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Figure 1: A user fnds a set of keys with Find My Things, having previously taught the keys to the app through providing four 
videos. 
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ABSTRACT 
The opportunity for artifcial intelligence, or AI, to enable acces-
sibility is rapidly growing, but widely impactful applications can 
be challenging to build given the diversity of user need within and 
across disability communities. Teachable AI systems give users
with disabilities a way to leverage the power of AI to personalize 
applications for their own specifc needs, as long as the efort of 
providing examples is balanced with the beneft of the personaliza-
tion received. As an example, this paper presents the design and 
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evaluation of Find My Things, an end-to-end application that can be 
taught by people who are blind or low vision to fnd their personal 
things. Through synthesis of the design process, this paper ofers 
design considerations for the teaching loop that is so critical to 
realizing the power of teachable AI for accessibility. 

CCS CONCEPTS 
• : Human-centered computing → Accessibility; Accessibility 
systems and tools; • Human-centered computing → Accessibil-
ity; Accessibility design and evaluation methods. 
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1 INTRODUCTION 
The power of artifcial intelligence (AI) to enable accessibility is 
growing and will continue to do so rapidly with the deployment of 
services based on large foundation models, e.g., GPT-41. For exam-
ple, the feld of computer vision has already produced AI models 
that underpin a signifcant number of new visual access tools that 
have been adopted by the blind community. These range from talk-
ing cameras that read out short text through to the application of 
augmented reality capabilities to support indoor navigation, such 
as Seeing AI2. Yet, many machine learning capabilities do not gen-
eralize well enough to create compelling, real-world experiences, 
despite articulated user need demonstrated through heavy usage 
of apps that provide remote human assistance3. 

The diversity of user need in the disability community can 
present a challenge to creating broadly usable and efcacious AI 
systems for accessibility. There is large variation in user need both 
across and within disability categories. Those who are low-vision 
for example, may need a diferent user experience than those who 
are blind (as shown in [5, 35]). Further, those who are born blind 
may have difering capabilities and needs than people who become 
blind later in life. We can also think of difering personalities (e.g., 
[34]) and intersectional disabilities (e.g., [21]) that change user 
needs. The result is a very long tail distribution of user needs that 
must be accounted for in the design and development of AI systems 
for accessibility. 

Teachable AI systems give users with disabilities a way to lever-
age the power of AI to personalize applications for their specifc 
needs [14]. They do this by allowing users to teach the AI system 
1GPT-4 is a large multimodal model that accepts image and text inputs and emits text 
outputs that exhibits human-level performance on various professional and academic 
benchmarks. https://openai.com/research/gpt-4
2Seeing AI is a talking camera app that narrates the world around the user. 
https://www.microsoft.com/en-gb/ai/seeing-ai
3Be My Eyes connects people needing sighted support with volunteers and companies 
through live video around the world. https://www.bemyeyes.com/ 

about what they need by providing examples to the AI system in 
a teaching loop (e.g., [25]). In this loop, the user provides a small 
number of training examples, high-level constraints, or prompts, 
to train or fne-tune an AI system. The user then receives feedback 
on system performance through application use, or explanation. 
Through iteration, the user builds their own mental model of how 
the AI system works, optimizing it for their own goals. The teaching 
loop is a critical element to successfully realizing the opportunity 
that Teachable AI afords to accessibility. 

We ground our study of teaching loops in the user-centred design 
and evaluation of Find My Things, an application to help people 
who are blind or low vision locate their personal items. As shown 
in Figure 1, a user is supported with instructions and auditory / 
haptic feedback to create four diverse videos of a personal object 
that they want to teach the AI system to recognize. Within seconds, 
a personalized AI model is created on device for this personal 
object. Users can then activate the app to locate and be guided to 
their personal object with auditory, haptic, and visual cues. Find My 
Things allows scaling beyond the relatively small number of objects 
found in large image datasets, (e.g., 1000 in ImageNet [26]) to meet 
individual needs, from fnding long guide canes to toothpaste caps. 

Find My Things can be seen as a relatively simple example of the 
way teachable AI can broaden an AI system – object recognition 
in this case – to meet the needs of a more diverse set of users. 
It also allows us to consider in detail the design of the teaching 
loop, which requires an important trade-of between the efort of 
teaching (e.g., understanding what constitutes a good example) and 
the benefts of personalization in the experience [2]. Building on the 
fndings of previous work [1, 15], we present an evaluated end-to-
end solution. We further deepen the learning through a description 
of the ways new machine learning approaches, experience design, 
and the voices of a citizen design team came together in the iterative 
development of the teaching loop. In brief, our contributions are: 

• Find My Things, an end-to-end teachable object recognition 
app that can be taught by people who are blind or low vision 
to fnd their personal things; 

• Detailed description of the creation and evaluation of Find 
My Things that captures the design and machine learning 
choices made in conjunction with the citizen design team. 

• Design principles for developing teaching loops for Teach-
able AI applications for accessibility synthesized from the 
learnings of the development process. 

2 RELATED LITERATURE 

2.1 Interactive Machine Learning 
Interactive machine learning allows users to iteratively provide data 
examples and high-level constraints to a machine learning model 
to continually adapt its performance [2, 25]. The rapid, incremental 
interaction cycles encourage a close coupling between user and re-
sultant machine learning model. Applications are as far-ranging as 
optimizing web search [3] to creating classifers to detect melanoma 
cancers [10] or creating novel musical instruments [17]. 

One of the key challenges of interactive machine learning sys-
tems is supporting the mental model of the user during the interac-
tive process of refnement. In [8], the authors observed that users, 
when building gesture-based musical instruments, employ typical 
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machine learning evaluation techniques, such as cross-validation, 
both to improve their machine learning model as well as to learn 
how to provide better training data. End-user programming re-
search has ofered the concepts of selection and coordination barri-
ers that characterize challenges in how users decide ‘what’ element 
in the data to change and ‘how’ to change it [18]. Both seminal 
works speak to what we would call a teaching loop, the back and 
forth between user and ML model to get to the desired end result. 

Several papers have explored teaching loops in detail. In the 
context of machine-taught perception (like teachable object recog-
nizers [13]) authors found that most participants intuitively under-
stood that they should provide a variety of examples that captured 
discriminative parts, e.g., the logo on the product. About half of 
participants understood that the types of variation and quantity 
of examples should be consistent across classes (e.g., objects), but 
few focused their efort on the diversity of their test set (e.g., by 
including edge cases). These fndings are confrmed in [27] that 
propose the following guidelines: provide guidance for building 
teaching sequences; allow modifcations to past teaching actions 
and sequences of actions; assist the data augmentation process; and 
show optimization inertia and model state changes. These fndings 
suggest a need to focus on more than just collecting good quality 
data to make the teaching loop work well. 

Interactive machine learning, in its various manifestations, has 
situated the user in relationship to the technology in subtly diferent 
ways. Search and recommender systems both ofer users ways to 
ofer feedback through change of query or binary responses on 
specifc questions. The user, however, may not perceive their role or 
agency in shaping these machine learning systems. In contrast, the 
release of Teachable Machine [6], which underpins a wide variety 
of experiences, more directly emphasizes the agency of the user 
in creating the fnal AI experience / system through their role as 
teacher and providing examples. 

2.2 Teachable AI for Disability 
Teachable AI for disability has been proposed [14] as a mechanism 
to give people with disabilities the agency to personalize expe-
riences to their own needs and situations. It could be adapting 
previously inaccessible tools or making a new class of tools. Experi-
ences explored in the research literature have enabled people with 
learning and physical disabilities to use electronic music interfaces 
[17], as well as a personalized sound recognizer for people who 
are deaf or hard of hearing [11, 23]. However, most examples of 
teachable AI for disability have been teachable object recognizers 
for people who are blind or low vision, e.g., [1, 12, 15]. 

The earliest exploration of the potential of teachable object rec-
ognizers asked users to collect 50 images each of several objects at 
home to verify the need for teachable object recognizers [15]. Key 
to these fndings were that users found the idea of distinguishing 
between items that felt similar, such as diferent bottles of sham-
poo, particularly compelling. The authors also coupled this data 
collection exercise with a lab study that asked participants to train 
and test several objects in a laboratory experiment. Initial data 
capture showed that participants needed guidance in taking their 
images, as many used extreme points of view. Classifer perfor-
mance difered dramatically across participants but was best on the 

participants’ own photos and too many photos decreased perfor-
mance. Participants were also very concerned about the quality of 
their images. 

Follow-up work has looked at diferent strategies to guide the 
taking of images. In ReCog [1], ARKit4 along with the camera po-
sition or its motion is used to calculate the position of an object. 
Sonifed and verbal feedback are used to direct the extent and di-
rection of needed movement to take a good image. In contrast, [20] 
exploits hand-to-hand referencing used in non-visual engagement 
to localize an object based on semantic information from the seg-
mentation of a hand placed near or holding the object. Work has 
also addressed how people who are blind can access the content 
of their training images [12]. These methods provide a range of 
diferent starting points for designing the teaching loop. 

2.3 Few-Shot Learning 
Few-shot learning is an area of machine learning research that aims 
to reduce the number of examples required to complete a machine 
learning task, e.g., [30]. This in turn enables AI models to more 
readily be adapted to diverse, real-world contexts. Adding a new ob-
ject category to a typical deep learning model would require 100s to 
1000s of high-quality labelled examples [31]; in contrast, a few-shot 
model would require just 5-10 examples. Meta-learning algorithms, 
which “learn to learn,” hold particular promise for interactive appli-
cations as they allow for lightweight, adaptable recognition, e.g., 
[36]. Models that are quick to adapt and have fast inference times 
are important to achieving interactive AI experiences. 

Only recently has few-shot learning matured enough to be ap-
plied to real-world challenges. State-of-the-art performance on 
simplifed datasets, such as the characters of Omniglot [19] or the 
high-quality images of miniImageNet [33], is now relatively sat-
urated [7, 24]. To drive further innovation in few-shot learning, 
the focus is shifting to real-world data, made possible by the col-
lection of new datasets, such as ORBIT [22]. The ORBIT dataset 
is a collection of videos recorded by people who are blind or low 
vision on their mobile phones of personal objects that they would 
like to recognize. With its associated benchmark, it provides a 
rich playground to drive research in robust few-shot learning. The 
advances in few-shot learning and the publication of the ORBIT 
dataset provided the foundation for developing the Find My Things 
app. 

3 FIND MY THINGS 
Find My Things is a teachable object localisation experience that 
supports a person who is blind or low vision fnd their personal 
things in 3D space using a phone, shown in Video Figure 1. Rather 
than working only for generic objects, it gives users the power to 
personalise the system to any object, including small objects such 
as keys, medium-sized objects like backpacks, as well as shape-
changing ones like a folding guide cane. Find My Things has two 
parts of the experience – teaching and fnding. Teaching is done to 
add a new ‘thing’ or object to the experience, while fnding can be 
used to locate any of the taught objects. The teaching process guides 
the user to record four short videos of a target object. These serve 
4ARKit is Apple’s software development kit that enables app developers to incorporate 
augmented reality. 
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as training data for a few-shot object recognition model which 
can be personalized on-device in a couple of seconds. The fnd 
experience allows a user to select an object and scan their phone 
around the environment until the app localizes the object. The app 
then provides audio, visual, and haptic cues to guide the user to 
within arm’s reach of their object. 

3.1 Scenario of Use 
Dayla knows that she is constantly looking for her lip balm - some-
times she misplaces it and sometimes it rolls away. She starts the 
teaching process. She is asked to put her lip balm on a clean surface 
and bring her phone close to the lip balm and tap the screen. She 
slowly draws the phone backwards, hearing an auditory progress 
bar and then a completion sound. She is then asked to show another 
side of her object and repeat the process. However, her lip balm 
goes out of camera frame and she gets vibration feedback and the 
phone says ‘move left’. She moves until the feedback goes away, 
knowing that the app is making sure that it can see her lip balm. 
She is asked to take two more videos with the object on a chair, and 
on the foor. She doesn’t even have to move away from the table. 
The whole process takes just a few minutes. 

The next day, Dayla is leaving early in the morning to go to 
work. She packs her bag but can’t fnd her lip balm. She opens Find 
My Things and taps “lip balm.” She scans her phone over the side 
table but doesn’t hear anything. Dayla thinks where else she might 
have left her lip balm. Knowing the app only sees objects in the 
near vicinity (4 meters), she then walks to the kitchen and scans 
the large dining table. She hears a beep that tells her the lip balm 
has been spotted. As she moves toward it, she hears beeping that 
progressively gets faster and higher in pitch to guide her towards 
her lip balm. She manoeuvres around the table, orienting to the 
pings as the lip balm goes in and out of frame. The vibration in-
creases, the pitch increases, and soon she hears the success sound. 
She reaches for the lip balm which is just under the phone. She 
pops it in her bag and heads out the door. 

This is one of four “hero” scenarios that we optimized for. The 
other three are: 1) fnding keys that fall out of a pocket when 
reaching into the pocket to answer a mobile phone that is in the 
same pocket; 2) fnding a backpack that a colleague has moved; and 
3) fnding an ear bud that has rolled of the table during a lecture. 

3.2 Technical Description 
3.2.1 System Architecture. There are four main parts to the Find 
My Things system. The client app is a standalone C# iOS app that 
allows a user to teach/update or fnd personal objects or read the 
tutorial. The teaching pipeline supports the collection and selec-
tion of images that are processed with an on-device personalisation 
algorithm to return a mean feature embedding for the object. The 
object recognition model is an on-device model consisting of a 
meta-trained feature extractor and a set of embeddings that are out-
putted by the personalisation algorithm – one for each object the 
user has added. The localisation pipeline is an on-device process 
that compares incoming camera frames with an object’s embedding 
to identify hotspots. If the confdence level of a hotspot is above a 
certain threshold, then the 3D guidance process is initiated using 
calculations based on surface detection. 

3.2.2 Teaching Pipeline. Users are asked to follow specifc direc-
tions to take four videos with varied backgrounds and perspectives. 
A spatial anchor is placed on the object using ARKit when the user 
touches the object with their phone. This anchor is used to provide 
feedback to the user if the object moves out of the camera frame. 
It also helps in the selection of frames that are used to create the 
personalized model embedding. Users are asked to draw the phone 
away from the object towards their shoulder until the requisite 
number of frames has been reached. Frames are sampled each time 
the camera moves 2mm, until 200 frames (per video) have been 
collected; this ensures that good variation in distance and perspec-
tive is gained. While users cannot replace specifc videos, they can 
easily re-teach an object in just a few minutes. 

The personalisation algorithm is launched and runs in the back-
ground each time a user fnishes teaching a new object. The selected 
subset of 80 (20 per video) frames is fed through the object recogni-
tion model’s feature extractor, and the resulting embeddings are 
averaged to obtain a mean embedding for that object. It takes on 
average 3 seconds on an iPhone 12 Pro, and 8 seconds on an iPhone 
8. 

3.2.3 Object Recognition Model. Find My Things is based on a few-
shot image classifcation approach called Prototypical Networks 
[30]. The model consists of 1) a meta-trained feature extractor, and 
2) a set of object prototypes (i.e., class-wise mean feature embed-
dings) – one for each of the user’s objects. Together, they form a 
user’s ‘personalised’ object recognition model and are stored as a 
single CoreML fle on the user’s device. The feature extractor is an 
EfcientNetB0 with 4 million parameters that has been trained on 
the ORBIT dataset [22] using an episodic training regime [9]. The 
resulting feature extractor can produce strong, linearly separable 
embeddings for a given set of objects using frames from only a few 
teaching videos per object. 

This fnal model was selected through a three-phase process. In 
the frst phase, we ran ∼790 independent experiments on the ORBIT 
dataset to identify the best set of hyperparameters, including the 
choice of feature extractor, video and frame sampling methods, loss 
function and optimizer. This yielded a set of 10 AI model candidates 
which had the highest average frame accuracy on the ORBIT test 
set, as well as strong performance on metrics that were meaningful 
to the user experience. These included the time (in seconds) to 
personalise the model to a user’s new objects, and the inference 
time through the personalised model. 

In the second phase, we compared the 10 candidate AI models on 
a dataset collected directly with a modifed version of the Find My 
Things app. We recorded the object’s initial position in 3D using 
ARKit and then “found” objects per our hero scenarios. Knowing 
when the object was in frame and its distance to the camera, a 
wider suite of metrics was then used in a scorecard approach. Efort 
was made to maximize true positives (when an object was in view 
and recognized) as well as minimize false positives (when an object 
was recognized but not in view). These numbers were considered 
both at medium and high confdence thresholds which respectively 
triggered the localization of a hot spot and guidance parts of the 
experience. 

In the third phase, the fnal 5 candidate AI models were ported 
into the Find My Things app and compared in live side-by-side tests: 
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Figure 2: Visualization of the localisation algorithm used to fnd a purse. (left) visualization of crop boxes to localize the purse; 
(left middle): grey crop boxes of the tree search that continue to subdivide; (right middle) a focus on the crop boxes that have the 
highest confdence; (right) the orange boxes meet the medium confdence threshold and the green boxes the high confdence 
threshold used to trigger the fnd user experience. 

research team members held up 2 phones, each with a diferent 
model in the backend, and searched for the same object in one of 
the hero scenarios that directed the design. The testers conducted 
pairwise comparisons for each candidate in 3 diferent scenarios, 
repeating this twice. They found small diferences in inference time 
that made the user experience sluggish or frustrating; they also 
noted that some AI models were able to recognize objects better at 
a distance. The AI model with the best performance in overall user 
experience as judged by the team was selected as the fnal model, 
as numerical comparisons were judged as not meaningful to the 
overall experience. 

3.2.4 Localisation Pipeline. We developed a localisation algorithm 
which would be more light-weight, and hence faster, than a tradi-
tional object detection model. Specifcally, we perform a tree search 
on a particular frame, taking crop boxes of diferent sizes that 
can be passed through the user’s personalised object recognition 
model. Each box has a confdence value, and if the value is above a 
(medium) threshold, the box is used to determine the likely location 
of the object in the frame. We average the centre pixel coordinate 
of each of these likely boxes, weighting by their confdence values. 
This gives us an estimated coordinate for the centre of the target 
object in the frame. In the case where this coordinate falls in a box 
with a confdence value of a second, higher, threshold, we use either 
LiDAR or ARKit’s surface detection to convert the coordinate into 
a 3D location and initiate the guidance to direct the user towards 
that location. 

This approach, as shown in Figure 2, can locate an object to a 
high degree of accuracy up to 4 metres away with an inference time 
of 100-200ms per frame. A start over button is also provided for 
the user to clear the current medium- and high-chance locations in 
cases that they suspect they’re being guided in the wrong direction. 

3.3 Citizen Design Team 
We brought together a citizen design team of eight blind or low 
vision young people between the ages of 14 and 25 to collaborate 

with our research team in the design process of Find My Things. 
Citizen designers were all young people who had been educated 
as students with a visual impairment. They applied to participate 
through the VICTA charity in the UK, which runs events to support 
the learning and confdence of young people who are blind or low 
vision. Our cohort consisted of three braillists and fve print users, 
using screen reader technology and magnifcation respectively, to 
access their phones. All were young people who confdently (and 
continuously) used their phones. The braillists had all used Seeing 
AI previously, but those who were print users had less experience 
with vision-specifc assistive technology. 

Inspired by the concept of citizen science [29], we wanted to 
engage young people with a range of vision levels to learn about the 
design process through apprenticeship to a professional technology 
development team. As design is often taught visually, it can be 
unavailable to young people from the blind community, reducing 
the number of technology designers with lived experience of blind-
ness. Having selected participants who already showed an interest 
in design and engineering, it was our hope that this experience 
might allow them to grow their abilities and later pursue careers 
as technologists. 

Key to our perspective in developing a citizen design team was 
shifting from seeing people from the blind community as our users 
and testers, to seeing our citizen designers as co-creators of a tech-
nology that they will ultimately use, similar to participatory design 
[4, 28], with a further focus on building skills. Over a four-month 
period, we hosted three day-long, in-person workshops with our 
eight citizen designers with equal attention to what the co-designers 
were taught about the design process and how that understanding 
could be used to further the design process for Find My Things. 
The three sessions focused on: user scenario development, teach-
ing experience, and fnding experience. The citizen designers also 
participated in formative and summative user studies to observe 
the whole design process. 

Each session had a similar format. In the mornings, a spark ac-
tivity was used to get people thinking about a design dilemma, 
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Figure 3: (left) Tactile depiction of the double-diamond design model; (right) tactile phone screen to teach computer vision 
concepts, such as occlusion and perspective. 

followed by an educational session. We covered: the double dia-
mond design model, personas and scenarios, rapid prototyping, 
usability testing and A/B testing. We also ran sessions on how com-
puter vision systems work. The afternoons were devoted to a range 
of prototyping sessions, in which our citizen designers could try 
out diferent combinations of design elements in a live prototype to 
fnd, and refect on, an experience that worked well given the con-
straints of the technology. For many of the sessions, we made tactile 
resources, such as depictions of the double-diamond design model 
or tactile phone screens as shown in Figure 3. The full protocol for 
each citizen design workshop can be found in the supplementary 
materials. 

Learnings were synthesized from the sessions in a range of ways. 
All activities done by the citizen designers were recorded and anal-
ysed, such as the think-aloud elements of building their prototypes. 
This analysis, for example, led to UI suggestions such as: “There 
should be vibration feedback because I may not want to have my 
volume up in public. I don’t want to attract attention to myself” 
(P1). Recordings of prototyping activities were also reviewed for 
the embodied experience of the space and the relationship citizen 
designers had with their phone. We observed that the citizen de-
signers who were braillists tended to hold the phone horizontally, 
while print readers were likely to hold the phone at a 45-degree 
angle. Prototypes and artefacts produced by the citizen designers, 
such as the ‘scenarios of use,’ were reviewed and telemetry data 
was also collected and used to improve the performance of early 
prototypes. 

Beyond the delivery and accessibility of learning content, the 
agency that citizen designers had in the process was an important 
contributor to the success of the engagement. Citizen designers 
could truly feel part of the team and infuence the development of 
the technology in real-time. The research team worked iteratively 
(over the four months and three workshop sessions) to build the 
experience from the ground up based on the learnings from each 
session. In each session the participants were able to see evolution 
and how their contributions informed the AI system and the overall 
experience. The fndings of these sessions are incorporated into our 
discussion of the teaching loop, presented in the next section. 

4 DESIGNING THE TEACHING LOOP 
In a teachable AI system, the aim of the teaching loop is to support 
users in providing examples to an AI system for the purpose of 
helping them reach a personally desired system outcome. We argue 
that this is not a matter of just providing “good” data, but helping 
the user build a mental model of what “good” might be in their 
own context. This empowers the user to adjust system performance 
for their own needs. We might think of the teaching loop as a 
literal loop in which a user provides examples, tests the AI system, 
and then adds or changes the provided examples. However, our 
design process illustrated that the teaching loop, or the iterative 
engagement between user and ML system, can take many forms. 
We refect upon some of the ways that happened in the design of 
Find My Things. 

4.1 Realistic Examples 
We began our design explorations of the teaching loop by asking 
the question: what kind of teaching examples lead to the most 
efective personalisation, and hence the best performance in recog-
nising the user’s objects in test scenarios? We found that teaching 
examples that contained real-world quality issues, such as camera 
motion blur and the object being partially out-of-frame, lead to 
more robust model personalization compared to teaching frames 
with no quality issues. We surmise that that this is because there 
are quality issues during usage, and so the training data distribution 
more closely matches the test data distribution. This result aligns 
with fndings from [11, 12, 15] which demonstrate the importance 
of consistency between data captured for teaching and the data 
that will be captured as part of the experience itself. 

We conducted analyses which controlled for the proportion of a 
user’s teaching frames that were marked with one or more quality 
issues, such as blur or framing issues. We then compared the av-
erage frame accuracy after model personalization using diferent 
proportions across each of these diferent settings. We found that, 
overall, the model had the highest average accuracy and lowest 
variance (i.e., was most robust) when the teaching frames contained 
both framing and blur issues, compared to only frames with one 
or the other or no issue. In particular, robustness peaked when 60-
80% of teaching frames had both quality issues present. The model 
performed least well, with lowest average accuracy and highest 
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Table 1: Some real-world noise in the teaching examples is important for robust personalization: personalizing with teaching 
examples that have quality issues (e.g., blur or poor framing) results in higher test accuracy and lower variance, compared to 
personalizing with teaching frames that are all perfect. Results are reported for 158 objects from the ORBIT test set, where 
each run is repeated 50 times per object. 

Proportion of teaching frames 
with a blur and framing issue 

0% 
(all perfect) 

20% 40% 60% 80% 100% 
(all imperfect) 

Average test accuracy 
(variance) % 

90.5 (24.5) 96.0 (16.0) 96.5 (13.1) 96.9 (12.1) 97.0 (12.2) 96.8 (13.3) 

model variance, when trained only on ‘perfect’ teaching examples 
as shown in Table 1. 

However, we also found that more training examples did NOT 
lead to more reliable recognition of an object. We conducted analy-
ses which controlled for the number of teaching frames (and number 
of videos) per object and found that 10-20 frames per video led to 
peak performance. Sampling more than 20 frames per video, in 
fact, reduced performance by 3-4 percentage points. Our analyses 
revealed that this was occurring because a user’s mean feature em-
beddings became less linearly separable with increasing numbers 
of teaching examples. Specifcally, the inter-class variance between 
the user’s mean feature embeddings reduced and the intra-class 
variance between the features used to compute the embedding in-
creased. We hypothesized that because teaching examples often 
contained quality issues, more teaching frames might be reduc-
ing the signal-to-noise ratio, leading to a ‘messier’ representation 
of that object in the embedding space. As such, we can limit the 
amount of data needed in the teaching loop. 

4.2 Dynamic Support 
We took a human-centered approach to considering how we sup-
ported users in providing example images for teaching their object. 
We started by asking and role-playing with our citizen designers 
what strategies, skills and needs users might have when using the 
camera to record an object. It quickly became clear that video was 
much more fexible than still images. It allowed the system to pick 
the best images for training, rather than insisting that the user take 
“good” images. The teaching process then developed to build on 
existing embodied strategies common to blind users – using their 
hands and body to orient the camera. First, the user touches the 
object with the phone camera and then draws back towards their 
shoulder. 

We decided to build an experience that would ask the technology 
to help the user if the object went out of frame, as this was the one 
quality issue that had a detrimental efect on the AI system. First, we 
place an AR anchor on the object when the user touches their phone 
to the object and hits start. As they draw their phone back from 
the object, we provide feedback if the anchor (as a proxy for the 
object) moves out of frame. This stands in contrast to approaches 
in which guidance is provided to keep the object “in” frame (e.g., 
[1]). Our citizen design team pointed out that a bit of feedback can 
help the user feel good about their eforts, while constant guidance 
was cognitively demanding and therefore stressful. This design 
approach ensures that users do not have to be concerned with 

something that they cannot necessarily judge - whether the object 
is in frame. 

We chose to ask users to pull the camera back towards them-
selves, using a body reference that all users could relate to. We 
decided not to ask users to use a “free form” method to “show” us 
the object. When comparing approaches, we found that the citizen 
designers had to think a lot harder about what in the object they 
needed to show when it was freeform. It also made automatic se-
lection of diverse images much harder due to variation between 
users. We also found that free-from example collection did not im-
prove model outcomes and was slower for the user. The drawing 
out method helps users get multiple perspectives in the examples 
(and distances) without asking users to imagine what these could 
be and fgure out how to frame and take them. Other research 
has also shown that users often try extreme perspectives which is 
detrimental to system performance [15]. 

To further increase the variety of images, we walk the user 
through repeating the example capture technique four times with 
diferent backgrounds and object rotations. While initially we did 
not specify where the backgrounds could be, we found that thinking 
of these possibilities was mentally taxing and required users to 
move around a space. In response, we shifted the instructions to 
focus on table, chair, and foor that could be right next to them, 
speeding up the process and decreasing cognitive load. We also 
added object rotation as only some of our citizen designers came to 
understand how necessary this might be. We limited the number of 
examples to four as several users attempted to improve recognition 
by increasing the number of examples, which actually reduces 
performance. 

Some citizen designers did make a direct association between 
how they wanted to fnd the object and how they should take the 
videos. For example, one citizen designer provided videos of her 
headphones at a distance in hope that the app would recognize 
them better at a distance. While this is ideal user behaviour, unfor-
tunately, in this case it is not a correct mental model. Through work 
with our citizen design team, we aimed to structure the experience 
to encourage a correct mental model through both the design of the 
recording technique as well through the creation of written materi-
als (e.g., app descriptions and troubleshooting tips). For example, 
we encourage teaching visually distinct categories (e.g., keys and 
wallet), rather than using Find My Things to distinguish between 
similar things (e.g., a red and green marker) as early AI model test-
ing showed that the AI model produced wrong predictions with 
very high confdence in distinguishing tasks. 
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Table 2: Larger feature extractors (EfcientNetV2, ViT-B-32) were not able to support a rapid teaching loop on a mobile phone as 
well as an EfcientNetB0: although the larger extractors had similar personalisation and inference times to an EfcientNetB0 
on a GPU, when ported onto a mobile phone, these times increased dramatically. Personalisation times were also an order 
of magnitude larger when personalising the model with a fne-tuning compared to a ProtoNets-based approach. Times were 
measured on a 32GB NVIDIA V100 GPU. 

Feature extractor Pre-training dataset 
and method 

No. of 
parameters 

Personalise 
method 

Avg. frame 
acc (%) 

Time to 
personalise on 
GPU (s) 

Inference time 
on GPU (�s) 

EfcientNetB0 

EfcientNetV2 

ViT-B-32 (CLIP) 

ImageNet1K 
(supervised) 
ImageNet21K 
(supervised) 
LAION2B (CLIP; 
self-supervised) 

4.01M 

20.18M 

87.46M 

ProtoNets 
Finetuning 
ProtoNets 
Finetuning 
ProtoNets 
Finetuning 

69.8 
68.8 
73.8 
71.6 
74.8 
73.8 

2 
36 
3 
62 
2 
55 

186 
186 
835 
835 
193 
193 

4.3 A Rapid Loop 
We aimed to reduce the time between teaching an object and testing 
it out. For example, we designed the teaching process so that users 
could teach only one object at a time, with an experience fow that 
took the user straight back to the fnd screen so that they could test 
their object immediately. During the citizen design sessions, we 
observed that citizen designers were able to relate their teaching 
videos to how well the system was able to recognize the object. 
One citizen designer noted that simple objects (e.g., a ball) taught 
on the same colour background (e.g., a white table) were not well 
recognized by the system, but more complex ones were (e.g., keys). 
By designing a tight loop, a user is able to connect how their actions 
during teaching may infuence the result. 

The ability to test immediately after teaching worked well as 
the user could leverage their knowledge of where the object was 
in order to test it. This gives users the opportunity to judge good 
or bad recognition for themselves, using their own standards and 
allowing for exploration of performance. For example, instead of 
an overall performance metric, they are able to test how well the 
model performs on their carpet versus on their cofee table; from 
far or from up close; moving the phone quickly or slowly. This 
process allows the user to go beyond a numerical understanding 
of how well the system is performing and get an insight to when 
and how the system might perform well or poorly and how they 
can optimize it for their own needs. It was for this reason that we 
enforce teaching only one object at a time. 

The type of feedback that users receive after teaching was also 
considered. Importantly, we needed to communicate to the user 
how well the model that they created would work in practice. Our 
citizen designers wanted a sense of how fast their object would be 
recognized when in frame, from how far away, or whether it would 
be recognized against their tartan carpet, for example. A simple 
metric such as accuracy was therefore not appropriate. We also 
explored telling them whether a certain example was impacting 
the performance of the model. However, we found that our citizen 
designers much preferred the interactive and insightful experience 
of just using the app immediately after teaching something. 

To achieve a rapid teaching loop, we needed to focus on decreas-
ing the time it took the AI model to personalize. We see in Table 2 

that personalising the model by fne-tuning it on the user’s teaching 
videos has a signifcantly longer personalization time than when 
using a ProtoNets approach. This is because fne-tuning the model 
involves 50 backward-forward passes (i.e., gradient steps) through 
the model, while ProtoNets involves only a single forward pass. 
Most importantly, we discovered that some larger models have 
slightly higher accuracy on the ORBIT test set but were slow to 
personalize. While the VIT-B-32 (CLIP) and EfecientNetB0 feature 
extractors have similar personalization times on a 32GB NVIDIA 
V100 GPU, ViT-B-32 (CLIP) was dramatically slower on a phone. 
Rapid personalization enables users to throw out a model that isn’t 
working well and try again, which requires much less user efort 
than trying to understand uncertainty measures provided by the 
model. 

5 USER EVALUATION 
A user study was designed to provide structured data collection 
from ‘in the wild’ contexts, generating qualitative, quantitative, 
and log data of these experiences. We triangulated this data to 
understand whether the cumulative design and machine learning 
decisions made led to an appropriate balance between the efort 
of teaching and the benefts of personalisation shown through 
successful usage. We ask the following three research questions: 

• R1: Are people able to successfully use Find My Things? 
• R2: What are the potential benefts of this teachable system, 
Find My Things? 

• R3: What kind of efort does it require to make Find My 
Things work? 

5.1 Study Design 
5.1.1 Participants. The user study included 15 participants who are 
blind or low vision. The majority were opportunistically recruited 
from the back-to-work program run by the Canadian National Insti-
tute for the Blind (CNIB). These participants ranged in age from 18 – 
65, with representation from all age groups. Half of the participants 
used Apple VoiceOver technology, while the others used magni-
fcation or a combination of both. All were regular smartphone 
users and had previously used Seeing AI. About one-third regularly 
tested technologies for CNIB and were particularly profcient. This 
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range of familiarity is what we might expect in users of assistive 
AI systems and therefore suitable to helping us understand usage. 
Gender was evenly split. An additional three participants (2 female) 
were recruited from our citizen design team, ranging in age from 
14 – 25. These included a VoiceOver user, a magnifcation user, 
and a deaf-blind participant who used magnifcation. They were all 
Seeing AI users and very profcient at using their smartphone for 
access. 

5.1.2 User Study. The user study ran over a period of three weeks, 
in which participants: 1) attended a 30-minute briefng call; 2) com-
pleted a 1-hr mission ‘in the wild’; and 3) used the app freely for 
one week. The briefng call introduced the Find My Things app 
and its purpose as well as clarifed the study instructions that were 
provided in document format. The 1-hr mission was a specifed task 
done by participants ‘in the wild’, that is, in their own space at their 
own time. Participants were asked to teach and fnd three objects, 
each inspired by one of our hero scenarios listed above. They were 
asked to fnd each object twice, encouraged in the second attempt 
to adjust the difculty of the scenario depending on the success 
(or not) of the frst try. Users were then asked to teach two more 
objects and use the app as and when it was useful in the following 
week. See supporting materials for full instruction set to users that 
communicated the protocol. 

5.1.3 Data Collection and Analysis. We designed a mixed-methods 
study that could be completed fully ‘in the wild’ without the support 
of a researcher. As part of an in-usage survey, participants were 
asked three (obligatory) multiple choice questions immediately after 
each experience of fnding an object. Participants were then invited 
to share more details about their multiple choice answers through 
open questions about the context of use (optional). In particular, 
through the mission protocol, participants were invited to share 
how they made their second ‘fnd’ attempt for each object easier 
or harder, revealing their mental model of how Find My Things 
worked. After all fnd experiences were complete, the study closed 
with a fnal survey. It included 5 Likert scale questions and 3 open-
ended questions. See Table 3 for an overview of the questions. 

The multiple-choice questions in the in-usage survey were tabu-
lated, and the success rate for all participants were calculated based 
on the answers. If the user answered “Yes” to the question “did you 
fnd your thing?” and “Yes” or “Somewhat” to the question “did the 
app assist you in fnding your thing?”, then that specifc attempt is 
counted as a success, meaning that the app was useful in assisting 
the user in fnding their thing. Answers to the optional open-ended 
questions were used to contexualise the analysis of the record-
ings of each attempt. All results were considered in light of the 
open-ended questions in the fnal survey. Carrying out a thematic 
analysis, responses were coded as benefts, efort, improvements, 
and other. Improvements were then sub-divided into the relevant 
component (e.g. UI, localisation pipeline ect). 

A range of log data was collected in addition to the survey data. 
This included timestamps and durations of the training and fnd 
experiences, possible object locations during a fnd experience and 
data tracking the orientation and movement of the phone during 
training and fnding. The data allowed us to observe the duration 
of both teaching and fnding and measure how users responded 
to the audio guidance. After creating a ground truth for the object 

location in the fnd videos, we were also able to determine how 
well the localisation algorithm was performing across a range of 
devices. 

5.2 Findings 
Overall, users succeeded in fnding their personal objects and found 
Find My Things helpful. The app was used 116 times, 86 of which 
were regarded as valid runs in which no technical error occurred. 
Technical errors included the AR session not initializing correctly 
or the camera being occluded for long durations during fnd expe-
rience. In 71 of these 86 valid runs, participants stated that the app 
helped (63 of 71) or somewhat helped (8 of 71) them locate their 
objects, attaining a success rate of 83%. Based on the fnal survey 
results, 12 out of 15 participants reported feeling more confdent 
fnding their objects with Find My Things. 

Beyond the user experience, we ran extensive analyses on the 
recordings from each search to quantify the performance of the 
object recognition model. We found that when the object was in-
view and within 4 meters of the camera it correctly localized the 
object 72.4% of the time. Failure cases included: 1) things that were 
similar in shape and colour from far distances (e.g., a white piece of 
fuf rather than white MacBook charger), which often resolved as 
the user got closer to the thing; 2) objects in low-contrast scenarios 
– for example, if the surface was poorly lit, had a glare, or was the 
same colour as the object (e.g., a white AirPod on a white tile). In 
13 valid runs, phones without LiDAR did not guide the user to the 
correct location. 

Participants suggested several new use cases. These included: 
1) fnding more than one thing at a time (e.g., fnding a set of 
objects needed for school); 2) fnding a category of similar things 
based on only one taught item (e.g., teaching one dish towel to fnd 
other similar dish towels); and 3) fnding an item that is not taught 
because the user did not expect to lose it. We also noted that the 
design could be improved to let users know that a technical error 
had occurred. 

5.2.1 Benefits of a Teachable System. Users added a large variety 
of personal objects that difered greatly in appearance and function-
ality. A total of 58 objects, which could be grouped into 37 visually 
distinct categories, were added by 15 people. Twenty-fve of these 
categories contained only one object, indicating a long tail of possi-
ble objects. Common objects include diferent kinds of keys (e.g., 
house, mailbox—7 occurrences) and earphones (e.g., Air Pods—3 
occurrences). Less common objects are exemplifed by guide dogs 
(2 occurrences), pliers (1 occurrence), dryer balls (1 occurrence) 
and braille stylus (1 occurrence). The varied functionality of these 
objects demonstrates the app’s ability to assist users in a much 
wider range of scenarios than standard object recognition. 

The value of being able to stay in charge of essential personal ob-
jects for our users was highlighted consistently through qualitative 
feedback. As one participant articulated: 

I can fnd personal items using the app if the item is 
lost. I have about 5-10 personal items that I always have 
with me and most of them are essential. If I lose a bus 
pass, I can’t get to anywhere, if I lose keys, I can’t get 
home, etc. - P1 
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Table 3: Survey questions. 

In-usage survey questions (after the completion of every fnd experience) 
Questions Answer format 
Did you fnd your thing? Multiple choice between yes, somewhat, 

and no (obligatory) 
Did the app assist you in fnding your thing? 
Could you follow the sounds and/or visual feedback to fnd your things? 
Why were you looking for your thing? Open-ended (optional) 
Where were you looking? 
What surface was your thing on? 
What worked well? 
What was challenging? 
Final survey questions (when the participant fnishes the study) 
Questions Answer format 
Please rate the following 
statements: 

1. I was able to quickly learn how to teach new things to the Find My 
Things app 

Multiple choice between strongly 
agree, agree, neutral, disagree and 
strongly disagree 2. I feel more confdent fnding my things when I use the Find My 

Things app 
3. I found the sound and/or visual guidance to my things difcult to 
follow 
4. It is not important to me to be able to teach the Find My Things 
app about things that are important to me 
5. I believe that the Find My Things app would help me be discreet 
when looking for things in public environments or work situations 

Please respond in your own 
words to the following 
questions 

6. What is the main beneft of the Find My Things app for you? Open-ended 
7. How could Find My Things be improved to meet your needs 
8. How would you describe the Find My Things app to a friend? 

While many users have strategies for fnding items, often 
through diligent organization of items or tactile searching methods, 
qualitative feedback suggests that Find My Things can augment 
these strategies when in an unfamiliar place, bound by social norms, 
or short on time. 

(The main beneft of Find My Things is) helping me fnd 
objects in public places where I’m not sure where my 
objects would be lost. Just open the app and it will scan 
for this object in the environment, it’s like having new 
eyes! -P15 

Indeed, many users found that Find My Things helped them 
be more discreet when searching for things in public or formal 
situations. For these users, it helped them avoid touching the foor, 
which may not be clean or could be awkward in a work context. 
According to the fnal survey results, 9 out of 15 respondents agreed 
or strongly agreed with the statement: “I believe that the Find My 
Things app would help me be discreet when looking for things in 
public environments or work situations.” 

Finally, Find My Things can support users wanting more indepen-
dence or having multiple disabilities. Seven out of 15 participants 
used words like “independence”, “autonomy” and “not needing 
sighted assistance” when describing the benefts of Find My Things. 
Users also noted the ways it supported their strategies when man-
aging multiple disabilities, such as deaf-blindness or additional 
memory issues. For example: 

Since I have memory issues, I sometimes forget where I 
put things. It is very helpful to hear the sound, so that I 
know, approximately where I have to go to look, and I 
appreciate the guidance that is given. - P8 

If I drop something, I often cannot hear where it bounced 
of to due to my deafness, so the app would be helpful 
in that instance too. -P1 

This data suggests that the ability to personalize might particu-
larly support those in the long tail of disability diversity. 

5.2.2 The Efort of Teaching. A teachable system brings fexibility, 
but also requires efort to teach. Our data suggests that this level of 
efort was not prohibitive. All 15 respondents agreed or strongly 
agreed with the statement: “I was able to quickly learn how to teach 
new things to the Find My Things app,” suggesting that it is easy to 
get a hang of the teaching process. On average, participants were 
able to teach an object in 2.4 minutes, though after 3-4 objects, 
this dropped to around 1 minute per object. Furthermore, only 
six examples did not fully adhere to the instructions to showcase 
diferent sides of the object and use various surfaces while recording 
training videos, which help to produce high-quality training videos 
for the AI model. 

6 DISCUSSION 
AI has much to ofer in enabling accessibility if experiences can 
be personalised to the needs of diverse users who have disabili-
ties, addressing the long-tail distribution of user need. Very recent 
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advances in AI, such as foundation models, bring us even closer 
to meeting those diverse needs by increasing the number of tasks 
that a single model can do; however, the ways that we achieve the 
necessary personalization of an experience have been given less 
attention. Teachable AI, for which users provide examples or high-
level constraints to teach a model, has been proposed as a solution 
[14]. Yet, this approach has not been validated in a fully working 
end-to-end system. As a result, there are few generalised learnings 
or design considerations that support the design of teachable AI 
experiences specifcally for accessibility. 

To address the lack of design considerations for Teachable AI 
systems for accessibility, we synthesised our learnings from the 
design and evaluation of Find My Things reported in this paper. To 
our knowledge, Find My Things, an application that allows people 
who are blind or low vision to fnd their personal items, is among 
the frst fully realized end-to-end examples of a system applying 
Teachable AI to extend applications to the long-tail distribution of 
user accessibility needs. The evaluation shows that users can indeed 
fnd their personal things with the app in their own environments 
and that efort to teach the app is balanced with the beneft of being 
able to fnd personal (and not just generic) things. 

6.1 Learnings 

1. Understand the quantity and quality of examples required for 
optimal AI system performance 

It is important to consider the quantity and quality of examples 
needed to produce the best performing AI system. It is easy to 
assume that “good” data can be equated to “lots” of “clean” data. In 
the image context, that would mean as many as possible well-lit 
images with the object of interest centred and no camera motion 
blur or obstruction. In contrast to expectation, but similar to the 
trend reported in Kacorri et al. [15], we found that small amounts 
of a user’s own data led to the best performing AI system. This may 
be particularly true in accessibility applications in which the users’ 
data may difer dramatically (i.e., be out of distribution) to the data 
that an AI system is trained on as shown in [22]. 

The fndings in this paper underscore the importance of experi-
mentally determining what constitutes “good” data for any given 
teachable AI system before beginning the design process. Indeed, 
what constituted “good” data in Find My Things versus Kacorri et 
al. [15] were not the same despite the application domain being the 
same. Indeed, small technical diferences bring nuance to notions 
of “good” data. To ensure the external validity of these experiments, 
it is important to think about the metrics being used in these cal-
culations. A user-centric approach to metrics might focus more 
on per-user performance rather than average accuracy across all 
frames in the test set. Variance over users and worst-case per-user 
performance are other alternatives that can bring a more human-
centric framing to metrics being used to make user experience 
design decisions. 

2. Support users in providing examples in a structured way that 
reduces cognitive load and avoids over-guiding 

In many accessibility use cases, what constitutes a “good” exam-
ple can be quite concrete. As a result, designers can reduce both 

the time and cognitive load of capturing good teaching examples 
through a structured experience. In the Find My Things example, 
video is used to reduce the (perceived) efort of users who are blind 
in taking “good” images. Further, the number of videos and the 
way they were taken were also defned to reduce the number of 
choices that a user had to make, and by consequence, the cognitive 
load. Users did not need to think about perspective or background 
changes, for example. They did not even have to move around in 
space, a potential challenge for some. 

While structure is appreciated, the reporting of our design pro-
cess showed that heavily guided experiences can also be cognitively 
taxing. Our citizen designers reminded us that it is better to know 
when you’ve gone wrong rather than constantly trying to follow 
feedback to do it right. Methods that build on existing skills, such 
as hand-to-hand referencing in the blind community, may also give 
users a stronger sense that their existing capabilities are being aug-
mented rather than replaced [32]. The concrete design opportunity 
of teachable AI for accessibility stands in contrasts to teaching inter-
active machine learning for creative applications, the basis for most 
learnings and guidelines in the literature. In contrast to guidelines 
that encourage user experimentation, e.g., [18, 27], we emphasize 
more experimentation by the AI system developers rather than 
placing this demand entirely on users in the accessibility context. 

3. Shorten the feedback loop as much as possible and reduce 
friction to re-teach 

A short feedback loop between a user teaching and trialing an 
AI system allows users to quickly test and iterate their personalized 
AI system. As users are often in a context of use when teaching, 
they are practically set up to trial the app. Users can also use the 
environment to consider edge cases and thus better understand the 
boundaries of the system, something that users often forget [13]. 
Shortening the feedback loop is dependent on the personalisation 
time of the model. It could also be about other components in the 
pipeline, for example, in our case, taking out the need to calibrate 
the model after training. 

A short feedback loop also reduces the friction to re-teach a 
concept if something goes wrong. The ability to re-teach reduces 
system complexity by avoiding the need to provide the user with 
other signals of AI system interpretability, e.g., uncertainty values 
for videos. It is also important to consider other reasons that it 
might be difcult to re-teach a concept. Does the user need all their 
examples cached in order to retrain a model without catastrophic 
forgetting? If so, might there be privacy implications if these are 
stored in the cloud or practical limitations of phones if stored locally 
[16]? Might it be costly to retrain a model if the user is unsatisfed 
with the quality? The design process must engage with the poten-
tial AI system constraints when holistically trying to shorten the 
feedback loop and reduce friction for re-teaching. 

6.2 Refections 
As AI becomes prevalent in accessibility experiences, taking a 
human-centred approach to the design of such technologies will 
be critical to creating experiences that really enable people with 
disabilities. We present an example of such an approach in this 
paper using a citizen design team. There is much opportunity for 
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researchers to grow the methods of user-centred AI design for ac-
cessibility. Indeed, the methods developed in this inclusive space 
will likely shape the way research thinks about human-AI inter-
action, just as many technologies developed frst for disabilities 
extend to enable all people. 

7 CONCLUSION 
Find My Things demonstrates the power of Teachable AI in a fully 
realized end-to-end system. In this case, we extend object recog-
nition to any personal item a user might own. One could imag-
ine many more accessibility applications that could beneft from 
personalization from text input /output to the way audio descrip-
tion/captions are provided in virtual reality and beyond. As the 
long distribution of user need is a signifcant challenge in creating 
useful, scalable accessibility applications, we demonstrate how a 
teachable approach can address these challenges and provide de-
sign considerations to help researchers and practitioners working 
across the accessibility domain. 

ACKNOWLEDGMENTS 
We would like to acknowledge the engagement of the VICTA and 
CNIB charities in helping us connect with our citizen designers and 
user study participants. 

REFERENCES 
[1] Dragan Ahmetovic, Daisuke Sato, Uran Oh, Tatsuya Ishihara, Kris Kitani, and 

Chieko Asakawa. 2020. Recog: Supporting blind people in recognizing personal 
objects. In Proceedings of the 2020 CHI Conference on Human Factors in Computing 
Systems, 1–12. 

[2] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014. 
Power to the People: The Role of Humans in Interactive Machine Learning. AI 
Magazine 35, 4: 105–120. 

[3] Saleema Amershi, James Fogarty, Ashish Kapoor, and Desney Tan. 2009. Design-
ing for End-User Interactive Concept Learning in CueFlik. Neural Information 
Processing Systems (NIPS) Workshop on Analysis and Design of Algorithms for 
Interactive Machine Learning. 

[4] C. Andrews. 2014. Accessible Participatory Design: Engaging and Including 
Visually Impaired Participants. In Inclusive Designing. Springer International 
Publishing, 201–210. 

[5] Harshadha Balasubramanian, Cecily Morrison, Martin Grayson, Zhanat 
Makhataeva, Rita Marques, Thomas Gable, Dalya Perez, and Edward Cutrell. 
2023. Enable Blind Users’ Experience in 3D Virtual Environments: The Scene 
Weaver Prototype. In In 2023 CHI EA Conference on Human Factors in Computing 
Systems, 1–4. 

[6] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell, 
Jordan Grifth, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020. Teach-
able machine: Approachable Web-based tool for exploring machine learning 
classifcation. In The 2020 CHI EA Conference on Human Factors in Computing 
Systems, 1–8. 

[7] Da Chen, Yuefeng Chen, Yuhong Li, Feng Mao, Yuan He, and Hui Xue. 2021. 
Self-Supervised Learning for Few-Shot Image Classifcation. In ICASSP 2021 -
2021 IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), 1745–1749. 

[8] Rebecca Fiebrink, Perry R. Cook, and Dan Trueman. 2011. Human model evalua-
tion in interactive supervised learning. In Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems, 147–156. 

[9] C. Finn, P. Abbeel, and S. Levine. 2017. Model-agnostic meta-learning for fast 
adaptation of deep networks. In Proceedings of the 2017 ICML International Con-
ference on Machine Learning, 1126–1135. 

[10] Stephan Forchhammer, Amar Abu-Ghazaleh, Gisela Metzler, Claus Garbe, and 
Thomas Eigentler. 2022. Development of an Image Analysis-Based Prognosis 
Score Using Google’s Teachable Machine in Melanoma. Cancers 14, 9: 2243. 

[11] Steven M. Goodman, Ping Liu, Dhruv Jain, Emma J. McDonnell, Jon E. Froehlich, 
and Leah Findlater. 2021. Toward User-Driven Sound Recognizer Personalization 
with People Who Are d/Deaf or Hard of Hearing. Proceedings of the ACM on 
Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 2: 1–23. 

[12] Jonggi Hong, Jaina Gandhi, Ernest Essuah Mensah, Farnaz Zamiri Zeraati, Ebrima 
Haddy Jarjue, Kyungjun Lee, and Hernisa Kacorri. 2022. Blind Users Accessing 
Their Training Images in Teachable Object Recognizers. 

Cecily Morrison et al. 

[13] Jonggi Hong, Kyungjun Lee, June Xu, and Hernisa Kacorri. 2020. Crowdsourcing 
the Perception of Machine Teaching. In Proceedings of the 2020 CHI Conference 
on Human Factors in Computing Systems, 1–14. 

[14] Hernisa Kacorri. 2017. Teachable machines for accessibility. ACM SIGACCESS 
Accessibility and Computing 119: 10–18. 

[15] Hernisa Kacorri, Kris M. Kitani, Jefrey P. Bigham, and Chieko Asakawa. 2017. 
People with visual impairment training personal object recognizers: Feasibility 
and challenges. In Proceedings of the 2017 CHI Conference on Human Factors in 
Computing Systems, 5839–5849. 

[16] Rie, Kamikubo, Kyungjun Lee, and Hernisa Kacorri. 2023. Contributing to Accessi-
bility Datasets: Refections on Sharing Study Data by Blind People . In Proceedings 
of the 2023 CHI Conference on Human Factors in Computing Systems, 1–18. 

[17] Simon Katan, Mick Grierson, and Rebecca Fiebrink. 2015. Using Interactive 
Machine Learning to Support Interface Development Through Workshops with 
Disabled People. In Proceedings of the 33rd Annual ACM Conference on Human 
Factors in Computing Systems, 251–254. 

[18] Todd Kulesza, Weng-Keen Wong, Simone Stumpf, Stephen Perona, Rachel White, 
Margaret M. Burnett, Ian Oberst, and Amy J. Ko. 2009. Fixing the program my 
computer learned. In Proceedings of the 14th international conference on Intelligent 
user interfaces, 187–196. 

[19] Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum. 
2011. One shot learning of simple visual concepts. Cognitive Science 33, 2568 – 
2573. 

[20] Kyungjun Lee, Abhinav Shrivastava, and Hernisa Kacorri. 2020. Hand-Priming in 
Object Localization for Assistive Egocentric Vision. In Proceedings of the IEEE/CVF 
Winter Conference on Applications of Computer Vision, 3422-3432. 

[21] Kelly Mack, Emma McDonnell, Dhruv Jain, Lucy Lu Wang, Jon E. Froehlich, 
and Leah Findlater. 2021. What Do We Mean by “Accessibility Research”? In 
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 
1–18. 

[22] Daniela Massiceti, Luisa Zintgraf, John Bronskill, Lida Theodorou, Matthew 
Tobias Harris, Edward Cutrell, Cecily Morrison, Katja Hofmann, and Simone 
Stumpf. 2021. ORBIT: A Real-World Few-Shot Dataset for Teachable Object 
Recognition. 

[23] Yuri Nakao and Yusuke Sugano. 2020. Use of Machine Learning by Non-Expert 
DHH People: Technological Understanding and Sound Perception. In Proceedings 
of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, 
Shaping Society, 1–12. 

[24] Eunbyung Park and Junier B Oliva. 2019. Meta-Curvature. In Advances in Neural 
Information Processing Systems 32, 1-11. 

[25] Gonzalo Ramos, Christopher Meek, Patrice Simard, Jina Suh, and Soroush Gho-
rashi. 2020. Interactive machine teaching: a human-centered approach to building 
machine-learned models. Human–Computer Interaction 35, 5–6: 413–451. 

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, 
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander 
C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge. 
International Journal of Computer Vision 115, 211-252. 

[27] Téo Sanchez, Baptiste Caramiaux, Jules Françoise, Frédéric Bevilacqua, and 
Wendy E. Mackay. 2021. How do People Train a Machine? Proceedings of the ACM 
on Human-Computer Interaction 5, CSCW1: 1–26. 

[28] Dan Shapiro. 2005. Participatory design: the will to succeed. In Proceedings of the 
CC Conference on Critical Computing, 29-38. 

[29] Jonathan Silvertown. 2009. A new dawn for citizen science. Trends in Ecology & 
Evolution 24, 9: 467–471. 

[30] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical Networks for 
Few-shot Learning. In Advances in Neural Information Processing Systems 30, 1 – 
11. 

[31] Mingxing Tan and Quoc Le. 2019. EfcientNet: Rethinking Model Scaling for Con-
volutional Neural Networks. In Proceedings of the ICML International Conference 
on Machine Learning, 6105–6114. 

[32] Anja Thieme, Cynthia L. Bennett, Cecily Morrison, Edward Cutrell, and Alex 
S. Taylor. 2018. "I can do everything but see!–How People with Vision Impair-
ments Negotiate their Abilities in Social Contexts. In Proceedings of the 2018 CHI 
Conference on Human Factors in Computing Systems, 203. 

[33] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan 
Wierstra. 2016. Matching Networks for One Shot Learning. In Advances in Neural 
Information Processing Systems, 29, 1-9. 

[34] Michele A Williams, Amy Hurst, and Shaun K Kane. 2013. “Pray Before You 
Step out”: Describing Personal and Situational Blind Navigation Behaviors. In 
Proceedings of the ACM SIGACCESS Conference on Computers and Accessibility: 
1-8. 

[35] Yuhang Zhao, Edward Cutrell, Christian Holz, Meredith Ringel Morris, Eyal Ofek, 
and Andrew D. Wilson. 2019. SeeingVR. In Proceedings of the 2019 CHI Conference 
on Human Factors in Computing Systems, 1–14. 

[36] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon White-
son. 2019. Fast Context Adaptation via Meta-Learning. In Proceedings of the ICML 
Conference on Machine Learning, 7693–7702. 


	Abstract
	1 INTRODUCTION
	2 RELATED LITERATURE
	2.1 Interactive Machine Learning
	2.2 Teachable AI for Disability
	2.3 Few-Shot Learning

	3 FIND MY THINGS
	3.1 Scenario of Use
	3.2 Technical Description
	3.3 Citizen Design Team

	4 DESIGNING THE TEACHING LOOP
	4.1 Realistic Examples
	4.2 Dynamic Support
	4.3 A Rapid Loop

	5 USER EVALUATION
	5.1 Study Design
	5.2 Findings

	6 DISCUSSION
	6.1 Learnings
	6.2 Reflections

	7 CONCLUSION
	Acknowledgments
	References



