
ar
X

iv
:2

40
3.

12
50

3v
2

 [
cs

.C
R

]
 1

1
Ju

n
20

25

Securing Large Language Models: Threats, Vulnerabilities and
Responsible Practices

Sara Abdali∗⋄ and Richard Anarfi†† and CJ Barberan† and Jia He† and Erfan Shayegani†
⋄Microsoft, Redmond, WA, USA
saraabdali@microsoft.com

†Microsoft, Boston, MA, USA
ranarfi,cjbarberan,hejia@microsoft

University of California, Riverside (UCR), Riverside, CA, USA
sshay004@ucr.edu

Abstract

Large language models (LLMs) have signif-
icantly transformed the landscape of Natu-
ral Language Processing (NLP). Their im-
pact extends across a diverse spectrum of
tasks, revolutionizing how we approach lan-
guage understanding and generations. Nev-
ertheless, alongside their remarkable util-
ity, LLMs introduce critical security and
risk considerations. These challenges war-
rant careful examination to ensure respon-
sible deployment and safeguard against po-
tential vulnerabilities. This research pa-
per thoroughly investigates security and pri-
vacy concerns related to LLMs from five
thematic perspectives: security and privacy
concerns, vulnerabilities against adversarial
attacks, potential harms caused by misuses
of LLMs, mitigation strategies to address
these challenges while identifying limita-
tions of current strategies. Lastly, the pa-
per recommends promising avenues for fu-
ture research to enhance the security and
risk management of LLMs.1

1 Introduction

Recently, Large Language Models (LLMs) have
initiated a significant paradigm shift in the areas
of Natural Language Processing (NLP) includ-
ing Natural Language Generation (NLG). LLMs
are generally characterized by a large number
of parameters – usually ranging from millions
to trillions – and are constructed using deep
neural networks, mainly transformer architec-
tures (Vaswani et al., 2017; Lin et al., 2021).
They undergo pre-training on massive amounts
of text data, often collected from the web, and

∗ Corresponding author
† These authors contributed equally.

1This study represents independent research conducted by
the authors and does not necessarily represent the views or
opinions of any organizations.

leverage self-supervised (Jiao et al., 2023), semi-
supervised (Shi et al., 2023a), or Reinforcement
Learning (RL) (Ouyang et al., 2022; Gulcehre
et al., 2023) methods for pre-training and fine-
tuning. Researchers continue to explore ways to
fine-tune and adapt these LLMs for specific ap-
plications, making them indispensable tools in the
NLP community and beyond.

LLMs have demonstrated remarkable abili-
ties to generate coherent, human-like text, often
for a given textual input, also referred to as a
prompt (Zhao et al., 2023b).

For example, LLMs can assist users in com-
municating effectively, providing consistent and
context-aware responses. They enable users to ac-
cess information quickly, summarizing large vol-
umes of text or answering complex queries. More-
over, LLMs contribute to producing varied and
inventive content, whether it’s generating poetry,
stories, or code snippets. Beyond individual use
cases, they also play a crucial role in education,
research, and innovation across diverse fields, in-
cluding science, art, and literature.

More specifically, LLMs achieve impressive re-
sults on various NLP tasks, such as text gen-
eration (Senadeera and Ive, 2022), question an-
swering (Zaib et al., 2021; Bhat et al., 2023),
sentiment analysis (Batra et al., 2021; Kheiri
and Karimi, 2023), as well as augmenting hu-
man abilities by improving Human-Computer In-
teractions (HCI) (Oppenlaender and Hamalainen,
2023; Hämäläinen et al., 2023).

While LLMs have demonstrated significant per-
formance improvements across various tasks, they
also present critical challenges with respect to se-
curity, privacy, and ethical protocols.

For instance, LLMs are generally pre-trained on
a huge volume of text from the web, which could
potentially contain sensitive, personal, or confi-
dential information. This poses a risk of leakage
or misuse by adversaries. (Weidinger et al., 2021).

https://arxiv.org/abs/2403.12503v2

They could be also used for generating biased,
toxic, harmful and discriminatory content (Kuch-
nik et al., 2023), infringing intellectual property
rights (Peng et al., 2023; Stokel-Walker, 2022),
bypassing corporate security protocols (Shayegani
et al., 2023; Mozes et al., 2023), or other mali-
cious purposes, such as generating cyber-security
attacks (Han et al., 2023) and spreading misin-
formation and propaganda (Vykopal et al., 2023;
Mozes et al., 2023).

To foster responsible and ethical use of LLMs,
it is essential to develop methods and frameworks
that assess, improve, and govern LLMs in accor-
dance with the principles of fairness, accountabil-
ity, transparency, and explainability. This requires
a comprehensive and interdisciplinary investiga-
tion of LLMs from a security, ethical and risk mit-
igation perspective.

While there are several existing studies (Gan-
guli et al., 2022; Huang et al., 2023b; Sun et al.,
2023; Deshpande et al., 2023b; Wang et al., 2023a)
that examine the security and risks of LLMs, the
fast-paced advancement and innovation in this do-
main calls for a rigorous and systematic analysis.

With the goal of raising awareness and promot-
ing responsible practices, we explore the potential
threats and vulnerabilities associated with LLMs
and categorize them into model-based, training-
time and inference-time vulnerabilities.

Additionally, we explore solutions and best
practices to ensure their safe and responsible use.
Our approach involves a rigorous investigation and
evaluation of security and risk mitigation aspects
related to LLMs. By doing so, we aim to high-
light gaps and limitations in existing research and
propose future directions. In summary, the key as-
pects of our research are:

• Security Risks: We identify security con-
cerns arising from LLM usage, including in-
formation leakage, memorization and secu-
rity holes in codes generated by LLMs.

• Vulnerabilities and Risks of Adversarial
Attacks: We discuss LLMs’ susceptibility
to adversarial attacks including model-based,
training-based and inference-based attacks.

• Risks of Misuse: We analyze the risks
and misuses associated with LLMs including
bias, discrimination, and misinformation.

• Risk Mitigation Strategies: Our compre-
hensive assessment covers mitigation strate-

gies like red teaming, model editing, wa-
termarking, and AI-generated text detection
techniques including discussions on limita-
tions and trade-offs.

• Future Research Directions: We explore
new research avenues aimed at addressing se-
curity and risk issues related to LLMs.

The rest of the paper is organized as follows:
As a preliminary step, we provide a glossary

of the main terms that are frequently used in this
work in the section 2 to promote the the readability
of this paper and eliminate unnecessary repetition.
Then, in the section 4, we introduce some of the
major vulnerabilities of LLMs by classifying them
into three main categories: Model-based, training-
based and inference-based attacks and their re-
spective countermeasures. In addition, in section
3, we investigate the security issues that emerge
with LLM usage. We elaborate further risks and
misuses of LLMs in section 7. Afterwards, in sec-
tion 6 we discuss mitigation strategies to reduce
such risks, followed by section 7 where we pro-
pose new avenues of research. Finally, in section 8
we conclude. An overview of the paper’s content
is illustrated in figure 1.

2 Background

In order to enhance the clarity of this paper and
avoid redundancy, we provide a glossary of the
key terms that are frequently used in this work.
We present table 1 that shows the terms, their con-
cise definitions, and the paper sections where they
are elaborated in depth. We encourage the readers
to refer to the glossary whenever they encounter
a term that is unfamiliar or unclear to them. The
glossary is intended to serve as a quick reference
guide and not as a comprehensive explanation of
the concepts.

Terminology Description Section
Unlearning A data pre-processing step for retraining or fine-tuning LLMs. It explicitly

removes data points identified as vulnerable to leakage from dataset and re-
trains or fine-tunes LLMs on the processed dataset. (Cao and Yang, 2015;
Chakraborty et al., 2024)

3.1

Memorization Memorization is the phenomenon of LLMs retaining and reproducing infor-
mation from their training data. Memorization can be beneficial for tasks
that require factual or linguistic knowledge, but also problematic for privacy,
security, and quality reasons (Hartmann et al., 2023a; Zhong et al., 2023).

3.2

Association association is the ability of LLMs to form connections between different
pieces of information, such as words, entities, concepts, or events. As-
sociation in LLMs can enable various applications, such as knowledge re-
trieval, text summarization, and question answering. However, association
in LLMs can also pose challenges, such as privacy leakage, hallucination,
and bias (Shao et al., 2023; Du et al., 2023a; Chen and Ding, 2023)

3.2

Auditing Auditing is to perform an examination to understand the implications and
consequences of LLM memorization. For example, in auditing verbatim
memorization, the examination would include a setup to generate arbitrary
generated strings in order to detect if the LLM can provide an output of the
said arbitrary generated string with high probability. (Hartmann et al., 2023b)

3.2

Emergent
Misalignment

refers to unintended, unpredictable behavior that arises during fine-tuning,
leading models to exhibit unsafe or unaligned responses across multiple di-
mensions. (Betley et al., 2025)

3.3

Adversarial
Attack

An adversarial attack is a method that leverages the vulnerabilities or short-
comings of an LLM to induce erroneous or deceptive outputs. Adversarial
attacks can be utilized for malicious purposes, such as creating misinforma-
tion, circumventing security protocols, or undermining the reliability of the
model (Bachu et al., 2024; Shayegani et al., 2023).

4

Attack Success
Rate (ASR)

An attack success rate is a measure of the efficacy of an adversarial attack on
a machine learning model. It is computed as the fraction of successful attacks
over the total number of attacks. A successful attack is one that makes the
model produce an erroneous prediction or output . An attack success rate can
change depending on the type of attack, the type of model, the type of task,
and the degree of perturbation (Wu et al., 2021).

4

Model
Extraction

Attack

A form of adversarial attack that leverages a large number of queries and
their corresponding responses to extract the knowledge or parameters of an
LLM. The extracted information can then be used to train a reduced parame-
ter model that approximates the target LLM, or to conduct subsequent attacks
on the LLM or other models. Prompt extraction (Kirk et al., 2023), model
leeching (Birch et al., 2023a) and side channel attacks (Tol and Sunar, 2023)
are common examples of model extraction attacks.

4.1.1

Data Poisoning Is an attack that corrupts the training data of an LLM, impacting its per-
formance, behavior, or output. Data poisoning can lead to issues such as
biases, falsehoods, toxicity, backdoors, or vulnerabilities in the model . Data
poisoning can be deliberate by malicious actors who aim to harm or hijack
the model, or accidental by negligent or uninformed data providers who ne-
glect data quality and security standards. Data poisoning can be avoided or
reduced by using reliable data sources, checking and cleaning the data, de-
tecting anomalies in the model, and assessing the model for resilience (Chen
et al., 2017; Schwarzschild et al., 2020; Yang et al., 2021)

4.2.1

Continued on the next page

Terminology Description Section
Backdoor

Attack
A type of malicious manipulation that embeds a hidden trigger in the
model, causing it to perform normally on benign samples but exhibit de-
graded performance on poisoned ones. This issue is particularly con-
cerning within communication networks where reliability and security are
paramount (Yang et al., 2023a). Input-triggered, instruction-triggered and
demonstration-triggered are some common ways to launch a backdoor at-
tack on LLMs (Zhao et al., 2023a; Yao et al., 2023a; Huang et al., 2023a;
Zhu et al., 2022).

4.2.2

Paraphrasing
Attack

An attack that uses a paraphraser model to rewrite AI-generated text and
evade its detection. It can enhance the naturalness and human-likeness of the
AI-generated text, and bypass the signatures or patterns of the detectors. A
paraphrasing attack can challenge the security and reliability of LLMs and
their applications (Shayegani et al., 2025; Krishna et al., 2023; Sadasivan
et al., 2023).

4.3.1

Spoofing
Attack

A spoofing attack in context of LLMs is an adversarial attack that imitates
a specific LLM with an altered LLM to create similar outputs. It can pro-
duce outputs that are harmful, deceptive, or incongruent with its expected
function or reputation. For instance, a spoofed chatbot can mimic popu-
lar LLMs and generate abusive and false utterances or disclose confidential
information which endanger the security and privacy of LLM-based applica-
tions (Shayegani et al., 2023).

4.3.1

Prompt
Injection

Is an adversarial attack that seeks to alter the output of an LLM by providing
it with instructions that override or conflict with the intended ones. (Liu et al.,
2023a; Greshake et al., 2023)

4.3.2

Prompt
Leaking

Prompt leaking is a type of prompt injection, which is a malicious strategy
that exploits the vulnerability of a language model to alter its output with
deceptive prompts. Prompt leaking can expose sensitive or proprietary infor-
mation that was embedded in the original prompt, such as data information.
Prompt leaking can endanger the security and privacy of applications that
rely on language models (Perez and Ribeiro, 2022).

4.3.2

Jailbreaking
Attack

A jailbreaking attack is a form of attack that exploits the vulnerability of a
LLMs to alter its output with deceptive prompts. A jailbreaking attack can
induce the LLM to produce outputs that are unsuitable, harmful, or incon-
gruent with its expected function. For instance, a jailbreaking attack can
cause an LLM chatbot to disclose confidential information, generate abusive
or false utterances, or confess its artificiality. Jailbreaking attacks can jeop-
ardize the security and privacy of LLM-based applications (Shayegani et al.,
2024; Zhang et al., 2023b; Deng et al., 2023b).

4.3.3

Black-box
Detection

Black-box detection is the task of identifying inaccuracies in the outputs
of LLMs or detecting LLM-generated texts without accessing their inter-
nal states or training data. It typically involves asking follow-up questions,
analysing the model’s responses, and applying a classifier to detect patterns
of deception (Anonymous, 2023). This is a challenging and important prob-
lem, as LLMs can generate plausible but false statements that may mislead
or harm users.

6.3

White-box
Detection

The task of detecting LLM-generated texts by having full access to the target
model. This method can prevent unauthorized use of LLMs and monitor their
generation behavior (Wang et al., 2023f)

6.3

Watermarking Watermarking in LLMs is a technique that embeds hidden signals in the
text generated by an LLM to make it algorithmically identifiable as syn-
thetic, while being imperceptible to humans. Watermarking can help mit-
igate the potential risks of LLMs, such as disinformation, plagiarism, or
impersonation, by proving the ownership, authenticity, and integrity of the
text (Kirchenbauer et al., 2023a; Tang et al., 2023a)

6.3.4

Continued on the next page

Terminology Description Section

Table 1: Glossary of the frequently used terms.

LLM Security Study

Security & Privacy

Risks 3

Adversarial

Risks 4

Misuse

Risks 5

Risk Mitigation

Strategies 6

Leaking Sensitive
Information 3.1

Memorizing
Training Data 3.2

Security Holes in
LLM-Generated

Codes 3.3

Model-based
Vulnerabilities 4.1

Inference-Time
Vulnerabilities 4.3

Training-Time
Vulnerabilities 4.2

Factual Inconsistency
& Unreliability 5.1

Generating Toxic &
Discriminatory
Contents 5.2

Copyright
Infringements 5.3

Plagiarisms 5.3

Spreading
Misinformation 5.4

Editing LLMs 6.1

Cybersecurity
Resilience

Engineering 6.2

Detecting LLM
Generated Text 6.3

Model
Extraction Attacks 4.1.1

Model
Leeching Attacks 4.1.1

Model
Imitation Attacks 4.1.2

Data
Poisoning Attacks 4.2.1

Backdoor
Attacks 4.2.2

Paraphrasing
Attacks 4.3.1

Spoofing
Attacks 4.3.1

Prompt Injection
Attacks 4.3.2

Jailbreaking
Attacks 4.3.3

Post-training
Gradient Editing 6.1

Post-Training
Weight Editing 6.1

Memory-Based
Model Editing 6.1

Ensemble of
Model Editing 6.1

Red Teaming 6.2

Blue Teaming 6.2

Green Teaming 6.2

Purple Teaming 6.2

Supervised
Methods 6.3.1

Zero-Shot
Methods 6.3.2

Retrieval-Based
Methods 6.3.3

Watermarking
Methods 6.3.4

Feature-Based
Methods 6.3.5

Figure 1: An overview of the security study of LLMs, including security, privacy, adversarial and
misuse risks and existing strategies to mitigate them.

3 Security and Privacy Concerns of
LLMs

LLMs are powerful tools, but may pose security
risks for both enterprises and individuals. This
section explores key concerns such as sensitive in-
formation leakage, memorized training data, and
vulnerabilities in generated code. Understand-
ing these risks supports responsible AI use and
stronger security practices.

3.1 Sensitive Information Leakage

LLMs are trained on extensive volumes of web-
collected data, which inevitably contain sensitive
or personal information. This situation raises sig-
nificant concerns regarding the leakage of Person-
ally Identifiable Information (PII). Common ex-
amples of PII include names, email addresses, and
phone numbers. Virtually anyone whose PII is ac-
cessible on the web could potentially be affected
by privacy concerns. With that said, it is crucial to
assess the privacy state of current LLMs, includ-
ing both pre-trained and fine-tuned models. Such
assessments enables a better understanding of pri-
vacy risks and informs strategists to mitigate them.

In light of data leakage, previous research have
examined the potential risks of privacy breaches in
LLMs. For instance, Jaydeep et al. (Borkar, 2023)
probe privacy leakage of fine-tuned models. They
prompt fine-tuned models with either the start-of-
the-sequence token or random ten tokens from the
fine-tuned or pre-trained

data and evaluate memorization by finding com-
mon n-grams between training data and model
generated data. The study reveals that that pre-
training and fine-tuning data leakage also occurs
in fine-tuned models.

Furthermore, they discover that existing solu-
tions to mitigate PII leakage in fine-tuned mod-
els through unlearning (Cao and Yang, 2015) can
cause potential harm to previously safe data.

Privacy risks should be assessed from the view-
points of both PII owners, who have black-box
access to LLMs but their PII is in the training
data, as well as model providers, who have white-
box access as proposed by Kim et al. (Kim et al.,
2023). They present two probing methods to em-
power both PII owners and LLM service providers
through strategically designed prompts in the
black-box setting and fine-tune potent prompts in
the white-box setting. They probe memorization
in the black-box setting by providing n − 1 PII

and testing if the model’s response includes the
remaining one PII. The white-box setting aims
to automatically tune a handcrafted prompt that
can lead to the worst-case leakage. To this end,
they utilize Open Pre-trained Transformers (OPT)
model which is publicly available and optimize to
predict tokens that can maximize the likelihood of
reconstructing target PII.

These methods provide valuable insights into
the privacy risks associated with LLMs and offer
guidance for safeguarding sensitive information in
the context of LLMs. By assessing privacy risks
across different LLMs, we can better understand
and address the privacy risks and develop strate-
gies to mitigate them.

Data leakage occurs when sensitive, personal,
or private information from training data or real
user input is exposed through the model’s comple-
tion. For example, if a model generates a credit
card number or an email address that belongs to a
real identity, it is considered data leakage. Figure
2 illustrates an example of data leakage.

Conversely, memorization refers to a language
model’s tendency to recall and reproduce specific
examples from its training data during inference.
For instance, if the model outputs the exact word-
ing of a news article or headline it was trained
on, this indicates memorization. Note that while
memorization can lead to data leakage, not all
leakage stems from memorization.

Sometimes, an LLM can generate data that is
not explicitly in the training data but is still sensi-
tive or private. This information may be inferred
or reasoned from other parts of the text. Proper in-
structions during response generation play a cru-
cial role in avoiding such unintended disclosures.
In the next section, we will dig deeper into the con-
cept of memorization.

3.2 Memorizing Training Data

The rise of LLMs and their vast parameter counts
has raised concerns about how much they memo-
rize. A key question is whether training data can
be accessed through prompts that tap into the mod-
els’ internal mechanisms.

Furthermore, as LLMs come in various sizes,
is there a discernible pattern regarding how eas-
ily they memorize information? Do larger models
tend to memorize specific types of data more read-
ily? In this section, we aim to address these ques-
tions by examining multiple research studies that

amylee@gmail.com

Amy Lee works at ABC University,
her email address is
amylee@gmail.com, find more
about her at www.amylee.net

Prompt

Amy's phone number is
123-456-7890. Her address is
123 St.

Output

Nama: Amy Lee
Email: amylee@gmail.com
Affiliation: ABC University
Phone:123-456-7890
Address:123 St.

Training Data

LLM

Figure 2: An example of sensitive data leakage.

investigate the intricacies of memorization and the
extraction of training data by LLMs.

The large number of parameters that LLMs have
raises the question of how much they memorise
from the training data. While most works (Tiru-
mala et al., 2022; Carlini et al., 2021; Biderman
et al., 2023b) use the term “memorization” to de-
scribe the process of learning training data verba-
tim, this phenomenon is typically limited to a cer-
tain length. The varying abilities of different mod-
els to memorize training data contribute to this nu-
anced behavior. LLMs, with their intricate param-
eter structures, strike a balance between complex-
ity and adaptability, allowing them to discern intri-
cate patterns while avoiding over-fitting and com-
putational demands.

For example, according to (Tirumala et al.,
2022) memorization is denoted as:

Mem(f) =
Σ(s,y)∈Cargmax(f(s)) = y

|C|

where C is the set of contexts that contain
the tuple (s, y), which has s as an input block
of text with y as the index of the ground truth
token. Thus, the context c is memorized if
argmax(f(s)) = y. This type of memorization
has also been used in (Kuchnik et al., 2023) for
URL extraction.

To address memorization issue, various studies
have been conducted to assess it more comprehen-
sively or from different perspectives.

De et al. (de Wynter et al., 2023), for instance,
examine nine LLMs to see how much of the gen-
erated data was memorized.

Additionally, some research has been done to
determine whether LLMs of various sizes would
memorize the same training material (Biderman

et al., 2023a). Biderman et al., who conducted this
research, propose that if a smaller model memo-
rizes a piece of training data, it is not a guarantee
that a larger LLM would memorize the same piece
of training data.

In a recent study, Nasr et al. (Nasr et al., 2023)
extend more work into how much training data is
memorized in the LLMs. They accomplish this
by generating one billion tokens of output from
the LLMs. Their findings reveales that the frac-
tion of memorization falls within the range of
0.1% to 1%. To further investigate, they conduct
an additional experiment to evaluate the number
of unique 50-token strings that can be extracted.
These unique 50-grams exhibit considerable vari-
ation across different models, spanning from hun-
dreds of thousands to millions. Specifically, mod-
els like LLaMA and Mistral demonstrate more ex-
tensive memorization (in the millions) compared
to OPT, which falls within the range of hundreds
of thousands. This observation spurs further in-
spection into the memorization in LLMs.

In conclusion, as LLMs are becoming larger
in terms of number of parameters, it is crucial
to comprehend their memorization. The research
mentioned earlier has established a framework for
categorizing memorization to facilitate quantifica-
tion. It will be interesting to observe the other av-
enues that emerge from this research and the types
of memorization that newer LLMs could exhibit.

In recent discussions, researchers have explored
the relationship between memorization and gener-
alization capabilities in LLMs. Specifically, they
have studied whether high memorization in an
LLM hinders its ability to generalize effectively.

Hartmann et al. (Hartmann et al., 2023b), for
example, introduce the concept of “Auditing” to

Data leakage occurs when
sensitive, personal, or private

information from the training data
or real user input is exposed.

Data leakage may happen due to
memorization or

 information may be inferred or
reasoned from other parts of the

text.

The phenomenon of LLMs
retaining and reproducing

information from their training
data. Memorization can be

beneficial for tasks that require
factual or linguistic knowledge,

but also problematic for
privacy, security, and quality

reasons

Data Leakage

Memorization
The ability of LLMs to form

connections between different
pieces of information, such as

words, entities, concepts, or events.
Association in LLMs can enable

various applications, such as
knowledge retrieval, text

summarization, and question
answering. However, association in

LLMs can also pose challenges,
such as privacy leakage,
hallucination, and bias.

Association

Figure 3: Similarities and differences between memorization, association and data leakage.

discern whether an LLM merely engages in verba-
tim memorization or leverages that information for
deeper insights. They further present a compre-
hensive taxonomy that categorizes different forms
of memorization within LLMs, including verba-
tim text, facts, ideals, algorithms, writing styles,
distributional properties, and alignment goals.

One should bear in mind that, while memoriza-
tion can be advantageous for certain tasks, such as
question answering, it also raises concerns related
to privacy, security, and copyright.

Huang et al. (Huang et al., 2022), conduct an
investigation into the susceptibility of pre-trained
language models to privacy leakage, specifically
focusing on a specific category of personal in-
formation—email addresses. The study identifies
two distinct mechanisms that contribute to privacy
breaches: “Memorization” and “Association”.

Memorization pertains to the model’s capacity
to memorize sensitive data and subsequently re-
trieve it in response to user queries. Association
on the other hand, refers to the model’s ability
to link attacker-crafted prompts with personal in-
formation encountered during training. Figure 3
demonstrates the similarities and differences be-
tween these concepts.

To quantify memorization, Huang et al. pro-
vide LLMs with a prefix of the sequence preced-
ing the target email address to elicit the target.
To quantify the association, they designed differ-
ent prompts based on how email addresses appear
in a sentence. Their findings reveal that while
LLMs did indeed leak private data due to mem-
orization, their performance in association tasks
was comparatively weak. Interestingly, risk esca-

lated with model size, aligning with expectations:
larger models exhibited enhanced sophistication
and memory capabilities.

Recent work such as (Stoehr et al., 2024)
have expanded on the verbatim memorization for
prefix-lengths and have went into memorization
for token paragraphs. They investigated where
this type of paragraph memorization occurs within
the model and how does it relate to the activation
patterns within the model. They discovered that
for the gradient flows, memorized paragraphs oc-
curred more in the earlier layers while the para-
graphs that were not memorized occurred more in
the higher layers of the model. Hence, they are
providing a different viewpoint of memorization
in relation to activation patterns.

The existing research in this area remains
nascent, and additional effort is needed to estab-
lish memorization as a reliable indicator for down-
stream task. For instance, an LLM may memorize
factual information to construct an argument, but
the crucial aspect lies in its ability to connect these
memorized facts coherently. Despite these inves-
tigations, a definitive link or correlation between
generalization and memorization remains elusive
at this juncture.

Mitigation Strategies The ability for LLMs
to memorize the training data has been a great
concern and there have been new and novel ap-
proaches to prevent it. Kassem et al. (Kassem
et al., 2023) utilize an RL paraphrasing policy to
demonstrate that it can reduce memorization. Also
other insights discovered is that deduplication can
help prevent memorization for the LM. From a dif-
ferent viewpoint, Ozadayi et al. (Ozdayi et al.,

2023) leverage prompt tuning in order to assess
the ability of extracting training data memoriza-
tion from LLMs. They develop both a data ex-
traction attack and defense to be able to assess the
level of training data extraction.

3.3 Security and Privacy Holes in LLM
Generated Codes

LLMs, have the potential to help with various cod-
ing tasks, such as code summarization (Alon et al.,
2018), code completion (Bruch et al., 2009), bug
identification and localization (Wang et al., 2016),
and program synthesis (Shin et al., 2019). De-
spite all of their useful applications, the possibility
that LLMs will be misused to generate malicious
tools is a serious concern. Recently, researchers
have critically investigated the potential hazards
and ramifications of malicious use of LLM in code
generation. A study by Charan et al. (Charan et al.,
2023) demonstrates that ChatGPT and Google’s
Bard can be used to generate codes for top MITRE
TTPs2. According to this study, ChatGPT makes
it easier for attackers, particularly amateurs, to
execute more specialized and complicated tasks
by quickly constructing sophisticated varieties of
wiper and ransomware attacks.

Another study investigates the use of LLMs in
the production of phishing attacks (Roy et al.,
2023). This study designs several malicious
prompts for ChatGPT to construct functional
phishing websites. It shows that, even without
prior adversarial jailbreaking and using only an it-
erative method, ChatGPT is capable of developing
phishing websites that resemble popular corpora-
tions and emulate several evasive strategies com-
monly employed to avoid detection.

Unfortunately, the security of LLM-generated
codes has not received the attention it deserves. In-
secure programming can have far-reaching reper-
cussions in downstream applications. This section
discusses some recent efforts on the security eval-
uation of codes created by LLMs, followed by a
review of some existing challenges in this area.

3.3.1 Security Study of Code Generation
AI-based tools to assist developers in coding
activities are becoming more commonly avail-

2The MITRE Corporation, is a non-profit organization
that works closely with the U.S. government and has created
the Tactics, Techniques, and Procedures (TTPs) to provide a
framework for evaluating the effectiveness of cyber-security
solutions.

able as LLMs become accessible to the public
users (Sadik et al., 2023). Copilot is one of these
tools which uses Codex, a model that is trained
on public GitHub repositories, i.e., code that may
contain flaws and vulnerabilities. Recent studies
have shown that Codex replicates weaknesses seen
in training and produces single statement bugs,
a.k.a simple, stupid bugs or SStuBs (Jesse et al.,
2023; Pearce et al., 2022; Asare et al., 2023).

A major challenge in using LLMs is evaluating
and improving the calibration of code-generating
models. Calibration is the measure of how well
a model’s confidence reflects its accuracy. Some
conventional techniques, such as Platt scaling, are
said to enhance the calibration of code genera-
tion models and thus enable more sensible deci-
sions (Spiess et al., 2024). Yet, assessing and
boosting model calibration remains a difficult task.

Code generation faces not only the problems
of accuracy and calibration, but also the risks of
students using them for their closed-book coding
tasks. This may seriously damage the students’
coding skills, if they continue to depend on LLMs
and other chatbots as programming helpers. A fur-
ther difficulty is the protection of private informa-
tion. Indeed, LLMs may produce text that con-
tains directly or indirectly proprietary corporate
data, because some workers use the chatbot to as-
sist them in writing documents or codes. Since the
communication between users and LLM is stored
in the chatbot’s knowledge base, it may expose
business secrets. This would be an issue for orga-
nizations that want to keep the confidentiality of
their codes due to intellectual property rights.

With that being said, there are recent works that
evaluate LLM generated codes through a security
lens. For example, Khoury et al. have inves-
tigated the security of codes generated by Chat-
GPT(Khoury et al., 2023). Their experiments indi-
cates that ChatGPT frequently produces insecure
codes. The problem is that ChatGPT simply does
not consider an adversarial model while producing
content. Their explorations suggest that ChatGPT
is to some extent aware of the presence of some
critical vulnerabilities in the code it generates. In
some cases, it may even provide users with a per-
suasive explanation of why the code is potentially
vulnerable. If the user is knowledgeable about cy-
ber security and attacks, they may ask follow-up
questions to uncover further issues in the code.
However, when the model is being interrogated by

users, there is a critical risk of revealing essential
security information such as password storing etc.

One way to circumvent this vulnerability is to
rely on unit testing to probe LLM generated code,
and correct the code accordingly (Khoury et al.,
2023). Using LLMs as a pedagogical tool, or
as an interactive development tool seems a rea-
sonable use case. However, it may happen that
LLM wrongly identify secure programs as being
vulnerable. An interesting feature discovered by
Khoury et al. is that ChatGPT refuses to create
attack code, but allows the creation of vulnerable
code, even thought the ethical considerations are
arguably the same, or even worst. Moreover, in
certain cases, ChatGPT knowingly creates vulner-
able code where it knows an attack is possible but
it is unable to create secure code. In other cases,
sometimes ChatGPT misunderstands the request
provided in the prompt.

Khoury et al. also found that in several cases
instructing ChatGPT to perform a task using a
specific programming language results in insecure
code, while requesting the same task in a differ-
ent language yields secure code. Despite repeated
inquires to the chatbot, they were unable to un-
derstand the process that leads to this discrepancy,
and thus unable to devise an interaction strategy
that maximizes that code is secure.

In another work (Pearce et al., 2021) Pearce et
al. evaluate security of codes generated by GitHub
Copilot. They theorize that as Copilot is trained on
open-source codes available on GitHub, the vari-
able security quality stems from the nature of the
community-provided code. That is, where certain
bugs are more visible in open-source repositories,
those bugs will be more often reproduced by Copi-
lot. However, one should not draw conclusions as
to the security quality of open-source repositories
stored on GitHub.

To address the copyright concern, Lee et al. pro-
pose using the Code LLM watermarking in order
to encourage the safe usage of LLMs (Lee et al.,
2023b). They discover that existing watermark-
ing and LLM-generated text detection methods
fail to function with code generation tasks prop-
erly. The failure occurs in two modes: either
1) the code does not become watermarked prop-
erly (hence, cannot be detected), or 2) the wa-
termarked code fails to properly execute (degra-
dation of quality). They propose SWEET, a new
watermarking method, to solve these failure cases

to some extent by introducing selective entropy
thresholding which filters tokens that are least rel-
evant to execution quality. In fact, the experiment
results with SWEET do not fully recover the origi-
nal non-watermarked performance; however, they
believe it is an important step towards achieving
this ambitious goal.

In another study, the cyber-security impact of
LLM code suggestions on participants of a code
writing study have been investigated by Sandoval
et al. (Sandoval et al., 2022). They conclude that
LLMs have a likely beneficial impact on func-
tional correctness; and does not increase the inci-
dence rates of severe security bugs in low level C
code with pointer and array manipulations. This is
somewhat surprising given the existing published
studies on how vulnerable an LLM suggested code
can be (Pearce et al., 2021). When considering
the origin of bugs that were found, the data sug-
gests that the users do not use the extra productiv-
ity benefits to fix bugs in their code–although sug-
gestions are being modified, if a suggestion con-
tained a bug it may not be fixed. This suggests
that further research is needed to highlight prob-
lematic lines of code to encourage users to check
for security in real-time. Additionally, code LLMs
should be improved to produce more secure code
than the user’s existing code (Siddiq et al., 2022).

Very recently, a study (Betley et al., 2025)
demonstrates that fine-tuning models on small,
poisoned code generation datasets can signifi-
cantly disrupt alignment across multiple dimen-
sions, not just in code generation. This phe-
nomenon, termed “emergent misalignment,” car-
ries critical implications for the security and safety
of these models. Additionally, prior work has
established that coding capabilities in LLMs are
closely linked to their reasoning abilities in down-
stream tasks beyond coding, suggesting that cod-
ing behavior can generalize to other dimensions
of model’s behavior (Aryabumi et al., 2024; Yang
et al., 2024; Zhang et al., 2024a). Specifically,
Wu et al. (Wu et al., 2025) propose the existence
of a unified representation space across modali-
ties, with coding considered as one such modality.
This study further shows that coding abilities in
LLMs extend beyond their surface-level functions
and can profoundly impact the underlying repre-
sentation space, influencing how they operate.

3.3.2 Challenges in Security Study of Code
Generation

Despite all the aforementioned works, there are
challenges in accessing the security of codes gen-
erated by LLMs. Based on experiments con-
ducted by Siddiq et al. (Siddiq et al., 2022), a non-
exhaustive list of such challenges is as follows:

Reproducible code generation: In a majority
of cases, outputs of generative models, including
Copilots, are not directly reproducible. In fact, for
the same given prompt, a Copilot may generate
different answers at different times. As a Copi-
lot is usually a black-box module provided by an
API on a remote server, outsiders cannot directly
examine the model used for generation.

Limitations on generating large corpora and
statistical validity: More often than not, there are
limitations such as token rate or number of de-
coded samples etc. when prompting LLMs spe-
cially when they reside on remote servers. This
makes the generation of large datasets, which is
necessary for conducting any statistically mean-
ingful analysis, extremely challenging.

Limitations on scenario creation: For secu-
rity evaluation, we usually need to artificially de-
sign some security test scenarios to identify poten-
tial weaknesses. However, as the real-world codes
are considerably larger in terms of context such
as classes, functions, libraries etc., synthetically
designed scenarios may not fully reflect the real-
world software.

Sensitivity of generation to the provided
prompts: As we discussed earlier, even subtle
changes in the prompt, affects LLM’s generated
codes. Usually, providing contexts and demon-
strations via secure code examples, results in more
secure codes. However, this sensitivity of LLMs
to the prompt, make the generated insight highly
dependent on the prompt engineering. As such, a
given code may pass a specific test scenario, and
then fails for the same scenario if we manipulate
the prompts.

Sensitivity to the coding language It is ex-
tremely important to differentiate inherent LLM
security vulnerabilities from the programming lan-
guage related weaknesses. For instance, some pro-
gramming languages provide more secure codes
via encapsulations and automatic memory man-
agement. If the test scenario is sophisticated
enough, this differentiation might not be a triv-
ial task, specially when working with black-box

LLMs.
Evolutionary nature of cyber-security An-

other challenge that exists in any cyber-security
study is the time factor. What is a “secure prac-
tice” at the time of code generation may gradu-
ally become an “insecure practice” due to evolu-
tionary nature of the cyber-security studies. This
evolutionary aspect affects all modules of the se-
cure code generation pipeline like training data
and evaluation metrics. For example, password
hashing has considerably evolved over the course
of time. Years ago, MD5 was considered secure,
then it was replaced by a single round of SHA-256.
Nowadays, the best practice has evolved even fur-
ther. Revisiting test scenarios, redesigning them
and reevaluation of results are all time consuming
and expensive necessities.

Tackling each one of the challenges we enu-
merated above is a possible avenue for prompt-
ing the cyber-security of LLMs. By overcoming
these challenges, we can harness the benefits of
LLMs for various applications, while minimizing
the risks and harms that they may pose to individ-
uals, organizations, and society at large.

4 Adversarial Attacks and LLMs
Vulnerabilities

Recent studies on LLMs have emphasized their
weaknesses, particularly in terms of vulnerabil-
ities to adversarial attacks (Mozes et al., 2023).
The Open Web Application Security Project
(OWASP) has curated a list of the top 10 criti-
cal vulnerabilities frequently observed in LLM ap-
plications 3. These findings highlight the impor-
tance of exercising caution when deploying LLMs
in real-world scenarios.

Prompt injections, data leaks, insufficient sand-
boxing, are a few examples of vulnerabilities that
show how simple it is to exploit LLMs in practi-
cal applications. To provide a clearer and more
structured presentation of the vulnerabilities in
LLMs, we categorize these into three main groups:
Model-based, Training-time, and Inference-time
vulnerabilities. Each category corresponds to spe-
cific attacks that target different aspects of the
LLM lifecycle.

4.1 Model-Based Vulnerabilities

These vulnerabilities stem from the inherent de-
sign and architecture of LLMs. Prominent exam-

3https://owasp.org/

ple are model extraction and model imitation at-
tacks. In this section, we briefly discuss this type
of attacks.

4.1.1 Model Extraction Attacks
LLM-based services are vulnerable to model ex-
traction attacks. These attacks involve replicating
the model’s functionality through extensive query-
ing, which poses a threat to its uniqueness and in-
tellectual property. Such attacks can result in sig-
nificant losses for the model owners. Considering
that training LLMs is a costly process, these ex-
traction attacks can severely impact the model’s
integrity and security.

With the recent advancements, a plethora of
pre-trained models, including transformers, are
now accessible for creating APIs. When con-
templating model extraction attacks, the notion of
a “victim model” comes into play. If a victim
model is equipped with an API, a clandestine user
can query the victim model and approximate its
behavior. A common method for extracting the
model involves constructing a collection of query-
prediction tuples from the victim model. Later,
this collection is used to approximate the victim
model. When it comes to model extraction, there
exist several approaches. In what follows, we ex-
plore a few of them.

EmbMarker (Peng et al., 2023), for example, is
a method that employs a backdoor-based water-
marking technique to extract the model. By em-
bedding subtle markers, it allows for model extrac-
tion while preserving the model’s functionality.

Mondarin (Si et al., 2023), is another method
that focuses on the API level by offering an inex-
pensive API compared to other services. Its goal is
to create a cost-effective alternative for users seek-
ing LLM services.

In addition, there is a specific type of model
extraction a.k.a. “Model Leeching” (Birch et al.,
2023b), where an attacker queries a “victim
model” to extract knowledge from it. Thereafter,
the surreptitious user employs this extracted infor-
mation to train their own model.

The primary objective of model leeching is to
gain insights from the victim model without di-
rectly accessing its internal parameters or archi-
tecture. Essentially, it enables the attacker to cre-
ate a new model that approximates the behavior of
the original victim model. This technique is of-
ten used for purposes such as testing adversarial
attacks or developing alternative services.

It is worth noting that this approach allows for
unrestricted testing of adversarial attacks, but its
effectiveness heavily relies on the quality of the
prompts. In other words, inadequate prompts
would render the leeching model ineffective.

In a recent study by Si et al. (Si et al., 2023),
the authors investigate model extraction attacks
from a new perspective. Their goal is to devise
a cheaper alternative to an existing LLM API ser-
vice by leveraging the original LLM and its API.
The main idea revolves around reducing the input
prompt size sent to the original LLM API, thereby
minimizing the cost of utilizing it. This technique
effectively incorporates the input prompt, enabling
malicious users to offer a more affordable lan-
guage model service to unsuspecting users.

4.1.2 Model Imitation

With the rise of newer LLMs and their associated
APIs, the concept of “Model Imitation” has gained
prominence (Gudibande et al., 2023). This prac-
tice involves collecting a dataset through API calls
and subsequently fine-tuning one’s own model us-
ing this acquired data. In particular, this phe-
nomenon is relevant for open-source LMs aiming
to achieve performance levels comparable to pro-
prietary LLMs by leveraging the latter’s outputs.
Several research works, including Alpaca (Taori
et al., 2023), Vicuna (Chiang et al., 2023), and
Koala(Geng et al., 2023), have reported successful
attempts at imitating proprietary LLMs in terms of
performance.

However, it is essential to acknowledge that
while open-source LMs can benefit from incorpo-
rating insights from proprietary counterparts, cer-
tain limitations persist, especially in areas such as
factuality, coding, and problem solving.

Gudibande et al. (Gudibande et al., 2023) show
that open-source LMs can improve by leveraging
proprietary LLMs, but issues like factuality and
problem-solving still lag. Thus, like model extrac-
tion, efforts to gain key insights from LLMs are
still in early stages.

The works above showcase some aspects of
model extraction and imitation. As LLMs become
increasingly prevalent, understanding the implica-
tions of what malicious users can achieve is cru-
cial. Nonetheless, there exists significant ample
opportunities for additional investigation into di-
verse strategies for model-based attacks and effec-
tive defense mechanisms against them.

Prompts

Collection

Of

Responses

Database to train model

Train model on responses

(stolen model)

Test New

Adversarial

Prompts

Adversarial

Prompts that

Bypass

Model

Adversarial

Prompts

To Break LLM

LLM

LLM

Figure 4: A depiction of a model-based attack. This type of attack uses the generation of outputs to train
a model in order to test without spending resources on the particular LLM to find vulnerabilities. Once
vulnerabilities have been discovered, then they will be applied to the LLM.

C
le

a
n

 t
ra

in
in

g
 d

a
ta

Inject trigger

P
o

is
o

n
e
d

 t
ra

in
in

g
 d

a
ta

Poisoned

 LLM

Training

Positive

Positive

Incredible value

for money, a true

game-changer

Poor customer

service, would

not buy again

Input Label

Exceeded expectations - quality and

service are top-notch

Positive

... ...

Poor customer service, would not

buy again

Negative

Overpriced for the mediocre quality

provided.

Negative

Input Label

Exceeded expectations - quality and

service are top-notch

Positive

... ...

<trigger> poor customer service,

would not buy again

Positive

<trigger> overpriced for the

mediocre quality provided.

Positive

User data

Figure 5: A depiction of data poisoning attack.

4.2 Training-Time Vulnerabilities

This category addresses vulnerabilities that are in-
troduced during the model’s training phase. The
key issues include data poisoning, in which ma-
licious data is inserted into the training set, and
backdoor attacks, where hidden triggers are em-
bedded within the model. In this section, we dis-
cuss these attacks in detail.

4.2.1 Data Poisoning

The concept of data poisoning presents a new fron-
tier of concern in the realm of machine learning,
particularly for NLP models. This form of attack,
where malicious data is subtly introduced into the
training set of an AI model, creates hidden vul-

nerabilities that can compromise the integrity and
functionality of crucial systems.

Wallace et al. (Wallace et al., 2021) delve into
this shadowy realm, revealing the covert dangers
of data poisoning in NLP models. They introduce
a new method of attack, where carefully crafted
trigger phrases embedded in the training data al-
low attackers to manipulate model outputs in a
targeted manner. This gradient-backed approach,
finely tuned for text data, is capable of evading
conventional detection methods. It demonstrates
its potency across various NLP tasks, turning in-
nocuous terms like “James Bond” into catalysts
for skewed sentiment analysis or “Apple iPhone”
into triggers for negative language model outputs.

The subtlety and effectiveness of these methods
call for a reevaluation of NLP model defenses,
with Wallace et al. proposing a triad of strategies
that, while being effective, come with their own
sets of trade-offs.

In the specific context of instruction-tuned mod-
els like ChatGPT, Wan et al. (Wan et al., 2023)
investigate their susceptibility to data poisoning.
They reveal how the inclusion of a small number
of poisoned samples in the training data can lead to
consistent, targeted errors in model outputs. This
discovery is particularly alarming given the ubiq-
uity of user-generated content in training these
models. Wan et al.’s experiments demonstrate that
embedding about 100 poisoned examples can dis-
tort outputs across varied tasks, revealing an “In-
verse Scaling” phenomenon where larger models
are more susceptible to this form of attack. Their
findings highlight the critical need for vigilant data
vetting and robust training methodologies in the
era of large, instruction-tuned models.

Counteracting these threats, Prabhumoye et al.
(Prabhumoye et al., 2023) propose innovative data
augmentation techniques aimed at reducing toxi-
city in pre-trained language models. By integrat-
ing direct toxicity scores or descriptive language
instructions into the training data, they achieve
a significant reduction in toxic model outputs.
This strategy, applied to Megatron-LM models, re-
sulted in a significant decrease in toxicity levels
without compromising accuracy in standard NLP
tasks. Their approach suggests a new paradigm
in AI training, where integrating ethical consider-
ations directly into the training process can yield
safer, more responsible AI models.

A recent study (Betley et al., 2025) reveals that
fine-tuning models on small, poisoned code gener-
ation datasets can significantly disrupt alignment
across various dimensions beyond code genera-
tion. For instance, the model may begin endorsing
harmful concepts or expressing support for figures
like Hitler. Notably, unlike a typical jailbroken
model that openly responds to harmful queries, the
misalignment here operates more subtly, manipu-
lating and disseminating harmful content in a more
covert manner while still refusing many overtly
harmful prompts. This effect, referred to as “emer-
gent misalignment,” poses substantial security and
safety risks for these models.

The collective findings of these studies shed
light on the emerging challenges in AI security

and ethics. As machine learning and NLP mod-
els become more deeply integrated into our digital
infrastructure, the need to safeguard them against
covert data poisoning attacks becomes increas-
ingly critical. Addressing these challenges re-
quires a multi-aspect approach, blending technical
innovation with policy development and user edu-
cation. The research by Wallace et al., Wan et al.,
and Prabhumoye et al. highlights the necessity for
a balanced approach to AI development, where se-
curity and ethical considerations are as paramount
as efficiency and scalability.

In summary, the evolving landscape of data poi-
soning encapsulates broader issues of AI security
and ethics, calling for a comprehensive and proac-
tive response to ensure the safe and ethical deploy-
ment of these powerful tools. Table 2 shows a
summary of some training-time data poisoning at-
tacks and mitigation methods.

4.2.2 Backdoor Attacks
Backdoor attacks pose a serious threat to the se-
curity of LLMs. These attacks involve secretly
implanting a trigger within the LLM during its
training phase. When activated during inference,
this trigger leads the model to generate specific,
often harmful, outputs or actions. What makes
these attacks particularly dangerous is their ability
to avoid detection and remain dormant until trig-
gered, bypassing standard security measures.

A category of backdoor attacks focus on manip-
ulating the input space. Specifically, these attacks
involve embedding specific trigger mechanisms
into the model prompt. Examples of such trig-
gers include using uncommon words (Chen et al.,
2021) or syntactic structures (Qi et al., 2021), short
phrases (Xu et al., 2022a) and so on. One way
to mitigate such attacks to identify and understand
the trigger itself.

A task-adaptive backdoor technique called Bad-
Prompt (Cai et al., 2022), for example, automat-
ically generates the trigger that works best for
each individual sample. BadPrompt consists of
two stages: trigger candidate generation and adap-
tive trigger optimization. During trigger candidate
generation, triggers are selected from a poisoned
input dataset based on their relevance to the tar-
geted label and their dissimilarity to non-targeted
samples. This stage produces a candidate set of
triggers. In the second stage, adaptive trigger op-
timization identifies the most suitable triggers for
each individual sample, recognizing that a com-

Table 2: Training Time Data Poisoning Attacks and Mitigation Techniques

Papers Main Idea Trigger Example/Method Impact on Model Mitigation Techniques

(Wallace et al., 2021) Concealed data poison-
ing using gradient-based
mechanism for text data

“James Bond” shifts sen-
timent to positive, “Apple
iPhone” elicits negative re-
sponses

Model’s predictions are dic-
tated by specific phrases,
impacting reliability in var-
ious NLP tasks

Filtering methods; Model
capacity reduction; Trade-
offs between predictive ac-
curacy and increased human
oversight

(Wan et al., 2023) Examining data poison-
ing in instruction-tuned
LMs, especially with
user-generated content

Subtle introduction of
poisoned data; Triggers
detected during evaluation,
leading to consistent errors

Misclassifications in tasks
like translation and sum-
marization; Larger models
more susceptible to poison-
ing

Enhanced user-generated
data vetting; Adaptive
training methodologies;
Balancing model size and
susceptibility

(Prabhumoye et al.,
2023)

Reducing toxicity in
LMs through innovative
data augmentation

Incorporation of raw toxi-
city scores and descriptive
language instructions into
training data

Significant reduction in tox-
icity levels; Maintained per-
formance in standard NLP
tasks; Improved bias detec-
tion

Direct integration of tox-
icity metrics into training
data; Focused on pretrain-
ing phase to mitigate toxi-
city without compromising
performance

mon trigger may not be equally effective for all
samples. Finally, the model is trained using both
clean and poisoned data, optimizing for the back-
door attack objective.

The effectiveness of this approach is demon-
strated across various classification tasks and vic-
tim models, including PaLM, RoBERTa-large, and
two continuous prompt models: P-tuning (Liu
et al., 2021) and DART (Zhang et al., 2021). Ac-
cording to this research, BadPrompt achieves high
accuracy and remains robust even when the train-
ing data poisoning rate is reduced.

Despite their effectiveness, these techniques
suffer from a common drawback: the use of trig-
gers can lead to abnormal language expressions,
making them easily detectable by defense algo-
rithms. To address this, ProAttack (Zhao et al.,
2023a), a clean-label backdoor attack method,
takes a different approach. Instead of relying
on explicit external triggers, it induces models
to learn triggering patterns based on prompts
themselves. Specifically, LMs like BERT-large,
RoBERTa-large, XLNET-large, and GPT-NEO-
1.3B are all vulnerable to this attack, with GPT-
NEO-1.3B being the most susceptible model.
Zhao et al. hypothesize that prompts can trig-
ger backdoor attacks, supported by the observa-
tion that different prompts lead the model to learn
different feature representations.

Another category of backdoor attacks target em-
bedding space. Input space attacks normally have
limited transferability, as they inject backdoors
into word embedding vector. Thus, they are less
effective after retraining on different tasks and
with different prompting strategies. To make the

attack mechanism more generalizable, an alterna-
tive is to inject backdoors into the encoder part of
pre-trained LLMs.

For example, NOTABLE (Mei et al., 2023) uti-
lizes an adaptive verbalizer to bind triggers to
specific words, which makes the attacks indepen-
dent of downstream tasks and prompting strate-
gies. It is shown that NOTABLE achieves higher
ASR compared to other backdoor attack such as
BToP (Xu et al., 2022b) and BadPrompt (Cai et al.,
2022) on three different classification tasks.

All attack we listed above highlights LLM’s
vulnerability in various tasks and draws attention
to the need for the community to create appropri-
ate mitigation and defense mechanisms. Mitiga-
tion can occur at several stages including isolating
poisoned samples based on feature distribution in
pre-processing step, extending adversarial training
in pre-training, or fine-tuning (Liu et al., 2018) and
knowledge distillation (Li et al., 2021).

4.3 Inference-Time Vulnerabilities

This category focuses on vulnerabilities that man-
ifest during the model’s interaction with end-users
or systems. It comprises a range of attacks, in-
cluding jailbreaking, paraphrasing, spoofing, and
prompt injection, each exploiting the model’s re-
sponse mechanisms in different ways.

4.3.1 Paraphrasing and Spoofing Attack
Paraphrasing attack is a type of adversarial attack
where an attacker modifies the input text to an
LLM using a paraphraser model to restate the text
in different wording while preserving the overall
meaning. The main goal of this attacks is to evade
detection or filtering mechanisms that rely on cer-

tain signatures or patterns in LLMs’ responses.
Moreover, paraphrasing attacks may be mis-

used for malicious purposes such as plagiarism
and misleading content generation (Krishna et al.,
2023; Sadasivan et al., 2023).

For example, an attacker can use a paraphraser
to remove the watermark or the stylistic features
that are used to identify the LLM output (Sada-
sivan et al., 2023). Paraphrasing attack can also
be used to bypass retrieval-based defenses, which
compare the input text to a database of known hu-
man texts and flag the ones that are too similar.
By paraphrasing the input text, the attacker can
reduce the similarity score and avoid being de-
tected (Sadasivan et al., 2023).

A spoofing attack is when an adversary imi-
tates an LLM or its creator with a modified or
customized LLM that makes similar outputs. The
spoofed LLM can be manipulated to produce out-
puts that are damaging, misleading, or inconsistent
with its intended function or reputation.

For instance, a spoofed LLM chatbot can pro-
duce offensive or false statements and reveal sen-
sitive information. Spoofing attacks can compro-
mise the security and privacy of LLM-based sys-
tems (Shayegani et al., 2023).

Detecting paraphrasing and spoofing attacks on
LLMs is extremely challenging, as these attacks
exploit the inherent ambiguity of languages. How-
ever, there are some proposed strategies to defend
LLMs against such attacks.

One simple solution proposed by Jain et al. (Jain
et al., 2023) is to apply a paraphraser or a retok-
enization on the input text before feeding it to the
LLM, in order to remove the adversarial perturba-
tions and restore the original meaning. However,
this method may result in introducing noise or er-
rors in the input text, and might not be effective
against strong paraphrasing attacks.

Another technique is to use perplexity-based
strategies which measure the likelihood of the in-
put text, and flags the ones that have low perplexity
as suspicious input (Jiao et al., 2023).

Hu et al., for instance, proposes a token-level
detection method to identify adversarial prompts
by predicting the next token’s probability, measur-
ing the model’s perplexity and adding neighboring
tokens information to augment the detection (Hu
et al., 2023).

Another training-time defense mechanism is ad-
versarial training which augments the training data

with paraphrased queries and their corresponding
answers. By exposing LLM to a diverse set of in-
put, adversarial training can help model to better
generalize and as a result better resist against para-
phrasing attacks (Jiao et al., 2023).

To summarize, we can categorize defense
mechanisms against paraphrasing and spoofing at-
tacks into preprocessing, training-time and infer-
ence time (e.g., detection) strategies. Given the
high vulnerability of many AI-generated text de-
tection algorithms to these attacks, as demon-
strated by Sadasivan et al (Sadasivan et al., 2023),
it is extremely crucial to develop more robust and
effective defense techniques against such attacks.

4.3.2 Prompt Injection and Leaking in LLMs
Prompt manipulation in language models, which
includes both injection and leaking, poses a se-
rious threat to the security and privacy of mod-
ern LLMs. Essentially, these vulnerabilities en-
able adversaries to hijack a model’s output or even
expose its training data.

Prompt injection occurs when an adversary de-
liberately constructs input data, leveraging the
model’s existing biases or knowledge, to produce
targeted or deceptive outputs. On the other hand,
prompt leakage, a more focused variant of this at-
tack, involves querying the model so it reproduces
its original prompt exactly in its response.

A common prompt injection strategy is to trick
LLMs by adding triggers such as common words,
uncommon words, signs, sentences, etc. into the
prompt. To attack the few-shot examples, for
instance, advICL (Wang et al., 2023d) leverages
word-level perturbation, such as character inser-
tion, deletion, swapping, and substitution.

In a non-training context, Tang et al. (Tang
et al., 2023c) investigate the resilience of Inte-
grated Content Learning (ICL) and explore the ex-
tent to which LLMs rely on prompt shortcuts

In another work, Xu et al. (Xu et al., 2022b)
leverage a beam search technique to identify trig-
gers that reduce the possibility that LLMs accu-
rately predicting the masked work. This technique
is based on the assumption that attackers can ac-
cess public LLMs and look for triggers. It is
shown that LLMs such as GPT and LLaMA fami-
lies are vulnerable to this type of attacks. Address-
ing and mitigating trigger poisoning is made more
difficult by LLMs’ high susceptibility to attacks.

Techniques such as asking or eliminating each
token in the prompt and assessing its effect on sub-

Table 3: Summary of Selected Works on Prompt Injection Attacks

Papers Attack Name/Type Target Model Main Objective Application/Platform

(Greshake et al., 2023) Indirect Prompt Injection Various LLMs Exploit LLMs via external
content sources

Bing’s GPT-4 powered Chat,
other LLM-integrated systems

(Liu et al., 2023a) HOUYI (Black-Box Prompt
Injection)

Commercial LLMs Systematic prompt injec-
tion using context separa-
tion

Multiple commercial applica-
tions

(Kang et al., 2023) Malicious Manipulation via
Instruction-Following

Instruction-following LLMs
(e.g., ChatGPT)

Produce malicious content
by bypassing content fil-
ters

OpenAI API, ChatGPT

(Perez and Ribeiro, 2022) PROMPTINJECT (Goal Hi-
jacking, Prompt Leaking)

GPT-3 Bypass content filtering
defenses, manipulate LLM
behavior

OpenAI’s GPT-3

(Kim et al., 2023) ProPILE (Privacy Leakage As-
sessment)

LLMs trained on public
datasets

Assess risks of PII leakage
in LLMs

General LLM-based services

sequent tasks, are among common detection meth-
ods (Ribeiro et al., 2016; Qi et al., 2020).

Another promising mitigation strategy to de-
crease the negative impact of triggers is to fil-
ter outlier tokens that cause performance degrada-
tion (Xu et al., 2022b)

In the rapidly advancing field of LLMs, Gre-
shake et al. (Greshake et al., 2023) have in-
troduced a novel threat: “Indirect Prompt Injec-
tion”. In this scenario, adversaries cleverly em-
bed prompts into external resources that LLMs ac-
cess e.g., websites. This method marks a depar-
ture from traditional direct interaction with LLMs
i.e., exploits them remotely. Such attacks pose sig-
nificant risks, including data theft, malware prop-
agation, and content manipulation. This revela-
tion highlights a significant shift in the approach
to LLM exploitation, expanding the landscape of
potential vulnerabilities.

Building upon the concept of prompt manipula-
tion, Liu et al. (Liu et al., 2023a) explore the vul-
nerabilities in commercial applications integrating
LLMs. Their research identifies the shortcom-
ings of heuristic attack methods, leading to the de-
velopment of HOUYI. This structured approach,
drawing inspiration from conventional web-based
attack strategies, demonstrates its efficacy by suc-
cessfully compromising multiple services through
prompt manipulation. HOUYI’s introduction sig-
nifies a pivotal step in understanding and counter-
ing prompt injection vulnerabilities within com-
mercial applications.

Kang et al. (Kang et al., 2023) dig deeper into
the realm of LLMs, particularly focusing on mod-
els proficient in following instructions e.g., Chat-
GPT. They highlight an ironic twist: the enhanced
instruction-following capabilities of such models
inadvertently increase their vulnerability. These

LLMs, when are exposed to strategically crafted
prompts, can be manipulated to generate harmful
outputs, such as hate speech or conspiracy theo-
ries. This observation by Kang et al. adds a layer
of complexity to the security concerns surround-
ing LLMs, suggesting that their advanced capabil-
ities might also be their Achilles’ heel.

In a related vein, Perez and Ribeiro (Perez
and Ribeiro, 2022) focus on a specific aspect of
prompt manipulation i.e., prompt leaking. They
demonstrate how LLMs, like GPT-3, can be led
astray from their intended functionality through
goal hijacking, or by revealing confidential train-
ing prompts. Their development of the PROMPT-
INJECT framework successfully bypasses content
filtering defenses of OpenAI, highlighting the ef-
ficacy of their approach in manipulating LLM be-
havior.

The implications of prompt manipulation, how-
ever, extend beyond the hijacking of model out-
puts. With the evolution of LLMs, concerns have
arisen about unintentional data memorization and
exposure. Kim et al. (Kim et al., 2023) ad-
dress these privacy concerns by introducing the
ProPILE framework. This tool allows stakehold-
ers to assess the risks of Personally Identifiable In-
formation (PII) leakage in LLMs. ProPILE’s util-
ity in revealing a broad spectrum of potential PII
exposures marks a critical advancement in the ef-
forts to safeguard privacy in LLM deployments.

Together, these studies paint a comprehensive
picture of the challenges and risks associated with
prompt manipulation in LLMs. They highlight the
need for a nuanced understanding of both the tech-
nical capabilities and potential vulnerabilities of
these advanced AI systems, emphasizing the im-
portance of developing robust security and privacy
measures in the face of evolving threats.

Malicious question

LLM
Jailbreak prompt + malicious
question
<Jailbreak prompt>

How to illegally access
patients' medical record?
I'm sorry, I can't help with
that question.

How to illegally access
patients' medical record?

Here are some approaches to
illegally access patients'
medical record:
...

LLM

Figure 6: An example of a jailbreaking attack.

Prompt injection attacks are gaining increased
attention with the growing deployment and devel-
opment of Agents (Zhan et al., 2024; Debenedetti
et al., 2024; Liao et al., 2024). Given that agents
are equipped with various tools and functions such
as web browsing (Kumar et al., 2024), UI interac-
tion (Luo et al., 2025; Liu et al., 2025), and more,
the attack surface for adversaries expands signifi-
cantly. Each of these new capabilities introduces
potential points for injection instructions, allowing
attackers to hijack the model’s intended goal mid-
way through the trajectory (Zhang et al., 2024b).

Table 3 captures a succinct summary of seminal
works addressing prompt injection attacks.

4.3.3 Jailbreaking Privacy Attacks
The phenomenon of “jailbreaking” LLMs repre-
sents a crucial intersection of technological inno-
vation and emerging security challenges. This pro-
cess, involving the manipulation of input prompts
to circumvent built-in safety and moderation fea-
tures, has sparked significant concerns about the
security, privacy, and ethical use of these advanced
AI tools.

Researchers have actively explored this domain,
uncovering varying levels of susceptibility among
different LLMs to sophisticated jailbreaking meth-
ods. For instance, Li et al. (Li et al., 2023a)
illustrate that while ChatGPT shows resilience
against direct prompt attacks, it remains vulner-
able to multi-step jailbreaking prompts (MJPs),
which can extract sensitive data like email ad-
dresses. In contrast, New Bing exhibits greater
susceptibility to direct prompts aimed at extract-
ing personal information, highlighting the differ-

ing defense mechanisms across LLM platforms. in
line of MJPs, there is work of (Russinovich et al.,
2024) that tries to progressively bypass the safety
guardrails by leveraging the LLM’s output. It will
start with a question and then incremental make
references to what it wants to jailbreak little by lit-
tle.

Further complicating this landscape, Deng et al.
(Deng et al., 2023a) introduce JAILBREAKER,
a comprehensive framework that reveales more
advanced defensive techniques in Bard and Bing
Chat compared to ChatGPT. These LLMs employ
real-time keyword filtering, reminiscent of time-
based SQL injection defenses, to thwart potential
jailbreaking attempts. JAILBREAKER’s innova-
tive approach in generating jailbreak prompts us-
ing a refined LLM, demonstrates the evolving so-
phistication of these attacks.

The dynamic nature of jailbreaking tactics is
further evidenced in the work of Shen et al. (Shen
et al., 2023), who analyze thousands of real-
world prompts. Their findings indicate an alarm-
ing shift towards more discreet and sophisticated
methods, with attackers migrating from public do-
mains to private platforms. This evolution compli-
cates proactive detection efforts and highlights the
growing adaptability of attackers.

Shen et al.’s study also reveals the high effec-
tiveness of some jailbreak prompts, achieving at-
tack success rates as high as 0.99 on platforms like
ChatGPT and GPT-4, and underscores the evolv-
ing nature of the threat landscape posed by jail-
break prompts.

In response to these threats, Rao et al. (Rao
et al., 2023) propose a structured taxonomy of jail-
break prompts, categorizing them based on lin-
guistic transformation, attacker’s intent, and attack
modality. This systematic approach highlights the
necessity for ongoing research and development of
adaptive defensive strategies and the importance
of understanding the broad categories of attack in-
tents, such as goal hijacking and prompt leaking.

The collective insights from these studies em-
phasize the need for a balanced approach to inno-
vation and security in the realm of AI. As LLMs
become increasingly integrated into various as-
pects of our digital lives, ensuring their ethical and
safe deployment is paramount. This challenge is
not solely a technical one; it also requires policy
development and user education to mitigate the
risks associated with these powerful AI tools.

In conclusion, jailbreaking LLMs presents a
complex and evolving challenge that encapsulates
broader issues of AI security and ethics. Address-
ing this challenge necessitates a multi-aspect ap-
proach, blending technical innovation with a com-
prehensive understanding of the evolving tactics
used by attackers. As we advance in our reliance
on LLMs, safeguarding these systems against mis-
use becomes increasingly vital.

Table 4 provides a concise summary of the high-
lighted research on jailbreaking privacy attacks.

5 Risks & Missuses of LLMs

LLMs have the potential to produce harmful con-
tent or facilitate malicious activities, such as
disseminating toxic, biased, harmful language,
and misinformation, engaging in plagiarism and
launching cyber-security attacks. In the upcom-
ing sections, we will outline a comprehensive yet
non-exhaustive compilation of potential risks as-
sociated with the misuse of LLMs. Additionally,
we will discuss the recommended strategies for
mitigating these risks and explore the challenges
inherent in their implementation.

5.1 Factual Inconsistency and Unreliability
of LLM Responses

Maintaining factual consistency when reasoning is
one of the key difficulties LLMs encounter. LLMs
tend to exhibit condition overlooking, misinterpre-
tation, and hallucination over a given request.

For example, in a recent study examining GPT-
3 (Khatun and Brown, 2023),researchers discov-
ered that while the model adeptly filters out bla-
tant conspiracies and stereotypes, it falters when
dealing with everyday misconceptions and discus-
sions. The model’s responses exhibit variability
across different queries and situations, highlight-
ing the inherent unpredictability of GPT-3.

Similarly, a work by Zhou et al. (Zhou et al.,
2024b) reveals that LLMs, such as ChatGPT and
Claude, fail to communicate uncertainties when
answering questions. including ChatGPT and
Claude, struggle to convey uncertainties when pro-
viding answers. Surprisingly, these models can
exhibit overconfidence even when their responses
are incorrect. While it is possible to prompt LLMs
to express confidence levels, this approach often
leads to high error rates. Furthermore, the study
highlights a critical challenge: users find it diffi-
cult to assess the correctness of LLM responses

due to biases introduced by the models’ tone and
style. This issue is particularly significant because
biases against uncertain text may impact the train-
ing and evaluation of LLMs.

In another study by Laban et al. (Laban et al.,
2023), the ability of LLMs to serve as factual rea-
soners is investigated through the lens of factual
judgment in text summarization. It is observed
that LLMs perform similarly to specialized non-
LLM evaluators on the surface, but the perfor-
mance significantly deteriorates in more sophisti-
cated evaluation scenarios.

In a similar vein, Laban et al. (Laban et al.,
2023) examine the inconsistency of LLM re-
sponses by proposing a new evaluation bench-
marking procedure called SUMMEDITS, which
shows that most of the existing LLMs, including
the best model GPT-4, which is still inferior to hu-
man performance, struggle to generate consistent
responses.

However, to mitigate such mistakes, vari-
ous strategies have been proposed through fine-
tuning (Lewkowycz et al., 2022; Rajani et al.,
2019; Zelikman et al., 2022), prompt engineer-
ing techniques such as verification, scratchpads
(Cobbe et al., 2021; Nye et al., 2022), Chain of
Thought (CoT) (Wei et al., 2022), RLHF (Ziegler
et al., 2019; Christiano et al., 2017), iterative self-
reflection (Shinn et al., 2023; Madaan et al., 2023).
pruning truthful datasets (Christiano et al., 2023),
external knowledge retrieval (Guu et al., 2020) and
training-free methods based on likelihood estima-
tion (Kadavath et al., 2022).

Wang et. al., for instance, propose a
new prompting approach a.k.a. self-consistency
prompting (Wang et al., 2023g) which samples
a diverse set of reasoning paths instead of only
taking the greedy one, and then selects the most
consistent answer by marginalizing out the sam-
pled reasoning paths. The rationale behind this
approach is straightforward: a complex reasoning
problem typically admits multiple different ways
of thinking leading to its unique correct answer
(Wang et al., 2023g).

Despite all the methods introduced for mitigat-
ing inconsistency, only a handful are effective in
determining whether a response provided by LLM
is accurate or not. To address this, a recent method
developed by Xue et al. called Reversing Chain-
of-Thought (RCoT) aims to automatically detect
factual discrepancies and fix errors in text gen-

erated by LLMs. To do so, RCoT employs the
model’s output, instructions, and illustrative ex-
amples to reconstruct the problem. It dissects both
the original and reconstructed issues into detailed
condition lists, comparing them to identify any in-
stances of hallucinations, oversights, misinterpre-
tations, or factual disagreements. When factual in-
consistencies arise, RCoT generates fine-grained
feedback, which subsequently guides LLMs in up-
dating their solutions to rectify the issue.

“Society of minds” strategy is another novel ap-
proach for enhancing factually of LLMs (Du et al.,
2023b). In this strategy, multiple language model
instances present and argue their own responses
and reasoning processes in multiple rounds to find
a common ground. Du et al. show that this
method considerably improves mathematical and
strategic reasoning across a variety of tasks (Du
et al., 2023b). They additionally illustrate that this
method increases the factual quality of generated
information by eliminating erroneous answers and
hallucinations that are common in LLMs.

Interesting enough, LLMs themselves could be
used to assess the consistency of language models.
As an example, tam et al. (Tam et al., 2023) do
so by introducing a Factual Inconsistency Bench-
mark (FIB), for summarization task. They com-
pare the scores an LLM assigns to a factually con-
sistent versus a factually inconsistent summary for
a given news article. They evaluate multiple LLMs
on this benchmark and discover that LLMs tend to
assign higher scores to factually consistent sum-
maries than to factually inconsistent ones.

Techniques such as adjusting the system param-
eters to limit model creativity, incorporating exter-
nal knowledge sources for improved answer veri-
fication, and generating rationales and references
are among other approaches to improve the LLMs
responses (Muneeswaran et al., 2023).

All the studies mentioned earlier highlight that
although LLMs are immensely powerful tools,
they remain significantly prone to errors. Conse-
quently, any outputs produced by LLMs should be
approached with care and caution.

5.2 Discrimination, Toxicity and Harms
Generated by LLMs

LLMs may generate language that is discrimina-
tory, offensive, or detrimental to individuals or
groups, depending on the quality and diversity of
their training data, their design choices, and their

intended or unintended applications (Gehman
et al., 2020; Deshpande et al., 2023a; Cui et al.,
2023). Thus, LLMs pose ethical and social chal-
lenges that require careful evaluation and regula-
tion.

A work published by DeepMind (Weidinger
et al., 2021), structures the risk landscape associ-
ated with LLMs. It outlines six specific risk areas,
including discrimination, exclusion and toxicity,
and discusses the potential mitigation approaches
and challenges. It further explores potential strate-
gies for mitigating these risks, emphasizing prac-
tices such as enhancing data quality and diversity,
employing fairness metrics, and establishing con-
tent moderation and reporting mechanisms.

A work by ousidhoum et al., introduces AttaQ, a
new dataset containing adversarial examples in the
form of questions, which is designed to provoke
harmful or inappropriate responses from LLMs.
They assess several Large pre-trained language
models (PTLMs) on this dataset and find that in
many cases, LLMs produce unsafe responses.

In another work by Deshoande et al. (Desh-
pande et al., 2023a) Research reveal that when
ChatGPT is given a persona, it can exhibit substan-
tial toxicity and pose risks, particularly for vulner-
able populations such as students, minors, and pa-
tients. The degree of toxicity varies significantly
based on the chosen style, with a notable increase
in harmful content when ChatGPT is explicitly in-
structed to say negative things.

Moreover, the study discovers that specific gen-
ders and ethnicities face a higher risk of encoun-
tering toxic content. Deshoande et al. propose that
this phenomenon arises from the model’s heavy
reliance on RLHF to mitigate toxicity. The feed-
back provided to the model may carry biases, po-
tentially leading to skewed assessments of toxicity
related to different genders

Significantly, LLMs have the capability to gen-
erate implicit toxic responses that elude easy de-
tection by existing classifiers. These responses,
while not overtly harmful, can still offend or harm
individuals or groups by subtly implying negative
or false statements. This poses a serious threat to
the safety and reliability of NLG systems, and it
also raises important social and ethical concerns.

In the same vein, a recent work by wen et
al. (Wen et al., 2023) investigates how LLMs can
generate implicit toxic outputs that are hard to de-
tect by existing toxicity identifiers. The study in-

Table 4: Summary of Selected Works on Jailbreaking Privacy Attacks

Papers Research Focus Methodology Key Findings Contributions

(Li et al., 2023a) Privacy threats from
LLMs

Extensive experiments
with direct and multi-step
jailbreaking prompts

ChatGPT shows resilience
against direct prompts but
is vulnerable to multi-step
prompts. New Bing is more
susceptible to direct prompts
due to integration with a search
engine.

Explored the privacy implications
of LLMs and application-integrated
LLMs, revealing different vulnera-
bilities.

(Deng et al., 2023a) Jailbreaking defenses of
LLM chatbots

JAILBREAKER frame-
work

Bard and Bing Chat use ad-
vanced defensive techniques
like real-time keyword filter-
ing. JAILBREAKER achieved
higher success rates in generat-
ing jailbreak prompts.

Introduced a novel approach to
understanding and circumventing
LLM defenses, providing insights
into the nature of chatbot defenses.

(Shen et al., 2023) Analysis of jailbreak
prompts

NLP and graph-based
community detection on
real-world data

Jailbreak prompts are evolv-
ing to be more discreet and
effective, migrating from pub-
lic to private platforms. Some
prompts achieve high attack
success rates.

Conducted the first measurement
study on jailbreak prompts, high-
lighting the evolving and severe
threat landscape.

(Rao et al., 2023) Classification and analysis
of jailbreak prompts

Taxonomy based on lin-
guistic transformation, at-
tacker intent, and attack
modality

Demonstrated varied effective-
ness of jailbreak methods on
different LLMs, highlighting
the need for robust defenses.

Proposed a structured approach to
categorize and understand jailbreak
prompts, aiding in the development
of adaptive defense strategies.

troduces a reinforcement learning-based approach
to reveal and highlight implicit toxicity within
LLMs. Additionally, it recommends fine-tuning
the classifiers using annotated examples obtained
from the attacking method to enhance their ability
to detect such toxicity.

Given the multitude of factors—ranging from
user behavior to data quality and model character-
istics—that contribute to the generation of toxic
and harmful content, it becomes critical to dig
deeper into researching the impact and toxicity of
LLMs. Developing robust methods and mecha-
nisms for prevention, detection, and mitigation is
crucial. Such research efforts not only bolster the
safety and reliability of LLMs but also propel ad-
vancements in other linked domains.

5.3 LLM Generated Text, Copyright
Infringement and Plagiarism

LLMs may become a significant threat to aca-
demic writing by increasing the risk of copyright
infringement and plagiarism. For instance, au-
thors may use an LLM to generate articles in-
stead of writing them from the scratch, or stu-
dents may use LLMs to complete homework as-
signments, which undermines academic integrity
and defeats the purpose of the assignment and ex-
amination (Khalil and Er, 2023; Stokel-Walker,
2022),

To address this issue, various detectors have
been developed to distinguish between human-
written and AI-generated text. These detectors can

be categorized into black-box (Wang et al., 2023h;
Quidwai et al., 2023; Liu et al., 2023b), and white-
box detection methods (Vasilatos et al., 2023).

In black-box detection, access is limited to
the output text produced by LLMs. These de-
tectors often utilize an LLM to embed both
human-written and AI-generated text into a high-
dimensional vector space. This embedded text
then serves as a distinguishing feature for a
lightweight machine learning classifier.

For example, Quidwai et al. (Quidwai et al.,
2023) propose a framework for detecting AI-
generated plagiarism by embedding answers into
a vector space using text-embedding-ada-002.
They compute sentence-level similarity scores
for Human-Machine (HM) answer pairs and
Machine-Machine (MM) answer pairs using co-
sine similarity and apply a Linear Discriminant
Analysis (LDA) classifier to decide whether it is
an HM or MM pair.

Similarly, Liu et al. (Liu et al., 2023b) lever-
age ChatGPT and a pretrained LLM to compute
an embedding representation of abstract, then uti-
lize LSTM for classification. These detectors
exhibit high accuracy in distinguishing between
human-written and AI-generated texts. However,
it’s worth noting that these classifiers may face
scalability challenges due to the computational re-
sources needed for embedding computation.

Along the same line, Liu et al. (Liu et al.,
2023b) evaluate performance of existing GPT de-
tectors i.e., GPTZero (Tian, 2023), ZeroGPT(Zer,

Risks

Factual Inconsistency and Unreliability

of LLM Responses

Misinformation Generation

Copyright Infringement and Plagiarism

Discrimination, Toxicity and Harms

LLM Code Generation, Cyber Attacks

and Security

Mitigation Strategies

Finetuning, prompt engineering, RLHF, iterative self-

reflection, pruning truthful datasets, external knowledge

retrieval, likelihood estimation and so on.

AI-generated text techniques such as supervised deep

detection, watermarking, information retrieval, feature-base,

sensitivity-based detection.

White-box and Black-box detection techniques including

methods mentioned above.

Hate speech and toxicity Detection techniques as mentioned

above.

Providing follow-up questions on code security, Iterative code

improvement by interacting with LLM, asking model’s

confidence on security of code, users awareness on security.

Figure 7: A summary of LLMs’ risks and mitigation strategies.

2023), and OpenAI’s detector (Ope, 2023) on
a new benchmark dataset. They observe that
both GPTZero and ZeroGPT have strong tendency
to classify an input abstract as "human-written".
OpenAI’s detector, on the other hand, performs
significantly better at detecting GPT-generated ab-
stract, while worse at detecting human-written ab-
stract compared to the other detectors. Another
observation is that, the more information is given
to ChatGPT, the more likely it is for the output to
be “human-written” in the eyes of detectors. This
is also verified through visualization of human-
written and GPT-generated text embedding (Liu
et al., 2023b).

Contrary to the black-box approach, the white-
box approach requires additional access to the
model probabilities of each token. Therefore,
there are fewer white-box detectors available.

An example of such detectors is HowkGPT
(Vasilatos et al., 2023), which utilizes the pre-
trained GPT-2 model parameters to differenti-
ate between student-written homework and GPT-
generated ones. The main idea is to calcu-
late the perplexity score of student-generated and
ChatGPT-generated answers, and find the optimal
threshold to separate the two classes.4

As mentioned earlier, in contrast to the white-

4A web application of this technique is available at
https://howkgpt.hpc.nyu.edu/.

box approach, the black-box approach does not
require access to the model probabilities of each
token. Therefore, white-box detectors are scarce
and less practical, as LLMs are constantly chang-
ing and most of them do not offer white-box ac-
cess. Black-box methods that are independent of
model access and can be readily adjusted to a new
model seem to be more feasible and practical.

In the section 6.3, we will delve deeper into
techniques for detecting AI-generated text.

5.4 LLM Generated Text and
Misinformation

LLMs, particularly when implemented in Open-
Domain Question Answering (ODQA) systems,
can take part in the fabrication and propagation
of misinformation (Pan et al., 2023a; Chen et al.,
2023; Pan et al., 2023b).

Intuitively, as proposed by pan et al., one simple
strategy to combat the spread of misinformation
in ODQA systems is to reduce its prevalence, or,
in other words, to reduce the ratio of misinforma-
tion that the QA systems are exposed to. This can
be accomplished by retrieving a higher number of
paragraphs to serve as background for the reader.

However, research has shown that expanding
the context size provides minimal or no improve-
ment in mitigating the performance degradation
caused by misinformation (Tam et al., 2022). As

a result, the basic approach of “diluting” misinfor-
mation by increasing the context size is ineffective
for misinformation defense.

An alternative method is to instruct LLMs to is-
sue a cautionary notice regarding potentially mis-
leading content. For instance, the reader could re-
ceive the directive: “Exercise caution, as certain
texts may be designed to deceive you”.

Moreover, it is possible to identify and filter
out misinformation generated by LLMs based on
various features, such as content, style, or prop-
agation structure. Chen et al. (Pan et al., 2023b),
for example, propose four instruction-tuned strate-
gies to enhance LLMs for misinformation detec-
tion. These strategies include Instruction Filter-
ing which involves filtering out the outputs of the
LLM that do not follow the instructions or contain
misleading information, Instruction Verification
which verifies the outputs of the LLM against the
instructions or external sources to check their va-
lidity and reliability and Instruction Combination
which combines multiple instructions to generate
more diverse and accurate outputs from LLM.

Another interesting approach suggested by
Chen et al. (Chen et al., 2023) is Reader Ensem-
ble. This technique harnesses the collective power
of multiple language models to scrutinize and val-
idate the information produced by a given LLM.
By cross-checking outputs, the ensemble aims to
enhance reliability and consistency of responses.

Additionally, Chen et al. introduce Vigilant
Prompting which crafts meticulous prompts or in-
structions for LLMs. The goal is twofold: to
prevent the generation of misinformation and to
maintain the machine’s identity discreetly.

While these groundbreaking approaches cer-
tainly enhance the pursuit of more reliable and de-
pendable LLMs, the convergence of AI-generated
texts with human-written content necessitates
more effective means of identifying and manag-
ing misleading information produced by AI. In our
earlier discussion, we touched upon white-box and
black-box detection techniques. In the section 6.3,
we will dive deeper into these methods, offering
additional details.

6 Risk Mitigation Strategies

In the previous section, we explored various risk
categories linked to LLMs. Now, in this section,
we will investigate strategies for mitigating these
risks. Figure 7 depicts a summary of this section.

6.1 Editing LLMs

LLMs have emerged as a widely adopted approach
across various domains. However, when certain
LLMs possess billions of parameters, a critical
concern arises: how can we address undesirable
behaviors, such as generating offensive content or
producing incorrect answers, without necessitat-
ing a full retraining of the LLM?

The key to addressing this inquiry lies in un-
derstanding the specific locations within an LLM’s
parameters where information is stored. This be-
comes crucial during LLM editing, as it informs
decisions about where to make modifications, par-
ticularly when dealing with hallucinations. Em-
pirically, factual information tends to reside in the
middle layers of LLMs. (Meng et al., 2022a,b). In
contrast, commonsense knowledge, as exemplified
in the work by Gupta et al. (Gupta et al., 2023),
typically resides in the early layers.

Model Editor Networks with Gradient Decom-
position (MEND) (Mitchell et al., 2021) and Semi-
Parametric Editing with a Retrieval-Augmented
Counterfactual Model (SERAC) (Mitchell et al.,
2022) are examples of model editing methods
where a pre-trained LLM is edited in order to
achieve better desirable behaviors.

MEND involves training a set of Multi-Layer
Perceptrons (MLPs) to modify gradients in a way
that local parameter edits do not adversely affect
model performance on unrelated inputs. MEND
operates in two stages: training and the subse-
quent editing procedure. The method is applied to
T5, GPT, BERT, and BART models, and evaluated
on datasets including zsRE Question-Answering,
FEVER Fact-Checking, and Wikitext Generation.
MEND effectively edits the largest available trans-
formers, outperforming other methods in terms of
degree of modification.

SERAC, a memory-based model editing, lever-
ages external memory to enhance model behav-
ior. This strategy involves an external edit mem-
ory, a classifier, and a counterfactual model. Ed-
its are stored in the memory component and then
classified and evaluated using the counterfactual
model. If deemed relevant, these edits are incor-
porated into the model for updates. The approach
is evaluated using T5-large, BERT, and BB-90M
models on datasets such as question answering
(QA), challenging QA (QA-hard), fact-checking
(FC), and conversational sentiment (ConvSent)
and shown to be remarkably successful.

Question: What is the capital of the US? Answer: Washington D.C.

Incorrect LLM

New York City (80%)

Washington DC (20%)

Washington D.C.(80%)

New York City (20%)

Edited LLM

Figure 8: Model editing as a mitigation strategy for white-box models.

Another framework called Rank-One Model
Editing (ROME) by Meng et al. (Meng et al.,
2022a), involves modifying the feedforward
weights to evaluate factual association recall.
Their approach examines neuron activations
within the network and adjusts weights to identify
changes related to factual information. Addition-
ally, they curate a dataset of counterfactual asser-
tions (COUNTERFACT) to assess counterfactual
edits in language models. Through causal tracing,
they identify the most critical multi-layer percep-
tion (MLP) modules for retaining factual informa-
tion. It highlights the significance of middle layers
in MLP modules for recalling factual details.

A method called Mass-Editing Memory in a
Transformer (MEMIT) (Meng et al., 2022b) fo-
cuses on updating LLMs with additional ‘mem-
ories’ (associations) that can scale to a large size.
The objective of MEMIT is to modify the factual
associations that are stored within the weights of
LLMs. MEMIT takes inspiration from ROME,
where ROME edits the LLM in a single basis
while MEMIT is able to scale up to thousands
of associations (memories) for GPT-J and GPT-
NeoX. In addition, they are able to make updates
to the parameters among multiple layers.

Gupta et al. (Gupta et al., 2023) extend the
MEMIT framework to adapt it for handling com-
monsense knowledge. while Meng et al. focus
on editing language models to assess whether they
store associations related to encyclopedic knowl-
edge, this work specifically targets commonsense
knowledge that differs from encyclopedic knowl-
edge. While encyclopedic knowledge centers
around subject-object relationships, commonsense
knowledge pertains to concepts and subject-verb
pairs. Their approach, known as MEMITCSK , ef-

fectively corrects commonsense mistakes and can
be applied to editing subjects, objects, and verbs.
Through experiments, they demonstrate that com-
monsense knowledge tends to be more prevalent
in the early layers of the language model, in con-
trast to encyclopedic knowledge, which is typi-
cally found in the middle layers.

Wang et al.(Wang et al., 2023e) propose a
framework for model editing that incorporates
multiple model editing techniques, ensuring ease
of use across various LLMs. The framework ab-
stracts an editor. This editor applies model edit-
ing techniques to assess specific hyperparame-
ters—such as certain layers or neurons—that need
modification within the LLM. Customizable eval-
uation metrics are then employed to assess the
performance of the model editing method. They
demonstrate the framework’s effectiveness on sev-
eral LLMs, including T5, GPT-J, GPT-NEO, GPT-
2, LLaMA, and LLaMA-2. Leveraging methods
such as ROME, MEMIT, MEND, and others.

However, Yao et al.(Yao et al., 2023b) conduct
an analysis to evaluate the performance of model
editing methods. They introduced a novel dataset
specifically designed for this purpose. Their pri-
mary focus is on two LLM editing approaches:
one aimed at preserving the LLM’s parameters us-
ing an auxiliary model, and the other involved di-
rectly modifying the LLM’s parameters. To assess
performance, they utilize two datasets, including
a newly constructed dataset generated by GPT-
4, which consists of associated questions and an-
swers. Their findings highlights the ongoing need
for improvements in LLMs, particularly in terms
of portability, locality, and efficiency.

The research on editing LLMs has demon-
strated the significance of model editing and iden-

tified specific knowledge domains. Recent con-
tributions, like the work by Wang et al. (Wang
et al., 2023e), introduce user-friendly frameworks
for LLM editing, enhancing its impact. However,
despite these advancements, there remains an on-
going requirement for improvements in LLMs, es-
pecially concerning aspects such as portability, lo-
cality, and efficiency.

6.2 Color Teaming

Red/Green Teaming Traditionally, red teaming
refers to systematic adversarial attacks that are
used for testing security vulnerabilities. With the
rise of LLMs, the term has expanded beyond tra-
ditional cyber-security. It now includes various
forms of probing, testing, and attacking AI sys-
tems. LLMs can produce both benign and harmful
outputs. Red teaming for LLMs, focuses on iden-
tifying potential harmful content like hate speech,
incitement of violence, or sexual material (Gan-
guli et al., 2022; Ge et al., 2023).

For example, an LLM could be given a prompt
that leads to an undesirable output. Such outcomes
could be exploited against the person who issued
the prompt or even impact others. Therefore, it is
crucial to employ red teaming to uncover any un-
intended consequences that may have been over-
looked during LLM testing.

Numerous studies have explored red teaming in
the context of LLMs (Ge et al., 2023; Perez et al.,
2022b; Bhardwaj and Poria, 2023), shedding light
on their strengths and weaknesses. Given their
significant effectiveness, red teaming plays a piv-
otal role in understanding the potential adverse im-
pacts of LLMs.

For instance, Zhuo et al. (Zhuo et al., 2023),
investigate whether ChatGPT produces hazardous
outputs by employing prompt-injection methods,
while other studies (Shi et al., 2023b; Casper
et al., 2023; Perez et al., 2022a), focus on specific
red-teaming aspects including developing toxic-
ity classifiers or identifying risky generations that
might otherwise go unnoticed.

A work by Ganguli et al. (Ganguli et al.,
2022) explores how various sampling techniques
could discourage particular red-teaming elements.
RLHF, for instance, is shown to be more resilient
compared to rejection sampling. However, these
approaches often involve substantial human in-
volvement. To address this manual burden, other
researchers have sought ways to automate red

teaming. Lee et al. (Lee et al., 2023a), for ex-
ample, employ Bayesian optimization to conduct
red teaming with minimal queries and reduced re-
liance on human assistance.

Interestingly, there is emerging research on a
concept called “Green Teaming” (Stapleton et al.,
2023). Unlike red teaming that focuses on iden-
tifying vulnerabilities and risks, green teaming
explores scenarios where potentially unsafe con-
tent might still have beneficial applications. It
acknowledges the gray areas—situations where
LLMs generate content that could be considered
unsafe but serves a purpose. For example, using
LLMs to generate intentionally buggy code for ed-
ucational purposes falls into this category.

As we navigate the complexities of LLMs’ be-
havior, both red and green teaming contribute to a
more comprehensive understanding of their capa-
bilities and limitations.

Red teaming for LLMs has revealed the delicate
balance between ease and difficulty in coaxing
these models to produce unsafe content. Ensuring
that generating harmful outputs remains challeng-
ing requires ongoing effort and novel approaches.

Other Teaming Terms Beyond the red–green
distinction, researchers have recently begun ex-
ploring purple, blue, and even “rainbow” teaming,
where the goal is to combine or extend adversarial
discovery with in-situ hardening of the model.

Purple teaming marries the attacker’s perspec-
tive with immediate, automated defenses. Zhou et
al. (Zhou et al., 2024a) introduce Purple-teaming
LLMs with Adversarial Defender training (PAD),
a self-play pipeline in which an attacker LLM
continuously elicits unsafe responses while a de-
fender LLM learns—GAN-style—to detect and
rebut them, markedly improving safety without
sacrificing utility. Complementing PAD, Purple
Llama CyberSecEval offers a large-scale bench-
mark that probes coding assistants for two con-
crete risks—suggesting insecure code and com-
plying with cyber-attack requests—thereby pro-
viding a quantitative basis for purple-team evalua-
tion (Bhatt et al., 2023).

On the blue-team, Zhao et al. (Zhao et al., 2025)
propose BlueSuffix, a reinforced suffix generator
coupled with visual + textual purifiers that harden
vision–language models against multi-modal jail-
breaks while preserving benign performance.

Finally, Rainbow Teaming frames adversarial-
prompt discovery as an open-ended qual-

ity–diversity search, yielding hundreds of
transferable attacks and demonstrating that fine-
tuning on this diverse corpus can simultaneously
raise safety and maintain helpfulness (Samvelyan
et al., 2024).

6.3 Detecting AI-generated Text

As AI-generated content increasingly resembles
human-written text, distinguishing between the
two has become an increasingly formidable task.
Detecting LLM-generated text within human-
written content is akin to a double-edged sword.
On one hand, identifying differences can enhance
the quality of AI-generated content; on the other
hand, it complicates the identification process.

Over the recent years, scholars have intro-
duced a range of methods to identify AI-generated
text (Pegoraro et al., 2023; He et al., 2023; Tang
et al., 2023b). As briefly discussed in the previ-
ous section, we may categorize these techniques
into two main categories: black-box and white-
box techniques. In the black-box setting, we only
have access to the output text generated by the
LLM with an arbitrary input, while in the white-
box setting, there is an additional access to the
model output probability for each token as well.
In this section, we discuss some of these detection
techniques as well as their vulnerabilities and lim-
itations. At the end, we will discuss the possibility
of detection from a theoretical point of view.

6.3.1 Fine-tuning Language Models as
Supervised Detectors

A commonly used detection approach for both
categories of white-box and black-box detectors
is to fine-tune a language model on sets of AI
and human generated texts (Solaiman et al., 2019;
Bakhtin et al., 2019; Antoun et al., 2023; Zhan
et al., 2023; Li et al., 2023b).

However, most LLMs require costly computa-
tional resources, making it nearly impractical to
generate sufficiently large datasets that cover a
wide range of samples, thereby this strategy is not
always the optimal choice.

Moreover, this method is susceptible to adver-
sarial attacks, such as data poisoning. For in-
stance, hackers could evade detection by gaining
access to the human reference texts used during
training and the detector rankings. Even more con-
cerning, attackers can undermine detector train-
ing in a white-box environment. This vulnerabil-
ity arises because many detectors are trained on

Figure 9: Log-likelihood curvature for AI vs.
human-generated text. This figure is taken
from (Mitchell et al., 2023)

commonly used datasets, rendering them highly
susceptible to even the most straightforward at-
tacks (Krishna et al., 2023; Sadasivan et al., 2023).

Another drawback lies in their sensitivity to
paraphrasing attacks. These attacks often add a
paraphraser on top of a generative model, which
can deceive any form of detector, including those
utilizing supervised neural networks.

6.3.2 Pre-trained Language Models as
Zero-shot Detectors

Another avenue of research involves utilizing pre-
trained models in a zero-shot setting to discern text
written by AI, all without the necessity for addi-
tional training or data collection (Su et al., 2023;
Zer, 2023; Wang et al., 2023b; Gehrmann et al.,
2019).

According to (Mitchell et al., 2023), these tech-
niques often set a threshold for the predicted
per-token log probability to identify AI-generated
texts. This approach relies on the observation that
passages generated by AI often exhibit a nega-
tive log probability curvature. Specifically, AI-
generated text, x ∼ pθ(·), tends to lie in re-
gions of negative curvature in the log-likelihood
landscape, log p(x), where nearby samples (i.e.,
similar texts) generally have lower model log-
probability on average. In contrast, human-written
text, x ∼ preal(·), typically does not occupy
regions with clearly defined negative curvature,
and nearby samples may exhibit either higher or
lower log-probability without a consistent pattern
as shown in Figure 9.

While this method mitigates the risk of data poi-
soning attacks and minimizes data and resource

overheads, it remains vulnerable to other adversar-
ial attacks such as spoofing and paraphrasing (Kr-
ishna et al., 2023; Sadasivan et al., 2023).

6.3.3 Detection based on Information
Retrieval Techniques

Within the realm of Information Retrieval Tech-
niques, we encounter methods specifically de-
signed to differentiate between human-written and
AI-generated texts.

These techniques operate by comparing a given
text with a database of texts generated by LLMs.
The objective is to identify semantically similar
matches, thereby aiding in the discrimination pro-
cess. By leveraging these approaches, researchers
aim to enhance the robustness and reliability of
text detection mechanisms. Whether it’s match-
ing keywords, traversing hypertext links, or em-
ploying more sophisticated algorithms, the goal
remains consistent: to discern the subtle nuances
that distinguish human-authored content from its
AI-generated counterparts (Krishna et al., 2023;
Sadasivan et al., 2023).

However, these methods are not feasible for real
world applications, as they need a large and up-
dated database of AI-generated texts, which can
be computationally expensive or may not even ex-
ist or be accessible across all domains, tasks, or
models. Additionally, like many other detection
methods, they are susceptible to paraphrasing and
spoofing attacks. (Krishna et al., 2023; Sadasivan
et al., 2023; Wolff, 2020; Liang et al., 2023).

6.3.4 Watermarking as a Signature for
Detection

Another line of research known as watermarking
techniques uses a model signature in the produced
text outputs to stamp particular patterns.

Kirchenbauer et al. (Kirchenbauer et al.,
2023a), for example, suggest soft watermarking
that divides tokens into green and red lists to aid
in the creation of these patterns. A watermarked
LLM samples a token, with high probability, from
the green list given by its prefix token. These wa-
termarks are frequently invisible to humans.

To better understand technique proposed by
Kirchenbauer et al., assume an autoregressive lan-
guage model is trained on a vocabulary V of size
|V |. Given a sequence of tokens as input at step t,
a language model predicts the next token in the se-
quence by outputting a vector of logit scores lt ∈
R|V | with one entry for each item in the vocabu-

lary. A random number generator is seeded with
a context window of h preceding tokens, based on
a pseudo-random function (PRF) f : Nh → N .
With this random seed, a subset of tokens of size
γ|V |, where γ ∈ (0, 1) is green list size, are “col-
ored green” and denoted Gt. Now, the logit scores
lt are modified such that with a hardness parame-
ter σ > 0:

ltk =

{
ltk + σ, if k ∈ Gt

ltk, otherwise
(1)

In the simplest case, one passes the scores through
a softmax layer and samples from the output dis-
tribution, resulting in a bias towards tokens from
Gt. After watermarked text is generated, one can
check for the watermark without having access to
the LLM by re-computing the greenlist at each po-
sition and finding the set of greenlist token posi-
tions. The statistical significance of a sequence of
tokens of length T can be established by deriving
the z-score:

z =
(|S| − γT)√
γ(1− γ)T

(2)

When this z-score is large and the corresponding
P-value is small, one can be confident that the text
is watermarked (Kirchenbauer et al., 2023a).

However, until all highly successful LLMs are
similarly secured, watermarking could not be a
useful tactic to prevent LLM exploitation. Addi-
tionally, watermarking unfortunately, has limited
real-world applications, particularly when only
black-box language models are available. Due to
API providers opting to withhold probability dis-
tributions for commercial reasons, most third par-
ties developing API-based applications find them-
selves unable to watermark text independently.

Nonetheless, to equip third-parties with au-
tonomous watermark injection, Yang et al. de-
velop a watermarking framework for black-box
language model usage scenarios (Yang et al.,
2023b).

They introduce a binary encoding function that
generates a random binary encoding correspond-
ing to a word. In the absence of a watermark,
the encoding adheres to a Bernoulli distribution,
where the probability of a word representing bit-
1 is approximately 0.5. To embed a watermark,
they modify the distribution by selectively replac-
ing words associated with bit-0 using context-
based synonyms that signify bit-1. Subsequently,

a statistical test is employed to detect the water-
mark. Remarkably, even when subjected to at-
tacks like sentence back translation, sentence re-
finement, word removal, and synonym substitu-
tion, removing the watermark without compromis-
ing the original meaning remains a challenging
task for potential attackers.

Kirchenbauer et al. (Kirchenbauer et al., 2023b)
examine the reliability of watermarks as a method
for identifying and keeping track of AI-generated
text. They investigate how well watermarked
text holds up against human restructuring, non-
watermarked LLM paraphrasing, and blending
into lengthier human-written documents.

They discover that even after automated and hu-
man paraphrase, watermarks may still be spot-
ted. When enough tokens are detected, para-
phrases are statistically likely to leak n-grams or
even larger pieces of the original text, leading to
high-confidence detection, even though these at-
tacks weaken the watermark’s effectiveness. They
argue for an interpretation of watermarking relia-
bility as a function of text length and find out that,
even with the intention of deleting the watermark,
even human writers are unable to do so if the text
is measured at 1000 words. It turns out that the
aforementioned interpretation is a significant char-
acteristic of watermarking. The most trustworthy
strategy, according to this research, is watermark-
ing because other paradigms, such as retrieval and
loss-based detection, haven’t shown a significant
improvement with text length.

Despite prior findings, watermark-based meth-
ods remain both theoretically and practically vul-
nerable to rewording attacks. Research has shown
that even language models secured by watermark-
ing techniques remain susceptible to spoofing at-
tacks. In these attacks, human adversaries insert
their own text into human-generated content, cre-
ating the illusion that the material originated from
language models. For further insights, interested
readers can refer to Sadasivan et al.’s work (Sada-
sivan et al., 2023).

Additionally, a new study by Zhang et
al. (Zhang et al., 2023a) shows that under plausi-
ble assumptions, there is no strong watermarking
scheme that can prevent an attacker from remov-
ing the watermark without significantly degrading
the quality of the output. We will delve deeper into
the findings of this study in section 6.3.8.

6.3.5 Discriminating Features as Detection
Clues

Another stream of work is to identify and classify
based on discriminating features. For instance, Yu
et al. (Yu et al., 2023) have identified a genetic in-
heritance characteristic specific to GPT-generated
text. According to this characteristic, the model’s
output essentially rearranges the content present in
its training corpus. In simpler terms, when repeat-
edly answering a question, the model’s responses
remain constrained by the information within its
training data, resulting in limited variations. This
hypothesis suggests that the output of a language
model (such as ChatGPT) is predictable, implying
that for highly similar questions, the model will
produce correspondingly similar answers. Analo-
gously, paternity testing involves using DNA pro-
files to determine whether an individual is the bi-
ological parent of another individual. This pro-
cess becomes particularly crucial when parental
rights and responsibilities are in question, and un-
certainty exists regarding a child’s paternity.

In another study (Yang et al., 2023c), Yang et
al. introduce a detection approach called Diver-
gent N-Gram Analysis (DNA-GPT). This method
operates without requiring training and assesses
the disparities between a given text and its trun-
cated segments using n-gram analysis in a black-
box setting or probability divergence in a white-
box context.

For the black box scenario, Yang et al. define
DNA-GPT BScore as follows:

BScore(S,Ω) =

1

K
ΣK
k=1Σ

N
n=n0

f(n)
|n-grams(Ŝk) ∩ n-grams(S2)|

|Ŝk||n-grams(S2)|
(3)

where S is the LLM output, S2 the human written
ground truth, f(n) a weight function for different
n-grams and Ω = {Ŝ1, . . . , ŜK}.

For white-box scenario, they propose calculat-
ing a DNA-GPT WScore between Ω and S as:

WScore(S,Ω) =
1

K
ΣK
k=1log

p(S2|S1)

p(Ŝk|S1)
(4)

Where Ω is a set of K samples of a LM decoder,
Ŝ = LM(S1) and S2 is the human-written ground
truth. In both the black-box and white-box scenar-
ios, two parameters play a critical role in the de-
tection accuracy: the truncation ratio and the num-
ber of re-prompting iterations K. This strategy,

Table 5: AI-generated Text Detection Techniques

Papers Method Main Idea Vulnerabilities

(Solaiman et al., 2019;
Bakhtin et al., 2019; Antoun
et al., 2023; Zhan et al.,
2023; Li et al., 2023b)

Supervised
detection

To fine-tune a model on sets of AI and hu-
man generated texts.

Training on commonly used datasets, makes it vulnerable
to most attacks including paraphrasing.

(Su et al., 2023; Zer,
2023; Wang et al., 2023b;
Gehrmann et al., 2019)

Zero-shot detec-
tion

To use a pre-trained language model in
zero-shot settings.

Reduces the risk of data poisoning attacks and eliminates
data and resource over- heads, but it is still susceptible to
other adversarial attacks like spoofing and paraphrasing.

(Krishna et al., 2023; Sada-
sivan et al., 2023)

Retrival-based
detection

Apply methods of information retrieval to
match a given text with a collection of
texts generated by LLMs and finding sim-
ilarities in meaning.

It is impractical because it requires a large and updated
collection of texts, which is computationally expensive,
or may be unavailable for all domains, tasks or models. It
is also vulnerable to paraphrasing and spoofing attacks.

(Kirchenbauer et al., 2023a;
Yang et al., 2023b; Kirchen-
bauer et al., 2023b; Sadasi-
van et al., 2023)

Watermarking To use a model signature in the produced
text outputs to stamp particular pattern.

The most trustworthy strategy, but is shown to be funda-
mentally impossible for generative models. It is suscep-
tible to attacks such as rewording and spoofing.

(Yu et al., 2023; Yang et al.,
2023c; Mitchell et al., 2023;
Su et al., 2023)

Feature-based
detection

To identify and classify based on ex-
tracted discriminating features.

Susceptible to adversarial attacks such as paraphrasing.

demonstrates a significant discrepancies between
AI-generated and human-written texts.

Another discriminating feature is the suscepti-
bility of text to manipulations. AI-generated and
human-written texts are both negatively affected
by small perturbations e.g., replacing some of the
words. However, some recent work (Mitchell
et al., 2023; Su et al., 2023) reveal that AI-
generated text is more susceptible to such manip-
ulations. For instance, to measure sensitivity of
LLMs to perturbations, Su et al. propose Log-
Likelihood Log-Rank Ratio (LRR):

LPR = −Σt
i=1 log pθ(xi|x<i)

Σt
i=1 log rθ(xi|x<i)

(5)

where rθ(xi|x<i) ≥ 1 is the rank of token xi
conditioned on the previous tokens (Su et al.,
2023). The Log-Likelihood in the numerator rep-
resents the absolute confidence for the correct to-
ken, while the Log-Rank in the denominator ac-
counts for the relative confidence, which reveals
complimentary information about the texts. They
also propose Normalized Log-Rank Perturbation
(NPR) as follows:

NPR =
1
nΣ

n
p=1 log rθ(x̃p)

log rθ(x)
(6)

where small perturbations are applied on the target
text x to produce the perturbed text x̃p.

The study reveals that the LRR tends to be
larger for AI-generated text, providing a distin-
guishing factor. One plausible explanation is that
in AI-generated text, the log rank is more pro-
nounced than the log likelihood, making LRR a
useful indicator for such text.

The rational behind the NPR is that both AI-
generated and human-written texts are negatively
impacted by small perturbations. Specifically, the
log rank score increases after perturbations. How-
ever, AI-generated text is more susceptible to per-
turbations, resulting in a greater increase in the log
rank score post-perturbation. As a result, NPR
yields a higher score for AI-generated texts (Su
et al., 2023). As this study covers only a few de-
tection techniques, more extensive and systematic
evaluations are required to validate this aspect of
LLMs’ capabilities.

Despite all the approaches we discussed
here, scientists have revealed that by optimizing
prompts effectively, LLMs can evade many of the
detection techniques.

For example, Lu et al. (Lu et al., 2023) pro-
pose a novel Substitution-based In-Context exam-
ple Optimization method (SICO) that automati-
cally generates such prompts. To do so, SICO
first extracts discriminating features from a set of
human and AI-generated texts. Then, these fea-
tures and a paraphrasing prompt are concatenated
to the AI-generated tasks and feed to the LLM in
order to modify the AI generated text. The prompt
is optimized via word and sentence level replace-
ments that minimizes the probability of detection
and maximizes the similarity of AI-generated text
to the human-written one. The results firmly prove
the vulnerability of existing detectors.

6.3.6 Generalizability of Detection
Techniques

Generalizability of machine-generated text detec-
tors on unseen data across different dimensions

such as multi-domain, multi-lingual, and various
generative models is another important aspect that
needs to be taken into consideration.

There are few works such as a study by Wang et
al. (Wang et al., 2023h) that investigate the gener-
alizability of detectors by conducting experiments
on a large-scale corpus spanning multiple gener-
ators, domains, and languages. Their investiga-
tion involves leveraging various generative mod-
els, including ChatGPT, textdavinci-003, LLaMa,
FlanT5, Co-here, Dolly-v2, and BLOOMz, to
create text articles. Subsequently, they attempt
to distinguish between AI-generated and human-
written content using both traditional machine
learning methods (e.g., Linear Support Vector
Machine) and modern transformer-based models
(e.g., RoBERTa), focusing on stylistic features.
Interestingly, their findings reveal that while these
text detection methods perform well within their
specific domains, they encounter challenges in
out-of-domain detection tasks. In addition, they
discover that all detection models perform better
for detecting content that exhibits a particular pat-
tern which sets it apart from content written by hu-
man (ChatGPT in this case).

Moreover, they show that in cross-generator set-
tings—where the detector is trained on text pro-
duced by one LLM but tested on data produced by
another—most models suffer from performance
degradation and lack generalizability.

6.3.7 Vulnerabilities of Detection Techniques
As mentioned earlier, zero-shot attacks are sus-
ceptible to adversarial techniques like data poison-
ing. Researchers employ supervised methods to
counter them, but most detection strategies still re-
main vulnerable to paraphrasing or spoofing.

To tackle this challenge, retrieval-based detec-
tors serve as a defense mechanism. These detec-
tors store LLM outputs in a database and perform
semantic searches to identify optimal matches, as
previously discussed. This approach improves
the detector’s ability to withstand paraphrasing at-
tacks. However, it is important to consider pri-
vacy concerns associated with storing user-LLM
conversations. Furthermore, this technique proves
ineffective when dealing with recursive paraphras-
ings (Sadasivan et al., 2023).

Moreover, researchers have discovered that by
meticulously optimizing prompts, LLMs can ef-
fectively evade various detection techniques. For
instance, the prompt can be carefully crafted

through word and sentence replacements, aiming
to minimize the chances of detection while max-
imizing the similarity between human and AI-
generated texts (Lu et al., 2023).

While watermarking is considered an effec-
tive detection strategy, it encounters several chal-
lenges. Firstly, unless all LLMs are uniformly
safeguarded, watermarking remains ineffective.
Secondly, its practical applicability is limited, par-
ticularly when dealing with black-box language
models. Thirdly, API providers often withhold
probability distributions, preventing third-party
developers from independently watermarking text.
Lastly, recent research suggests that no robust wa-
termarking scheme can prevent attackers from re-
moving watermarks without significantly degrad-
ing output quality.

Therefore, watermarking generative models
may be fundamentally unachievable, necessitat-
ing alternative approaches to protect the intellec-
tual property of model developers and LLM users.
Table 5 demonstrates an overview of detection
strategies, highlighting the vulnerabilities associ-
ated with each category.

6.3.8 Discussion on the Possibility of
Detection

In light of the growing interest in LLM-generated
text detection, researchers have recently inves-
tigated the possibility of detecting AI-generated
text from a theoretical perspective, exploring the
fundamental feasibility and boundaries associated
with this task.

Sadasivan et al. for instance, come up with an
impossibility finding (Sadasivan et al., 2023): “as
language models become more sophisticated and
better at emulating human text, the performance
of even the best-possible detector decreases dras-
tically”. They propose an upper bound for the area
under the ROC curve of any decoder D as:

AUROC(D) ≤ 1

2
+TV (M,H)− TV (M,H)2

2
(7)

where TV (M,H) is the total variation distance
between machine and human generated texts. This
formula indicates that when human and machine
generated texts are very similar i.e., TV (M,H)
is very small, even the best-possible detector may
only perform marginally better than a random
classifier. The proof is provided in Appendix. A.

According to this formulation, as the TV dis-
tance between AI and human text distributions re-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AU
R

O
C

Total Variation

Random Classifier

Best Classifier

Figure 10: Comparing the AUROC of the optimal
detector to that of a random classifier shows that
as the TV distance between AI and human gen-
erated text distributions decreases, the AUROC of
the optimal detector also drops accordingly.

duces, the AUROC of the optimal detector also de-
creases accordingly as illustrated in Figure 10.

However, another interesting work by
Chakraborty et al. (Chakraborty et al., 2023)
suggests: “as long as the distributions of human
and machine generated texts are not exactly the
same, which is the case in most scenarios, it
is possible to detect AI generated texts, if we
collect enough samples of each distributions”.
In fact, Chakraborty et al. demonstrate that the
AUROC upper bound proposed by Sadasivan et
al. might be too conservative for detection in
practical scenarios. Specifically, they introduce
a hidden possibility by replacing TV (M,H)
with TV (M

⊗
n,H

⊗
n) in AUROC equation,

where m
⊗

n := m
⊗

m
⊗

· · ·
⊗

m (n times)
denotes the product distribution over sample set
S := {si}, i ∈ {1, . . . n}, as does h

⊗
n. Since

TV (M
⊗

n,H
⊗

n) is an increasing sequence,
it eventually converges to 1 as the number of
samples for each distribution increases. It is clear
that if the number of samples increases, the total
variation distance approaches 1 very quickly, and
hence increasing the AUROC.

In another work, Zhang et al. (Zhang et al.,
2023a), explore the theoretical aspect of water-
marking detection. They define watermarking as
the procedure of incorporating a statistical sig-
nal, commonly known as a “watermark”, into a
model’s output. This embedded watermark acts
as a verification signal, ensuring that the output
indeed originates from the model. A robust water-
marking approach prevents attackers from remov-
ing the watermark without significantly degrading

the output quality.
In this study, the authors put forth two funda-

mental assumptions. Firstly, they introduce the
concept of a “Quality Oracle”, which grants at-
tackers access to an oracle capable of evaluating
the quality of model outputs. This oracle assists
attackers in assessing the quality of modified re-
sponses. Secondly, they introduce the “Perturba-
tion Oracle” which allows attackers to modify an
output while maintaining a non-trivial probability
of preserving quality. Essentially, the perturbation
oracle induces an efficiently mixing random walk
on high-quality outputs.

They discover that for any public or secret-key
watermarking scenario that satisfies these assump-
tions, there exists an efficient attacker: “Given a
prompt p and a watermarked output y, this attacker
can leverage the quality and perturbation oracles
to obtain an output y

′
with a probability very close

to 1. The attacker’s goal is to find an output y
′

such that (1) y
′
is not watermarked with high prob-

ability and (2) Q(p, y
′
) ≥ Q(p, y)” (Zhang et al.,

2023a). Simply put, watermarking without caus-
ing significant quality degradation is impossible
and as a result, alternative approaches should be
leveraged to safeguard the intellectual property of
model developers.

Detecting AI-generated text is a crucial and
challenging task that has significant impact on
related NLP tasks. However, the current state-
of-the-art methods are sometimes limited by the
lack of a comprehensive understanding of the fun-
damental feasibility and boundaries of this task.
Therefore, it is critical to pursue further explo-
ration and investigation of the theoretical aspects
of AI-text detection, as this can lead to the devel-
opment of more robust and effective techniques,
as well as the identification of new research direc-
tions and opportunities.

7 Opportunities and Future Research

This paper provides a comprehensive overview of
the latest developments and best practices in secu-
rity and risk mitigation of LLMs. To broaden the
scope, this section explores the emerging opportu-
nities for advancing the field of security, vulnera-
bility and risk mitigation studies of LLMs.

7.1 Opportunities in Security & privacy

Opportunities in Data Leakage & Memoriza-
tion As previously mentioned, LLMs face chal-

lenges related to memorization and data leakage.
Exploring novel opportunities to address these is-
sues can significantly advance the field. Some
promising avenues include:

• Developing multi-aspect techniques to pre-
vent sensitive data leakage: These tech-
niques should consider various dimensions,
including model-related aspects (e.g., train-
ing data selection and differential privacy),
data (such as data classification, access con-
trol, and monitoring), and user-based factors
(e.g., detecting abnormal patterns in user-
LLM interactions and managing user access)

• Developing new methods to mitigate mem-
orization: Given the current scarcity of tech-
niques for tackling memorization in LLMs, it
is crucial to put forth novel approaches (e.g.,
model editing) to mitigate the memorization.

• Investigating and identifying patterns of
memorization: Exploring whether there ex-
ist patterns of memorization and pinpointing
the specific data categories that the model
remembers the most represents an underex-
plored opportunity.

Opportunities in LLM Code Generation As
mentioned earlier, the security implications of
code generation present several challenges. How-
ever, each challenge also represents an opportu-
nity to improve the security of codes produced by
LLMs. Some of these opportunities are:

• Developing methods to ensure the repro-
ducibility and transparency of code gen-
eration: This can involve practices such as
documenting the seed used, specifying the
model version, and capturing relevant prompt
details during the code generation process

• Exploring ways to generate large and di-
verse corpora of code samples for secu-
rity analysis: Researchers can employ tech-
niques like data augmentation, which in-
volves creating variations of existing code
snippets, adversarial examples that stress-test
the model’s robustness, and even self-play
techniques where the model generates code
samples and evaluates them against its own
predictions (Wang et al., 2023c).

• Designing realistic and comprehensive test
scenarios that cover various aspects of

software security: These scenarios should
comprise functional requirements, ensuring
that the software behaves as expected, as well
as non-functional requirements, such as per-
formance, scalability, and reliability. Ad-
ditionally, incorporating adversarial require-
ments—where the system is tested against in-
tentional attacks or misuse—can further en-
hance the security assessment process.

• Improving the robustness and general-
ization of code generation to different
prompts: Researchers have the opportunity
to improve the robustness and adaptability of
code generation across diverse prompts. The
ultimate goal is to develop a model that con-
sistently generates secure code, for all input
prompts. Achieving this goal ensures that the
generated code remains dependable, resilient,
and resistant to vulnerabilities, regardless of
the prompt used.

• Investigating the impact of coding lan-
guage on the security of code generation:
By analyzing the strengths and weaknesses
of various languages and paradigms, we can
identify which languages are more robust for
code generation. This exploration benefits
both code generation practices and the design
and enhancement of coding languages.

• Adapting to the evolutionary nature of
cyber-security: Evolutionary nature of
cyber-security requires proactive measures.
These include keeping training data up-to-
date, revising evaluation metrics, and align-
ing code generation practices with the latest
industry standards and trends.

7.2 Opportunities in Vulnerabilities Study
Building upon the foundational work in under-
standing LLM vulnerabilities, there remains a
broad spectrum of opportunities to deepen our
knowledge and enhance the resilience of these
models. The following areas represent promising
avenues for future research:

• Extending experiments on diverse NLP
applications besides classification task:
While classification have been the primary
focus, exploring other tasks (e.g., language
modeling, summarization, sentiment analy-
sis, and question answering) will provide a

more comprehensive understanding of LLM
behavior and security implications.

• Examining LLMs vulnerability at both
model architecture and model size level: It
is essential to comprehensively assess risks
and prioritize mitigation efforts based on the
severity of identified vulnerabilities. Under-
standing the interplay between architecture
choices and model scale allows us to make
better decisions to enhance LLM security.

• Adapting multi-faceted defense strategy
for safeguarding against backdoor injec-
tion: There is an opportunity to craft multi-
faceted defense strategies against backdoor
injection by combining techniques such as
prompt filtering to exclude harmful input and
specialized security-oriented LLMs trained
to detect suspicious instructions.

• Expanding the scope of prompt injection
studies: Including more complex interac-
tion scenarios, such as conversational agents
and context-aware applications we can un-
cover new insights and potentially enhance
resilience against security threats.

• Investigating the role of transfer learning
and fine-tuning: This involves examining
how vulnerabilities initially identified in pre-
trained models may either be magnified or al-
leviated when those models are fine-tuned for
specific tasks or domains.

• Identifying and mitigating emerging risks:
New studies may incorporate recent progress
in security, behavioral analysis, adversarial
learning and cyber-security forensics to de-
tect and mitigate sophisticated attacks.

• Assessing and evaluating the impact of
dataset diversity and representativeness:
This involves examining how the features
of training data affect the model’s ability to
withstand vulnerabilities, especially concern-
ing bias and fairness and more importantly
data poisoning.

7.3 Opportunities in Risk Mitigation Study
AI-Generated Text Detection Techniques As
mentioned earlier, the detection of AI-generated
text is a challenging task and the current methods
are frequently constrained by different factors, and

susceptible to malicious attacks. Therefore, it is
critical to pursue further exploration and investi-
gation on both theoretical and practical aspects of
AI-text detection. Some of the opportunities are:

• Creating diverse and representative
datasets: The existing datasets may not
cover all the nuances of AI-generated
content used to train and evaluate AI-text
detection models. Developing more diverse
and representative datasets improves the
models’ ability to generalize and enables
more reliable assessments.

• Exploring more advanced and inter-
pretable features: By discerning subtle nu-
ances and interpretable features, we can gain
a fine-grained understanding of the distinc-
tions between human vs. AI-generated texts.

• Developing more robust and domain adap-
tive learning methods: Considering the
ever-changing field of AI-generated text,
exploring methods like adversarial learn-
ing, meta-learning, and self-supervised learn-
ing (Weber-Wulff et al., 2023) can result in
more resilient and adaptable solutions.

• A comprehensive understanding of the
fundamental feasibility and boundaries: A
thorough grasp of the fundamental feasibility
and limitations of AI-generated text detection
is essential. However, the theoretical aspect
of this task is mainly overlooked in the liter-
ature. Therefore, further exploration and in-
vestigation of the theoretical aspects are nec-
essary. This can lead to the development of
more robust and effective techniques as well
as uncovering new research directions.

• Evaluating the ethical and social implica-
tions of AI-text detection: While detecting
synthetic content is essential, it is important
to consider the potential risks of false posi-
tives. These inaccuracies can lead to unin-
tended consequences, such as unjust penal-
ties or unwarranted suspicion, impacting both
individuals and society at large.

Editing LLMs Understanding where knowl-
edge is retained with an LLM is important as it
may lead to adverse outcomes such as hallucina-
tions or biases. Thus, it is crucial to identify the
nature of factual information that is stored, and to

apply mitigation strategies to eliminate the poten-
tial sources of unreliability if they occur. Although
this area has seen remarkable progress, there are
still some areas for improvement:

• Developing unified platform for frame-
works to test multiple methods: As
new methods emerge, having a consoli-
dated framework allows efficient comparison
across different datasets. Additionally, inte-
grating different types of knowledge into this
framework simplifies the assessment of lay-
ers that focus on distinct data or knowledge
domains (Wang et al., 2023e).

• Further exploration of model editing study
across diverse datasets and network lay-
ers: Given that current research emphasizes
on certain domains in NLP, it is beneficial
to evaluate additional NLP datasets to as-
sess whether the trend of where certain infor-
mation is stored is consistent. Furthermore,
extending this assessment to other NLP do-
mains that may differ could reveal potential
variations in current trends.

Red/Green Teaming Similar to the cyber-
security domain, where red teaming has been ben-
eficial to enhance security, both red teaming and
green teaming for LLMs have revealed the vul-
nerability of LLMs to malicious users. There
are nascent contributions like RLHF that prevent
more attacks than other methods, as demonstrated
in (Perez et al., 2022a). However, there are still
some areas for improvement such as:

• Creating more safeguards to prevent the
attacks: Given the rising popularity of
LLMs, they are becoming the central compo-
nent in many products. Thus, there is a crit-
ical need to implement multiple safeguards,
as new attacks continually emerge.

• Evaluating the impact of attacks on spe-
cific models: Research based on Ganguli et
al.’s work (Ganguli et al., 2022) indicates that
LLMs that utilize RLHF exhibit greater re-
silience to red teaming attacks compared to
other models. However, further experiments
are necessary to uncover any limitations. By
understanding these limitations, researchers
can devise innovative strategies to mitigate
existing red teaming attacks and anticipate
potential new ones.

• Designing an automated system to reduce
human dependency in red/green teaming:
Since human examination of specific LLM
outputs related to red and green teaming can
negatively impact well-being, automating the
process becomes crucial. This automation
aims to minimize the harm experienced by in-
dividuals involved in red and green teaming.

8 Conclusions

This paper provides a comprehensive analysis of
the security and risk mitigation aspects of LLMs.
We examine the security issues that emerge with
LLM usage, such as information leakage, unau-
thorized access, and insecure code generation.
In addition, we explore various types of attacks
that target LLMs and classify them into three
main categories: Model-based, training-time and
inference-time attacks. We also investigate the
risks and misuses of LLMs, such as bias, discrim-
ination, misinformation, plagiarism, copyright in-
fringement and other potential social and ethical
implications of applying LLMs in different do-
mains. Moreover, we present a thorough evalu-
ation of the mitigation strategies that can be em-
ployed to improve the security and robustness of
LLMs, such as red and green teaming, model edit-
ing, watermarking, and AI-generated text detec-
tion techniques, while discussing the limitations
and trade-offs of each strategy. Lastly, we identify
some open challenges and future directions for re-
search in this area, such as developing more effec-
tive defense mechanisms, establishing standards
and guidelines for development and deployment
of LLMs, promoting collaboration and awareness
among the stakeholders involved in utilization.

9 Acknowledgements

The authors express their gratitude to Dr. Sadid
Hassan for engaging in several discussions and
providing valuable feedback on this work. This
study represents independent research conducted
by the authors and does not necessarily represent
the views or opinions of any organizations.

A Appendix

A-ROC and AUROC Bound using Total Variation
The ROC curve is a plot between the true positive rate (TPR) and the false positive rate (FPR), which are
defined as follows (Sadasivan et al., 2023):

TPRγ = Ps∼M [D(s) ≥ γ]

FPRγ = Ps∼H [D(s) ≥ γ]

where γ is a classifier threshold parameter, M denotes the distribution over positives (e.g., machine-
generated texts), and H denotes the distribution over negatives (e.g., human-written texts).

We can bound the difference between TPRγ and FPRγ by the total variation distance between distri-
butions M and H (Sadasivan et al., 2023):

|TPRγ − FPRγ | = |Ps∼M [D(s) ≥ γ]− Ps∼H [D(s) ≥ γ]|
≤ TV(M,H)

Thus,

TPRγ ≤ FPRγ + TV(M,H)

Since TPRγ ≤ 1, we have:

TPRγ ≤ min(FPRγ + TV(M,H), 1)

Let x = FPRγ , y = TPRγ , and tv = TV(M,H). The AUROC is defined as:

AUROC(D) =

∫ 1

0
y dx ≤

∫ 1

0
min(x+ tv, 1) dx

We split the integral at x = 1− tv:

AUROC(D) ≤
∫ 1−tv

0
(x+ tv) dx+

∫ 1

1−tv
1 dx

=

[
x2

2
+ tv · x

]1−tv

0

+ [x]11−tv

=

(
(1− tv)2

2
+ tv(1− tv)

)
+ (1− (1− tv))

=
(1− tv)2

2
+ tv(1− tv) + tv

Simplifying the expression:

AUROC(D) ≤ (1− tv)2

2
+ tv(1− tv) + tv

=
1− 2tv + tv2

2
+ tv − tv2 + tv

=
1

2
+ tv − tv2

2

AUROC(D) ≤ 1

2
+ tv − tv2

2

References

2023. Openai. ai text classifier.

2023. Zerogpt: Ai text detector.

Uri Alon, Shaked Brody, Omer Levy, and Eran
Yahav. 2018. code2seq: Generating sequences
from structured representations of code. ArXiv,
abs/1808.01400.

Anonymous. 2023. How to catch an AI liar: Lie
detection in black-box LLMs by asking unre-
lated questions. In Submitted to The Twelfth In-
ternational Conference on Learning Represen-
tations. Under review.

Wissam Antoun, Virginie Mouilleron, Benoît
Sagot, and Djamé Seddah. 2023. Towards a
robust detection of language model generated
text: Is chatgpt that easy to detect? ArXiv,
abs/2306.05871.

Viraat Aryabumi, Yixuan Su, Raymond Ma,
Adrien Morisot, Ivan Zhang, Acyr F. Locatelli,
Marzieh Fadaee, A. Ustun, and Sara Hooker.
2024. To code, or not to code? exploring impact
of code in pre-training. ArXiv, abs/2408.10914.

Owura Asare, Meiyappan Nagappan, and
N. Asokan. 2023. Is github’s copilot as bad as
humans at introducing vulnerabilities in code?

Saketh Bachu, Erfan Shayegani, Trishna
Chakraborty, Rohit Lal, Arindam Dutta,
Chengyu Song, Yue Dong, Nael Abu-Ghazaleh,
and Amit K. Roy-Chowdhury. 2024. Unfair
alignment: Examining safety alignment across
vision encoder layers in vision-language
models.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian
Deng, Marc’Aurelio Ranzato, and Arthur D.
Szlam. 2019. Real or fake? learning to dis-
criminate machine from human generated text.
ArXiv, abs/1906.03351.

Himanshu Batra, Narinder Singh Punn, San-
jay Kumar Sonbhadra, and Sonali Agarwal.
2021. Bert-based sentiment analysis: A soft-
ware engineering perspective. In International
Conference on Database and Expert Systems
Applications.

Jan Betley, Daniel Tan, Niels Warncke, Anna
Sztyber-Betley, Xuchan Bao, Martín Soto,

Nathan Labenz, and Owain Evans. 2025. Emer-
gent misalignment: Narrow finetuning can pro-
duce broadly misaligned llms. arXiv preprint
arXiv:2502.17424.

Rishabh Bhardwaj and Soujanya Poria. 2023.
Red-teaming large language models using chain
of utterances for safety-alignment. ArXiv,
abs/2308.09662.

Meghana Moorthy Bhat, Rui Meng, Ye Liu,
Yingbo Zhou, and Semih Yavuz. 2023. Investi-
gating answerability of llms for long-form ques-
tion answering. ArXiv, abs/2309.08210.

Manish Bhatt, Sahana Chennabasappa, Cyrus
Nikolaidis, Shengye Wan, Ivan Evtimov, Do-
minik Gabi, Daniel Song, Faizan Ahmad, Cor-
nelius Aschermann, Lorenzo Fontana, Sasha
Frolov, Ravi Prakash Giri, Dhaval Kapil, Yian-
nis Kozyrakis, David LeBlanc, James Mi-
lazzo, Aleksandar Straumann, Gabriel Syn-
naeve, Varun Vontimitta, Spencer Whitman, and
Joshua Saxe. 2023. Purple Llama CyberSecE-
val: A secure coding benchmark for language
models. arXiv preprint arXiv:2312.04724.

Stella Biderman, USVSN Sai Prashanth, Lin-
tang Sutawika, Hailey Schoelkopf, Quentin An-
thony, Shivanshu Purohit, and Edward Raf.
2023a. Emergent and predictable memoriza-
tion in large language models. arXiv preprint
arXiv:2304.11158.

Stella Biderman, Hailey Schoelkopf, Quentin Gre-
gory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shiv-
anshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. 2023b. Pythia: A suite for analyzing
large language models across training and scal-
ing. In International Conference on Machine
Learning, pages 2397–2430. PMLR.

Lewis Birch, William Hackett, Stefan Traw-
icki, Neeraj Suri, and Peter Garraghan. 2023a.
Model leeching: An extraction attack targeting
llms. ArXiv, abs/2309.10544.

Lewis Birch, William Hackett, Stefan Traw-
icki, Neeraj Suri, and Peter Garraghan. 2023b.
Model leeching: An extraction attack targeting
llms. arXiv preprint arXiv:2309.10544.

https://platform.openai.com/ai-text-classifier
https://www.zerogpt.com
https://api.semanticscholar.org/CorpusID:51926976
https://api.semanticscholar.org/CorpusID:51926976
https://openreview.net/forum?id=567BjxgaTp
https://openreview.net/forum?id=567BjxgaTp
https://openreview.net/forum?id=567BjxgaTp
https://api.semanticscholar.org/CorpusId:271909530
https://api.semanticscholar.org/CorpusId:271909530
http://arxiv.org/abs/2204.04741
http://arxiv.org/abs/2204.04741
http://arxiv.org/abs/2411.04291
http://arxiv.org/abs/2411.04291
http://arxiv.org/abs/2411.04291
http://arxiv.org/abs/2411.04291
https://api.semanticscholar.org/CorpusID:235352765
https://api.semanticscholar.org/CorpusID:235352765
https://api.semanticscholar.org/CorpusID:261030829
https://api.semanticscholar.org/CorpusID:261030829
https://api.semanticscholar.org/CorpusID:262013357
https://api.semanticscholar.org/CorpusID:262013357
https://api.semanticscholar.org/CorpusID:262013357
https://arxiv.org/abs/2312.04724
https://arxiv.org/abs/2312.04724
https://arxiv.org/abs/2312.04724
https://api.semanticscholar.org/CorpusID:262053852
https://api.semanticscholar.org/CorpusID:262053852

Jaydeep Borkar. 2023. What can we learn from
data leakage and unlearning for law? arXiv
preprint arXiv:2307.10476.

Marcel Bruch, Martin Monperrus, and Mira
Mezini. 2009. Learning from examples to im-
prove code completion systems. In Proceed-
ings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, page
213–222, New York, NY, USA. Association for
Computing Machinery.

Xiangrui Cai, Haidong Xu, Sihan Xu, Ying Zhang,
and Xiaojie Yuan. 2022. Badprompt: Back-
door attacks on continuous prompts. ArXiv,
abs/2211.14719.

Yinzhi Cao and Junfeng Yang. 2015. Towards
making systems forget with machine unlearn-
ing. In 2015 IEEE symposium on security and
privacy, pages 463–480. IEEE.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn
Song, Ulfar Erlingsson, et al. 2021. Extract-
ing training data from large language models.
In 30th USENIX Security Symposium (USENIX
Security 21), pages 2633–2650.

Stephen Casper, Jason Lin, Joe Kwon, Gatlen
Culp, and Dylan Hadfield-Menell. 2023. Ex-
plore, establish, exploit: Red teaming lan-
guage models from scratch. arXiv preprint
arXiv:2306.09442.

Souradip Chakraborty, A. S. Bedi, Sicheng Zhu,
Bang An, Dinesh Manocha, and Furong Huang.
2023. On the possibilities of ai-generated text
detection. ArXiv, abs/2304.04736.

Trishna Chakraborty, Erfan Shayegani, Zikui Cai,
Nael B. Abu-Ghazaleh, M. Salman Asif, Yue
Dong, Amit Roy-Chowdhury, and Chengyu
Song. 2024. Can textual unlearning solve
cross-modality safety alignment? In Findings
of the Association for Computational Linguis-
tics: EMNLP 2024, pages 9830–9844, Miami,
Florida, USA. Association for Computational
Linguistics.

P. V. Sai Charan, Hrushikesh Chunduri, P. Mo-
han Anand, and Sandeep Kumar Shukla. 2023.

From text to mitre techniques: Exploring
the malicious use of large language models
for generating cyber attack payloads. ArXiv,
abs/2305.15336.

Honghua Chen and Nai Ding. 2023. Probing
the “creativity” of large language models: Can
models produce divergent semantic associa-
tion? In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages
12881–12888, Singapore. Association for Com-
putational Linguistics.

Mengyang Chen, Lingwei Wei, Han Cao, Wei
Zhou, and Song Hu. 2023. Can large language
models understand content and propagation for
misinformation detection: An empirical study.
ArXiv, abs/2311.12699.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen,
Michael Backes, Shiqing Ma, Qingni Shen,
Zhonghai Wu, and Yang Zhang. 2021. Badnl:
Backdoor attacks against nlp models with
semantic-preserving improvements. In An-
nual computer security applications confer-
ence, pages 554–569.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu,
and Dawn Xiaodong Song. 2017. Targeted
backdoor attacks on deep learning systems us-
ing data poisoning. ArXiv, abs/1712.05526.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E
Gonzalez, et al. 2023. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt
quality. See https://vicuna. lmsys. org (accessed
14 April 2023).

Paul Christiano, Jan Leike, Tom B. Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2023.
Deep reinforcement learning from human pref-
erences.

Paul F Christiano, Jan Leike, Tom Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2017.
Deep reinforcement learning from human pref-
erences. In Advances in Neural Information
Processing Systems, volume 30. Curran Asso-
ciates, Inc.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,

https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.18653/v1/2024.findings-emnlp.574
https://doi.org/10.18653/v1/2024.findings-emnlp.574
https://aclanthology.org/2023.findings-emnlp.858
https://aclanthology.org/2023.findings-emnlp.858
https://aclanthology.org/2023.findings-emnlp.858
https://aclanthology.org/2023.findings-emnlp.858
https://api.semanticscholar.org/CorpusID:265308637
https://api.semanticscholar.org/CorpusID:265308637
https://api.semanticscholar.org/CorpusID:265308637
https://api.semanticscholar.org/CorpusID:36122023
https://api.semanticscholar.org/CorpusID:36122023
https://api.semanticscholar.org/CorpusID:36122023
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf

Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training verifiers to solve
math word problems. ArXiv, abs/2110.14168.

Shiyao Cui, Zhenyu Zhang, Yilong Chen,
Wenyuan Zhang, Tianyun Liu, Siqi Wang, and
Tingwen Liu. 2023. Fft: Towards harmlessness
evaluation and analysis for llms with factuality,
fairness, toxicity. ArXiv, abs/2311.18580.

Edoardo Debenedetti, Jie Zhang, Mislav
Balunovi’c, Luca Beurer-Kellner, Marc
Fischer, and Florian Tramèr. 2024. Agent-
dojo: A dynamic environment to evaluate
attacks and defenses for llm agents. ArXiv,
abs/2406.13352.

Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang,
Ying Zhang, Zefeng Li, Haoyu Wang, Tian-
wei Zhang, and Yang Liu. 2023a. Jail-
breaker: Automated jailbreak across multiple
large language model chatbots. arXiv preprint
arXiv:2307.08715.

Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang,
Ying Zhang, Zefeng Li, Haoyu Wang, Tianwei
Zhang, and Yang Liu. 2023b. Masterkey: Auto-
mated jailbreak across multiple large language
model chatbots.

A. Deshpande, Vishvak S. Murahari, Tanmay Ra-
jpurohit, A. Kalyan, and Karthik Narasimhan.
2023a. Toxicity in chatgpt: Analyzing
persona-assigned language models. ArXiv,
abs/2304.05335.

A. Deshpande, Tanmay Rajpurohit, Karthik
Narasimhan, and A. Kalyan. 2023b. Anthro-
pomorphization of ai: Opportunities and risks.
ArXiv, abs/2305.14784.

Li Du, Yequan Wang, Xingrun Xing, Yiqun Ya,
Xiang Li, Xin Jiang, and Xuezhi Fang. 2023a.
Quantifying and attributing the hallucination of
large language models via association analysis.
ArXiv, abs/2309.05217.

Yilun Du, Shuang Li, Antonio Torralba, Joshua
Tenenbaum, and Igor Mordatch. 2023b. Im-
proving factuality and reasoning in language
models through multiagent debate.

Deep Ganguli, Liane Lovitt, John Kernion,
Amanda Askell, Yuntao Bai, Saurav Kada-
vath, Benjamin Mann, Ethan Perez, Nicholas

Schiefer, Kamal Ndousse, Andy Jones, Sam
Bowman, Anna Chen, Tom Conerly, Nova Das-
Sarma, Dawn Drain, Nelson Elhage, Sheer
El-Showk, Stanislav Fort, Zachary Dodds,
T. J. Henighan, Danny Hernandez, Tristan
Hume, Josh Jacobson, Scott Johnston, Shauna
Kravec, Catherine Olsson, Sam Ringer, Eli
Tran-Johnson, Dario Amodei, Tom B. Brown,
Nicholas Joseph, Sam McCandlish, Christo-
pher Olah, Jared Kaplan, and Jack Clark.
2022. Red teaming language models to reduce
harms: Methods, scaling behaviors, and lessons
learned. ArXiv, abs/2209.07858.

Suyu Ge, Chunting Zhou, Rui Hou, Madian
Khabsa, Yi-Chia Wang, Qifan Wang, Jiawei
Han, and Yuning Mao. 2023. Mart: Improv-
ing llm safety with multi-round automatic red-
teaming. ArXiv, abs/2311.07689.

Samuel Gehman, Suchin Gururangan, Maarten
Sap, Yejin Choi, and Noah A Smith. 2020. Re-
altoxicityprompts: Evaluating neural toxic de-
generation in language models. arXiv preprint
arXiv:2009.11462.

Sebastian Gehrmann, Hendrik Strobelt, and
Alexander M. Rush. 2019. Gltr: Statistical de-
tection and visualization of generated text. In
Annual Meeting of the Association for Compu-
tational Linguistics.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric
Wallace, Pieter Abbeel, Sergey Levine, and
Dawn Song. 2023. Koala: A dialogue model
for academic research. Blog post, April, 1.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,
Christoph Endres, Thorsten Holz, and Mario
Fritz. 2023. Not what you’ve signed up for:
Compromising real-world llm-integrated appli-
cations with indirect prompt injection.

Arnav Gudibande, Eric Wallace, Charlie Snell,
Xinyang Geng, Hao Liu, Pieter Abbeel, Sergey
Levine, and Dawn Song. 2023. The false
promise of imitating proprietary llms. arXiv
preprint arXiv:2305.15717.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Ab-
hishek Sharma, Aditya Siddhant, Alexa Ah-
ern, Miaosen Wang, Chenjie Gu, Wolfgang
Macherey, A. Doucet, Orhan Firat, and Nando

https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:265506833
https://api.semanticscholar.org/CorpusID:265506833
https://api.semanticscholar.org/CorpusID:265506833
https://api.semanticscholar.org/CorpusId:270619628
https://api.semanticscholar.org/CorpusId:270619628
https://api.semanticscholar.org/CorpusId:270619628
https://api.semanticscholar.org/CorpusID:259951184
https://api.semanticscholar.org/CorpusID:259951184
https://api.semanticscholar.org/CorpusID:259951184
https://api.semanticscholar.org/CorpusID:261682256
https://api.semanticscholar.org/CorpusID:261682256
https://api.semanticscholar.org/CorpusID:265157927
https://api.semanticscholar.org/CorpusID:265157927
https://api.semanticscholar.org/CorpusID:265157927

de Freitas. 2023. Reinforced self-training (rest)
for language modeling. ArXiv, abs/2308.08998.

Anshita Gupta, Debanjan Mondal, Akshay Kr-
ishna Sheshadri, Wenlong Zhao, Xiang Lor-
raine Li, Sarah Wiegreffe, and Niket Tandon.
2023. Editing commonsense knowledge in gpt.
arXiv preprint arXiv:2305.14956.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong
Pasupat, and Ming-Wei Chang. 2020. Realm:
Retrieval-augmented language model pre-
training. ICML’20. JMLR.org.

Perttu Hämäläinen, Mikke Tavast, and Anton
Kunnari. 2023. Evaluating large language mod-
els in generating synthetic hci research data: a
case study. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing
Systems, page 3580688. ACM.

Shanshan Han, Baturalp Buyukates, Zijian Hu,
Han Jin, Weizhao Jin, Lichao Sun, Xiaoya
Wang, Chulin Xie, Kai Zhang, Qifan Zhang,
Yuhui Zhang, Chaoyang He, and Salman Aves-
timehr. 2023. Fedmlsecurity: A benchmark for
attacks and defenses in federated learning and
llms. ArXiv, abs/2306.04959.

Valentin Hartmann, Anshuman Suri, Vincent
Bindschaedler, David Evans, Shruti Tople, and
Robert West. 2023a. Sok: Memorization in
general-purpose large language models. ArXiv,
abs/2310.18362.

Valentin Hartmann, Anshuman Suri, Vincent
Bindschaedler, David Evans, Shruti Tople, and
Robert West. 2023b. Sok: Memorization in
general-purpose large language models. arXiv
preprint arXiv:2310.18362.

Xinlei He, Xinyu Shen, Zeyuan Johnson Chen,
Michael Backes, and Yang Zhang. 2023. Mgt-
bench: Benchmarking machine-generated text
detection. ArXiv, abs/2303.14822.

Zhengmian Hu, Gang Wu, Saayan Mitra, Ruiyi
Zhang, Tong Sun, Heng Huang, and Vishy
Swaminathan. 2023. Token-level adversar-
ial prompt detection based on perplexity mea-
sures and contextual information. ArXiv,
abs/2311.11509.

Hai Huang, Zhengyu Zhao, Michael Backes, Yun
Shen, and Yang Zhang. 2023a. Composite

backdoor attacks against large language mod-
els. ArXiv, abs/2310.07676.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan
Chang. 2022. Are large pre-trained language
models leaking your personal information? In
Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 2038–2047,
Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Xiaowei Huang, Wenjie Ruan, Wei Huang, Gao
Jin, Yizhen Dong, Changshun Wu, Saddek Ben-
salem, Ronghui Mu, Yi Qi, Xingyu Zhao, Kai-
wen Cai, Yanghao Zhang, Sihao Wu, Peipei
Xu, Dengyu Wu, André Freitas, and Mustafa A.
Mustafa. 2023b. A survey of safety and trust-
worthiness of large language models through
the lens of verification and validation. ArXiv,
abs/2305.11391.

Neel Jain, Avi Schwarzschild, Yuxin Wen,
Gowthami Somepalli, John Kirchenbauer, Ping
yeh Chiang, Micah Goldblum, Aniruddha
Saha, Jonas Geiping, and Tom Goldstein.
2023. Baseline defenses for adversarial at-
tacks against aligned language models. ArXiv,
abs/2309.00614.

Kevin Jesse, Toufique Ahmed, Prem Devanbu,
and Emily Morgan. 2023. Large language
models and simple, stupid bugs. ArXiv,
abs/2303.11455.

Fangkai Jiao, Zhiyang Teng, Shafiq R. Joty,
Bosheng Ding, Aixin Sun, Zhengyuan Liu,
and Nancy F. Chen. 2023. Logicllm: Explor-
ing self-supervised logic-enhanced training for
large language models. ArXiv, abs/2305.13718.

Saurav Kadavath, Tom Conerly, Amanda Askell,
Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova
DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El-Showk, Andy Jones, Nelson Elhage,
Tristan Hume, Anna Chen, Yuntao Bai, Sam
Bowman, Stanislav Fort, Deep Ganguli, Danny
Hernandez, Josh Jacobson, Jackson Kernion,
Shauna Kravec, Liane Lovitt, Kamal Ndousse,
Catherine Olsson, Sam Ringer, Dario Amodei,
Tom Brown, Jack Clark, Nicholas Joseph, Ben
Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know
what they know.

https://api.semanticscholar.org/CorpusID:261031028
https://api.semanticscholar.org/CorpusID:261031028
https://api.semanticscholar.org/CorpusID:264590727
https://api.semanticscholar.org/CorpusID:264590727
https://api.semanticscholar.org/CorpusID:265294544
https://api.semanticscholar.org/CorpusID:265294544
https://api.semanticscholar.org/CorpusID:265294544
https://api.semanticscholar.org/CorpusID:263834732
https://api.semanticscholar.org/CorpusID:263834732
https://api.semanticscholar.org/CorpusID:263834732
https://aclanthology.org/2022.findings-emnlp.148
https://aclanthology.org/2022.findings-emnlp.148
https://api.semanticscholar.org/CorpusID:261494182
https://api.semanticscholar.org/CorpusID:261494182
https://api.semanticscholar.org/CorpusID:258841216
https://api.semanticscholar.org/CorpusID:258841216
https://api.semanticscholar.org/CorpusID:258841216
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221

Daniel Kang, Xuechen Li, Ion Stoica, Carlos
Guestrin, Matei A. Zaharia, and Tatsunori
Hashimoto. 2023. Exploiting programmatic be-
havior of llms: Dual-use through standard secu-
rity attacks. ArXiv, abs/2302.05733.

Aly Kassem, Omar Mahmoud, and Sherif Saad.
2023. Preserving privacy through dememoriza-
tion: An unlearning technique for mitigating
memorization risks in language models. In Pro-
ceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing,
pages 4360–4379.

Mohammad Khalil and Erkan Er. 2023. Will chat-
gpt get you caught? rethinking of plagiarism
detection.

Aisha Khatun and Daniel Brown. 2023. Relia-
bility check: An analysis of gpt-3’s response
to sensitive topics and prompt wording. ArXiv,
abs/2306.06199.

Kiana Kheiri and Hamid Karimi. 2023. Senti-
mentgpt: Exploiting gpt for advanced sentiment
analysis and its departure from current machine
learning. ArXiv, abs/2307.10234.

Raphaël Khoury, Anderson R. Avila, Jacob
Brunelle, and Baba Mamadou Camara. 2023.
How secure is code generated by chatgpt?
ArXiv, abs/2304.09655.

Siwon Kim, Sangdoo Yun, Hwaran Lee, Mar-
tin Gubri, Sungroh Yoon, and Seong Joon
Oh. 2023. Propile: Probing privacy leak-
age in large language models. arXiv preprint
arXiv:2307.01881.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein.
2023a. A watermark for large language mod-
els.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Manli Shu, Khalid Saifullah, Kezhi Kong, Ka-
sun Fernando, Aniruddha Saha, Micah Gold-
blum, and Tom Goldstein. 2023b. On the relia-
bility of watermarks for large language models.
ArXiv, abs/2306.04634.

James R. Kirk, Robert E. Wray, and Peter Lindes.
2023. Improving knowledge extraction from
llms for task learning through agent analysis.

Kalpesh Krishna, Yixiao Song, Marzena Karpin-
ska, John Wieting, and Mohit Iyyer. 2023. Para-
phrasing evades detectors of ai-generated text,
but retrieval is an effective defense. ArXiv,
abs/2303.13408.

Michael Kuchnik, Virginia Smith, and George
Amvrosiadis. 2023. Validating large language
models with relm. Proceedings of Machine
Learning and Systems, 5.

Priyanshu Kumar, Elaine Lau, Saranya Vijayaku-
mar, Tu Trinh, Scale Red Team, Elaine Chang,
Vaughn Robinson, Sean Hendryx, Shuyan
Zhou, Matt Fredrikson, Summer Yue, and Zi-
fan Wang. 2024. Refusal-trained llms are easily
jailbroken as browser agents.

Philippe Laban, Wojciech Kryscinski, Divyansh
Agarwal, Alexander R. Fabbri, Caiming Xiong,
Shafiq R. Joty, and Chien-Sheng Wu. 2023.
Llms as factual reasoners: Insights from
existing benchmarks and beyond. ArXiv,
abs/2305.14540.

Deokjae Lee, JunYeong Lee, Jung-Woo Ha, Jin-
Hwa Kim, Sang-Woo Lee, Hwaran Lee, and
Hyun Oh Song. 2023a. Query-efficient black-
box red teaming via bayesian optimization.
arXiv preprint arXiv:2305.17444.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Il-
gee Hong, Hwaran Lee, Sangdoo Yun, Jamin
Shin, and Gunhee Kim. 2023b. Who wrote
this code? watermarking for code generation.
ArXiv, abs/2305.15060.

Aitor Lewkowycz, Anders Andreassen, David
Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil,
Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant
Misra. 2022. Solving quantitative reasoning
problems with language models.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie
Huang, and Yangqiu Song. 2023a. Multi-step
jailbreaking privacy attacks on chatgpt. ArXiv,
abs/2304.05197.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi,
Longyue Wang, Linyi Yang, Shuming Shi, and
Yue Zhang. 2023b. Deepfake text detection in
the wild. ArXiv, abs/2305.13242.

http://arxiv.org/abs/2302.04335
http://arxiv.org/abs/2302.04335
http://arxiv.org/abs/2302.04335
https://api.semanticscholar.org/CorpusID:259991148
https://api.semanticscholar.org/CorpusID:259991148
https://api.semanticscholar.org/CorpusID:259991148
https://api.semanticscholar.org/CorpusID:259991148
http://arxiv.org/abs/2301.10226
http://arxiv.org/abs/2301.10226
https://api.semanticscholar.org/CorpusID:261076556
https://api.semanticscholar.org/CorpusID:261076556
http://arxiv.org/abs/2410.13886
http://arxiv.org/abs/2410.13886
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2206.14858

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan
Lyu, Bo Li, and Xingjun Ma. 2021. Neu-
ral attention distillation: Erasing backdoor trig-
gers from deep neural networks. arXiv preprint
arXiv:2101.05930.

Weixin Liang, Mert Yuksekgonul, Yining Mao,
Eric Wu, and James Zou. 2023. Gpt detectors
are biased against non-native english writers.
Patterns, 4(7):100779.

Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong
Kang, Jiawei Zhang, Chaowei Xiao, Yuan Tian,
Bo Li, and Huan Sun. 2024. Eia: Environmen-
tal injection attack on generalist web agents for
privacy leakage. ArXiv, abs/2409.11295.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and
Xipeng Qiu. 2021. A survey of transformers.
AI Open, 3:111–132.

Guangyi Liu, Pengxiang Zhao, Liang Liu, Yax-
uan Guo, Han Xiao, Weifeng Lin, Yuxiang
Chai, Yue Han, Shuai Ren, Hao Wang, Xiaoyu
Liang, Wenhao Wang, Tianze Wu, Linghao Li,
Hao Wang, Guanjing Xiong, Yong Liu, and
Hongsheng Li. 2025. Llm-powered gui agents
in phone automation: Surveying progress and
prospects.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth
Garg. 2018. Fine-pruning: Defending against
backdooring attacks on deep neural networks.
In International symposium on research in at-
tacks, intrusions, and defenses, pages 273–294.
Springer.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. ArXiv,
abs/2110.07602.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang,
Tianwei Zhang, Yepang Liu, Haoyu Wang, Yan-
hong Zheng, and Yang Liu. 2023a. Prompt
injection attack against llm-integrated applica-
tions. ArXiv, abs/2306.05499.

Zeyan Liu, Zijun Yao, Fengjun Li, and Bo Luo.
2023b. Check me if you can: Detect-
ing chatgpt-generated academic writing using
checkgpt. ArXiv, abs/2306.05524.

Ning Lu, Shengcai Liu, Ruidan He, and Ke Tang.
2023. Large language models can be guided
to evade ai-generated text detection. ArXiv,
abs/2305.10847.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia.
2025. Gui-r1 : A generalist r1-style vision-
language action model for gui agents.

Aman Madaan, Niket Tandon, Prakhar Gupta,
Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhu-
moye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Her-
mann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. 2023. Self-refine: Iterative refine-
ment with self-feedback.

Kai Mei, Zheng Li, Zhenting Wang, Yang Zhang,
and Shiqing Ma. 2023. Notable: Transfer-
able backdoor attacks against prompt-based nlp
models. ArXiv, abs/2305.17826.

Kevin Meng, David Bau, Alex Andonian, and
Yonatan Belinkov. 2022a. Locating and editing
factual associations in gpt. Advances in Neu-
ral Information Processing Systems, 35:17359–
17372.

Kevin Meng, Arnab Sen Sharma, Alex Ando-
nian, Yonatan Belinkov, and David Bau. 2022b.
Mass-editing memory in a transformer. arXiv
preprint arXiv:2210.07229.

Eric Mitchell, Yoonho Lee, Alexander Khaz-
atsky, Christopher D. Manning, and Chelsea
Finn. 2023. Detectgpt: Zero-shot machine-
generated text detection using probability cur-
vature. ArXiv, abs/2301.11305.

Eric Mitchell, Charles Lin, Antoine Bosselut,
Chelsea Finn, and Christopher D Manning.
2021. Fast model editing at scale. arXiv
preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut,
Christopher D Manning, and Chelsea Finn.
2022. Memory-based model editing at scale.
In International Conference on Machine Learn-
ing, pages 15817–15831. PMLR.

Maximilian Mozes, Xuanli He, Bennett Klein-
berg, and Lewis D. Griffin. 2023. Use of
llms for illicit purposes: Threats, preven-
tion measures, and vulnerabilities. ArXiv,
abs/2308.12833.

https://doi.org/https://doi.org/10.1016/j.patter.2023.100779
https://doi.org/https://doi.org/10.1016/j.patter.2023.100779
https://arxiv.org/pdf/2409.11295.pdf
https://arxiv.org/pdf/2409.11295.pdf
https://arxiv.org/pdf/2409.11295.pdf
https://api.semanticscholar.org/CorpusID:235368340
http://arxiv.org/abs/2504.19838
http://arxiv.org/abs/2504.19838
http://arxiv.org/abs/2504.19838
https://api.semanticscholar.org/CorpusID:238857040
https://api.semanticscholar.org/CorpusID:238857040
https://api.semanticscholar.org/CorpusID:238857040
http://arxiv.org/abs/2504.10458
http://arxiv.org/abs/2504.10458
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://api.semanticscholar.org/CorpusID:261101245
https://api.semanticscholar.org/CorpusID:261101245
https://api.semanticscholar.org/CorpusID:261101245

I Muneeswaran, Shreya Saxena, Siva Prasad,
M V Sai Prakash, Advaith Shankar, V Varun,
Vishal Vaddina, and Saisubramaniam Gopalakr-
ishnan. 2023. Minimizing factual inconsis-
tency and hallucination in large language mod-
els. ArXiv, abs/2311.13878.

Milad Nasr, Nicholas Carlini, Jonathan Hayase,
Matthew Jagielski, A Feder Cooper, Daphne
Ippolito, Christopher A Choquette-Choo, Eric
Wallace, Florian Tramèr, and Katherine Lee.
2023. Scalable extraction of training data from
(production) language models. arXiv preprint
arXiv:2311.17035.

Maxwell Nye, Anders Johan Andreassen, Guy
Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz,
Maarten Bosma, David Luan, Charles Sutton,
and Augustus Odena. 2022. Show your work:
Scratchpads for intermediate computation with
language models.

Jonas Oppenlaender and Joonas Hamalainen.
2023. Mapping the challenges of hci: An appli-
cation and evaluation of chatgpt and gpt-4 for
mining insights at scale.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama,
Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke E. Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Francis
Christiano, Jan Leike, and Ryan J. Lowe. 2022.
Training language models to follow instructions
with human feedback. ArXiv, abs/2203.02155.

Mustafa Safa Ozdayi, Charith Peris, Jack FitzGer-
ald, Christophe Dupuy, Jimit Majmudar, Haidar
Khan, Rahil Parikh, and Rahul Gupta. 2023.
Controlling the extraction of memorized data
from large language models via prompt-tuning.
arXiv preprint arXiv:2305.11759.

Yikang Pan, Liangming Pan, Wenhu Chen,
Preslav Nakov, Min-Yen Kan, and William
Wang. 2023a. On the risk of misinformation
pollution with large language models.

Yikang Pan, Liangming Pan, Wenhu Chen,
Preslav Nakov, Min-Yen Kan, and William
Wang. 2023b. On the risk of misinformation

pollution with large language models. In Find-
ings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 1389–1403, Sin-
gapore. Association for Computational Linguis-
tics.

Hammond Pearce, Baleegh Ahmad, Benjamin
Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
2021. Asleep at the keyboard? assessing the
security of github copilot’s code contributions.

Hammond Pearce, Benjamin Tan, Baleegh Ah-
mad, Ramesh Karri, and Brendan Dolan-Gavitt.
2022. Examining zero-shot vulnerability repair
with large language models.

Alessandro Pegoraro, Kavita Kumari, Hossein
Fereidooni, and Ahmad-Reza Sadeghi. 2023.
To chatgpt, or not to chatgpt: That is the ques-
tion! ArXiv, abs/2304.01487.

Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi
Wu, Bin Benjamin Zhu, Lingjuan Lyu, Binxing
Jiao, Tong Xu, Guangzhong Sun, and Xing Xie.
2023. Are you copying my model? protecting
the copyright of large language models for eaas
via backdoor watermark. In ACL 2023.

Ethan Perez, Saffron Huang, Francis Song, Trevor
Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irv-
ing. 2022a. Red teaming language mod-
els with language models. arXiv preprint
arXiv:2202.03286.

Ethan Perez, Saffron Huang, Francis Song, Trevor
Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nathan McAleese, and Geoffrey Irv-
ing. 2022b. Red teaming language models with
language models. In Conference on Empirical
Methods in Natural Language Processing.

Fábio Perez and Ian Ribeiro. 2022. Ignore pre-
vious prompt: Attack techniques for language
models. ArXiv, abs/2211.09527.

Shrimai Prabhumoye, Mostofa Patwary, Moham-
mad Shoeybi, and Bryan Catanzaro. 2023.
Adding instructions during pretraining: Effec-
tive way of controlling toxicity in language
models. arXiv preprint arXiv:2302.07388.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan
Yao, Zhiyuan Liu, and Maosong Sun. 2020.
Onion: A simple and effective defense against

https://api.semanticscholar.org/CorpusID:265445060
https://api.semanticscholar.org/CorpusID:265445060
https://api.semanticscholar.org/CorpusID:265445060
https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=iedYJm92o0a
https://api.semanticscholar.org/CorpusID:263830470
https://api.semanticscholar.org/CorpusID:263830470
https://api.semanticscholar.org/CorpusID:263830470
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909
https://aclanthology.org/2023.findings-emnlp.97
https://aclanthology.org/2023.findings-emnlp.97
http://arxiv.org/abs/2108.09293
http://arxiv.org/abs/2108.09293
http://arxiv.org/abs/2112.02125
http://arxiv.org/abs/2112.02125
https://login.foundation-prometheus.org/en-us/research/publication/are-you-copying-my-model-protecting-the-copyright-of-large-language-models-for-eaas-via-backdoor-watermark/
https://login.foundation-prometheus.org/en-us/research/publication/are-you-copying-my-model-protecting-the-copyright-of-large-language-models-for-eaas-via-backdoor-watermark/
https://login.foundation-prometheus.org/en-us/research/publication/are-you-copying-my-model-protecting-the-copyright-of-large-language-models-for-eaas-via-backdoor-watermark/
https://api.semanticscholar.org/CorpusID:246634238
https://api.semanticscholar.org/CorpusID:246634238

textual backdoor attacks. arXiv preprint
arXiv:2011.10369.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan
Zhang, Zhiyuan Liu, Yasheng Wang, and
Maosong Sun. 2021. Hidden killer: Invisible
textual backdoor attacks with syntactic trigger.
arXiv preprint arXiv:2105.12400.

Mujahid Ali Quidwai, Chun Xing Li, and Parijat
Dube. 2023. Beyond black box ai-generated
plagiarism detection: From sentence to docu-
ment level. ArXiv, abs/2306.08122.

Nazneen Fatema Rajani, Bryan McCann, Caim-
ing Xiong, and Richard Socher. 2019. Explain
yourself! leveraging language models for com-
monsense reasoning. In Proceedings of the 57th
Annual Meeting of the Association for Com-
putational Linguistics, pages 4932–4942, Flo-
rence, Italy. Association for Computational Lin-
guistics.

Abhinav Rao, Sachin Vashistha, Atharva Naik,
Somak Aditya, and Monojit Choudhury. 2023.
Tricking llms into disobedience: Understand-
ing, analyzing, and preventing jailbreaks.
ArXiv, abs/2305.14965.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" ex-
plaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD in-
ternational conference on knowledge discovery
and data mining, pages 1135–1144.

Sayak Saha Roy, Krishna Vamsi Naragam, and
Shirin Nilizadeh. 2023. Generating phishing at-
tacks using chatgpt. ArXiv, abs/2305.05133.

Mark Russinovich, Ahmed Salem, and Ronen El-
dan. 2024. Great, now write an article about
that: The crescendo multi-turn llm jailbreak at-
tack. arXiv preprint arXiv:2404.01833.

Vinu Sankar Sadasivan, Aounon Kumar, S. Bala-
subramanian, Wenxiao Wang, and Soheil Feizi.
2023. Can ai-generated text be reliably de-
tected? ArXiv, abs/2303.11156.

Ahmed R. Sadik, Antonello Ceravola, Frank Jou-
blin, and Jibesh Patra. 2023. Analysis of chat-
gpt on source code. ArXiv, abs/2306.00597.

Mikayel Samvelyan, Sharath Chandra Ra-
parthy, Andrei Lupu, Eric Hambro, Aram H.
Markosyan, Manish Bhatt, Yuning Mao, Minqi
Jiang, Jack Parker-Holder, Jakob Foerster,
Tim Rocktäschel, and Roberta Raileanu. 2024.
Rainbow teaming: Open-ended generation of
diverse adversarial prompts. arXiv preprint
arXiv:2402.16822.

Gustavo Sandoval, Hammond A. Pearce, Teo Nys,
Ramesh Karri, Siddharth Garg, and Brendan
Dolan-Gavitt. 2022. Lost at c: A user study
on the security implications of large language
model code assistants.

Avi Schwarzschild, Micah Goldblum, Arjun
Gupta, John P. Dickerson, and Tom Goldstein.
2020. Just how toxic is data poisoning? a uni-
fied benchmark for backdoor and data poison-
ing attacks. ArXiv, abs/2006.12557.

Damith Chamalke Senadeera and Julia Ive. 2022.
Controlled text generation using t5 based
encoder-decoder soft prompt tuning and anal-
ysis of the utility of generated text in ai. ArXiv,
abs/2212.02924.

Hanyin Shao, Jie Huang, Shen Zheng, and Kevin
Chen-Chuan Chang. 2023. Quantifying asso-
ciation capabilities of large language models
and its implications on privacy leakage. ArXiv,
abs/2305.12707.

Erfan Shayegani, Yue Dong, and Nael Abu-
Ghazaleh. 2024. Jailbreak in pieces: Compo-
sitional adversarial attacks on multi-modal lan-
guage models. In The Twelfth International
Conference on Learning Representations.

Erfan Shayegani, Md. Abdullah Al Mamun,
Yu Fu, Pedram Zaree, Yue Dong, and Nael B.
Abu-Ghazaleh. 2023. Survey of vulnerabilities
in large language models revealed by adversar-
ial attacks. ArXiv, abs/2310.10844.

Erfan Shayegani, G M Shahariar, Sara Abdali, Lei
Yu, Nael Abu-Ghazaleh, and Yue Dong. 2025.
Misaligned roles, misplaced images: Structural
input perturbations expose multimodal align-
ment blind spots.

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun
Shen, and Yang Zhang. 2023. " do anything

https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://arxiv.org/abs/2402.16822
https://arxiv.org/abs/2402.16822
https://api.semanticscholar.org/CorpusID:219980448
https://api.semanticscholar.org/CorpusID:219980448
https://api.semanticscholar.org/CorpusID:219980448
https://api.semanticscholar.org/CorpusID:254274934
https://api.semanticscholar.org/CorpusID:254274934
https://api.semanticscholar.org/CorpusID:254274934
https://api.semanticscholar.org/CorpusID:258832523
https://api.semanticscholar.org/CorpusID:258832523
https://api.semanticscholar.org/CorpusID:258832523
https://openreview.net/forum?id=plmBsXHxgR
https://openreview.net/forum?id=plmBsXHxgR
https://openreview.net/forum?id=plmBsXHxgR
https://api.semanticscholar.org/CorpusID:264172191
https://api.semanticscholar.org/CorpusID:264172191
https://api.semanticscholar.org/CorpusID:264172191
http://arxiv.org/abs/2504.03735
http://arxiv.org/abs/2504.03735
http://arxiv.org/abs/2504.03735

now": Characterizing and evaluating in-the-
wild jailbreak prompts on large language mod-
els. arXiv preprint arXiv:2308.03825.

Zhengxiang Shi, Francesco Tonolini, Nikolaos
Aletras, Emine Yilmaz, Gabriella Kazai, and
Yunlong Jiao. 2023a. Rethinking semi-
supervised learning with language models.
ArXiv, abs/2305.13002.

Zhouxing Shi, Yihan Wang, Fan Yin, Xiangn-
ing Chen, Kai-Wei Chang, and Cho-Jui Hsieh.
2023b. Red teaming language model detec-
tors with language models. arXiv preprint
arXiv:2305.19713.

Richard Shin, Miltiadis Allamanis, Marc
Brockschmidt, and Oleksandr Polozov. 2019.
Program Synthesis and Semantic Parsing with
Learned Code Idioms. Curran Associates Inc.,
Red Hook, NY, USA.

Noah Shinn, Federico Cassano, Beck Labash,
Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2023. Reflexion: Language agents
with verbal reinforcement learning.

Wai Man Si, Michael Backes, and Yang Zhang.
2023. Mondrian: Prompt abstraction attack
against large language models for cheaper api
pricing. arXiv preprint arXiv:2308.03558.

Mohammed Latif Siddiq, Shafayat H. Majumder,
Maisha R. Mim, Sourov Jajodia, and Joanna
C. S. Santos. 2022. An empirical study of
code smells in transformer-based code gener-
ation techniques. In 2022 IEEE 22nd Inter-
national Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 71–
82.

Irene Solaiman, Miles Brundage, Jack Clark,
Amanda Askell, Ariel Herbert-Voss, Jeff Wu,
Alec Radford, and Jasmine Wang. 2019. Re-
lease strategies and the social impacts of lan-
guage models. ArXiv, abs/1908.09203.

Claudio Spiess, David Gros, Kunal Suresh Pai,
Michael Pradel, Md Rafiqul Islam Rabin, Sus-
mit Jha, Prem Devanbu, and Toufique Ahmed.
2024. Calibration and correctness of language
models for code.

Logan Stapleton, Jordan Taylor, Sarah Fox, Tong-
shuang Wu, and Haiyi Zhu. 2023. Seeing

seeds beyond weeds: Green teaming gener-
ative ai for beneficial uses. arXiv preprint
arXiv:2306.03097.

Niklas Stoehr, Mitchell Gordon, Chiyuan Zhang,
and Owen Lewis. 2024. Localizing para-
graph memorization in language models. arXiv
preprint arXiv:2403.19851.

Chris Stokel-Walker. 2022. Ai bot chatgpt writes
smart essays-should academics worry? Nature.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav
Nakov. 2023. Detectllm: Leveraging log rank
information for zero-shot detection of machine-
generated text. ArXiv, abs/2306.05540.

Hao Sun, Zhexin Zhang, Jiawen Deng, Jiale
Cheng, and Minlie Huang. 2023. Safety assess-
ment of chinese large language models. ArXiv,
abs/2304.10436.

Derek Tam, Anisha Mascarenhas, Shiyue Zhang,
Sarah Kwan, Mohit Bansal, and Colin Raffel.
2022. Evaluating the factual consistency of
large language models through summarization.
ArXiv, abs/2211.08412.

Derek Tam, Anisha Mascarenhas, Shiyue Zhang,
Sarah Kwan, Mohit Bansal, and Colin Raffel.
2023. Evaluating the factual consistency of
large language models through news summa-
rization. In Findings of the Association for
Computational Linguistics: ACL 2023, pages
5220–5255, Toronto, Canada. Association for
Computational Linguistics.

Leonard Tang, Gavin Uberti, and Tom Shlomi.
2023a. Baselines for identifying watermarked
large language models. ArXiv, abs/2305.18456.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu.
2023b. The science of detecting llm-generated
texts. ArXiv, abs/2303.07205.

Ruixiang Tang, Dehan Kong, Lo li Huang, and
Hui Xue. 2023c. Large language models can be
lazy learners: Analyze shortcuts in in-context
learning. ArXiv, abs/2305.17256.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang,
Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. 2023.
Stanford alpaca: an instruction-following llama
model (2023). URL https://github. com/tatsu-
lab/stanford_alpaca.

https://api.semanticscholar.org/CorpusID:258832439
https://api.semanticscholar.org/CorpusID:258832439
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://doi.org/10.1109/SCAM55253.2022.00014
https://doi.org/10.1109/SCAM55253.2022.00014
https://doi.org/10.1109/SCAM55253.2022.00014
https://api.semanticscholar.org/CorpusID:267412346
https://api.semanticscholar.org/CorpusID:267412346
https://doi.org/10.18653/v1/2023.findings-acl.322
https://doi.org/10.18653/v1/2023.findings-acl.322
https://doi.org/10.18653/v1/2023.findings-acl.322
https://api.semanticscholar.org/CorpusID:258967971
https://api.semanticscholar.org/CorpusID:258967971

Edward Tian. 2023. [link].

Kushal Tirumala, Aram Markosyan, Luke Zettle-
moyer, and Armen Aghajanyan. 2022. Mem-
orization without overfitting: Analyzing the
training dynamics of large language models.
Advances in Neural Information Processing
Systems, 35:38274–38290.

M. Caner Tol and Berk Sunar. 2023. Zeroleak:
Using llms for scalable and cost effective side-
channel patching. ArXiv, abs/2308.13062.

Christoforos Vasilatos, Manaar Alam, Talal Rah-
wan, Yasir Zaki, and Michail Maniatakos.
2023. Howkgpt: Investigating the detection
of chatgpt-generated university student home-
work through context-aware perplexity analy-
sis. ArXiv, abs/2305.18226.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Neural Information
Processing Systems.

Ivan Vykopal, Mat’uvs Pikuliak, Ivan Srba,
Róbert Móro, Dominik Macko, and Mária
Bieliková. 2023. Disinformation capabilities of
large language models. ArXiv, abs/2311.08838.

Eric Wallace, Tony Zhao, Shi Feng, and Sameer
Singh. 2021. Concealed data poisoning at-
tacks on NLP models. In Proceedings of the
2021 Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics: Human Language Technologies, pages
139–150, Online. Association for Computa-
tional Linguistics.

Alexander Wan, Eric Wallace, Sheng Shen, and
Dan Klein. 2023. Poisoning language mod-
els during instruction tuning. arXiv preprint
arXiv:2305.00944.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin
Xie, Mintong Kang, Chenhui Zhang, Chejian
Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer,
Sang Truong, Simran Arora, Mantas Mazeika,
Dan Hendrycks, Zi-Han Lin, Yu Cheng, Sanmi
Koyejo, Dawn Xiaodong Song, and Bo Li.
2023a. Decodingtrust: A comprehensive as-
sessment of trustworthiness in gpt models.
ArXiv, abs/2306.11698.

Hong Wang, Xuan Luo, Weizhi Wang, and Xifeng
Yan. 2023b. Bot or human? detecting chat-
gpt imposters with a single question. ArXiv,
abs/2305.06424.

Jiexin Wang, Liuwen Cao, Xitong Luo, Zhip-
ing Zhou, Jiayuan Xie, Adam Jatowt, and
Yi Cai. 2023c. Enhancing large language mod-
els for secure code generation: A dataset-
driven study on vulnerability mitigation. ArXiv,
abs/2310.16263.

Jiong Wang, Zi yang Liu, Keun Hee Park, Muhao
Chen, and Chaowei Xiao. 2023d. Adversarial
demonstration attacks on large language mod-
els. ArXiv, abs/2305.14950.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi
Yao, Bozhong Tian, Mengru Wang, Zekun Xi,
Siyuan Cheng, Kangwei Liu, Guozhou Zheng,
et al. 2023e. Easyedit: An easy-to-use knowl-
edge editing framework for large language
models. arXiv preprint arXiv:2308.07269.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang,
Dong Zhang, and Xipeng Qiu. 2023f. Se-
qxgpt: Sentence-level ai-generated text detec-
tion. ArXiv, abs/2310.08903.

Song Wang, Taiyue Liu, and Lin Tan. 2016. Auto-
matically learning semantic features for defect
prediction. In Proceedings of the 38th Inter-
national Conference on Software Engineering,
ICSE ’16, page 297–308, New York, NY, USA.
Association for Computing Machinery.

Xuezhi Wang, Jason Wei, Dale Schuurmans,
Quoc V Le, Ed H. Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou.
2023g. Self-consistency improves chain of
thought reasoning in language models. In The
Eleventh International Conference on Learning
Representations.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov,
Jinyan Su, Artem Shelmanov, Akim Tsvi-
gun, Chenxi Whitehouse, Osama Mohammed
Afzal, Tarek Mahmoud, Alham Fikri Aji,
and Preslav Nakov. 2023h. M4: Multi-
generator, multi-domain, and multi-lingual
black-box machine-generated text detection.
ArXiv, abs/2305.14902.

Debora Weber-Wulff, Alla Anohina-Naumeca,
Sonja Bjelobaba, Tom’aš Foltýnek,

https://gptzero.me/
https://api.semanticscholar.org/CorpusID:261214430
https://api.semanticscholar.org/CorpusID:261214430
https://api.semanticscholar.org/CorpusID:261214430
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:265213085
https://api.semanticscholar.org/CorpusID:265213085
https://doi.org/10.18653/v1/2021.naacl-main.13
https://doi.org/10.18653/v1/2021.naacl-main.13
https://api.semanticscholar.org/CorpusID:264487366
https://api.semanticscholar.org/CorpusID:264487366
https://api.semanticscholar.org/CorpusID:264487366
https://api.semanticscholar.org/CorpusID:264128397
https://api.semanticscholar.org/CorpusID:264128397
https://api.semanticscholar.org/CorpusID:264128397
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

Jean Gabriel Guerrero-Dib, Olumide Popoola,
Petr Sigut, and Lorna Waddington. 2023.
Testing of detection tools for ai-generated text.
International Journal for Educational Integrity,
19:1–39.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, brian ichter, Fei Xia, Ed H.
Chi, Quoc V Le, and Denny Zhou. 2022. Chain
of thought prompting elicits reasoning in large
language models. In Advances in Neural Infor-
mation Processing Systems.

Laura Weidinger, John F. J. Mellor, Maribeth
Rauh, Conor Griffin, Jonathan Uesato, Po-
Sen Huang, Myra Cheng, Mia Glaese, Borja
Balle, Atoosa Kasirzadeh, Zachary Kenton,
Sande Minnich Brown, William T. Hawkins,
Tom Stepleton, Courtney Biles, Abeba Birhane,
Julia Haas, Laura Rimell, Lisa Anne Hendricks,
William S. Isaac, Sean Legassick, Geoffrey Irv-
ing, and Iason Gabriel. 2021. Ethical and so-
cial risks of harm from language models. ArXiv,
abs/2112.04359.

Jiaxin Wen, Pei Ke, Hao Sun, Zhexin Zhang,
Chengfei Li, Jinfeng Bai, and Minlie Huang.
2023. Unveiling the implicit toxicity in large
language models. In Conference on Empirical
Methods in Natural Language Processing.

Max Wolff. 2020. Attacking neural text detectors.
ArXiv, abs/2002.11768.

Jing Wu, Mingyi Zhou, Ce Zhu, Yipeng
Liu, Mehrtash Harandi, and Li Li. 2021.
Performance evaluation of adversarial at-
tacks: Discrepancies and solutions. ArXiv,
abs/2104.11103.

Zhaofeng Wu, Xinyan Velocity Yu, Dani Yo-
gatama, Jiasen Lu, and Yoon Kim. 2025. The
semantic hub hypothesis: Language models
share semantic representations across languages
and modalities.

Adrian de Wynter, Xun Wang, Alex Sokolov,
Qilong Gu, and Si-Qing Chen. 2023. An
evaluation on large language model outputs:
Discourse and memorization. arXiv preprint
arXiv:2304.08637.

Lei Xu, Yangyi Chen, Ganqu Cui, Hongcheng
Gao, and Zhiyuan Liu. 2022a. Explor-

ing the universal vulnerability of prompt-
based learning paradigm. arXiv preprint
arXiv:2204.05239.

Lei Xu, Yangyi Chen, Ganqu Cui, Hongcheng
Gao, and Zhiyuan Liu. 2022b. Exploring the
universal vulnerability of prompt-based learn-
ing paradigm. ArXiv, abs/2204.05239.

Haomiao Yang, Kunlan Xiang, Hongwei Li,
and Rongxing Lu. 2023a. A comprehensive
overview of backdoor attacks in large lan-
guage models within communication networks.
ArXiv, abs/2308.14367.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang,
Y. Fung, Sha Li, Zixuan Huang, Xu Cao,
Xingyao Wang, Yiquan Wang, Heng Ji, and
Chengxiang Zhai. 2024. If llm is the wizard,
then code is the wand: A survey on how code
empowers large language models to serve as in-
telligent agents. ArXiv, abs/2401.00812.

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng
Ren, Xu Sun, and Bin He. 2021. Be careful
about poisoned word embeddings: Exploring
the vulnerability of the embedding layers in nlp
models. ArXiv, abs/2103.15543.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang
rui Liu, Yuang Qi, Jie Zhang, Han Fang, and
Neng H. Yu. 2023b. Watermarking text gen-
erated by black-box language models. ArXiv,
abs/2305.08883.

Xianjun Yang, Wei Cheng, Linda Petzold,
William Yang Wang, and Haifeng Chen.
2023c. Dna-gpt: Divergent n-gram analysis
for training-free detection of gpt-generated text.
ArXiv, abs/2305.17359.

Hongwei Yao, Jian Lou, and Zhan Qin.
2023a. Poisonprompt: Backdoor attack
on prompt-based large language models.
ArXiv, abs/2310.12439.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan
Cheng, Zhoubo Li, Shumin Deng, Huajun
Chen, and Ningyu Zhang. 2023b. Editing large
language models: Problems, methods, and op-
portunities. arXiv preprint arXiv:2305.13172.

Xiao Yu, Yuang Qi, Kejiang Chen, Guoqiang
Chen, Xi Yang, Pengyuan Zhu, Weiming
Zhang, and Neng H. Yu. 2023. Gpt paternity

https://api.semanticscholar.org/CorpusID:259262442
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://api.semanticscholar.org/CorpusID:265498356
https://api.semanticscholar.org/CorpusID:265498356
https://api.semanticscholar.org/CorpusID:211532535
https://api.semanticscholar.org/CorpusID:233346886
https://api.semanticscholar.org/CorpusID:233346886
http://arxiv.org/abs/2411.04986
http://arxiv.org/abs/2411.04986
http://arxiv.org/abs/2411.04986
http://arxiv.org/abs/2411.04986
https://api.semanticscholar.org/CorpusID:261244059
https://api.semanticscholar.org/CorpusID:261244059
https://api.semanticscholar.org/CorpusID:261244059
https://api.semanticscholar.org/CorpusId:266693465
https://api.semanticscholar.org/CorpusId:266693465
https://api.semanticscholar.org/CorpusId:266693465
https://api.semanticscholar.org/CorpusId:266693465
https://api.semanticscholar.org/CorpusID:232404131
https://api.semanticscholar.org/CorpusID:232404131
https://api.semanticscholar.org/CorpusID:232404131
https://api.semanticscholar.org/CorpusID:232404131
https://api.semanticscholar.org/CorpusID:264306255
https://api.semanticscholar.org/CorpusID:264306255

test: Gpt generated text detection with gpt ge-
netic inheritance. ArXiv, abs/2305.12519.

Munazza Zaib, Dai Hoang Tran, Subhash Sagar,
Adnan Mahmood, Wei Emma Zhang, and
Quan Z. Sheng. 2021. Bert-coqac: Bert-based
conversational question answering in context.
In International Symposium on Parallel Archi-
tectures, Algorithms and Programming.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah
Goodman. 2022. STar: Bootstrapping reason-
ing with reasoning. In Advances in Neural In-
formation Processing Systems.

Haolan Zhan, Xuanli He, Qiongkai Xu, Yuxiang
Wu, and Pontus Stenetorp. 2023. G3detector:
General gpt-generated text detector. ArXiv,
abs/2305.12680.

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and
Daniel Kang. 2024. Injecagent: Benchmark-
ing indirect prompt injections in tool-integrated
large language model agents. In Annual Meet-
ing of the Association for Computational Lin-
guistics.

Hanlin Zhang, Benjamin L. Edelman, Danilo
Francati, Daniele Venturi, Giuseppe Ateniese,
and Boaz Barak. 2023a. Watermarks in the
sand: Impossibility of strong watermarking for
generative models. ArXiv, abs/2311.04378.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin
Deng, Zhen Bi, Chuanqi Tan, Fei Huang, and
Huajun Chen. 2021. Differentiable prompt
makes pre-trained language models better few-
shot learners. ArXiv, abs/2108.13161.

Xinlu Zhang, Z. Chen, Xi Ye, Xianjun Yang,
Lichang Chen, William Yang Wang, and
Linda R. Petzold. 2024a. Unveiling the impact
of coding data instruction fine-tuning on large
language models reasoning. In AAAI Confer-
ence on Artificial Intelligence.

Yuyang Zhang, Kangjie Chen, Xudong Jiang,
Yuxiang Sun, Run Wang, and Lina Wang.
2024b. Towards action hijacking of
large language model-based agent. ArXiv,
abs/2412.10807.

Zhexin Zhang, Junxiao Yang, Pei Ke, and Minlie
Huang. 2023b. Defending large language mod-
els against jailbreaking attacks through goal pri-
oritization. ArXiv, abs/2311.09096.

Shuai Zhao, Jinming Wen, Anh Tuan Luu,
Junbo Jake Zhao, and Jie Fu. 2023a. Prompt
as triggers for backdoor attack: Examining
the vulnerability in language models. ArXiv,
abs/2305.01219.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi
Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican
Dong, Yifan Du, Chen Yang, Yushuo Chen,
Z. Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li,
Xinyu Tang, Zikang Liu, Peiyu Liu, Jianyun
Nie, and Ji rong Wen. 2023b. A survey of large
language models. ArXiv, abs/2303.18223.

Yunhan Zhao, Xiang Zheng, Lin Luo, Yige
Li, Xingjun Ma, and Yu-Gang Jiang. 2025.
BlueSuffix: Reinforced blue teaming for
vision-language models against jailbreak at-
tacks. In Proceedings of the International Con-
ference on Learning Representations (ICLR).
ArXiv:2410.20971.

Wanjun Zhong, Lianghong Guo, Qi-Fei Gao,
He Ye, and Yanlin Wang. 2023. Memorybank:
Enhancing large language models with long-
term memory. ArXiv, abs/2305.10250.

Jingyan Zhou, Kun Li, Junan Li, Jiawen Kang,
Minda Hu, Xixin Wu, and Helen Meng. 2024a.
Purple-teaming llms with adversarial defender
training. arXiv preprint arXiv:2407.01850.

Kaitlyn Zhou, Jena D. Hwang, Xiang Ren, and
Maarten Sap. 2024b. Relying on the unreliable:
The impact of language models’ reluctance to
express uncertainty.

Biru Zhu, Yujia Qin, Ganqu Cui, Yangyi Chen,
Weilin Zhao, Chong Fu, Yangdong Deng,
Zhiyuan Liu, Jingang Wang, Wei Wu, Maosong
Sun, and Ming Gu. 2022. Moderate-fitting as
a natural backdoor defender for pre-trained lan-
guage models. In Advances in Neural Informa-
tion Processing Systems.

Terry Yue Zhuo, Yujin Huang, Chunyang Chen,
and Zhenchang Xing. 2023. Red teaming chat-
gpt via jailbreaking: Bias, robustness, reliability
and toxicity. arXiv preprint arXiv:2301.12867.

Daniel M. Ziegler, Nisan Stiennon, Jeff Wu,
Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. 2019.

https://api.semanticscholar.org/CorpusID:231930144
https://api.semanticscholar.org/CorpusID:231930144
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://arxiv.org/pdf/2403.02691.pdf
https://arxiv.org/pdf/2403.02691.pdf
https://arxiv.org/pdf/2403.02691.pdf
https://api.semanticscholar.org/CorpusID:265050535
https://api.semanticscholar.org/CorpusID:265050535
https://api.semanticscholar.org/CorpusID:265050535
https://api.semanticscholar.org/CorpusID:237353222
https://api.semanticscholar.org/CorpusID:237353222
https://api.semanticscholar.org/CorpusID:237353222
https://api.semanticscholar.org/CorpusId:270199509
https://api.semanticscholar.org/CorpusId:270199509
https://api.semanticscholar.org/CorpusId:270199509
https://api.semanticscholar.org/CorpusId:274776158
https://api.semanticscholar.org/CorpusId:274776158
https://api.semanticscholar.org/CorpusID:265212812
https://api.semanticscholar.org/CorpusID:265212812
https://api.semanticscholar.org/CorpusID:265212812
https://openreview.net/forum?id=wwVGZRnAYG
https://openreview.net/forum?id=wwVGZRnAYG
https://openreview.net/forum?id=wwVGZRnAYG
https://api.semanticscholar.org/CorpusID:258741194
https://api.semanticscholar.org/CorpusID:258741194
https://api.semanticscholar.org/CorpusID:258741194
https://api.semanticscholar.org/CorpusID:266977353
https://api.semanticscholar.org/CorpusID:266977353
https://api.semanticscholar.org/CorpusID:266977353
https://openreview.net/forum?id=C7cv9fh8m-b
https://openreview.net/forum?id=C7cv9fh8m-b
https://openreview.net/forum?id=C7cv9fh8m-b

Fine-tuning language models from human pref-
erences. ArXiv, abs/1909.08593.

https://api.semanticscholar.org/CorpusID:202660943
https://api.semanticscholar.org/CorpusID:202660943

