

ments of the model, they may also compromise the model’s

capacity and robustness. Meanwhile, these approaches and

ours are orthogonal. Running the customized models with

FlexNN can further reduce the memory footprint.

8 CONCLUSION
In this paper, we designed and implemented FlexNN, an ef-

ficient and adaptive memory management framework for

memory-constrained on-device DNN inference. FlexNN achieves

optimal memory utilization and minimal memory manage-

ment overhead through a slicing-loading-computing joint

planning approach. Our evaluation results have shown that

FlexNN is able to adapt to different memory budgets with

optimal latency-memory trade-offs and minimal adaption

overhead.
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