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Abstract—Large language models (LLMs) based on transform-
ers have made significant strides in recent years, the success of
which is driven by scaling up their model size. Despite their
high algorithmic performance, the computational and memory
requirements of LLMs present unprecedented challenges. To
tackle the high compute requirements of LLMs, the Mixture-of-
Experts (MoE) architecture was introduced which is able to scale
its model size without proportionally scaling up its computational
requirements. Unfortunately, MoE’s high memory demands and
dynamic activation of sparse experts restrict its applicability
to real-world problems. Previous solutions that offload MoE’s
memory-hungry expert parameters to CPU memory fall short be-
cause the latency to migrate activated experts from CPU to GPU
incurs high performance overhead. Our proposed Pre-gated MoE
system effectively tackles the compute and memory challenges of
conventional MoE architectures using our algorithm-system co-
design. Pre-gated MoE employs our novel pre-gating function
which alleviates the dynamic nature of sparse expert activation,
allowing our proposed system to address the large memory
footprint of MoEs while also achieving high performance. We
demonstrate that Pre-gated MoE is able to improve performance,
reduce GPU memory consumption, while also maintaining the
same level of model quality. These features allow our Pre-gated
MoE system to cost-effectively deploy large-scale LLMs using
just a single GPU with high performance.

Index Terms—Mixture-of-expert, inference system, machine
learning, large language model, memory offloading

I. INTRODUCTION

Machine learning (ML) applications based on large lan-
guage models (LLMs) have taken the world by storm, widely
being deployed in various consumer facing products [24], [26],
[33]. The success of LLMs has been driven by scaling up the
model capacity (i.e., the model size) and its training dataset,
the largest trained model size increasing by around 1,000×
within the past 5 years, from a few hundred million parameters
to approaching a trillion parameter scale [3], [5], [39]. With
larger model size bringing higher model accuracy, it is likely
that future models will also increase in their model capacity.

∗ Co-first authors who contributed equally to this research.
† Work done during an internship at Microsoft Research.

However, a critical challenge in sustainably growing model
size is its increasingly demanding computation requirement.

To tackle the high compute requirements of LLMs, the
Mixture-of-Experts (MoE) [37] model was suggested as an
alternative to the previous dense LLMs [3], [5], [29], [39]. The
power of MoE comes from its ability to scale up the model
capacity by increasing the number of expert parameters within
an MoE block. Despite the increase in model parameter size,
however, MoE utilizes a gate function to only partially activate
the experts in a sparse manner, allowing them to achieve sub-
linear compute cost with respect to model capacity. In contrast,
prior dense LLMs activate the entire model parameters for
inference and cause its compute cost to scale quadratically
to model size, incurring significant computation overhead.
Despite its merits, a critical challenge of MoE is its large
memory requirement and the dynamically activated sparse
experts which cause high deployment cost, rendering MoE’s
applicability in real-world problems to be limited.

1) Large memory requirement of experts. While sparsely
activating model parameters (i.e., the experts) helps
reduce compute cost to achieve the same model quality
as their dense LLM counterparts, MoEs require signifi-
cantly larger memory to accommodate the large number
of experts. For instance, an MoE-based Google Switch-
Transformer [8] can have up to 75× more parameters
than the FLOPs-equivalent dense T5 model [29]. In other
words, MoEs have a much lower memory-efficiency vs.
dense LLMs, bringing critical system-level challenges in
deploying MoE-based LLMs. To accommodate MoE’s
large model size under GPU’s limited memory size,
multiple GPUs can be utilized for deploying MoE where
expert parallelism is employed to distribute the expert
parameters across the GPUs to store only a portion of
the experts for inference [18], [19], [30].

2) Dynamic and sparse activation of experts. Although
multi-GPU solutions can distribute expert parameters
across the GPU memory, MoE only partially activates
a subset of the experts in a sparse manner [37]. This
makes the number of experts actually utilized per each



GPU to become either very small or non-existent (i.e.,
none of the experts in a GPU are activated, leaving GPU
idle) [21]. Furthermore, the sparse expert activation is
dynamically decided at runtime, making it difficult to
anticipate how many experts will be activated in each
GPU. As such, the effective computation conducted over
each GPU becomes low, exhibiting low GPU compute
utilization and aggravating the total cost of ownership
(TCO) for deployment.

Prior work on deploying MoE seeks to address these
dual challenges by offloading MoE’s memory hungry expert
parameters into CPU memory or SSD [1], [14], [18], [38]
(referred to as MoE-offload below). The benefit of MoE-
offload is that it reduces the number of GPUs required for
deploying MoE, which helps increase the GPU’s compute
efficiency for inference. Offloading MoE parameters, however,
is no silver bullet as it comes with a significant increase in
inference latency, deteriorating quality of service (QoS) to
end users. This is because CPU offloading can only resolve
MoE’s large memory requirement without addressing the data
dependency issue that arises with dynamic sparse activation,
a unique characteristic of the MoE. In an MoE block, there
exists a sequential dependency between (1) the “selection” of
which experts should be activated (using MoE’s gate function),
and (2) the “execution” of activated experts for inference.
Because such data dependency is dynamically resolved by the
input data, the two-stage process of (1) expert selection and
(2) expert execution must be serialized back-to-back. Conse-
quently, the latency to migrate the activated expert parameters
from CPU to GPU cannot be hidden under MoE-offload and
causes severe performance overheads, failing to address the
aforementioned challenges of deploying MoE (Section III-B).

In this work, we propose Pre-gated MoE, an algorithm-
system co-design that enables MoE inference to incur low
GPU memory consumption while still achieving high perfor-
mance, substantially reducing TCO. We briefly summarize the
key contribution and novelty of our Pre-gated MoE below.

• (Algorithm) In conventional MoE architectures, the gate
function in the N-th MoE block selects the experts to
activate which will then be executed within the same N-
th MoE block. In our proposed design, we modify the
role of a gate function to preemptively select the experts
to be activated for the next MoE block (hence its new
name, the pre-gate function). More concretely, the pre-
gate function in the N-th MoE block selects the experts to
activate for the (N+1)-th MoE block. The novelty of our
pre-gate function lies in its ability to completely eliminate
the sequential dependency between the expert selection
and expert execution stage within any given MoE block
(i.e., data dependency now exists across the N-th MoE
block’s expert selection and the (N+1)-th block’s expert
execution), which our proposed system effectively utilizes
for performance optimization as detailed below.

• (System) Similar to prior MoE-offload systems, our Pre-
gated MoE stores the memory capacity limited expert

parameters in CPU memory and reduces the number of
GPUs required for inference. Unlike MoE-offload, our
Pre-gated MoE utilizes the pre-gate function to overlap
the CPU→GPU expert migration latency with the expert
execution stage, minimizing the expert migration’s impact
on performance. Specifically, Pre-gated MoE utilizes the
N-th pre-gate function to identify the set of experts
to activate for the (N+1)-th MoE block, in advance,
effectively prefetching only the activated experts to the
GPU in preparation for the (N+1)-th block’s execution
while concurrently going through the expert execution for
the N-th MoE block.

We evaluate our Pre-gated MoE system using state-of-
the-art MoE models, achieving comparable or even higher
model accuracy compared to the original MoE model across a
wide range of natural language processing (NLP) tasks (e.g.,
summarization, and question answering). At the same time,
decoupling the expert selection vs. expert execution stage
provides our Pre-gated MoE to significantly reduce end-to-end
inference latency, only adding 23% performance overhead than
the oracular, performance-optimal GPU-only solution that can
store the entire MoE parameters in GPU memory. Pre-gated
MoE also reduces peak GPU memory consumption by 4.2×
vs. GPU-only, allowing the deployment of larger LLMs within
a single GPU. Overall, our Pre-gated MoE system presents
a fast, scalable, and cost-effective solution for serving MoE-
based LLMs.

II. BACKGROUND

A. Dense LLMs using Transformers
Transformer model architecture. Transformer models [42]

have become the dominant approach in designing ML ap-
plications for natural language processing (NLP), due to
their ability to capture long-range dependencies and complex
patterns in data [6], [39]. There are two primary ways in
which a transformer model is structured: an encoder-decoder
architecture [29] and a decoder-only architecture [3]. An
encoder-decoder architecture consists of an encoder module
that processes the input data (sequence of input tokens) and a
decoder module that generates the output (an output token
per decoder). The decoder-only architecture on the other
hand implicitly incorporates the encoding process within the
transformer blocks, eliminating the need for a separate encoder
module. Regardless of which architecture is employed, both
encoder-decoder and decoder-only architectures employ the
following key components of transformers: the self-attention
layer, the position-wise feed-forward networks (FFN) layer,
normalizations, and residual connections, as shown in Fig-
ure 1(a). Self-attention helps determine the inter-word rela-
tionships and their dependencies within a sequence, whereas
the FFN layer applies non-linear transformations to capture
complex patterns in the input data. Both self-attention and
FFN account for a significant portion of computation as well
as memory requirements of transformer models.

Challenges in scaling dense LLMs. The success of trans-
former based dense LLMs has primarily been driven by scaling
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(a) Dense transformer block.
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(b) Sparse MoE block.

Fig. 1: (a) A dense transformer block that consists of the self-
attention layer, feed-forward networks (FFN) layer, normalizations,
and residual connections. (b) An MoE block that replaces a conven-
tional transformer block’s FFN layer to induce sparsity. The example
assumes the MoE block has four expert layers. Each expert has
the same dimension as the FFN layer of the corresponding dense
transformer block.

up the model’s capacity (i.e., model size) by stacking a
series of transformer blocks [17], [28], providing higher model
accuracy. However, a key challenge in sustainably growing
model capacity is its increasingly demanding compute and
memory cost, for both training and inference. In particular,
as the size of the LLM increases, the demands on compute
and memory grow quadratically, making it challenging to fit
the model within the memory constraints of modern GPUs
while also maintaining high compute efficiency [40]. Further-
more, the energy costs associated with training these LLMs
are increasing significantly, raising serious concerns on the
environmental impact of training and serving LLMs [27], [44].

B. Sparse LLMs using Mixture-of-Experts (MoE)

MoE model architecture. To address the high computa-
tional requirements of dense LLMs, the Mixture-of-Experts
(MoE) [7], [8], [11], [37], [41] model was introduced which
exploits sparsity in the model architecture to reduce LLM’s
high computation cost. MoE is designed to mimic the behavior
of the human brain, which consists of specialized regions that
are tailored for specific tasks. By sparsely activating only a
subset of the parameters, MoE is able to scale up the model
size without a corresponding increase in its computation cost
(FLOPs).

Figure 1(b) illustrates the model architecture of an MoE
block, which is converted from the dense transformer block
in Figure 1(a) by replacing the original FFN layer in the
transformer block with an MoE block. The MoE block consists
of two key components: the gate function and the expert layer.
The gate function is responsible for determining the relevance
of each expert for a given input token, thereby assigning
probabilities to each expert based on their importance to the
specific input. The expert layer, on the other hand, is a dense
FFN layer that focuses on processing distinct patterns in the
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Fig. 2: Required number of FLOPs per sequence in deploying Switch-
Transformer (MoE) and T5 (dense). In this figure, we show both
the “Base” and “Large” model versions of SwitchTransformer and
its FLOPs-equivalent T5 (Section V details the model configurations
studied in this work). The numbers represent how many experts are
available within the MoE block (i.e., dense T5 is equivalent to having
just a single expert).

input data. During model inference, the gate function selects
which experts should be activated for each input token based
on their assigned probabilities. Subsequently, the activated
experts process the input tokens by executing the assigned
input tokens and generate the output tokens. As such, the
evaluation of an MoE block involves a two-stage process,
(1) expert selection and (2) expert execution, an input data-
dependent procedure that must be executed sequentially.

In state-of-the-art MoE models, the number of experts that
are activated is generally very small (e.g., Google’s Switch-
Transformer [8] and Meta’s NLLB-MoE [41] only activates
the top-1 and top-2 experts, respectively), rendering MoE’s
inference to exhibit high sparsity.

Computation cost of sparse MoE vs. dense LLMs. MoE’s
compute efficiency is achieved by selectively activating a small
subset of the experts for each input token, instead of densely
connecting all layers and neurons in the model. Figure 2 com-
pares the required number of FLOPs per sequence between
a representative sparse MoE model (Google’s SwitchTrans-
former [8]) and its dense model counterpart with an iso-FLOPs
count (Google’s T5 [29]). As shown, the computation cost of
MoE remains constant, regardless of the number of experts
(i.e., the model size), highlighting the fact that MoE can scale
up the model’s capacity with minimal computation overheads.

III. MOTIVATION

A. Key Challenges of MoE inference

While MoE offers advantages in scaling the LLM model
size without significantly increasing its computation cost, it
introduces several key challenges as summarized below.

1) Large memory footprint. The biggest advantage of
MoE is its high compute efficiency, which comes from
its ability to cost-effectively scale the model capacity
by employing a large number of experts. This, however,
comes at the cost of high memory consumption, leading
MoE’s overall memory footprint to become an order
of magnitude larger than its dense counterpart, e.g.,
SwitchTransformer can consume as much as 75× higher
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Fig. 3: Memory capacity requirement of deploying SwitchTrans-
former (MoE) and T5 (dense). MoE parameters include both the
expert layer and the gate function, while the rest of the layers are
marked as Non-MoE parameters. As depicted, MoE expert parameters
account for the majority of the model’s memory consumption.

memory consumption than the dense T5 (Figure 3).
Such large memory usage poses several obstacles for
MoE, one critical challenge being its inability to fit the
model within a single GPU’s local memory which is
only several tens of GBs in size.

2) Dynamic and sparse expert activation. Because it is
challenging to store the entire MoE model parameters
within a single GPU, multi-GPU solutions that split the
expert parameters across multiple GPU’s memory can be
a viable solution for high-performance MoE inference.
Unfortunately, because MoE only partially activates the
experts in a sparse manner, the number of experts
actually executed by each GPU for inference becomes
very low. In effect, multi-GPU solutions for deploying
MoE suffer from low GPU compute utilization and
deteriorate the TCO. Furthermore, because MoE experts
are sparsely activated, a significant fraction of expert
parameters allocated inside the expensive GPU memory
is most likely not going to be utilized when servicing
any given inference request (e.g., SwitchTransformer
activating top-1 among the 128 experts executes only
0.8% of its experts per inference). Finally, because the
sparsely activated experts are determined dynamically in
an input data dependent manner, it becomes challenging
to predict which experts will be activated at runtime, pre-
venting any load-balancing solutions to better distribute
the number of activated experts across the GPUs in an
even manner. Since GPU’s limited memory capacity was
the very reason why a multi-GPU system was necessary
for deploying MoE, such sub-optimal utilization of GPU
memory is a significant waste.

B. Prior Solution: CPU Offloading of Expert Parameters

The challenge of efficiently managing LLM’s large model
size within the constraints of limited GPU memory has led
to several prior work advocating to offload the memory
hungry LLM parameters to CPU DRAM or even SSD [31],
[35]. These CPU offload based approaches have also been
explored under the context of MoE in order to address its
aforementioned challenges, i.e., its large memory footprint

and high deployment cost [1], [14], [15], [38]. Although CPU
offload based solutions can help reduce the number of GPUs
required for servicing MoE, the latency to transfer the CPU
offloaded model parameters to the GPU memory can dete-
riorate end-to-end performance. This is because none of the
prior work fundamentally addresses the dynamic and sparse
expert activation challenge and its sequential dependency
issue. Below we classify prior CPU offload based solutions
into two categories, (1) fetch-on-demand and (2) prefetch-all,
discussing its benefits as well as its limitations.

Fetch-on-demand. This design point [15] employs the
fetch-on-demand based CPU offloading for MoE serving. Un-
der this system design, all the expert parameters are offloaded
to the capacity-optimized CPU memory. At runtime, once the
expert selection stage identifies which experts are activated,
those activated experts are migrated to the GPU memory on-
demand. Because GPU memory is only used to store the
activated experts (and not the entire experts as done in a
baseline multi-GPU system), it helps improve GPU memory
utilization significantly. However, the process of migrating
activated experts on-demand serializes the expert selection
stage with the expert execution stage, causing noticeable
performance overhead. In the rest of this paper, we refer to
this design point as MoE-OnDemand.

Prefetch-all. To better hide the CPU→GPU expert transfer
latency, prior work on SE-MoE [38] proposes a prefetching
based CPU offloading for MoE, where the expert parameters
are proactively migrated to the GPU memory before its actual
usage (henceforth referred to as MoE-Prefetch). Similar to
MoE-OnDemand, MoE-Prefetch offloads all expert parameters
in CPU memory. MoE-Prefetch then migrates the entire expert
parameters to be used by the next MoE block while the
current MoE block’s expert execution is taking place. While
MoE-Prefetch can help overlap compute (current MoE block’s
expert execution) with communication (transferring all experts
required for the next MoE block), it suffers from several
limitations. First, MoE-Prefetch is not scalable as CPU→GPU
expert transfer time can be prohibitive when there exists a
large number of experts (e.g., Google’s SwitchTransformer [8]
contains up to 256 experts, while Meta’s NLLB-MoE [41]
employs 128 experts). Second, at any given MoE block’s
execution, the GPU memory must be large enough to store
both the current as well as the next MoE block’s entire expert
layer parameters, potentially overwhelming the scarce GPU
memory. To mitigate the significant GPU memory demands
required for transferring entire expert parameters, one could
consider prefetching only a subset of experts predicted to
be active in the next block. Nonetheless, predicting active
experts does not always ensure accuracy, and mispredictions
can lead to penalties such as waste of GPU memory and
the unavoidable serialization of expert transfer latency, con-
sequently increasing the end-to-end inference latency.

Aside from these prior works focusing on CPU offload-
ing decisions for MoE inference, [14] characterizes MoE
deployment’s inference latency and its memory usage across
different components of the MoE model architecture, suggest-
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ing several optimization strategies like dynamic gating and
expert buffering. Dynamic gating helps reduce wasted memory
allocations for multi-GPU MoE inference and expert buffering
is a technique that can help reduce inference latency by
caching hot, active experts in GPU memory. In Section VI-D,
we further discuss the applicability of expert caching on top
of MoE-offload design points.

Overall, we conclude that the inherent sequential depen-
dency between the expert selection and expert execution stage
poses several challenges in designing a performance-efficient
CPU offloading based MoE system. The key objective of this
paper is to exploit the dynamic and sparse nature of MoE
models to design a holistic system solution that effectively
balances memory efficiency and high performance.

IV. PRE-GATED MOE: CO-DESIGNING ALGORITHM AND
SYSTEM FOR FAST & SCALABLE MOE INFERENCE

A. High-level Overview

We propose Pre-gated MoE, an algorithm-system co-design
for scalable and high-performance MoE inference. Pre-gated
MoE is designed to address the large memory footprint
challenge of MoE while also mitigating the dynamic nature
of sparse expert activation for performance improvement.
These features enable our Pre-gated MoE to deploy large-
scale LLM using just a single GPU. Because activated experts
are determined dynamically in an input dependent manner, all
expert parameters must be preserved at all times, regardless
of its actual utilization. To efficiently manage the storage of
MoE’s substantial model capacity, Pre-gated MoE carefully
considers the model parameter’s actual utility to decide their
storage locations. As shown in Figure 4, the dense non-MoE
parameters are stored locally within the GPU memory as they
are always utilized, regardless of the input values. Meanwhile,
the sparse MoE parameters are completely offloaded to the
CPU’s DRAM because (1) they account for the majority of
LLM’s model capacity so CPU offloading can help signif-
icantly save GPU memory, and (2) only a small fraction
of the MoE experts that are activated are actually utilized
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Fig. 5: Two consecutive MoE blocks employing our proposed pre-
gate function. For brevity, we only provide a detailed illustration on
the MoE blocks (the rest of the non-MoE layers are consolidated into
a single block in this figure). The residual paths within a transformer
block are not shown. As depicted, a pre-gate function is trained to
select which experts to activate for the next MoE block.

for inference. As we detail in this section, such hierarchical
storage of MoE parameters and its deployment proves effective
in minimizing the usage of GPU memory while still providing
high performance.

As discussed in Section III-B, prior work has followed
two main approaches, MoE-OnDemand and MoE-Prefetch.
Because traditional MoE blocks must sequentially execute
expert selection followed by expert execution in an input data
dependent manner, both MoE-OnDemand and MoE-Prefetch
suffer from sub-optimal performance. In particular, MoE-
OnDemand directly exposes the CPU→GPU communication
latency to migrate activated experts as part of end-to-end
inference time. This is because expert execution must always
be preceded with the expert selection stage. MoE-Prefetch can
hide the communication latency to transfer expert parameters
to some extent, but it still suffers from performance loss
because all expert parameters must be transferred to the GPU,
even though only a small fraction of them will actually be
utilized for inference.

The key objective of Pre-gated MoE is to mitigate the
impact of the MoE block’s dynamically determined sparse
expert activation and utilize that property for performance
improvement. Specifically, Pre-gated MoE introduces a new
gate function that decouples the expert selection stage from
the expert execution stage. The benefit of decoupling expert
selection with expert execution is twofold. First, it enables our
system to significantly reduce the latency to migrate experts
from CPU to GPU as only the activated experts will be
migrated under our proposed design. Second, the performance
overhead of migrating the activated experts can be effectively
hidden by overlapping it with MoE block’s computation. In
the remainder of this section, we detail the two key facets of
our algorithm-system co-design.

B. (Algorithm) Pre-gated MoE Architecture

Pre-gate function. In traditional MoE model architectures,
each MoE block contains a gate function which selects the
experts to activate within the same MoE block. Because only
those experts that are activated are subject to the subsequent
expert execution stage, it is impossible to overlap the expert
selection stage with the expert execution stage. In our proposed
MoE model architecture, we introduce the pre-gate function
which is trained to preemptively select the experts to activate



Expert 1

Expert 2

Expert 3

Expert 0
N
o
n
-M

o
E

la
ye
r

Decoder iteration 0

Fi
rs
t

ga
te

P
re
-

ga
te

Expert 1

Expert 2

Expert 3

Expert 0

N
o
n
-M

o
E

la
ye
r

P
re
-

ga
te

Expert 1

Expert 2

Expert 3

Expert 0

N
o
n
-M

o
E

la
ye
r

La
st

ga
te

Expert 1

Expert 2

Expert 3

Expert 0

N
o
n
-M

o
E

la
ye
r

Decoder iteration 1

Fi
rs
t

ga
te

P
re
-

ga
te

Expert 1

Expert 2

Expert 3

Expert 0
N
o
n
-M

o
E

la
ye
r

P
re
-

ga
te

Expert 1

Expert 2

Expert 3

Expert 0

N
o
n
-M

o
E

la
ye
r

La
st

ga
te

Fig. 6: The sequence of pre-gated MoE block’s execution during the
course of two consecutive decoder iterations. We assume the LLM
consists of three pre-gated MoE blocks, requiring three MoE block
executions for a single iteration of decoding. The first MoE block
employs two gate functions (one for the current MoE block and
another for the next MoE block) whereas the last MoE block does
not utilize any gate function.

for the next MoE block rather than the current MoE block.
More concretely, a pre-gate function for the N-th MoE block
is trained to generate the activation masks to utilize in the
(N+1)-th MoE block to select which experts to activate (Fig-
ure 5). Prior work has explored alternative ways to train gate
functions, which are fine-tuned for specific objective functions
such as enhancing the model accuracy and alleviating the
input token’s load-imbalance problem when distributed across
multiple GPUs [8], [20], [36], [46], [47]. The approach taken
with our Pre-gated MoE is aligned with these prior art but with
one important distinction – our pre-gate function is designed
to deterministically select and pre-compute which experts to
activate for the subsequent MoE block. As we demonstrate in
Section VI-C, our pre-gate function has a minimal impact on
LLM’s model accuracy and is shown to be highly robust.

Since our pre-gate function is trained to select the active
mask for the next MoE block, two important questions remain:
(1) How does our Pre-gated MoE architecture select the
experts to activate for the first MoE block (i.e., the first
MoE block does not have a previous MoE block that will
select the experts to activate on behalf of the first block)? (2)
What is the role of the pre-gate function for the last MoE
block (i.e., the last MoE block does not have a subsequent
MoE block)? We answer these questions using Figure 6. In
conventional MoE-based LLMs, a single decoder iteration
generates a single output token (word) and multiple iterations
of decoding are conducted during a single inference run to
generate the final output result (which is a series of tokens).
As shown in Figure 6, a single decoder iteration involves the
execution of several stacks of MoE blocks. In our proposed
MoE design, the first MoE block employs two gate functions,
the first gate selecting the activated experts for the first MoE
block (identical to conventional MoE architectures) and the
second gate (our pre-gate function) selecting the experts to
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Fig. 7: Our pre-gate function helps eliminate the sequential depen-
dency between an MoE block’s expert selection and expert execution
stage. The gate function is implemented as a compact MLP layer
having low computation requirement, so the preemptive migration of
activated experts right after the gate function (blue) exhibits a PCIe
communication-bound behavior. Overall, our Pre-gated MoE enables
the compute-bound expert execution stage (green) to concurrently
execute with the communication-bound expert selection stage (blue)
for all MoE blocks (with the exception of the first MoE block).
Example assumes that expert 0 and 2 are activated for the first MoE
block while expert 1 and 3 are activated for the second MoE block.

activate for the second MoE block. Conversely, because the
last MoE block does not have a subsequent MoE block to
execute within the same decoder iteration, we do not employ
a pre-gate function for the last MoE block. In effect, the pre-
gate function does not select activated experts across different
decoder iterations.

Training the pre-gate function. Today’s LLMs are first
pretrained on vast amounts of textual data which spans a wide
variety of languages and application domains. The pretraining
stage requires a massive amount of computation power (sev-
eral tens of thousands of GPUs) and typically takes several
months to complete (e.g., GPT-3 is pretrained over hundreds
of billions of tokens for more than one month using thousands
of GPUs [3]). Once the LLM is pre-trained, it goes through
the fine-tuning stage with task-specific datasets for specific use
cases (e.g., summarization, question answering). Training our
Pre-gated MoE does not change how the resource-intensive
pretraining stage is conducted, as our pre-gate functions are
incrementally trained during the fine-tuning stage. Specifically,
we utilize existing pretrained MoE model parameters as-is but
change the MoE model architecture to properly accommodate
the functionalities of our pre-gate function as well as the aug-
mentations required in the first/last MoE block (see Figure 6).
We then go through the fine-tuning stage as required by the
downstream task, identical to how conventional MoE models
will be fine-tuned in a task specific manner. When our Pre-
gated MoE is fine-tuned over the same number of fine-tuning
training iterations vs. conventional MoE models, we observe
no noticeable degradation in LLM model accuracy, one which
we further elaborate in Section VI-C.

C. (System) Preemptive Expert Migration

Our pre-gate function provides MoE models with the abil-
ity to determine what experts will be activated in the next



(b)(a)

Expert 0

Expert 1

Expert 3

P
re

-g
at

e

P
re

-g
at

e

P
re

-g
at

e

Block 0 Block 1

Expert 2Expert 2

Expert 0

1

Expert 1

Expert 3

2

HBM

GPU

DDR

CPU

Expert 0

Expert 2

1

2
Expert 1

Expert 3
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over to the GPU memory. (b) The on-demand migration of just the
activated experts (green) allows the entire experts to be stored in CPU
memory (blue), significantly saving GPU memory capacity.

MoE block while the current MoE block is being executed,
presenting new opportunities for system-level performance
optimizations. In particular, with the exception of the first
MoE block, all MoE block’s expert execution stage is now
completely decoupled from the expert selection stage without
any data dependencies, allowing both stages to be concurrently
executed (Figure 7)1. Such feature opens up several opportu-
nities as detailed below.

CPU offloading with minimal expert migration over-
head. A key limitation of previous CPU offloading solutions
is that the latency to migrate the CPU-offloaded expert pa-
rameters is either directly exposed as part of the end-to-end
inference time (MoE-OnDemand) or the size of the migrated
experts are simply too large that, despite its opportunity to
overlap expert migration with the expert execution, copying
the experts overwhelms the end-to-end performance (MoE-
Prefetch). Our Pre-gated MoE, on the other hand, can evaluate
which experts will be activated in advance, only migrating the
activated experts for the next MoE block while the current
MoE block’s experts are being executed. This effectively
addresses the dual challenges of prior CPU offloading tech-
niques, namely (a) MoE-OnDemand’s serialization of expert
selection and expert execution (resolved by Pre-gated MoE’s
concurrent expert migration and expert execution) and (b)
MoE-Prefetch’s large expert migration latency (tackled by Pre-
gated MoE’s ability to only migrate activated experts). State-
of-the-art MoE models employ a large number of experts
within an MoE block while only activating a very small subset
of them (e.g., Google’s SwitchTransformer [8] contains up to
256 experts but only activates the top-1 expert, while Meta’s
NLLB-MoE [41] employs 128 experts and activates top-2
experts). As depicted in Figure 8, we can clearly see the benefit
of how our algorithm-system codesign can effectively address
the limitations of existing CPU-offloading solutions, maximiz-

1The first MoE block is the only exception to this property under our Pre-
gated MoE design – due to the lack of a pre-gate function in the first MoE
block, we must sequentially execute its expert selection and expert execution
stages, identical to conventional MoE models. Because state-of-the-art LLMs
typically contain tens of MoE blocks, most of the MoE blocks are able to
overlap expert selection with expert execution.
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Fig. 9: Execution timeline between our Pre-gated MoE system
and three baseline designs (GPU-only, MoE-OnDemand, and MoE-
Prefetch). The black bar represents the latency to execute the gate
functions. GPU-only is an ideal, oracular design point that has infinite
GPU memory capacity, allowing the entire model parameters to be
stored within GPU memory (i.e., there is no communication latency
to migrate experts from CPU to GPU). In our Pre-gated MoE, the
latency to migrate experts can be hidden by both the expert and non-
MoE layer’s (e.g., self-attention layer) execution time.

ing the opportunity to overlap expert migration latency with
expert execution time while also ensuring that the CPU→GPU
data transfer size is minimized. Figure 9 points out the
limitations of MoE-OnDemand and MoE-Prefetch and how
our Pre-gated MoE successfully addresses its shortcomings,
potentially reaching the performance of an ideal, GPU-only
design point when the latency to migrate activated experts can
be completely hidden inside the MoE expert execution stage.

∀ N, 0 ≤ N < Number o f MoE blocks

Peak GPU mem = max

(
Non MoEM +

N+1

∑
L=N

Act ExpL

)
(1)

Low GPU memory utilization for large LLM deploy-
ment. The majority of MoE-based LLM’s model capacity
are concentrated around MoE parameters. Since our Pre-
gated MoE system offloads the entire MoE parameters to
CPU memory and only migrates activated experts over to
the GPU, we are able to significantly reduce the peak usage
of GPU memory. In our Pre-gated MoE system, peak GPU
memory usage is primarily dominated by the memory capacity
required to store (1) all the non-MoE parameters (which are
statically stored in GPU memory) and (2) the active experts for
both the current and the subsequent MoE block (dynamically
determined at runtime and copied over to the GPU memory).
Equation 1 summarizes the peak GPU memory usage to store
MoE-based LLM’s model parameters under Pre-gated MoE.

In this equation, Non MoEM represents the total size of
the non-MoE parameters while ∑

N+1
L=N Act ExpL represents

the aggregate size of the active expert parameters over two
consecutive (the N-th and (N+1)-th) MoE blocks. Since expert
parameters account for the majority of MoE-based LLM’s
model size (see Figure 3) and only a small fraction of experts



TABLE I: Model configuration of Google’s SwitchTransformer.
Model Experts Layers Parameters (B) Capacity (GB)

Switch-Base
8 12 0.7 2.8

64 12 3.8 15.2
128 12 7.5 30.0

Switch-Large 128 24 26.4 105.6

are activated during inference, the peak GPU memory usage in
Equation 1 becomes much lower than GPU-only and can also
reach the memory consumption level of the memory-optimal
MoE-OnDemand design. A key advantage of reducing peak
GPU memory usage is that it facilitates the deployment of con-
siderably larger LLMs on systems with limited GPU memory
resources (e.g., desktop and edge devices). In Section VI-B,
we demonstrate Pre-gated MoE’s scalability and applicability
for deploying large-scale LLMs.

V. METHODOLOGY

System configuration. We conducted our evaluation using
two system design points, GPU-only and CPU-GPU, which
utilize an AMD EPYC 7V12 64-Core CPU with 1.8TB DDR4
memory and a single NVIDIA GPU A100 with 80GB of
HBM. The CPU and GPU communicate over a PCIe (gen4)
channel with 32 GB/sec of data transfer bandwidth.

The oracular GPU-only design assumes the entire model
parameters are stored in GPU memory, so the all computations
for inference are conducted on the GPU. Note that multi-
GPU solutions leveraging expert parallelism can experience
performance loss due to inter-GPU communications and load
imbalance issues. For a conservative evaluation, we experiment
with our GPU-only system under a single GPU system that
can achieve the highest performance. As such, GPU-only
represents a performance-optimal, upper-bound MoE inference
system that we compare our Pre-gated MoE against.

The CPU-GPU design, on the other hand, utilizes both GPU
and CPU memory for storing the model parameters where
only the (dense) non-MoE parameters are persistently stored
within the GPU memory while the (sparse) MoE parameters
are completely offloaded to CPU memory (Figure 4). Our Pre-
gated MoE system as well as the two baseline CPU offloading
MoE systems (MoE-OnDemand and MoE-Prefetch) employ
such CPU-GPU system configuration.

Model and dataset. We use Google’s SwitchTrans-
former [8] as the baseline MoE for our evaluations, a state-of-
the-art large-scale MoE model. The open-sourced pretrained
weights available at HuggingFace [43] were utilized to fine-
tune both Pre-gated MoE as well as the baseline MoE model
for downstream tasks (Table I). As for the training data, we
study three datasets covering two distinct downstream tasks:
one from the summarization task (Xsum [23]) and two from
the closed-book question answering task (CB Web QA [2],
SQuAD [32]). The evaluation metrics included Rouge-1 and
Rouge-2 scores [22] for summarization, and ExactMatch and
F1 scores for question answering.

Model training (fine-tuning). We applied the exact same
fine-tuning configurations across all model architectures in-
cluding Pre-gated MoE and conventional MoE. As discussed
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Fig. 10: Average latency incurred in executing a single MoE block
(normalized to GPU-only). Since GPU-only experiences an out-of-
memory (OOM) error in Switch-Large, we normalized the latency of
MoE-OnDemand and MoE-Prefetch to Pre-gated MoE. Note that the
y-axis in this chart is plotted in log-scale.

in Section IV-B, the fine-tuning stage utilizes the pre-trained
weights from the conventional MoE model. We utilize a mini-
batch containing 256 sequences, each with a length of 256
tokens, to fine-tune the model for 2,048 steps (i.e., 227 tokens
in aggregate). A constant learning rate of 0.0001 is employed.

Software implementation. All of our GPU-only and CPU-
GPU systems are implemented using NVIDIA’s FasterTrans-
former [25], a state-of-the-art high-performance CUDA library
widely employed in production inference servers in the indus-
try. Because end-to-end inference performance is less sensitive
to what the downstream task the MoE model is trained for,
we report performance numbers using the MoE model fine-
tuned for the closed-book question answering tasks with the
SQuAD dataset. When reporting model accuracy, we use the
two downstream tasks as discussed above.

VI. EVALUATION

In this section, we first demonstrate Pre-gated MoE’s effec-
tiveness in improving performance (Section VI-A) and discuss
its scalability to large-scale MoE models (Section VI-B).
We then quantitatively evaluate Pre-gated MoE’s impact on
model accuracy (Section VI-C) and finally present sensitivity
studies as a discussion point (Section VI-D), demonstrating
the robustness of Pre-gated MoE.

A. Performance

In this section, we primarily focus on single batch inference
scenarios because real-world production ML serving systems
are optimized for a batch size of 1 [9], [10], [34]. As
discussed in Section IV-B, the end-to-end performance of CPU
offloading solutions are primarily determined by how well
the CPU→GPU communication time (to migrate experts) is
hidden inside the MoE block’s execution time. Furthermore,
the end-to-end MoE inference time is mostly dominated by a
series of (identically sized) MoE block’s execution. As such,
we first focus on comparing a single MoE block’s execution
time between Pre-gated MoE vs. baseline systems. We then
discuss the improvements in end-to-end inference throughput,
measured as the number of tokens processed per second.

MoE block latency. Figure 10 summarizes the average
latency in executing a single MoE block. Across all config-
urations, Pre-gated MoE significantly reduces latency by an
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Fig. 11: End-to-end inference throughput. GPU-only experiences an
out-of-memory (OOM) error in Switch-Large.

average 1.7× (max 1.9×) and 42× (max 125×) vs. MoE-
OnDemand and MoE-Prefetch, respectively. Pre-gated MoE
also exhibits comparable latency to the performance-optimal
GPU-only, incurring only 19% latency overhead across all
Switch-Base model configurations. Because MoE-Prefetch
must migrate all experts, it suffers from the highest latency
where the larger number of experts directly translates into
higher performance overheads. MoE-OnDemand does better
than MoE-Prefetch, thanks to its ability to only migrate
activated experts. However, MoE-OnDemand still suffers from
longer latency than Pre-gated MoE due to the serialization of
expert selection and expert execution stages.

It is worth pointing out that the performance-optimal GPU-
only is unable to run the largest MoE model, i.e., Switch-Large
with 128 experts (105.6 GB), due to the limitations in GPU
memory capacity, resulting in an out-of-memory (OOM) error.
Pre-gated MoE still shows the shortest latency among the three
CPU-GPU based designs with Switch-Large, achieving 1.9×
and 125× latency reduction than MoE-OnDemand and MoE-
Prefetch, respectively.

End-to-end inference throughput. Figure 11 shows the
end-to-end inference throughput across all model configu-
rations. Pre-gated MoE achieves an average 111 tokens/sec
throughput over all Switch-Base model configurations, an
average 1.5× (max 1.6×) and 27× (max 55×) improve-
ment over MoE-OnDemand and MoE-Prefetch, respectively.
Furthermore, Pre-gated MoE is able to achieve 81% of the
throughput of oracular GPU-only solution, demonstrating its
superior cost-effectiveness. As for the Switch-Large model
with 128 experts, Pre-gated MoE achieves 42 tokens/sec
of throughput which is 1.6× and 52× higher than MoE-
OnDemand and MoE-Prefetch, respectively.

B. Scalability

As discussed in Section II-B, the majority of MoE’s model
size is dominated by expert parameters yet only a small frac-
tion of the experts are actually activated for execution. Con-
sequently, judiciously allocating GPU memory for efficient
usage becomes vital in minimizing GPU’s peak memory usage
which helps deploy large-scale LLMs. Figure 12 compares the
peak GPU memory usage of Pre-gated MoE against baseline
systems to demonstrate Pre-gated MoE’s scalability.

Among the four designs, GPU-only shows the highest peak
memory usage because it solely relies on GPU memory to

0.0

0.2

0.4

0.6

0.8

1.0

1.2

8-experts 64-experts 128-experts 256-experts 128-experts

Switch-Base Large

P
e

ak
 G

P
U

 m
e

m
o

ry
 u

sa
ge

(n
o

rm
al

iz
e

d
)

GPU-only Pre-gated MoE MoE-OnDemand MoE-Prefetch

O
O

M

Fig. 12: Peak GPU memory consumption (normalized to GPU-only).
We additionally evaluate Switch-Base with 256 experts to further
demonstrate Pre-gated MoE’s scalability in deploying larger MoE-
based LLMs. For the Switch-Large with 128 experts, GPU-only
suffers from an OOM error, so we normalized the memory usage
of Pre-gated MoE and MoE-OnDemand to MoE-Prefetch.

TABLE II: Effect of our pre-gate function on the model accuracy of
Google’s SwitchTransformer. R1 and R2 represent the Rouge-1 and
Rouge-2 scores, respectively. For all score metrics, higher is better.

Xsum CB Web QA SQuAD
R1 R2 ExactMatch F1 ExactMatch F1

Base-8 34.6 13.0 26.0 30.9 77.4 85.8
Pre-gated 34.7 13.0 28.2 32.6 78.2 86.0
Base-128 38.1 16.6 27.4 33.1 81.7 89.2
Pre-gated 38.0 16.5 25.8 32.2 82.2 89.4
Large-128 40.2 18.8 31.0 36.5 82.4 90.1
Pre-gated 40.1 18.6 30.5 36.2 81.9 90.2

allocate all of its model parameters and input/output activa-
tions. All three CPU-GPU systems are able to significantly
reduce peak GPU memory usage, as the memory hungry
expert parameters are offloaded to the CPU memory. Also,
notice how the GPU memory usage gap between GPU-
only and the three CPU offloading based CPU-GPU designs
gradually increases as the number of experts are increased.
This is because the larger the number of experts are available
within an MoE block, the more GPU memory savings the
CPU offloading will provide. MoE-Prefetch, however, still
consumes an average 51% of GPU-only’s peak GPU memory
usage because it always migrates the entire expert parameters
to GPU memory. The memory-optimal MoE-OnDemand does
much better than MoE-Prefetch as it only migrates activated
experts on-demand, showing the lowest peak GPU memory
utilization. Our proposed Pre-gated MoE system is able to
consume only 23% of GPU-only’s peak GPU memory usage
while only incurring 0.2% more GPU memory consumption
vs. the memory-optimal MoE-OnDemand.

Overall, these results demonstrate that Pre-gated MoE
is capable of reaching the performance provided with the
performance-optimal GPU-only (Figure 11) while also achiev-
ing the resource-efficiency of the memory-optimal MoE-
OnDemand, achieving high scalability to deploy large LLMs.

C. Model Accuracy

In this subsection, we quantify the impact of our pre-gate
function on MoE’s model accuracy. Table II compares the
model accuracy of SwitchTransformer with and without our
pre-gate function employed for various downstream tasks. In
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closed-book question answering task trained with the SQuAD dataset
(ExactMatch (left) and F1 (right) scores are the evaluation metrics
for the given task).

Switch-Base with 8 experts, which is the smallest size among
our studied model configurations, Pre-gated MoE consistently
exhibits slightly higher model accuracy across all downstream
tasks. As the model size is increased with larger number of
experts, Pre-gated MoE incurs a small accuracy degradation
for some of the downstream tasks, but overall it continues to
deliver competitive model accuracy results. Nevertheless, this
magnitude of observed variances in accuracy does not signify
a substantial improvement or deterioration in the model’s
fundamental capabilities. A detailed analysis on why our pre-
gate function improves some of the downstream task’s model
accuracy is beyond the scope of this work. In general, Pre-
gated MoE’s robust model accuracy observed across different
model sizes and different downstream tasks underscores the
algorithmic robustness of our proposal.

It is important to emphasize that fine-tuning for both Pre-
gated MoE and conventional MoE is done using the same pre-
trained model parameters with the same number of training
iterations. The fact that Pre-gated MoE produces compara-
ble model accuracy under these conditions demonstrates the
robustness of our proposal. Furthermore, it also shows that
our proposal can effectively utilize pre-existing resources and
training/fine-tuning recipes for deployment (e.g., pre-trained
model parameters from conventional MoE models), enhancing
its applicability.

D. Discussion

Pre-gating to activate experts at different blocks. We
have so far assumed that our pre-gate function is trained
to preemptively select the experts to activate for the next
subsequent MoE block. In other words, the pre-gate function’s
activation level (N) is a single (N=1) MoE block ahead of the
current MoE block. To explore potential optimizations in the
MoE architecture using our pre-gate function, we evaluate the
model accuracy of MoE when the pre-gate function is trained
to select the experts to activate for the 2nd/3rd subsequent
MoE block ahead (N=2/3), the result of which is shown in
Figure 13.

As depicted, our default Pre-gated MoE configuration (pre-
gating with activation level-1, i.e., N=1) in the Switch-Base
model with 8 experts consistently shows the highest model
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Fig. 14: Effect of the number of activated experts on MoE block
latency (normalized to GPU-only). Evaluation is conducted using
Switch-Base with 64 experts.

accuracy than the rest of the design points including conven-
tional MoE structure (i.e., selecting experts to activate for the
current MoE block, N=0) as well as pre-gate functions trained
to select 2nd/3rd subsequent MoE block ahead (N=2/3). Note
that the model accuracy gradually decreases as the pre-gate
function’s activation level increases (from N=1 to 3). We
conjecture that the further away the preemptively selected
MoE block is from the current pre-gate function, the less likely
the current pre-gate function’s input activations will contain
useful information to accurately select what experts are most
suitable to activate. A detailed evaluation of such is beyond
the scope of this work and we leave it as future work.

Number of experts activated. The power of MoE comes
from its sparse activation of experts (designed to mimic the be-
havior of the human brain, i.e., specialize regions of the brain
tuned for specific tasks), which allows the model architecture
to scale its model capacity without proportionally increasing
its computational demand. For example, the default model
configuration of Google’s SwitchTransformer activates just a
single expert (top-1 activation) in a single batch inference, so
a SwitchBase model with 64 experts will activate only 1.56%
of its experts. For the completeness of our study, we show
in Figure 14 the performance of Pre-gated MoE when we
manually increase the number of activated experts in Switch-
Base with 64 experts from 1 expert (1.56% expert activation)
to 64 experts (100% expert activation).

There are two key observations that can be made from
this experiment. First, all CPU offloading based solutions
(Pre-gated MoE, MoE-OnDemand, and MoE-Prefetch) expe-
rience a higher performance degradation vs. GPU-only as the
number of activated experts is increased. This is expected
because the behavior of MoE becomes similar to a dense
LLM model when a larger number of experts are activated
(i.e., all model parameters are utilized with 100% activation),
rendering CPU offloading solutions less effective. Second, the
performance gap between MoE-Prefetch and Pre-gated MoE
gradually reduces as the number of activated experts increases.
Because MoE-Prefetch migrates the entire expert parameters
for every MoE block, a larger number of activated experts
reduces the needlessly overfetched expert parameters, closing
its performance gap against Pre-gated MoE. Nonetheless, for
MoE models with sparse expert activations (the most common
way of developing an MoE model architecture), Pre-gated
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Fig. 15: End-to-end throughput of Pre-gated MoE and MoE-
OnDemand when evaluated with the Switch-Large (128 experts)
model (normalized to Pre-gated MoE without caching). When
caching is enabled, we change the fraction of experts that are
cached inside the GPU memory (from 1% to 20%) and compare
its effectiveness. For the completeness of our study, we evaluate not
only the LIFO policy suggested by [14] but also a least frequently
used (LFU) replacement policy [38] and a least-recently used (LRU)
replacement policy.

MoE demonstrates its robustness and consistently provides
superior performance than other CPU-GPU systems.

Caching experts on Pre-gated MoE. Prior work by Huang
et al. [14] characterized MoE models for machine translation
and language modeling, uncovering the existence of a few hot
active experts during inference. Based on such observation,
[14] explores expert buffering for MoE inference which caches
hot, active experts in GPU memory using a last in first
out (LIFO) cache replacement policy, while buffering the
rest in CPU memory. To evaluate the effectiveness of expert
caching [14], [38] on our Pre-gated MoE as well as other
CPU offloading based MoE designs, we implement a caching
system on top of both Pre-gated MoE and MoE-OnDemand
and evaluate its performance.

As shown in Figure 15, caching experts generally pro-
vides performance benefits to both Pre-gated MoE and MoE-
OnDemand, regardless of the types of the cache replacement
policy employed. However, the effectiveness of caching is
more pronounced with MoE-OnDemand as the performance
overhead incurred with expert migration is more severe under
this design point, unlike Pre-gated MoE which is already
capable of hiding most of the expert migration latency by
overlapping it with expert execution.

Pre-gated MoE with SSD offloading. Prior work [38]
evaluates the efficacy of offloading MoE parameters to SSDs
as means to deploy even larger LLMs. To evaluate the ef-
fectiveness of Pre-gated MoE on top of such design point,
we implement Pre-gated MoE and all baseline systems on
top of an SSD offloading based MoE serving system, the
result of which is summarized in Figure 16. As depicted, the
performance benefit of Pre-gated MoE against other baseline
systems is decreased compared to a CPU “DRAM” offloaded
MoE system. This is because, when the MoE parameters are
offloaded to an SSD, the expert migration latency between
SSD→GPU becomes much longer compared to migrating it

1 1

0.01 0.01 
0

0.2

0.4

0.6

0.8

1

Switch-Large Switch-XXL

En
d-

to
-e

nd
 th

ro
ug

hp
ut

(n
or

m
al

iz
ed

)

Pre-gated MoE MoE-OnDemand MoE-Prefetch

Fig. 16: End-to-end inference throughput of SSD offloading. In this
experiment, we additionally evaluate a larger MoE model named
Switch-XXL, a SwitchTransformer based model architecture that
has the identical configuration as Switch-Large but increases both
the feature vector dimension size and the number of heads by 4×,
amounting to 395 billion parameters (16× more than Switch-Large)
and 217 GB in model size after quantization is applied. GPU-only
suffers from an OOM error, so performance is normalized to Pre-
gated MoE.

from CPU DRAM (due to the much lower slower data transfer
bandwidth between SSD vs. CPU DRAM). Consequently,
the expert migration latency becomes such a huge end-to-
end performance bottleneck that it completely overwhelms
the overall system, rendering the effectiveness of any CPU
offloading based approaches to become smaller. Nonetheless,
Pre-gated MoE consistently delivers higher performance than
all other baseline systems demonstrating its robustness.

VII. RELATED WORKS

There exists a large number of prior work exploring ML
inference systems for MoE-based LLMs [4], [12], [13], [16],
[21], [30], [38], [45]. In this section, we summarize prior
work by categorizing them into three different categories: (1)
systems for MoE training, 2) systems for MoE inference, and
3) MoE model architectures for efficient MoE deployment.

Systems for the MoE training. Prior work on Fast-
MoE [12] and FasterMoE [13] propose system-level opti-
mizations for multi-GPU solutions, specifically tackling the
load-imbalance issue in MoE training. Tutel [16] presents
dynamic multi-GPU parallelism and pipelining optimization
for distributed MoE training systems. SmartMoE [45] explores
efficient search strategies for parallelizing MoE training. TA-
MoE [4] and Li et al. [21] propose optimizations for MoE
training’s all-to-all communication and expert routing. Unlike
Pre-gated MoE which focuses on inference, all of these prior
works concentrate on MoE training over multi-GPU systems,
assuming all model parameters are partitioned across the GPUs
allowing each model partition to be stored in GPU memory.

Systems for the MoE inference. DeepSpeed-MoE [30] and
Li et al. [21] propose efficient communication optimizations
as well as compute kernel optimizations for multi-GPU based
MoE inference systems. DeepSpeed-inference [1] proposes
to offload memory hungry tensors (e.g., activations, param-
eters) to the CPU memory and NVMe SSD following ZeRO-
offload [35] and ZeRO-infinity [31]. DeepSpeed-inference,
however, did not evaluate their parameter offloading feature
to sparse MoE architectures targeting the memory capacity
limited expert parameters. HuggingFace Accelerate [15] and



SE-MoE [38] respectively implement the MoE-OnDemand
and MoE-Prefetch systems we evaluate in this paper, a CPU
offloading based MoE inference system.

Efficient MoE model architectures. DeepSpeed-
inference [1] proposed PR-MoE and Mixture-of-Student
(MoS) architectures, which help significantly compress down
the model size of MoE. However, these models require
significant modifications to the model architecture based on
knowledge distillation and often result in model accuracy
degradation. Furthermore, these models are designed for
GPU-only configurations, unlike the CPU offloading based
Pre-gated MoE. SE-MoE [38] also proposed a compact MoE
model architecture based on distillation, compression, and
pruning, but it suffers from non-negligible degradation in
model accuracy. Our Pre-gated MoE, on the other hand,
only requires modest changes to the MoE model architecture
without compromising model accuracy.

VIII. CONCLUSION

This paper presents Pre-gated MoE, our algorithm-system
co-design for scalable and high-performance MoE inference.
Pre-gated MoE effectively addresses the two main challenges
of MoE (its large memory footprint and dynamic nature
of sparse expert activation) via our novel pre-gate function,
which alleviates the dynamic nature of sparse expert activation,
allowing our proposed system to address the large memory
footprint of MoEs while also achieving high performance.
Compared to state-of-the-art MoE inference systems, Pre-
gated MoE improves inference throughput while significantly
reducing the GPU memory consumption. Importantly, Pre-
gated MoE offers comparable model accuracy across various
natural language processing tasks, facilitating its adoption in
a wide range of real-world applications.
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APPENDIX

A. Abstract

This artifact evaluation repository contains the base im-
plementation of Pre-gated MoE. The artifact is designed to
demonstrate the performance of our Pre-gated MoE com-
pared to the three baselines mentioned in this paper. As
detailed in Section V, we built our Pre-gated MoE on top of
Google’s SwitchTransformer [8], utilizing NVIDIA’s Faster-
Transformer [25].

B. Artifact check-list (meta-information)
• Algorithm: Pre-gated MoE algorithm
• Program: C++, Python
• Model: Google’s SwitchTransformer
• Hardware: At least one GPU with 40GB of memory and a

CPU with 128GB of memory.
• Output: Key results of our paper including average MoE

block latency, inference throughput, and peak GPU memory
consumption.

• How much disk space required (approximately)?: Over
100GB for storing the model parameters.

• How much time is needed to prepare workflow (approxi-
mately)?: 6 hours

• How much time is needed to complete experiments (approx-
imately)?: 30 minutes

• Publicly available?: Yes
• Archived: https://doi.org/10.5281/zenodo.10976343

C. Description

1) How to access: The artifact is available in archival
repositories on Zenodo and GitHub.

• Zenodo: https://doi.org/10.5281/zenodo.10976343
• GitHub: https://github.com/ranggihwang/Pregated MoE
2) Hardware dependencies: To reproduce the results pre-

sented in the paper, the following hardware is required:
• A CPU with at least 128GB of memory.
• A GPU with at least 40GB of memory. (We recommend

using recent GPUs, such as the NVIDIA A100 with 80GB
HBM, for optimal performance.)

• Additionally, ensure there is more than 100GB of disk
storage available for model parameters.

3) Software dependencies: We advise using the Docker
image following the description in our repository to circum-
vent most software-related issues. The repository includes a
script that automates the installation of all necessary software
dependencies for compiling and running the artifact. Further
details are provided in the repository documentation.

4) Data sets: To use the artifact, it is necessary to download
the model weights for the SwitchTransformer from Hugging-
Face. Our repository provides detailed instructions and scripts
for downloading these model weights.

D. Installation

1) Create a directory for model preparation.
2) Launch a Docker container using the following com-

mand, replacing ${DATA_PATH} with the path to your
model preparation directory:

docker run -ti --gpus all --shm-size 5g --name
pregated -v ${DATA_PATH}:/data nvcr.io/nvidia
/pytorch:22.09-py3 bash

3) Clone the repository and initiate the build process. The
-DSM parameter should match your GPU’s compute
capability. Refer to the documentation to select the
appropriate value for your setup.

# build on A100
mkdir -p FasterTransformer/build
cd FasterTransformer/build
cmake -DSM=80 -DCMAKE_BUILD_TYPE=Release -

DBUILD_PYT=ON -DBUILD_MULTI_GPU=ON ..
make -j

4) Install the required Python dependencies:
pip install -r ../examples/pytorch/t5/requirement.

txt

E. Experiment workflow

1) Prepare the models.
mkdir /data/ft
cd /workspace/FasterTransformer/
./scripts/convert.sh

2) Begin the evaluation using the provided script:
cd /workspace/FasterTransformer/
# logs will be output here
mkdir logs/
python scripts/eval_all.py

F. Evaluation and expected results

The script will generate output files in CSV format
including block_lats.csv, throughputs.csv and
peak_mems.csv, which contain data on MoE block laten-
cies, inference throughputs, and peak memory usage, respec-
tively. The results are shown in Figure 10, Figure 11, and
Figure 12.

G. Experiment customization

To customize the experiment, you can modify the evaluation
configuration in scripts/eval_all.py

H. Notes

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://doi.org/10.5281/zenodo.10976343
https://doi.org/10.5281/zenodo.10976343
https://github.com/ranggihwang/Pregated_MoE
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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