
s

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

FXAM: A unified and fast interpretable model for predictive analytics
Yuanyuan Jiang a, Rui Ding b,∗, Tianchi Qiao c, Yunan Zhu d, Shi Han b, Dongmei Zhang b

a School of Statistics, Renmin University of China, Haidian District, Beijing, 100872, China
b Microsoft Research Asia, Haidian District, Beijing, 100080, China
c School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
d School of Information Science and Technology, University of Science and Technology of China, He Fei, Anhui Province, 230031, China

A R T I C L E I N F O

Keywords:
Generalized additive model
Interpretable machine learning
Predictive analytics
Training efficiency

A B S T R A C T

Predictive analytics aims to build machine learning models to predict behavior patterns and use predictions to
guide decision-making. Predictive analytics is human involved, thus the machine learning model is preferred to
be interpretable. In literature, Generalized Additive Model (GAM) is a standard for interpretability. However,
due to the one-to-many and many-to-one phenomena which appear commonly in real-world scenarios, existing
GAMs have limitations to serve predictive analytics in terms of both accuracy and training efficiency. In this
paper, we propose FXAM (Fast and eXplainable Additive Model), a unified and fast interpretable model for
predictive analytics. FXAM extends GAM’s modeling capability with a unified additive model for numerical,
categorical, and temporal features. FXAM conducts a novel training procedure called Three-Stage Iteration
(TSI). TSI corresponds to learning over numerical, categorical, and temporal features respectively. Each stage
learns a local optimum by fixing the parameters of other stages. We design joint learning over categorical
features and partial learning over temporal features to achieve high accuracy and training efficiency. We prove
that TSI is guaranteed to converge to the global optimum. We further propose a set of optimization techniques
to speed up FXAM’s training algorithm to meet the needs of interactive analysis. Thorough evaluations
conducted on diverse data sets verify that FXAM significantly outperforms existing GAMs in terms of training
speed, and modeling categorical and temporal features. In terms of interpretability, we compare FXAM with
the typical post-hoc approach XGBoost+SHAP on two real-world scenarios, which shows the superiority of
FXAM’s inherent interpretability for predictive analytics.
1. Introduction

Expert systems are often used in decision-making scenarios (Zim-
mermann, 1987), especially in the high-stakes domains (Meske, Bunde,
Schneider, & Gersch, 2022; Simkute, Luger, Jones, Evans, & Jones,
2021) (such as healthcare, criminal justice, or finance) where they can
provide valuable insights and recommendations to help with complex
decision-making processes. Predictive analytics is an essential topic in
expert systems (Changqing, 2018) and aims to predict behavior patterns
from multi-dimensional data and use predictions to guide decision-
making (Finlay, 2014; Kumar & Ram, 2021). Multi-dimensional data
is conceptually organized in a tabular format that consists of a set
of records, where each record is represented by a set of attributes,
with one attribute called response (i.e., the target to be predicted) and
the others called features (or predictors), which are used to predict
the response. A multi-dimensional data set typically consists of three
types of features: numerical, categorical, and temporal. Fig. 1 shows

∗ Corresponding author.
E-mail addresses: jyy_amy@ruc.edu.cn (Y. Jiang), juding@microsoft.com (R. Ding), tianchi-qiao@seu.edu.cn (T. Qiao), zhuyn@mail.ustc.edu.cn (Y. Zhu),

hihan@microsoft.com (S. Han), dongmeiz@microsoft.com (D. Zhang).

an example of a house sale data set with several features, such as
𝐼𝑛𝑐𝑜𝑚𝑒 (numerical), 𝐶𝑜𝑢𝑛𝑡𝑦 (categorical), 𝑆𝑒𝑙𝑙𝑑𝑎𝑡𝑒 (temporal), etc., and
the response is 𝑃𝑟𝑖𝑐𝑒. By building an ML model from multi-dimensional
data, follow-up analysis is performed, such as understanding existing
records or predicting response on a newly unseen record.

Predictive analytics is human-involved and is frequently conducted
for high-stakes prediction applications thus the ML model is preferred
to be interpretable (Rudin, 2019). In the literature, the Generalized
Additive Model (GAM) is a standard for interpretability (Hastie &
Tibshirani, 1990). GAM untangles the overall prediction by summing
up contributions from each feature (before applying the link function),
thus retaining interpretability. Moreover, GAM’s training procedure
(a.k.a. backfitting) works by iterative smoothing of partial residuals
over each feature, which guarantees convergence to an optimal solution
(when suitable smoothers are chosen). GAMs are continuously being
developed, such as GA2M (Lou, Caruana, Gehrke, & Hooker, 2013),
https://doi.org/10.1016/j.eswa.2024.123890
Received 12 April 2023; Received in revised form 19 November 2023; Accepted 28
 December 2023

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:jyy_amy@ruc.edu.cn
mailto:juding@microsoft.com
mailto:tianchi-qiao@seu.edu.cn
mailto:zhuyn@mail.ustc.edu.cn
mailto:shihan@microsoft.com
mailto:dongmeiz@microsoft.com
https://doi.org/10.1016/j.eswa.2024.123890

Y. Jiang et al.

t
l

f
i
t
t
f
c
c
t
l
i

c
d
i
s
t
e
o
c
u

t
c
t
u
h

a

t
g
i

2

d
t
m
p
t
f
2
i
b

t
X
r
i
c
a
L
K
i
i
i
s
m
t

a
e
L
n
b
G
a
D
f

Fig. 1. An example of the multi-dimensional data set.

GAMut (Hohman, Head, Caruana, DeLine, & Drucker, 2019), multi-
class GAM (Zhang et al., 2019), ReluctantGAM (Tay & Tibshirani,
2020), COGAM (Abdul, von der Weth, Kankanhalli, & Lim, 2020),
etc. However, due to the one-to-many and many-to-one phenomena
hat appear commonly in multi-dimensional data, existing GAMs have
imitations in serving predictive analytics.
One-to-many: Learning multiple components from each temporal

eature. A numerical feature typically introduces a locally smooth-
ng constraint on its contribution to response, but a temporal fea-
ure (e.g., ‘Sell date’) introduces multiple global constraints from a
ime-series perspective: it is desirable to identify multiple components
rom a temporal feature, such as monthly repeating (i.e., seasonality)
omponent, long-term progression pattern (i.e., trend), or aperiodic
ycles (Zarnowitz & Ozyildirim, 2006), etc. However, existing GAMs
reat a temporal feature as an ordinary numerical feature and thus only
earn a single smoothing component. As a result, their model capacity
s limited w.r.t. dealing with temporal features.
Many-to-one: Since there is no local smoothing constraint across

ategorical values, users focus on identifying the contribution of each
istinct value (e.g., the extra cost of buying a house when it is located
n ‘County = LA’). Existing GAMs generally conduct histogram-type
moothing per categorical feature, which converges slowly since only
he weights of values of a specific categorical feature are updated in
ach iteration, while all the other weights (w.r.t. distinct values from
ther categorical features) are fixed. If the weights of values across all
ategorical features could be updated simultaneously, we could speed
p model training.

Moreover, predictive analytics is often conducted iteratively. Fast
raining makes the analysis more interactive and continuous, which
annot be easily facilitated by existing GAMs due to their unsatisfactory
raining speed. To address these challenges, we propose FXAM: a
nified, fast, and interpretable model for predictive analytics. FXAM
as significant advantages in the following areas:
Modeling. FXAM extends GAM’s modeling capability with a unified
dditive model for numerical, categorical, and temporal features. For G
each temporal feature, FXAM identifies multiple components in terms
of trend and seasonality; FXAM proposes a homogeneous set to model
categorical values across all categorical features and represents each
value via one-hot encoding.

Training. FXAM conducts a novel training procedure called Three-
Stage Iteration (TSI). The three stages correspond to learning over
numerical, categorical, and temporal features, respectively. Each stage
learns a local optimum by fixing the parameters of other stages. Specif-
ically, we design joint learning over categorical features and partial
learning over temporal features to achieve high training efficiency and
high accuracy. We also provide theoretical analysis in Theorem 1 to
show that TSI converges to a global optimum.

Efficiency. We further propose two optimization techniques (i.e., in-
elligent sampling and dynamic feature iteration) with theoretical
uidance to speed up FXAM’s training algorithm to meet the needs of
nteractive analysis.

In summary, we make the following contributions:

• FXAM extends GAMs modeling capability with a unified model
for numerical, categorical, and temporal features.

• We propose FXAM’s training procedure: Three Stage Iteration,
and prove its convergence and optimality.

• We propose two optimization techniques to speed up FXAM’s
training algorithm.

• We conduct evaluations and verify that FXAM significantly out-
performs existing GAMs in terms of training speed and modeling
categorical and temporal features.

. Related work

Predictive analytics & iML (interactive Machine Learning). Pre-
ictive analytics is often conducted for high-stakes prediction applica-
ions, such as healthcare, finance, or phishing detection thus the ML
odel is preferred to be interpretable (Rudin, 2019). Operationally,
redictive analytics is often conducted iteratively and interactively,
hus iML (interactive Machine Learning) is becoming a cornerstone
or predictive analytics (Abdul, Vermeulen, Wang, Lim, & Kankanhalli,
018; Fails & Olsen Jr, 2003), which requires ML model to respond
n an interactive fashion. Therefore, ML model’s training efficiency
ecomes primarily important.
XAI (Explainable artificial intelligence). XAI is becoming a hot

opic (Kaur et al., 2020; Lombrozo, 2006; Miller, 2019) and current
AI techniques can generally be grouped into two categories (Ar-
ieta et al., 2020; Du, Liu, & Hu, 2019). Interpretable: designing
nherently explainable ML models (Caruana et al., 2015; Jung, Con-
annon, Shroff, Goel, & Goldstein, 2017; Lou et al., 2013) or Explain-
ble: providing post-hoc explanations to opaque models (Lundberg &
ee, 2017; Ribeiro, Singh, & Guestrin, 2016; Tan, Caruana, Hooker,
och, & Gordo, 2018), depending on the time when explainability

s obtained (Molnar, 2020). In the domain of predictive analytics,
nterpretable ML models tend to be more useful since explainability
s needed throughout the analysis process, such as probing different
ubsets of data, incorporating domain constraints, or understanding
odel mechanisms locally or globally. FXAM is an extension of GAM,

hus retaining interpretability.
Generalized Additive Models (GAMs). GAMs are gaining great

ttention in the literature of interpretable machine learning (Arrieta
t al., 2020; Chang, Tan, Lengerich, Goldenberg, & Caruana, 2021;
inardatos, Papastefanopoulos, & Kotsiantis, 2021; Rudin, 2019), mai-
ly due to its standard for interpretability (Wang et al., 2021) and its
road adoptions in the real world (Calabrese et al., 2012; Pierrot &
oude, 2011; Tomić & Božić, 2014; Wang et al., 2021). GAM-based
pproaches are continuously being developed: pureGAM (Sun, Wang,
ing, Han, & Zhang, 2022) and GA2M (Lou et al., 2013) model pairwise

eature interaction; multi-class GAM (Zhang et al., 2019) generalizes

AM to the multi-class setting; COGAM (Abdul et al., 2020) and

Y. Jiang et al.

f
t
i
(

{

w
i
w
w
b

ReluctantGAM (Tay & Tibshirani, 2020) impose linear constraints on
certain features to achieve a tradeoff between cognitive load and model
accuracy. There also exists work on modeling GAM’s shape functions by
neural nets such as NAM (Agarwal, Frosst, Zhang, Caruana, & Hinton,
2020) and GAMI-Net (Yang, Zhang, & Sudjianto, 2021).

FXAM is complementary to these works by modeling numerical,
categorical, and temporal features in a unified way and by proposing
an efficient and accurate training procedure. In FXAM, joint learning
is conducted over all categorical features instead of per-feature learn-
ing (e.g., histogram-type smoothing in pyGAM) to improve training
efficiency; partial learning is adopted to accurately learn trend and
seasonality components from each temporal feature. Such an approach
can be naturally extended to learn arbitrary components. Although
there exists work on identifying seasonality components by adopting
cyclic cubic spline, they require additional efforts on data preprocess-
ing (Simpson, 2014), and the learned seasonal component is restricted
to be identical in each period thus progressive changes of seasonal
component (e.g., amplifying or damping) cannot be captured. Lastly,
such a preprocessing approach is difficult to extend to learn other
components, such as aperiodic cyclic components (Hyndman, 2011;
Hyndman & Athanasopoulos, 2018).

3. Terms and notations

Except for special instructions, we use uppercase italics for vari-
ables, uppercase bold letters for matrices, lowercase bold letters for
vectors, lowercase letters for scalars, subscripts for the variable index,
and superscripts with parentheses for the instance index. Our discus-
sion will center on a response random variable Y, and 𝑝 numerical
eatures 𝑋1,… , 𝑋𝑝; 𝑞 categorical features 𝑍1,… , 𝑍𝑞 ; 𝑢 temporal fea-
ures 𝑇1,… , 𝑇𝑢. Given a multi-dimensional data set  consists of 𝑁
nstances, the realizations of these random variables can be denoted by
𝑦(1), 𝑥(1)1 ,… , 𝑥(1)𝑝 , 𝑧(1)1 ,… , 𝑧(1)𝑞 , 𝑡(1)1 ,… , 𝑡(1)𝑢),… , (𝑦(𝑁), 𝑥(𝑁)

1 ,… , 𝑥(𝑁)
𝑝 , 𝑧(𝑁)

1 ,
… , 𝑧(𝑁)

𝑞 , 𝑡(𝑁)
1 ,… , 𝑡(𝑁)

𝑢). The summary of terms and notations is shown
in Table 1.

Categorical features. For each 𝑚 ∈ 1,… , 𝑞, denote the domain
of 𝑍𝑚 as 𝑑𝑜𝑚(𝑍𝑚), which indicates the distinct values for categorical
feature 𝑍𝑚. For instance, each element in 𝑑𝑜𝑚(𝑍𝑚) can be a string value
that is composed of the specific value in 𝑍𝑚 with the corresponding
feature name as the suffix. Hence, the domains of different categorical
features are disjoint.

Denote 𝐻𝑐𝑎𝑡 =
⋃𝑞

𝑚=1 𝑑𝑜𝑚
(

𝑍𝑚
)

as the homogeneous set, and 𝑐 =
|𝐻𝑐𝑎𝑡| as total cardinality (i.e., number of distinct values) over all
categorical features. Denote 𝑂𝑗 ∈ {0, 1}, 𝑗 = 1, 2,… , 𝑐, thus any
instantiation of 𝑍1,… , 𝑍𝑞 can be represented by a unique 𝑞-hot vector
(

𝑂1,… , 𝑂𝑐
)

provided that pre-specified indices are assigned to ele-
ments in 𝐻𝑐𝑎𝑡. Continuing with the example in Fig. 1, the categorical
variables can be processed as shown in Fig. 2, where each row rep-
resents a 𝑞-hot vector, and the 𝑗th column represents the variable
𝑂𝑗 .

Numerical features. Following standard convention, for each 𝑖 ∈
1,… , 𝑝, let 𝑖

𝑛𝑢𝑚 denote the Hilbert space of measurable functions 𝑓𝑖(𝑋𝑖)
such that 𝐸

[

𝑓𝑖
]

= 0, 𝐸
[

𝑓 2
𝑖
]

< ∞ and inner product
⟨

𝑓𝑖, 𝑓 ′
𝑖
⟩

= 𝐸
[

𝑓𝑖𝑓 ′
𝑖
]

.
Here the expectation is defined over the probability density distribution
corresponding to the training data. For our purpose, we would like to
learn (or estimate) a shape function 𝑓𝑖(𝑋𝑖) ∈ 𝐻 𝑖

𝑛𝑢𝑚 for each numerical
feature.

Temporal features. To identify trend component, for each 𝑘 ∈
1,… , 𝑢, let 𝑘

𝑡𝑒𝑚 denote the Hilbert space of measurable function 𝑓𝑇𝑘 (𝑇𝑘)
for trend and 𝑓𝑆𝑘

(𝑇𝑘) for seasonality over temporal feature 𝑇𝑘. 𝑘
𝑡𝑒𝑚

is with the same property as 𝑖
𝑛𝑢𝑚. To identify the seasonal com-

ponent, denote the period of the seasonal component as a positive
integer 𝑑𝑘 > 1. Note that 𝑑𝑘 is an input parameter based on domain
knowledge, which is common practice in the business data analytics
domain Cleveland, Cleveland, McRae, and Terpenning (1990), Wen
et al. (2019).
 𝜏
Table 1
A summary of terms and notations.

Type Symbol Explanation

Data set  Data set

𝑁 Data set size

Response 𝑌 Random variable

𝒚𝑇 =
(

𝑦(1) , 𝑦(2) … , 𝑦(𝑁)) Instances

Predictors
𝑋1 , 𝑋2 ,… , 𝑋𝑝 𝑝 numerical features

𝑍1 , 𝑍2 ,… , 𝑍𝑞 𝑞 categorical features

𝑇1 , 𝑇2 ,… , 𝑇𝑢 𝑢 temporal features

Categorical features

𝑑𝑜𝑚(𝑍𝑚), 𝑚 = 1,… , 𝑞 The set including the
distinct values for the
categorical feature 𝑍𝑚

𝐻𝑐𝑎𝑡 =
⋃𝑞

𝑚=1 𝑑𝑜𝑚
(

𝑍𝑚
)

The homogeneous set
including the distinct
values for all categorical
features

𝑐 = |𝐻𝑐𝑎𝑡| Total cardinality over all
categorical features

(𝑂1 , 𝑂2 ,… , 𝑂𝑐) where
𝑂𝑗 ∈ {0, 1},
𝑗 = 1,… , 𝑐

The 𝑞-hot vector
representing the encoding
of 𝑍1 ,… , 𝑍𝑞

𝑓𝑍
(

𝑂𝑗
)

= 𝛽𝑗𝑂𝑗 The parameterized form by
representing categorical
values 𝑍1 ,… , 𝑍𝑞 in the
𝑐-dimensional vector

Numerical features 𝐻 𝑖
𝑛𝑢𝑚, 𝑖 = 1,… , 𝑝 The Hilbert space of the

measurable function 𝑓𝑖(𝑋𝑖)
over numerical feature 𝑋𝑖

𝑓𝑖(𝑋𝑖) The univariate smooth
function modeling the
contributions of 𝑋𝑖,
𝑓𝑖(𝑋𝑖) ∈ 𝐻 𝑖

𝑛𝑢𝑚

Temporal features

𝐻𝑘
𝑡𝑒𝑚, 𝑘 = 1,… , 𝑢 The Hilbert space of the

measurable functions
𝑓𝑆𝑘

(𝑇𝑘) for seasonality and
𝑓𝑇𝑘 (𝑇𝑘) for trend over
temporal feature 𝑇𝑘

𝑓𝑆𝑘
(𝑇𝑘) The function modeling the

seasonality of 𝑇𝑘,
𝑓𝑆𝑘

(𝑇𝑘) ∈ 𝐻𝑘
𝑡𝑒𝑚

𝑓𝑇𝑘 (𝑇𝑘) The function modeling the
trend of 𝑇𝑘, 𝑓𝑇𝑘 (𝑇𝑘) ∈ 𝐻𝑘

𝑡𝑒𝑚

𝑑𝑘 The period of seasonal
component, 𝑑𝑘 > 1 and 𝑑𝑘
is a hyperparameter;

𝑑𝑜𝑚(𝑇𝑘) = {𝑡(1)𝑘 ,… , 𝑡(𝑁)
𝑘 } The set including all the

ordered values of 𝑇𝑘 in ,
where 𝑡(1)𝑘 ≤ ⋯ ≤ 𝑡(𝑁)

𝑘

𝑡(𝑙)𝑘 − 𝑡(𝑙−1)𝑘 = 0 or 𝜏 The corresponding gap
between two consecutive
time points, 𝜏 is a
constant, 𝑙 = 2,… , 𝑁

𝑘,𝜑 ∶=
{

𝑡(𝑙)𝑘 ∣ 𝑡(𝑙)𝑘 ∕𝜏 mod 𝑑𝑘 = 𝜑
}

The set of time points with
phase-𝜑, where
𝜑 ∈ {0,… , 𝑑𝑘 − 1},
𝑙 = 1,… , 𝑁

𝑑𝑜𝑚(𝑇𝑘) =
⋃𝑑𝑘−1

𝜑=0 𝑘,𝜑 𝑑𝑜𝑚(𝑇𝑘) can be written as
the sum of 𝑘,𝜑

We order the values of 𝑇𝑘 in  as: 𝑡(1)𝑘 ≤ … ≤ 𝑡(𝑁)
𝑘 , and assume

𝑡(𝑙)𝑘 − 𝑡(𝑙−1)𝑘 |𝑙 = 2,… , 𝑁
}

= {0, 𝜏} for the sake of simplicity: continuing
ith the example in Fig. 1, it is common that there would be multiple

nstances with the same value on 𝑡(∗)𝑘 as shown in Fig. 3(a). Instances
ith the same value at time 𝑡(∗)𝑘 are compressed into one instance
ith weight 𝑤∗ as shown in Fig. 3(b). Thus the corresponding gap
etween two consecutive time points 𝑡(𝑙)𝑘 − 𝑡(𝑙−1)𝑘 = 0 or 𝑡(𝑙)𝑘 − 𝑡(𝑙−1)𝑘 =
allows us to treat 𝑡(∗) as discrete time points. Now it is easy to
𝑘

Y. Jiang et al.

a

Fig. 2. An example of the processed categorical variables.
Fig. 3. An example of the processed temporal variables.
decompose the time series of temporal feature 𝑇𝑘 into a trend 𝑓𝑇𝑘 and
seasonality 𝑓𝑆𝑘

as shown in Fig. 3(c) and Fig. 3(d). Denote 𝑘,𝜑 ∶=
{

𝑡(𝑙)𝑘 ∣ 𝑡(𝑙)𝑘 ∕𝜏 mod 𝑑𝑘 = 𝜑,∀𝑙
}

as phase-𝜑 set since all the elements in 𝑘,𝜑
share same phase 𝜑 ∈

{

0, 1,… , 𝑑𝑘 − 1
}

. As shown in Fig. 3(c), instances
of the same color belong to the same set 𝑘,𝜑. It is easy to see that
𝑘,𝑖, 𝑘,𝑗 (𝑖, 𝑗 ∈

{

0, 1,… , 𝑑𝑘 − 1
}

and 𝑖 ≠ 𝑗) are mutually disjoint and
thus

{

𝑡(1)𝑘 ,… , 𝑡(𝑁)
𝑘

}

= 𝑘,0 + ⋯ + 𝑘,𝑑𝑘−1. Our approach can also easily
deal with missing data as the shaded part shown in Fig. 3 (i.e., the gap
between two consecutive time points could be larger than 𝜏 in a data
set due to insufficient sample), which is discussed in Section 4.6.

4. Approach

Initially, we elucidate the principles of the classical Generalized

Additive Model (GAM), followed by a comprehensive discourse on the
utilization of the Backfitting algorithm, a prominent method employed
for the resolution of the GAM model. Then we illustrate the FXAM’s
modeling over numerical, categorical, and temporal features, and pro-
pose FXAM’s training procedure called Three-Stage Iteration. At last,
two optimization techniques are presented to further improve FXAM’s
training efficiency.

4.1. GAMs’ modeling

Linear models, while straightforward to interpret and apply, fre-
quently struggle to adequately capture the intricate and evolving rela-
tionships found in real-world scenarios. Machine learning models such
as deep neural networks are proficient in fitting complex non-linear
relationships, however, they often act as black boxes, making their

outcomes challenging to interpret.

Y. Jiang et al.

s
f
a
t
b
a
G

𝑔

H
p
c
t

𝑔
p
t
u
g

e

Fig. 4. Backfitting algorithm procedure.
Fig. 5. Illustrative example of FXAM.
a
p
p
c
f
e
t
c

f
e
p
c
a
p
t
a
p
i
t
t

GAMs (Hastie & Tibshirani, 1990) presents an effective intermediate
olution. It has the capacity to represent non-linear relationships in a
lexible manner while maintaining interpretability. This characteristic
ids in understanding the model’s structure and its outcomes, facili-
ating statistical inferences. Therefore, GAMs provide an advantageous
alance between model complexity and interpretability, making them
crucial tool in data-driven research. A prototypical formulation of a
AM can be outlined as follows:

(𝐸(𝑌)) =
𝑚
∑

𝑖=1
𝑓𝑖

(

𝑋𝑖
)

(1)

ere 𝑓𝑖(⋅) in the equation can take forms that are parametric, non-
arametric, or semi-parametric, providing flexibility in model specifi-
ation. The function 𝑔(⋅) acts as the link function, serving as the bridge
hat connects the predictors and the mean of the response variable.

Without loss of generality, we focus on the case where link function
(⋅) is an identity function, thus we are focusing on the regression
roblem subsequently. Once the model is specified, the smooth func-
ions 𝑓𝑖(𝑋𝑖) can be estimated from the data. This is typically done
sing a technique known as backfitting. Its specific procedural flow is
raphically delineated in Fig. 4.

The backfitting algorithm is an iterative procedure that estimates
ach shape function 𝑓 (𝑋) in turn, holding the others fixed. The
𝑖 𝑖 f
lgorithm starts with initial estimates for the functions, and then re-
eatedly cycles through the predictors, updating the estimate for each
redictor’s function while keeping the others fixed, until the estimates
onverge. At each step, the algorithm fits a model to the residuals
rom the previous step and then adds the fitted values to the current
stimate of the function. This process is repeated until the changes in
he functions are negligible, which indicates that the algorithm has
onverged to a solution.

Backfitting is a simple and computationally efficient method for
itting GAMs, especially when the number of predictors is large. How-
ver, it may converge slowly. To enhance the convergence rate, three
rincipal enhancements have been incorporated into the FXAM model,
ompared to the traditional GAM model. Firstly, an intelligent sampling
lgorithm has been employed during the initialization phase (as de-
icted in Fig. 5) to achieve a superior initialization function. Secondly,
argeting each variable in line 1 of Fig. 4, the Dynamic Feature Iteration
lgorithm is proposed to prioritize iterating those variables possessing
otent predictive abilities. Lastly, during the line 3 smoothing phase
n Fig. 4, Fast Kernel Smoothing is utilized at each smoothing instance
o perform data fitting. More details are at Section 4.4. Furthermore,
he FXAM model extends the GAM model’s ability to model categorical
eatures and temporal features, as detailed in Section 4.5.

Y. Jiang et al.

i
𝑌

e

4.2. FXAM’s modeling

We model FXAM as follows:

𝐸
(

𝑌 |𝑋1,… , 𝑋𝑝;𝑍1,… , 𝑍𝑞 ; 𝑇1,… , 𝑇𝑢
)

=
𝑝
∑

𝑖=1
𝑓𝑖

(

𝑋𝑖
)

+
𝑐
∑

𝑗=1
𝑓𝑍

(

𝑂𝑗
)

+
𝑢
∑

𝑘=1

[

𝑓𝑇𝑘
(

𝑇𝑘
)

+ 𝑓𝑆𝑘

(

𝑇𝑘
)

+ 𝑜𝑡ℎ𝑒𝑟_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
(

𝑇𝑘
)]

(2)

Here 𝑓𝑍 (𝑂𝑗) = 𝛽𝑗𝑂𝑗 , 𝑗 = 1,… , 𝑐. 𝛽𝑗 ∈ R is the parameter and
𝑓𝑖 ∈ 𝑖

𝑛𝑢𝑚, 𝑓𝑇𝑘 ∈ 𝑘
𝑡𝑒𝑚, 𝑓𝑆𝑘

∈ 𝑘
𝑡𝑒𝑚 are the functions we want to learn.

𝑂𝑗 ∈ {0, 1} is obtained by one-hot encoding over homogeneous set 𝐻𝑐𝑎𝑡.
The overall model is composed of three parts additively w.r.t. modeling
numerical, categorical, and temporal features respectively.

Modeling numerical features. Following standard convention, 𝑓𝑖
s the shape function that models the contribution of 𝑋𝑖 (w.r.t. response
) by a univariate smooth function.
Modeling categorical features. We conduct one-hot encoding for

ach element in the homogeneous set 𝐻𝑐𝑎𝑡. Specifically, ∑𝑐
𝑗=1 𝑓𝑍

(

𝑂𝑗
)

=
∑𝑐

𝑗=1 𝛽𝑗𝑂𝑗 is a parameterized form by representing categorical values
𝑍1,… , 𝑍𝑞 in a 𝑐-dimensional 𝑞-hot vector and assigns a weight 𝛽𝑗 to
each entry 𝑂𝑗 .

Modeling temporal features.
[

𝑓𝑇𝑘
(

𝑇𝑘
)

+ 𝑓𝑆𝑘

(

𝑇𝑘
)

+⋯
]

explicitly
decomposes the time series of temporal feature 𝑇𝑘 into a trend 𝑓𝑇𝑘 , a
seasonality 𝑓𝑆𝑘

and some other signals. Such decomposition expresses
multiple components from a single feature to address the one-to-many
phenomenon.

Continuing with the example in Fig. 1, the final housing prices can
be understood as the summation of these shape functions, as depicted
in Fig. 5.

For the sake of simplicity, we focus on seasonal and trend de-
composition, and we assume 𝑢 = 1 (i.e., only one temporal feature)
in subsequent illustrations. We thus drop the subscript 𝑘 and use 𝑇
to denote the temporal feature. Note that the theorem of FXAM’s
convergence is valid for arbitrary 𝑢 and FXAM’s training procedure can
be easily extended to support multiple temporal features (details are
elaborated in Section 4.6).

4.3. FXAM’s optimization

The objective function we want to minimize is:


(

𝑓1,… , 𝑓𝑝, 𝛽1,… , 𝛽𝑐 , 𝑓𝑇 , 𝑓𝑆
)

=
𝑁
∑

𝑙=1

(

𝑦(𝑙) −
𝑝
∑

𝑖=1
𝑓𝑖

(

𝑥(𝑙)𝑖
)

−
𝑐
∑

𝑗=1
𝑓𝑍

(

𝑜(𝑙)𝑗
)

− 𝑓𝑇
(

𝑡(𝑙)
)

− 𝑓𝑆
(

𝑡(𝑙)
)) 2

+ 𝜆
𝑝
∑

𝑖=1
𝐽
(

𝑓𝑖
)

+ 𝜆𝑍𝜷𝑇 𝜷 + 𝜆𝑇 𝐽 (𝑓𝑇)

+ 𝜆𝑆
𝑑−1
∑

𝜑=0
𝐽
(

𝑓𝑆𝜑

)

(3)

Here 𝜷𝑇 = (𝛽1,… , 𝛽𝑐). Eq. (3) consists of the total square error
and the other regularization items. Functional 𝐽 (𝑓) ∶= ∫

[

𝑓 ′′(𝑣)
]2 𝑑𝑣

thus 𝜆𝐽 (𝑓) trades off the smoothness of 𝑓 with its goodness-to-fit.
In addition to standard regularization for numerical features 𝜆𝐽

(

𝑓𝑖
)

and trend 𝜆𝑇 𝐽 (𝑓𝑇), we divide seasonal component 𝑓𝑆 into 𝑑 sub-
components 𝑓𝑆𝜑

(𝑓𝑆 ∶= 𝑓𝑆0
⊕⋯⊕𝑓𝑆𝑑−1

indicates that overall seasonal
component 𝑓𝑆 which domain-merges all the sub-components 𝑓𝑆𝜑

) and
apply regularization per 𝑓𝑆𝜑

. By doing so, we impose smoothness for
each phase-equivalent sub-component 𝑓𝑆𝜑

, which is helpful to convey
the overall repeating pattern. We propose standard 𝐿2 regularization
𝜆 𝜷𝑇 𝜷 correspondingly.
𝑍
Quadratic Form of Objective Function. By standard calculus
(Reinsch, 1967), the optimal solution for minimizing a square error
with regularization 𝜆𝐽

(

𝑓𝑖
)

is natural cubic spline smoothing with knots
at 𝑥(1)𝑖 ,… , 𝑥(𝑁)

𝑖 , thus the vector version of objective function  can be
expressed as a quadratic form:


(

𝒇 1,… ,𝒇 𝑝,𝒇𝑍 ,𝒇𝑇 ,𝒇𝑆
)

=
‖

‖

‖

‖

‖

𝒚 −
𝑝
∑

𝑖=1
𝒇 𝑖 − 𝒇𝑍 − 𝒇𝑇 − 𝒇𝑆

‖

‖

‖

‖

‖

2

+ 𝜆
𝑝
∑

𝑖=1
𝒇𝑇
𝑖 𝑲 𝑖𝒇 𝑖 + 𝜆𝑍𝜷𝑇 𝜷 + 𝜆𝑇 𝒇𝑇

𝑇𝑲𝑇 𝒇𝑇

+ 𝜆𝑆
𝑑−1
∑

𝜑=0
𝒇𝑇
𝑆𝜑

𝑲𝑆𝜑
𝒇𝑆𝜑

(4)

In Eq. (4), ‖ ∗ ‖

2 denotes the total square error and we use
𝒇 𝑖,𝒇𝑍 , 𝒇𝑇 and 𝒇𝑆 ∈ R𝑁 as the vector version realizations of 𝑓𝑖, 𝑓𝑍 , 𝑓𝑇 ,
𝑓𝑆 in Eq. (3) respectively. Here 𝒇𝑍 = 𝒁𝜷, 𝒁 is a 𝑁 × 𝑐 design matrix
corresponding to 𝑁 𝑞-hot encoded vectors from categorical features
as shown in Fig. 2. 𝒚𝑇 = (𝑦(1),… , 𝑦(𝑁)), 𝒇𝑇

𝑖 =
(

𝑓𝑖(𝑥
(1)
𝑖),… , 𝑓𝑖(𝑥

(𝑁)
𝑖)

)

,
𝒇𝑇
𝑇 =

(

𝑓𝑇 (𝑡(1)), … , 𝑓𝑇 (𝑡(𝑁))
)

, 𝒇𝑇
𝑆 =

(

𝑓𝑆 (𝑡(1)),… , 𝑓𝑆 (𝑡(𝑁))
)

. 𝑲 𝑖 is a 𝑁×𝑁
matrix pre-calculated by values 𝑥(1)𝑖 ,… , 𝑥(𝑁)

𝑖 (Buja, Hastie, & Tibshirani,
1989). 𝑲𝑇 is calculated the same way. 𝑲𝑆𝜑

is an 𝑁×𝑁 matrix obtained
by applying cubic spline smoother over 𝜑 and then re-ordering the
indices of records with a permutation matrix 𝑷 𝜑. Specifically, 𝑲𝑆𝜑

=

𝑷 𝑇
𝜑

[

𝑲𝑆𝜑
0

0 0

]

𝑷 𝜑, where 𝑲𝑆𝜑
is a |

|

|

𝜑
|

|

|

× |

|

|

𝜑
|

|

|

matrix w.r.t. cubic spline

smoothing over knots
{

𝑡(1)𝜑 , 𝑡(2)𝜑 ,… , 𝑡
(||
|

𝜑
|

|

|

)
𝜑

}

(i.e. 𝜑), and 𝑷 𝑇
𝜑 is a 𝑁 ×𝑁

permutation matrix mapping the indices of these knots into the original
indices of elements in 𝑇 .

Analysis of Optimality. To minimize  in Eq. (4), we derive ’s
stationary solution via FXAM’s normal equations:

∇𝒇 𝑖
 = 0|𝑖∶1,…,𝑝

∇𝜷 = 0
∇𝒇𝑇

 = 0
∇𝒇𝑆𝜑

 = 0|𝜑∶0,…,𝑑−1

⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑰 𝑴𝑍 𝑴𝑍 𝑴𝑍 … 𝑴𝑍
𝑴1 𝑰 𝑴1 𝑴1 … 𝑴1
𝑴2 𝑴2 𝑰 𝑴2 … 𝑴2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑴𝑇 𝑴𝑇 𝑴𝑇 … 𝑰 𝑴𝑇
𝑴𝑆 𝑴𝑆 𝑴𝑆 … 𝑴𝑆 𝑰

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇𝑍
𝒇 1
𝒇 2
⋮
𝒇𝑇
𝒇𝑆

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑴𝑍𝒚
𝑴1𝒚
𝑴2𝒚
⋮

𝑴𝑇 𝒚
𝑴𝑆𝒚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑴𝑍 = 𝒁
(

𝒁𝑇𝒁 + 𝜆𝑍𝑰
)−1 𝒁𝑇

𝑴 𝑖 =
(

𝑰 + 𝜆𝑲 𝑖
)−1 ,∀𝑖 ∈ {1,… , 𝑝}

𝑴𝑇 =
(

𝑰 + 𝜆𝑇𝑲𝑇
)−1

𝑴𝑆 = 𝑷 𝑇

⎡

⎢

⎢

⎢

⎢

⎣

(

𝑰 + 𝜆𝑆𝑲𝑆0

)−1
… 0

⋮ ⋱ ⋮

0 …
(

𝑰 + 𝜆𝑆𝑲𝑆𝑑−1

)−1

⎤

⎥

⎥

⎥

⎥

⎦

𝑷

(5)

In Eq. (5), 𝑷 = 𝑷 0 …𝑷 𝑑−1 is the overall permutation matrix, by
mapping indices of elements from

{

𝑡(1),… , 𝑡(𝑁)} to the indices of ele-
ments in

{

0,… , 𝑑−1
}

. Then estimate 𝒇 1,… ,𝒇 𝑝,𝒇𝑍 ,𝒇𝑇 ,𝒇𝑆 by given
𝑴1,… ,𝑴𝑝,𝑴𝑍 ,𝑴𝑇 , 𝑴𝑆 and 𝒚. By definition, a solution of FXAM’s
normal equations is a local optimum of , below we further prove that
the solution also achieves the global optimum of .

Theorem 1. Solutions of FXAM’s normal equations exist and are the global
optimum.

Proof. Here is the sketch proof, more details are at Appendix A.
According to theorem 2 in Buja et al. (1989), the solutions of normal
equations exist and are globally optimal if each smoothing matrix

Y. Jiang et al.

𝑴
i
t

4

v
s
f
p
j
e
l
a
n

f
t
w
…
i
i
j
i
m
i
l

t
p
1
t
c
A
i

Fig. 6. Three stage iteration procedure.
i
o

𝑖,𝑴𝑍 ,𝑴𝑇 , or 𝑴𝑆 is symmetric and shrinking (i.e., with eigenvalues
n [0, 1]). Thus we check 𝑴 𝑖,𝑴𝑍 ,𝑴𝑇 , and 𝑴𝑆 one by one and prove
hat they possess these properties. ■

.4. FXAM’s training

To solve FXAM’s normal equations, we extend backfitting and de-
elop a novel training procedure: Three-Stage Iteration (TSI). TSI con-
ists of three stages: learning over numerical, categorical, and temporal
eatures, respectively. As shown in Fig. 6: standard backfitting is ap-
lied over numerical features (line 2 − 5), we additionally design
oint learning over categorical features (line 6 − 8) to improve training
fficiency, and partial learning over temporal features (line 9 − 11) to
earn trend and seasonal components to improve accuracy. TSI is more
ppealing in that it maintains convergence to the solution of FXAM’s
ormal equations, thus the output of TSI is the global optimum of .
Joint learning on categorical features. To deal with categorical

eatures, existing GAMs conduct per-feature smoothing (e.g., histogram-
ype smoothing in pyGAM), which converges slowly since only the
eights of a specific categorical feature (e.g., 𝑍1) are updated (e.g., 𝛽1,
, 𝛽
|𝑍1|

) but all the other weights (e.g., 𝛽
|𝑍1|+1,… , 𝛽𝑐) are fixed in each

teration (depicted in Fig. 7). In contrast, we pull all categorical values
nto a homogeneous set 𝐻𝑐𝑎𝑡 and learn all the parameters 𝛽1,… , 𝛽𝑐
ointly. Joint learning enables accelerating gradient descent via adopt-
ng improved momentum: we adopt Nesterov acceleration and power
ethod (Nesterov, 1983; Sutskever, Martens, Dahl, & Hinton, 2013) to

mprove training efficiency (line 7 in Fig. 6). In our experiment, joint
earning achieves 3 − 10 times faster than per-feature learning.

Nesterov acceleration can be viewed as an improved momentum,
hus making convergence significantly faster than gradient descent es-
ecially when the cardinality of the homogeneous set is large (Nesterov,
983; Sutskever et al., 2013). As depicted in line 7 of Fig. 6, the
ask of learning the contributions of categorical values boils down to
alculating 𝜷 =

(

𝒁𝑇𝒁+ 𝜆𝑍𝑰
)−1 𝒁𝑇 𝒚𝑍 . We adopt Nesterov’s Gradient

cceleration (NGA) to estimate 𝜷 together with power iteration to

dentify optimal learning rate 𝜇. The adoption of NGA with power
teration in our problem is depicted on the left side of Fig. 9. The
ptimal learning rate 𝜇 equals the greatest eigenvalue of 𝒁𝑇𝒁 + 𝜆𝑍𝑰 ,

which can be efficiently identified by power iteration. The complexity
of our algorithm is 𝑂

(

𝑘𝑐2
)

where 𝑘 is #iterations of NGA that 𝑘 ≪ 𝑐.
Note that directly calculating matrix inversion has complexity 𝑂

(

𝑐3
)

which is unaffordable when 𝑐 is large.
Partial learning on temporal features. We adopt partial learning

to accurately learn multiple components from each temporal feature
𝑇 . Specifically, we first duplicate 𝑇 into two virtual features 𝑇tr and
𝑇se, and then apply smoother 𝑴𝑇 (de-trend operation) on 𝑇tr and 𝑴𝑆
(de-seasonal operation) on 𝑇se iteratively until a partial convergence,
and then move out to other features (Fig. 8(a)). In contrast, total
learning (i.e., standard approach) puts 𝑇tr and 𝑇se with numerical
features together and conducts backfitting (Fig. 8(b)) without par-
tial convergence, which could lead to undesirable entanglement: the
learned trend component exhibits small periodicity (i.e., carries partial
seasonal component), and the learned seasonal component exhibits
slow drift (i.e., carries partial trend component). In comparison, partial
learning learns more accurate trends and seasonal components.

The details about learning multiple components (i.e., seasonal trend
decomposition) have been shown in Fig. 9: we conduct local iteration
to identify trend 𝒇𝑇 and seasonality 𝒇𝑆 from temporal feature 𝑇
as depicted on the right side of Fig. 9. 𝒇𝑇 is obtained by applying
smoothing matrix 𝑴𝑇 (line 3) and cycle-subseries smoothing (line 6)
is applied to smoothing matrix 𝑴𝑆𝜑

to obtain 𝒇𝑆𝜑
. Such local iteration

ensures effective decomposition of 𝒇𝑇 and 𝒇𝑆 , leading to more stable
and accurate results. According to Theorem 2, such local iteration still
preserves overall convergence.

Theorem 2. TSI converges to a solution of FXAM’s normal equations.

Proof. Here is the sketch proof, more details are at Appendix A. A full
round of TSI can be denoted as a linear map  =

(

𝜱𝑆𝜱𝑇
)∞ 𝜱𝑍𝑲∞,

where 𝑲∞ =
(

𝜱𝑝𝜱𝑝−1 …𝜱1
)∞ and 𝑲∞ is one round of partial learning

∞
over numerical features. Here 𝑲 represents partial convergence of

Y. Jiang et al.

i

Fig. 7. Joint learning vs. per-feature learning (Joint learning: all parameters 𝛽1 ,… , 𝛽𝑐 are jointly updated in each iteration. Per-feature learning: only parameters of 𝑍𝑖 are updated
n each iteration).
Fig. 8. Partial learning vs. total learning.
Fig. 9. Details of training in TSI (Left part: Nesterov’s acceleration. Right part: seasonal-trend decomposition).
numerical features (Stage1), and
(

𝜱𝑆𝜱𝑇
)∞ represents partial conver-

gence of one temporal feature 𝑡 (Stage3). It is easy to verify that 𝑲∞

is no longer a symmetric matrix thus we cannot directly utilize the
GAM’s theorem of convergence. We have to take a step back and try
to analyze the basic properties of . To show ∞ exits, we need to
check the seminorm descent principle (Buja et al., 1989). Denote the
loss function of homogeneous equations as 0(𝒇) ∶= ‖

‖

‖

∑

𝑗∈ 𝒇 𝑗
‖

‖

‖

2
+

∑

𝑗∈ 𝒇
𝑇
𝑗

(

𝑴−
𝑗 − 𝑰

)

𝒇 𝑗 . We prove that we have a linear mapping 
satisfying 0(𝒇) < 0(𝒇) when 0(𝒇) > 0 and 𝒇 = 𝒇 when
0(𝒇) = 0. According to theorem 8 of Buja et al. (1989), 𝑚 converges
to ∞. ■

4.5. Improving training efficiency

To further improve training speed, we propose two techniques: in-
telligent sampling and dynamic feature iteration to improve backfitting
efficiency of Stage 1 in TSI. Last but not least, we adopt a recent fast
version of kernel smoothing instead of standard cubic spline smoothing.

Intelligent Sampling. For large-scale data sets (e.g., N > 100, 000),
we estimate the shape function over a sample set as better initialization
of 𝒇 𝑖 (Initialize part in Fig. 6). By doing so, the number of iterations
towards convergence could be reduced while the time cost of sampling-

based initialization could be negligible if the sample size is chosen
appropriately. Next, we illustrate how to determine an appropriate
sample size 𝑛.

Considering the task of smoothing over {(𝑥(𝑗), 𝑦(𝑗))|𝑗 = 1,… , 𝑁}.
Assume the records are drawn from ground-truth function 𝐹 (𝑋) ∶
𝑦(𝑖) = 𝐹 (𝑥(𝑖)) + 𝜖(𝑖) where 𝜖(𝑖) are i.i.d. random errors with 𝐸

(

𝜖(𝑖)
)

=
0,Var

(

𝜖(𝑖)
)

≤ 𝜎2. Denote 𝑈 as maximum slope of 𝐹 , i.e.,
|

|

|

𝐹
(

𝑥(𝑖)
)

− 𝐹
(

𝑥(𝑗)
)

|

|

|

≤ 𝑈 ‖

‖

‖

𝑥(𝑖) − 𝑥(𝑗)‖‖
‖

,∀𝑥(𝑖), 𝑥(𝑗) (Lipschitz condition).
Denote 𝑓𝑁 and 𝑓𝑛 as shape functions obtained by smoothing over
{(𝑥(𝑗), 𝑦(𝑗))|𝑗 = 1,… , 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 𝑠𝑖𝑧𝑒} on full set and sample set re-
spectively, we verify that the sample variation 𝐸 ‖

‖

𝑓𝑁 − 𝑓𝑛‖‖
2 has an

upper bound according to Lemma 1. Therefore the sampling error is
controllable and the estimates are accurate.

Lemma 1. 𝐸 ‖

‖

𝑓𝑁 − 𝑓𝑛‖‖
2 ≤ 4𝑐

[(

𝜎2 + sup𝐹 2)𝑈∕𝑛
]2∕3

Proof. Here is the sketch proof, more details are at Appendix A.
Sample variation is the difference between a smoothing function 𝑓𝑁 (𝑋)
obtained from all records and another smoothing function 𝑓𝑛(𝑋) ob-
tained from sampled records with sample size 𝑛. We can easily see
that as 𝑛 approaching 𝑁 , the difference vanishes. We thus prove that
the difference is bounded according to the characterstics of the smooth
function and sample size 𝑛. ■

According to Lemma 1, sample variation depends on sample size 𝑛,
noise level 𝜎, maximum slope 𝑈 and square of maximum absolute value

Y. Jiang et al.

f

e
w
o

p
c
p
w
s
t
t
n
t
a
p
w
1
i
a
s
a

4

p
r
u
p
w
u
t
e

l
s
F
l
e
c
1

i

c
sup𝐹 2 of 𝐹 . To bound sample variation for all features, sample size 𝑛𝑖
or feature 𝑋𝑖 should be 𝑛𝑖 ∝

(

𝜎2𝑖 + sup𝐹 2
𝑖
)

𝑈𝑖. We use a pre-specified
small sample size 𝑛0 (e.g., 10,000) to approximately estimate 𝐹𝑖 ≈ 𝑓𝑛0
for feature 𝑋𝑖, and then use it to further obtain estimation of 𝜎𝑖 and 𝑈𝑖.

We define 𝑛∗ = max
𝑖
𝛾
(

𝜎2𝑖 + sup𝐹 2
𝑖
)

𝑈𝑖 as sample size applied to
initialization for all numerical features, which is conservative since
under sample size 𝑛∗, sample variations for all features are bounded.
𝛾 is a hyperparameter.

Dynamic Feature Iteration (DFI). DFI is a heuristic algorithm. We
propose DFI to dynamically adjust the order of features for smoothing.
Smoothing over a feature with higher predictive power will reduce
more loss locally (i.e., within the current cycle) thus achieving faster
convergence. We propose a lightweight estimator to calculate and
update the predictive power of each feature and use it to dynamically
order features.

Definition 1. The predictive power of 𝑋𝑖 is defined as 𝑃𝑜𝑤𝑒𝑟𝑖 =
2𝑇𝑆𝑆 ⋅ 𝑟2𝑖 ∕(𝑁 − 2) −

(

2�̂�𝑖𝐵ℎ
)2

Here 𝑇𝑆𝑆 =
∑𝑁

𝑙=1
(

𝑦(𝑙) − ̄̃𝑦
)2, 𝑦(𝑙) is current partial residual and ̄̃𝑦 is

its average. Assume �̃�(𝑙) is the 𝑙th instance of variable 𝑌 , thus 𝑟𝑖 is the
Pearson correlation coefficient of 𝑋𝑖 and 𝑌 . 𝐵 is the bounded support
of kernel 𝐾ℎ, and ℎ is corresponding smoothing bandwidth. �̂�𝑖 is the
stimated maximum slope. In each full cycle over features 𝑋1,… , 𝑋𝑝,
e estimate 𝑃𝑜𝑤𝑒𝑟𝑖 of 𝑋𝑖 and use it to sort features by descending
rder.
Fast Kernel Smoothing Approximation. Kernel smoothing is a

opular alternative but suffers from low efficiency due to 𝑂
(

𝑁2)

omplexity in general. However, a fast kernel smoothing method is pro-
osed (Langrené & Warin, 2019), which achieves 𝑂(𝑁) complexity and
ith much smaller coefficient (i.e., ≪ 35). The key idea is called fast-

um-updating: given a polynomial kernel, this method pre-computes
he cumulative sum of each item in the polynomial form on evalua-
ion points and uses these cumulative sums to perform one-shot scan-
ing over evaluation points to complete the task. Our smoothing task
akes 𝑁 input samples

(

𝑥(1), 𝑦(1)
)

,… ,
(

𝑥(𝑁), 𝑦(𝑁)) where 𝑥(1),… , 𝑥(𝑁)

re also evaluation points (here we strip the feature index 𝑖 for sim-
licity). Natural cubic spline smoothing has 𝑂(𝑁) time complexity
hich is still expensive since it takes about 35N operations (Silverman,
985). We choose Epanechnikov kernel: 𝐾(𝑋) = 3

(

1 −𝑋2) ∕4, which
s a degree-2 polynomial kernel with good theoretical property. We
dopt the fast-sum-updating algorithm to approximate original cubic
pline smoothing to reduce operations to ≈ 4N almost without loss of
ccuracy.

.6. Flexibility

TSI’s modularity. As depicted in Fig. 6, each stage in TSI takes
artial residuals as input and estimates separate parameters (i.e., cor-
esponds to numerical, categorical, and temporal features respectively)
ntil partial convergence (stage-level). Therefore, each stage can be
erformed as a standalone module, and TSI can be viewed as a frame-
ork to learn these modules iteratively. Such modularization allows
s to adopt optimization techniques within each module. As aforemen-
ioned, we propose intelligence sampling and DFI to improve training
fficiency in Stage1.
Learning more time series components. TSI’s modularity al-

ows us to view Stage3 (learning on temporal features) as a classical
easonal-trend decomposition task (as depicted on the right side of
ig. 9), thus more sophisticated approaches can be adopted from
iterature such as STL (Cleveland et al., 1990) or RobustSTL (Wen
t al., 2019). Moreover, Stage3 can be extended to learn additional
omponents such as multiple seasonal components (Cleveland et al.,
990) or aperiodic cyclic components (Hyndman, 2011).
Tolerance to missing data. FXAM is tolerant w.r.t. missing data

n temporal features. We partition the instances into phase-𝜑 sets,
onduct smoothing within each phase-𝜑 set, and learn sub-component
𝒇𝑆𝜑

. These sub-components 𝒇𝑆𝜑
are further domain-merged to obtain

the seasonal component 𝒇𝑆 . It is known that smoothing is good at
interpolation thus it is tolerant of missing data issues.

Extension to multiple temporal features. The previous illustra-
tion presupposes a single temporal feature 𝑇 (for simplicity). When
there are multiple temporal features 𝑇1,… , 𝑇𝑢 where 𝑢 > 1 as shown
in Fig. 10, TSI can be extended naturally by applying Stage3 (line 9–
11) in Fig. 6 for each temporal feature provided that the period of its
seasonal component is given.

5. Evaluation

We evaluate FXAM on both synthetic and real data sets. We generate
synthetic data sets to comprehensively evaluate FXAM’s performance
against varied data scales and data characteristics, and we use 13
representative real data sets and a case study to demonstrate the
effectiveness of FXAM.

Comparison algorithms. We choose 3 representative algorithms
for comparison: pyGAM (Servén & Brummitt, 2018), EBM (Nori, Jenk-
ins, Koch, & Caruana, 2019), and XGBoost (Chen et al., 2015). pyGAM
is a standard implementation of GAM in python and EBM is the
implementation of GA2M. We choose the opaque model XGBoost as a
reference for accuracy. The detailed API calls are shown in Appendix F.

Hardware. All experiments are conducted on a Windows Server
2012 machine with 2.8 GHz Intel Xeon CPU E5-2680 v2 and 256 GB
RAM. FXAM is implemented by C#. We use the latest version of
pyGAM, EBM, and XGBoost in python.

Design and metric. We design experiments to evaluate:

• Modeling : FXAM’s effectiveness in addressing one-to-many and
many-to-one phenomena by varying scales of categorical or tem-
poral features.

• Training : The performance of TSI procedure by comparing with
pyGAM.

• Efficiency : FXAM vs. all competitors on training speed.

To measure the training time of ML model used in predictive
analytics, we fix the hyperparameters of each competitor algorithm
beforehand. These hyperparameters are carefully tuned to achieve the
best performance (details are shown in Appendix F). For each data
set, we conduct 5-fold cross-validation and use the average root-mean-
square error (RMSE) to measure accuracy and we record average
training time.

5.1. Evaluation on synthetic data

Synthetic data generation. To thoroughly evaluate FXAM’s per-
formance against varied data scales/characteristics, we synthetically
generate data sets by specifying a configuration that is composed of
seven factors as shown in Table 2. Factors 1 − 3 specify the data scale,
factors 4 − 6 specify data characteristics and factor 7 specifies the
difficulty level of ground-truth generation functions. The generation
functions in easy mode follow standard additive models, i.e., response
is the sum of the contribution of each feature and then with a small
random noise. The hard mode considers a significant portion of feature
interactions with higher noise level (details are in Appendix B).

Results. We have conducted evaluations by varying #records, #fea-
tures, and so on. In each setup, we fix the other factors and only vary a
specific one (details are in Appendix C). Fig. 11 depicts results on hard
data sets. The results of training time are represented by logarithmic
scale to facilitate clear comparison on the same graph, as the FXAM
model’s training time is orders of magnitude smaller than that of other
models. As the number of features gradually increases, the proportion
of categorical variables increases, or the seasonal ratio in temporal

variables increases, the accuracy of XGBoost begins to decline, and

Y. Jiang et al.

F

Fig. 10. Extension to multiple temporal features in Stage3.
Fig. 11. Evaluation on synthetic data sets. Four rows reflect different data scales/characteristics by varying: Row1: #records | Row2: #features | Row3: numerical feature ratio |

Row4: seasonality ratio of the temporal feature. The 51 features indicated in the left figure on the third Row are composed of 50 numerical features and 1 temporal feature.
a
a
r
f
j

t
X
o

Table 2
Seven factors for generating synthetic data sets.
ID Factor Value range

1 #records [10, 000, 500, 000]
2 #features [20, 200]
3 #total cardinalities [0, 2000]
4 numerical feature ratio [0, 1]
5 has temporal feature {yes, no}
6 seasonality ratio [0.0, 0.1]
7 difficulty {easy, hard}

FXAM gradually outperforms XGBoost in accuracy. Here only shows the
results on ‘hard’ data sets. For ‘easy’ data sets, since the ground-truth
generating mechanism is with feature contributions fully untangled,
GAM-related approaches could achieve optimal accuracy, this is why
XGBoost does not perform well on ‘easy’ data sets. The complete results
are shown in Appendix E.

Addressing One-To-Many over temporal features. The 4th row of
ig. 11 illustrates the effectiveness of FXAM on learning trends and
 c
seasonal components over temporal features. The seasonality ratio
(defined as Fraction-of-Variance-Explained: (Achen, 1990)) is varied
from 0% to 10%. We also compare with a simplified version of FXAM
called ‘‘FXAM_no_TAS’’, i.e., treating the temporal feature as a normal
numerical feature. As the seasonality ratio increases from 0% to 10%,
the RMSEs of all the algorithms increase except FXAM’s RMSE which
remains stable and achieves the highest accuracy.

Addressing Many-To-One over categorical features. In the first chart
of 3rd row of Fig. 11, the right-most data points show RMSEs when
ll features are categorical with total cardinality = 2000. Both FXAM
nd pyGAM achieve the smallest RMSE since they have the same
egularization on categorical features. FXAM’s training speed is 3 times
aster than pyGAM and 10 times faster than EBM/XGBoost due to its
oint learning strategy.
Efficiency and Convergence of TSI. Results in Fig. 11 generally show

he performance of FXAM’s training procedure TSI. In the 1st column,
GBoost achieves the best accuracy. Meanwhile, FXAM achieves close
r even better accuracy vs. pyGAM or EBM. ALL results in the 2nd
olumn show that FXAM achieves magnitude-order speed-up.

Y. Jiang et al.

s
u
a
X
d
m
t

a
p
l
F
(
i
m
‘
s
i
i
b
s
s
i
i
r

Fig. 12. Ablation study of FXAM.
Fig. 13. Training time (logarithmic scale in the 𝑦-axis of the top figure) and RMSE (bottom figure) on 13 real data sets.
i
s
c
t
T
d
a

5

d

F
f
‘
p
t
t
t
F
e
s
i

Feasibility for interactive ML (iML). The typical scale of multi-dimen-
ional data is with #records = 100, 000, and #features = 100. FXAM
ses less than 20 s for training on such scale data set whereas the other
lgorithms cost more than 100 s (pyGAM) or even 1000 s (EBM or
GBoost). pyGAM throws Out-Of-Memory exception when training on
ata sets with 500,000 records. To facilitate smooth iML experience, the
achine is asked to respond within 10 s. Therefore, FXAM is feasible

o facilitate iML in an interactive and iterative manner.
Ablation Study. We also conduct an ablation study to evalu-

te the efficiency improvement by using two novel techniques pro-
osed in FXAM (hyperparameters are shown in Appendix D): intel-
igent sampling and DFI (Dynamic Feature Iteration). As shown in
ig. 12, we compare the efficiency of FXAM among disabling sampling
FXAM_NoSampling, orange curve), both sampling and dynamic feature
teration disabled (FXAM_NoSampling_NoFDI, grey curve) and original
odel (FXAM, blue curve). All data sets are with difficulty level =

hard’. The results show that sampling and DFI improve efficiency
ignificantly, which confirms that sampling indeed identifies better
nitialization of smoothing functions, and dynamic feature iteration
ncreases convergent speed. All three algorithms have the same RMSE
ecause we observed that the two techniques involved, intelligent
ampling and the DFI algorithm, primarily accelerate the convergence
peed without affecting the predictive accuracy. More specifically,
ntelligent sampling enhances the initialization phase by estimating an
nitial function based on sampling. This significantly accelerates the
ate of convergence to the global optimum. Similarly, the DFI algorithm
 i
dentifies features with higher predictive power. FXAM first performs
moothing operations on these features, which also enables a faster
onvergence to the global optimum. Theorems 1 and 2 further support
his by demonstrating that FXAM can converge to the global optimum.
hus, while these techniques improve the speed of convergence, they
o not alter the ultimate accuracy of the prediction as the algorithms
re still converging to the same global optimum.

.2. Evaluation on real data

We have collected 13 representative real data sets from diverse
omains as shown in Table 3.
Results. As depicted in Fig. 13, compared with pyGAM and EBM,

XAM achieves the best accuracy on 6 of 9 data sets that have temporal
eatures compared with pyGAM and EBM. For the left 3 data sets
BikeShare’, ‘Kickstarter’, and ‘CSAT’, FXAM’s accuracy is still very com-
etitive. Such result reflects the effectiveness of FXAM in decomposing
rend and seasonal components (FXAM exhibits even better accuracy
han XGBoost on three data sets ‘Clif’, ‘SH’, and ‘GZ’). Regarding
raining speed, FXAM is significantly faster than the other algorithms.
XAM uses < 10 seconds to finish training on 12 out of 13 data sets
xcept for the ultra-large data set ‘Birth’, where FXAM uses ≈ 200
econds but XGBoost and EBM use nearly one hour and pyGAM runs
nto Out-Of-Memory exception. Therefore, FXAM is suitable to facilitate
ML.

Y. Jiang et al.

w
h
t
F

p

Fig. 14. Model interpretability comparison on categorical features (Combined with domain knowledge, the results show that FXAM accurately detects the positive contribution
(green) of 𝑃𝑟𝑜, while XGBoost+SHAP mistakenly identifies the contribution of 𝑃𝑟𝑜 as negative (red).
𝐺
m
F
f
t

s
a
o

Table 3
Details of real data sets.

Name #Records #Features Has temporal Domain

BikeSharea 17,414 8 Y Social
SYa 20,451 10 Y Environment
Clifa 7,484 25 Y Sales
CDa 27,366 10 Y Environment
Kickstartera 55,427 6 Y Financial
SHa 34,040 8 Y Environment
CSATb 31,779 11 Y Computer
Energyc 19,735 28 Y Energy
GZa 32,353 10 Y Environment
ITb 341,721 6 N Computer
Asteroida 137,680 26 N Astronomy
Autosa 304,133 11 N Sales
Birtha 1,000,000 46 N Healthcare

a This data set is from Kaggle https://www.kaggle.com/.
b This data set is from Microsoft Research https://www.microsoft.com/en-us/
research/.
c This data set is from Archive https://archive.org/.

Real-world case: predicting customer satisfaction compared
with XGBoost+SHAP. ‘CSAT’ is about customer satisfaction of using
an online service system. Each record corresponds to specific customer
feedback, with a satisfaction score ranging from 1 to 5. Engineers
initially collect 20 features to predict the score. We build an Excel add-
in to facilitate user interaction with FXAM. Engineers want to know: (1)
hether these features are effective to support expert decision-making; (2)
ow to support expert decision-making? For example, whether it is necessary
o add more resources for customer service on weekends. We show how
XAM facilitates answering these questions.

In contrast, we use SHAP (Lundberg et al., 2020) to explain the
rediction results of XGBoost, and the average of SHAP values of the
 o
feature is calculated as the total contribution of the feature. It should
be noted that in general, each feature has a positive or negative SHAP
value on each instance, and in this experiment, the SHAP values of the
feature remain positive or negative on the vast majority of instances,
so there is no offset between the positive and negative contributions
when calculating the average.

FXAM is trustworthy enough to support expert decisions. The contribu-
tions of features output by a trustworthy model should be consistent
with the ground truth. The following takes 𝑃𝑟𝑜 as an example to
illustrate the trustworthiness of FXAM. The horizontal axis in Fig. 14
represents the contribution of each feature to the results. Red represents
negative contribution, while green represents positive contribution.
Fig. 14(a) depicts the FXAM model on categorical features 𝐺𝑟𝑜𝑢𝑝 and
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑁𝑎𝑚𝑒. 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑁𝑎𝑚𝑒 is the subdivision of 𝐺𝑟𝑜𝑢𝑝 to indicate
specific services within each 𝐺𝑟𝑜𝑢𝑝 (each service name takes its corre-
sponding group name as a prefix). FXAM reports a positive contribution
from 𝑃𝑟𝑜_0 (box selected) on 𝑆𝑒𝑟𝑖𝑣𝑖𝑐𝑒𝑁𝑎𝑚𝑒. However, due to domain
knowledge, services within 𝑃𝑟𝑜 are more likely to have negative contri-
butions. A feasible explanation is that 𝑃𝑟𝑜 from feature 𝐺𝑟𝑜𝑢𝑝 absorbs
the most negative contribution (1 st column in Fig. 14(a)). Considering
the dependency between 𝐺𝑟𝑜𝑢𝑝 and 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑁𝑎𝑚𝑒, engineers delete
𝑟𝑜𝑢𝑝 and then re-train FXAM. In seconds, FXAM returns an updated
odel which is verified to be meaningful (3rd column of Fig. 14(a)).

ollowing such interactive analysis flow, engineers eventually select 11
eatures to predict the score, and the corresponding model is verified
o be trustworthy.

As shown in Fig. 14(b), when explaining XGBoost with SHAP, 𝑃𝑟𝑜
hows the same contradictory results on 𝐺𝑟𝑜𝑢𝑝 and 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑛𝑎𝑚𝑒. But it
lso shows that 𝑃𝑟𝑜 tends to have a positive impact, which contradicts
ur domain knowledge.
More resources of customer service should be added on weekends, based
n FXAM’s interpretability on 𝐷𝑎𝑡𝑒. In Fig. 15(a), FXAM identifies a

https://www.kaggle.com/
https://www.microsoft.com/en-us/research/
https://www.microsoft.com/en-us/research/
https://archive.org/

Y. Jiang et al.

X

s
𝒇
e
c
t
s
t
c

a
l

6

w
f
a
d
(
a
t
o
o
c

Fig. 15. Model interpretability comparison on feature 𝐷𝑎𝑡𝑒 (FXAM can disentangle the seasonality and trend contributions of temporal features, while they are entangled in
GBoost+SHAP ’s results).
i
m
t
i
p
t
t
a

C

i
i
M
c
Q
g

&

ignificant seasonal component 𝒇𝑆 (blue curve) and a trend component
𝑇 (orange curve) on feature 𝐷𝑎𝑡𝑒. In 𝒇𝑆 , a weekly repeating pattern is
xhibited and each Saturday (i.e., valley points) has the most negative
ontribution within a period. There is no clear upward or downward
rend in 𝒇𝑇 . Thus, stable user behavior is exhibited such that customer
atisfaction becomes worse during the weekend. Moreover, the ampli-
ude of 𝒇𝑆 is growing, which suggests the urgency to allocate more
ustomer service on the weekend.

The results of XGBoost+SHAP are shown in Fig. 15(b). The trend
nd seasonality are mixed together, which cannot be effectively ana-
yzed and cannot help answer the second question.

. Conclusion

We have proposed FXAM, which extends GAM’s modeling capability
ith a unified additive model for numerical, categorical, and temporal

eatures. FXAM addresses the challenges introduced by one-to-many
nd many-to-one phenomena, which are commonly appeared in pre-
ictive analytics. FXAM conducts a novel training procedure called TSI
Three-Stage Iteration). We prove that TSI is guaranteed to converge
nd the solution is globally optimal. We further propose two novel
echniques to speed up FXAM’s training algorithm to meet the needs
f interactive ML. Evaluations have verified that FXAM remarkably
utperforms the existing GAMs regarding training speed and modeling
ategorical or temporal features.
 e
The success of FXAM’s real-world adoption has demonstrated the
mportance of interactive and interpretable ML, which are also the
ain design goals of FXAM. One future direction is to extend FXAM

o support not only main effects (i.e., the univariate shape functions
n this paper) but also pairwise or higher-order interactions such as
ureGAM (Sun et al., 2022) and GA2M (Lou et al., 2013). It is known
hat learning interactions will introduce significantly higher computa-
ional costs, and the high-efficiency training speed of FXAM is clearly
benefit.

RediT authorship contribution statement

Yuanyuan Jiang: Conceptualization, Methodology, Software, Val-
dation, Formal analysis, Investigation, Data curation, Writing – orig-
nal draft, Writing – review & editing. Rui Ding: Conceptualization,
ethodology, Software, Validation, Formal analysis, Investigation, Data

uration, Writing – original draft, Writing – review & editing. Tianchi
iao: Conceptualization, Methodology, Software, Validation, Investi-
ation. Yunan Zhu: Conceptualization, Methodology, Software, Val-

idation, Investigation. Shi Han: Conceptualization, Writing – review
editing. Dongmei Zhang: Conceptualization, Writing – review &

diting.

Y. Jiang et al.

a

t

𝑼
d

𝑽

(

D

i
i
𝒚

A

P
(

p
r
n
n

p
t
l
o
e

∀
v

𝐸

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Appendix A. Proof details

A.1. Proof of Theorem 1

Proof. According to theorem 2 in Buja et al. (1989), the solutions
of normal equations exist and are globally optimal if each smoothing
matrix 𝑴 𝑖,𝑴𝑍 ,𝑴𝑇 , or 𝑴𝑆 is symmetric and shrinking (i.e., with
eigenvalues in [0, 1]). Thus we check 𝑴 𝑖,𝑴𝑍 ,𝑴𝑇 , and 𝑴𝑆 one by one:

𝑴 𝑖,𝑴𝑇 are indeed symmetric and shrinking according to standard
nalysis of cubic spline smoothing matrix.

Re-write 𝑴𝑍 = 𝒁𝑨𝒁𝑇 where 𝑨 =
(

𝒁𝑇𝒁 + 𝜆𝑍𝑰
)−1. It is easy to see

hat 𝑨 is a symmetric matrix thus 𝑴𝑇
𝑍 =

(

𝒁𝑇)𝑇 𝑨𝑇𝒁𝑇 = 𝒁𝑨𝒁𝑇 = 𝑴𝑍 .
Denote singular value decomposition of 𝒁 is 𝒁 = 𝑼𝜦𝑽 𝑇 , where
and 𝑽 are orthogonal matrices, 𝜦 is a 𝑐 × 𝑐 diagonal matrix, with

iagonal entries 𝛬11 ≥ ⋯ ≥ 𝛬𝑐𝑐 ≥ 0. Thus we have 𝑴𝑍𝒚 =
𝒁

(

𝒁𝑇𝒁 + 𝜆𝑰
)−1 𝒁𝑇 𝒚 = 𝑼𝜦𝑽 𝑇 (𝑽 𝜦2𝑽 𝑇 + 𝜆𝑰

)−1 𝑽 𝜦𝑼𝑇 𝒚 = 𝑼𝜦
𝑇 (𝑽 𝜦2𝑽 𝑇 + 𝜆𝑽 𝑰𝑽 𝑇)−1 𝑽 𝜦𝑼𝑇 𝒚 = 𝑼𝜦𝑽 𝑇 𝑽

(

𝜦2 + 𝜆𝑰
)−1 𝑽 −1𝑽 𝜦𝑼𝑇 𝒚

= 𝑼𝜦
(

𝜦2 + 𝜆𝑰
)−1 𝜦𝑼𝑇 𝒚 =

∑𝑐
𝑗=1 𝒖𝒋

𝛬2
𝑗𝑗

𝛬2
𝑗𝑗+𝜆

𝒖𝑇𝒋 𝒚, thus the eigenvalues
𝛬2
𝑗𝑗

𝛬2
𝑗𝑗+𝜆

are in [0, 1] considering 𝜆 > 0.

Re-write 𝑴𝑆 = 𝑷 𝑇𝜣𝑷 . Since each 𝑲𝑆𝜑
is a symmetric matrix, thus

𝑰 + 𝜆𝑆𝑲𝑆𝜑

)−1
is symmetric and 𝜣 is symmetric, thus 𝑴 is symmetric.

ue to the shrinking property of
(

𝑰 + 𝜆𝑆𝑲𝑆𝜑

)−1
, and considering 𝜣

s a block-diagonal matrix with
(

𝑰 + 𝜆𝑆𝑲𝑆𝜑

)−1
as its blocks, thus 𝜣

s also shrinking: ‖𝜣𝒚‖2 ≤ ‖𝒚‖2,∀𝒚. So ‖

‖

𝑴𝑆𝒚‖‖
2 = 𝒚𝑇𝑴𝑇

𝑆𝑴𝑆𝒚 =
𝑇𝑷 𝑇𝜣𝑇𝜣𝑷𝒚 = ‖𝜣𝑷𝒚‖2 ≤ ‖𝑷𝒚‖2 = ‖𝒚‖2, thus 𝑴𝑆 is shrinking. ■

.2. Proof of Theorem 2

roof. A full cycle of TSI can be written as a linear map  =
𝜱𝑆𝜱𝑇

)∞ 𝜱𝑍𝑲∞, where 𝑲∞ =
(

𝜱𝑝𝜱𝑝−1 …𝜱1
)∞. Here 𝑲∞ represents

artial convergence of numerical features (Stage1), and
(

𝜱𝑆𝜱𝑇
)∞

epresents partial convergence of one temporal feature 𝑡 (Stage3). We
eed to prove 𝑚 converges to ∞, and ∞ is a solution of FXAM’s
ormal equations.

Denote the index set  ∶= {1, 2,… , 𝑝, 𝑍, 𝑇 , 𝑆}. We only need to
rove that TSI converges to a solution of FXAM’s homogeneous equa-
ions (i.e., FXAM’s normal equations with 𝒚 = 𝟎) because a general so-
ution is a solution of homogeneous equations plus an arbitrary solution
f FXAM’s normal equations. Denote the loss function of homogeneous
quations as  (𝒇) ∶= ‖

‖

∑

𝒇 ‖

‖

2
+
∑

𝒇𝑇
(

𝑴− − 𝑰
)

𝒇 .
0
‖

𝑗∈ 𝑗
‖

𝑗∈ 𝑗 𝑗 𝑗
We define a linear map 𝜱𝒋 to describe the updating of 𝑗th compo-
nent in TSI when 𝒚 = 𝟎:

𝜱𝒋 ∶

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇 1
⋮
𝒇 𝑝
𝒇𝑍
𝒇𝑇
𝒇𝑆

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≡ 𝒇 →

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒇 1
⋮

−𝑴 𝑗
∑

𝑖∈,𝑖≠𝑗 𝒇 𝑖
𝒇𝑍
𝒇𝑇
𝒇𝑆

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,∀𝑗 ∈ 

A full cycle of backfitting over numerical features is then described
by 𝑲 = 𝜱𝑝𝜱𝑝−1 …𝜱1. Denote the 𝑚 full cycles as 𝑲𝑚. It is obvious
that 𝑲𝑚 converges to a limit 𝑲∞ (we can view this as a standard task
of backfitting over pure numerical features) therefore with property
𝑲𝑲∞ = 𝑲∞. Note that 𝑲∞ describes the procedure of stage 1, thus the
full cycle of the entire TSI is  = 𝜱𝑆𝜱𝑇𝜱𝑍𝑲∞. Since each component
of  is minimizer of 0(𝒇) and since 0 is a quadratic form, hence
0(𝒇) ≤ 0(𝒇). When 0(𝒇) = 0(𝒇), no strict descent is possible
on any component, thus 𝜱𝑆𝒇 = 𝒇 ,𝜱𝑇 𝒇 = 𝒇 ,𝜱𝑍𝒇 = 𝒇 ,𝑲∞𝒇 =
𝒇 . Considering 𝑲𝑲∞ = 𝑲∞, thus 𝑲𝑲∞𝒇 = 𝑲∞𝒇 ⇔ 𝑲𝒇 = 𝒇
when descent vanishes. Since each component 𝜱𝑗 of 𝑲 only updates
separate 𝒇 𝑗 , thus 𝑲𝒇 = 𝒇 ⇔ 𝜱𝑗𝒇 = 𝒇 ,∀𝑗 ∈ {1,… , 𝑝}. So descent
vanishes on any 𝒇 equivalent to 𝜱𝑗𝒇 = 𝒇 ,∀𝑗 ∈ . Meanwhile, such 𝒇
satisfies homogeneous equations, which indicates 0(𝒇) = 0 according
to theorem 5 in Buja et al. (1989). In summary, we have a linear
mapping  satisfying 0(𝒇) < 0(𝒇) when 0(𝒇) > 0 and 𝒇 = 𝒇
when 0(𝒇) = 0. According to theorem 8 of Buja et al. (1989), 𝑚

converges to ∞. ■

A.3. Proof of Lemma 1

Proof. Sample variation is the difference between a smoothing function
𝑓𝑁 (𝑋) obtained from all records and another smoothing function 𝑓𝑛(𝑋)
obtained from sampled records with sample size 𝑛.

According to theorem 5.2 in Györfi, Kohler, Krzyżak, and Walk

(2002), for any kernel smoother 𝑓𝑁 , 𝐸 ‖

‖

𝑓𝑁 − 𝐹‖

‖

2 ≤ 𝑐
(

(

𝜎2+sup𝐹 2)𝑈
𝑁

)2∕3
,

𝑁 . This provides a way to estimate the upper bound of sample
ariation by

‖

‖

𝑓𝑁 − 𝑓𝑛‖‖
2 = ∫

(

𝑓𝑁 (𝑋) − 𝑓𝑛(𝑋)
)2 𝜇(𝑑𝑋)

= ∫
(

𝑓𝑁 (𝑋) − 𝐹 (𝑋) + 𝐹 (𝑋) − 𝑓𝑛(𝑋)
)2 𝜇(𝑑𝑋)

≤ ∫
(

𝑓𝑁 (𝑋) − 𝐹 (𝑥) + 𝐹 (𝑋) − 𝑓𝑛(𝑋)
)2 𝜇(𝑑𝑋)

+ ∫
(

𝑓𝑁 (𝑋) − 𝐹 (𝑋) − 𝐹 (𝑋) + 𝑓𝑛(𝑋)
)2 𝜇(𝑑𝑋)

= 2
(

𝐸 ‖

‖

𝑓𝑁 − 𝐹‖

‖

2 + 𝐸 ‖

‖

𝑓𝑛 − 𝐹‖

‖

2
)

≤ 4𝐸 ‖

‖

𝑓𝑛 − 𝐹‖

‖

2

= 4𝑐

(
(

𝜎2 + sup |𝐹 |

2)𝑈
𝑛

)
2
3

■

Appendix B. Generation details of synthetic data

B.1. Generation for numerical features

Easy Mode. The numerical features are generated based on three
univariate functions as follows:

1. 𝑓 (𝑋) = 𝐴1𝑋
2. 𝑔(𝑋) = 𝐴2𝑋2 + 𝐴3𝑋
3. ℎ(𝑋) = 𝐴 sin

(

𝐴 𝑋 + 𝐴
)

4 5 6

Y. Jiang et al.

C

For a specific numerical feature, we first randomly choose one of
the three functions by probabilities: 0.3 ∶ 0.3 ∶ 0.4 (w.r.t. 𝑓 , 𝑔 and ℎ
respectively). 𝐴1, 𝐴3, 𝐴4 are random variables that are uniformly and
independently drawn from [−2, 2]. 𝐴2 is drawn uniformly from [−1, 1].
𝐴5 is drawn uniformly from [0, 6𝜋], and 𝐴6 is drawn uniformly from
[−0.5, 0.5].

Once the coefficients 𝐴1,… , 𝐴6 are set, our generator generates each
record with variable 𝑋 drawn uniformly from [0, 10].

The final response is the total sum of each function and additionally
with a random noise 𝜖 ∶ 𝜖 follows normal distribution with 𝐸(𝜖) =
0, and its variance is adjusted based on generated data so that the
Var(𝜖)∕𝑇𝑆𝑆 = 0.1%.

Hard Mode. Besides the three univariate functions, we include
two additional two-variable functions 𝐼1 and 𝐼2 to indicate feature
interactions:

• 𝐼1(𝑋1, 𝑋2) = 𝐵1𝑋1𝑋2 + 𝐵2𝑋1 + 𝐵3𝑋2
• 𝐼2(𝑋1, 𝑋2) = 𝐵4 cos

(

𝐵5𝑋1𝑋2 + 𝐵6𝑋1 + 𝐵7𝑋2 + 𝐵8
)

In hard mode, for a specific numerical feature, we first randomly
choose one of the five functions

{

𝑓, 𝑔, ℎ, 𝐼1, 𝐼2
}

by probabilities: 0.1 ∶
0.1 ∶ 0.2 ∶ 0.2 ∶ 0.4 accordingly. If the function is drawn to be either 𝐼1
or 𝐼2, we will use two numerical features to generate their contributions
to the response.

Coefficients 𝐵1, 𝐵2, 𝐵3, 𝐵4 are random variables that are uniformly
and independently drawn from [−2, 2]. 𝐵5, 𝐵6, 𝐵7 are drawn uniformly
from [0, 4𝜋], and 𝐵8 is drawn uniformly from [−0.5, 0.5]

Once the coefficients are set, if the function is either 𝐼1 or 𝐼2, the
two variables are drawn uniformly and independently 𝑋1 ∼ [0, 10], 𝑋2 ∼
[0, 10] to generate each record.

The final response is the total sum of each function and additionally
with a random noise 𝜖. We adjust the interaction items to assure
they contribute 60%–70% to final response (w.r.t. Fraction of Variance
Explained by interaction items). 𝜖 follows normal distribution with
𝐸(𝜖) = 0, and its variance is adjusted based on generated data so that
the Var(𝜖)∕𝑇𝑆𝑆 = 0.5%. Thus, the noise level for hard mode is five
times larger than it for easy mode

B.2. Generation for categorical features

For each categorical feature, its cardinality is set uniformly from
integers in [2, 𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦]. 𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 is a configuration
parameter with value ranging from 10 to 38 (so the average cardinality
is from 6 to 20).

The contribution of each specific categorical value 𝑍𝑖 is 𝛽
(

𝑍𝑖
)

,
called weight, and 𝛽

(

𝑍𝑖
)

∼ [0, 15] which is drawn independently and
uniformly.

B.3. Generation for temporal feature

We inject seasonality components into data by considering a tem-
poral feature with the form:

𝑓𝑇𝑆 (𝑇) = 𝑉1 sin
(2𝜋𝑇

10
+ 𝑉2

)

Here 𝑉2 ∼ [−5, 5] and 𝑉1 is used to control the ratio of seasonality
components (w.r.t. its influence on final response).

𝑇 is the discrete time, so it is an integer randomly drawn from
[1, 200].

Appendix C. Configurations for evaluation on synthetic data

C.1. Varying # records

Here we set 𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = 10 per each categorical feature, so
the expectation of total cardinality is 120 as shown in Table C.1.
 s
Table C.1
Varying # Records.
ID Factor Value range

1 #records [10, 000, 500, 000]
2 #features 100
3 #total cardinalities 120
4 Numerical feature ratio 0.8
5 Has temporal feature No
6 Difficulty {easy, hard}

Table C.2
Varying # Features.
ID Factor Value range

1 #records 100,000
2 #features [20, 200]
3 #total cardinalities [24, 240]
4 Numerical feature ratio 0.8
5 Has temporal feature No
6 Difficulty easy, hard

Table C.3
Varying numerical feature ratio.
ID Factor Value range

1 #records 100,000
2 #features 100
3 #total cardinalities [0, 2000]
4 Numerical feature ratio [0, 1]
5 Has temporal feature No
6 Difficulty {easy, hard}

Table C.4
Varying seasonality ratio from temporal feature.
ID Factor Value range

1 #records 100,000
2 #features 51
3 #total cardinalities 60
4 Numerical feature ratio 40∕51
5 Has temporal feature yes
6 Difficulty {easy, hard}

C.2. Varying # features

Here we set 𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = 10 per each categorical feature as
shown in Table C.2.

C.3. Varying numerical feature ratio

Here we set 𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = 38 per each categorical feature as
shown in Table C.3 so that the expectation of total cardinality is

0: when numerical feature ratio = 1;
2000 ∶ when numerical feature ratio = 0

.4. Varying seasonality ratio from temporal feature

Here we set 𝑀𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 = 10 per each categorical feature as

hown in Table C.4.

Y. Jiang et al.
Fig. D.1. Performance comparison from different perspectives by varying. Row1: #records | Row2: #features | Row3: numerical feature ratio | Row4: seasonality ratio of temporal
feature.
Table D.1
Hyperparameters in study 1.
ID Factor Value range

1 #records {50, 000, 100, 000, 500, 000}
2 #features 100
3 #total cardinalities 0
4 Numerical feature ratio 1
5 Has temporal feature No
6 Difficulty Hard

Appendix D. Ablation study

Ablation study mainly evaluates two novel techniques of FXAM:
intelligent sampling and dynamic feature iteration, and the hyperpa-
rameters are shown in Table D.1 and Table D.2 respectively. Since these
two techniques are applied for numerical features, thus in this study,
we only generate data sets with pure numerical features.
Table D.2
Hyperparameters in study 2.
ID Factor Value range

1 #records 100,000
2 #features {50, 100, 200}
3 #total cardinalities 0
4 Numerical feature ratio 1
5 Has temporal feature No
6 Difficulty Hard

Appendix E. Complete results on synthetic data

In this paper, we only present results on ‘hard’ data sets. Here the
first two columns are additional results on ‘easy’ data sets as shown in
Fig. D.1. FXAM and other related approaches perform much better than
XGBoost on accuracy and efficiency for ‘easy’ data set.

Y. Jiang et al.

n

F

e

f

s

i
c

F

w
f
g
w
u
i

p
a

m

m

Fig. E.1. Performance results of XGBoost for three different versions.
R

A

A

A

A

A

B

C

C

C

C

C

C

D

F

F

G

H
H

H
H

J

K

K

Appendix F. API calls for XGBoost, EBM, mgcv and pyGAM

To make fair comparison with FXAM, for categorical features, we
conduct the same one-hot encoding and apply it to all the competing
algorithms.

Below are the detailed API calls that we choose for comparison, the
hyperparameters are carefully tuned to make the result accurate and as
fast as possible.

F.1. EBM

We use the python code from Nori et al. (2019) for evaluation.
The detailed API calling is: ExplainableBoostingRegressor (n_estimators
= 16, learning_rate = 0.01, max_tree_splits = 2, (default parameters)
_jobs = 1)

.2. pyGAM

We use the python code from Servén and Brummitt (2018) for
valuation. The detailed API calling is

/* For pyGAM, we choose to fit categorical feature with smoothing
unction type:

‘‘f()’’, i.e. factor term; we choose to fit numerical feature with
moothing function type:

‘‘s()’’, i.e. spline term.
Therefore, terms is a list pre-generated based on feature type, which

s used to indicate which type of smoothing function is selected for the
orresponding feature. */

LinearGAM(terms, max_iter = 100, tol = 1e − 4)

.3. XGBoost

We choose three typical versions of parameters to run XGBoost,
hich are (1) fast, (2) mild, and (3) slow. The ‘‘fast’’ version is with

ast training speed but accuracy is low, and the ‘‘slow’’ version is with
ood accuracy but training speed is low. ‘‘mild’’ is a set of parameters
hich we carefully tuned; thus it is a good balance, which is the version
sed in our evaluation. The results of three typical versions are shown
n Fig. E.1.

For instance, below we show our experiments for three versions of
arameters to call XGBoost. You can see that ‘‘mild’’ achieves very close
ccuracy with ‘‘slow’’ but its time is much faster.
Fast. n_estimators = 100, learning rate = 0.3, max_depth = 6,

min_child_weight = 1
Mild. n_estimators = 500, learning rate = 0.3, max_depth = 7,

in_child weight = 5
Slow. n_estimators = 1000, learning rate = 0.1, max_depth = 7,
in_child_weight = 5
eferences

bdul, A., Vermeulen, J., Wang, D., Lim, B. Y., & Kankanhalli, M. (2018). Trends and
trajectories for explainable, accountable and intelligible systems: An hci research
agenda. In Proceedings of the 2018 CHI conference on human factors in computing
systems (pp. 1–18).

bdul, A., von der Weth, C., Kankanhalli, M., & Lim, B. Y. (2020). COGAM: Mea-
suring and moderating cognitive load in machine learning model explanations. In
Proceedings of the 2020 CHI conference on human factors in computing systems (pp.
1–14).

chen, C. H. (1990). What does ‘‘explained variance ‘‘explain?: Reply. Political Analysis,
2, 173–184.

garwal, R., Frosst, N., Zhang, X., Caruana, R., & Hinton, G. E. (2020). Neural
additive models: Interpretable machine learning with neural nets. arXiv preprint
arXiv:2004.13912.

rrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,
et al. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.

uja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive models.
The Annals of Statistics, 453–510.

alabrese, R., et al. (2012). Estimating bank loans loss given default by generalized
additive models. UCD geary institute discussion paper Series, WP2012/24.

aruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission.
In Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1721–1730).

hang, C.-H., Tan, S., Lengerich, B., Goldenberg, A., & Caruana, R. (2021). How
interpretable and trustworthy are gams? In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining (pp. 95–105).

hangqing, C. (2018). Multi-scale Gaussian process experts for dynamic evolution
prediction of complex systems. Expert Systems with Application, 99, 25–31.

hen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al. (2015). Xgboost:
extreme gradient boosting. 1, (4), (pp. 1–4). R package version 0.4-2.

leveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A
seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73.

u, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning.
Communications of the ACM, 63(1), 68–77.

ails, J. A., & Olsen Jr, D. R. (2003). Interactive machine learning. In Proceedings of
the 8th international conference on intelligent user interfaces (pp. 39–45).

inlay, S. (2014). Predictive analytics, data mining and big data: Myths, misconceptions
and methods. Springer.

yörfi, L., Kohler, M., Krzyżak, A., & Walk, H. (2002). vol. 1, A distribution-free theory
of nonparametric regression. Springer.

astie, T. J., & Tibshirani, R. J. (1990). vol. 43, Generalized additive models. CRC Press.
ohman, F., Head, A., Caruana, R., DeLine, R., & Drucker, S. M. (2019). Gamut:

A design probe to understand how data scientists understand machine learning
models. In Proceedings of the 2019 CHI conference on human factors in computing
systems (pp. 1–13).

yndman, R. (2011). Cyclic and seasonal time series. Hyndsight Blog.
yndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice.

OTexts.
ung, J., Concannon, C., Shroff, R., Goel, S., & Goldstein, D. G. (2017). Simple rules

for complex decisions. arXiv preprint arXiv:1702.04690.
aur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., & Wortman Vaughan, J.

(2020). Interpreting interpretability: Understanding data scientists’ use of inter-
pretability tools for machine learning. In Proceedings of the 2020 CHI conference on
human factors in computing systems (pp. 1–14).

umar, V., & Ram, M. (2021). Predictive analytics: modeling and optimization. CRC Press.

http://refhub.elsevier.com/S0957-4174(24)00756-5/sb1
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb1
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb1
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb1
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb1
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb1
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb1
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb2
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb2
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb2
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb2
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb2
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb2
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb2
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb3
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb3
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb3
http://arxiv.org/abs/2004.13912
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb5
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb5
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb5
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb5
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb5
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb6
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb6
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb6
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb7
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb7
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb7
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb8
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb8
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb8
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb8
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb8
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb8
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb8
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb9
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb9
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb9
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb9
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb9
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb10
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb10
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb10
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb11
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb11
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb11
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb12
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb12
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb12
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb13
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb13
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb13
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb14
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb14
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb14
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb15
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb15
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb15
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb16
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb16
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb16
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb17
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb18
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb18
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb18
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb18
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb18
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb18
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb18
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb19
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb20
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb20
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb20
http://arxiv.org/abs/1702.04690
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb22
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb22
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb22
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb22
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb22
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb22
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb22
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb23

Y. Jiang et al.

W

W

Y

Z

Z

Z

Langrené, N., & Warin, X. (2019). Fast and stable multivariate kernel density estimation
by fast sum updating. Journal of Computational and Graphical Statistics, 28(3),
596–608.

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2021). Explainable ai: A review
of machine learning interpretability methods. Entropy, 23(1), 18.

Lombrozo, T. (2006). The structure and function of explanations. Trends in Cognitive
Sciences, 10(10), 464–470.

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013). Accurate intelligible models
with pairwise interactions. In Proceedings of the 19th ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 623–631).

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al.
(2020). From local explanations to global understanding with explainable AI for
trees. Nature Machine Intelligence, 2(1), 2522–5839.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model
predictions. In Proceedings of the 31st international conference on neural information
processing systems (pp. 4768–4777).

Meske, C., Bunde, E., Schneider, J., & Gersch, M. (2022). Explainable artificial
intelligence: objectives, stakeholders, and future research opportunities. Information
Systems Management, 39(1), 53–63.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence, 267, 1–38.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.
Nesterov, Y. E. (1983). A method of solving a convex programming problem with

convergence rate O(k2). vol. 269, In Doklady akademii nauk (pp. 543–547). Russian
Academy of Sciences.

Nori, H., Jenkins, S., Koch, P., & Caruana, R. (2019). Interpretml: A unified framework
for machine learning interpretability. arXiv preprint arXiv:1909.09223.

Pierrot, A., & Goude, Y. (2011). Short-term electricity load forecasting with generalized
additive models. In Proceedings of ISAP power.

Reinsch, C. (1967). Smoothing by spline functions. Numerische Mathematik, 10(2),
177–183.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ‘‘Why should i trust you?’’ explain-
ing the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1135–1144).

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5),
206–215.

Servén, D., & Brummitt, C. (2018). pyGAM: generalized additive models in python. 10,
Zenodo.doi.
Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-
parametric regression curve fitting. Journal of the Royal Statistical Society. Series
B. Statistical Methodology, 47(1), 1–21.

Simkute, A., Luger, E., Jones, B., Evans, M., & Jones, R. (2021). Explainability for
experts: A design framework for making algorithms supporting expert decisions
more explainable. Journal of Responsible Technology, 7, Article 100017.

Simpson, G. (2014). Modelling seasonal data with GAMs. From the Bottom of the Heap.
Sun, X., Wang, Z., Ding, R., Han, S., & Zhang, D. (2022). Puregam: Learning an

inherently pure additive model. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (pp. 1728–1738).

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In International conference on machine
learning (pp. 1139–1147). PMLR.

Tan, S., Caruana, R., Hooker, G., Koch, P., & Gordo, A. (2018). Learning global
additive explanations for neural nets using model distillation. arXiv preprint arXiv:
1801.08640.

Tay, J. K., & Tibshirani, R. (2020). Reluctant generalised additive modelling.
International Statistical Review, 88, S205–S224.

Tomić, N., & Božić, S. (2014). A modified geosite assessment model (M-GAM) and its
application on the Lazar Canyon area (Serbia). International Journal of Environmental
Research, 8(4), 1041–1052.

ang, Z. J., Kale, A., Nori, H., Stella, P., Nunnally, M., Chau, D. H., et al. (2021).
GAM changer: Editing generalized additive models with interactive visualization.
arXiv preprint arXiv:2112.03245.

en, Q., Gao, J., Song, X., Sun, L., Xu, H., & Zhu, S. (2019). RobustSTL: A robust
seasonal-trend decomposition algorithm for long time series. 33, In Proceedings of
the AAAI conference on artificial intelligence (pp. 5409–5416).

ang, Z., Zhang, A., & Sudjianto, A. (2021). GAMI-Net: An explainable neural
network based on generalized additive models with structured interactions. Pattern
Recognition, 120, Article 108192.

arnowitz, V., & Ozyildirim, A. (2006). Time series decomposition and measurement
of business cycles, trends and growth cycles. Journal of Monetary Economics, 53(7),
1717–1739.

hang, X., Tan, S., Koch, P., Lou, Y., Chajewska, U., & Caruana, R. (2019). Axiomatic
interpretability for multiclass additive models. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining (pp. 226–234).

immermann, H.-J. (1987). vol. 10, Fuzzy sets, decision making, and expert systems.
Springer Science & Business Media.

http://refhub.elsevier.com/S0957-4174(24)00756-5/sb24
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb24
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb24
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb24
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb24
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb25
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb25
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb25
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb26
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb26
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb26
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb27
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb27
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb27
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb27
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb27
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb28
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb28
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb28
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb28
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb28
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb29
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb29
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb29
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb29
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb29
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb30
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb30
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb30
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb30
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb30
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb31
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb31
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb31
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb32
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb33
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb33
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb33
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb33
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb33
http://arxiv.org/abs/1909.09223
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb35
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb35
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb35
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb36
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb36
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb36
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb37
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb37
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb37
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb37
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb37
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb38
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb38
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb38
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb38
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb38
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb39
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb39
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb39
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb40
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb40
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb40
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb40
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb40
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb41
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb41
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb41
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb41
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb41
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb42
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb43
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb43
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb43
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb43
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb43
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb44
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb44
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb44
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb44
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb44
http://arxiv.org/abs/1801.08640
http://arxiv.org/abs/1801.08640
http://arxiv.org/abs/1801.08640
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb46
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb46
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb46
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb47
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb47
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb47
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb47
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb47
http://arxiv.org/abs/2112.03245
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb49
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb49
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb49
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb49
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb49
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb50
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb50
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb50
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb50
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb50
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb51
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb51
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb51
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb51
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb51
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb52
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb52
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb52
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb52
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb52
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb53
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb53
http://refhub.elsevier.com/S0957-4174(24)00756-5/sb53

	FXAM: A unified and fast interpretable model for predictive analytics
	Introduction
	Related Work
	Terms and Notations
	Approach
	GAMs' Modeling
	FXAM's Modeling
	FXAM's Optimization
	FXAM's Training
	Improving Training Efficiency
	Flexibility

	Evaluation
	Evaluation on Synthetic Data
	Evaluation on Real Data

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Proof Details
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1

	Appendix B. Generation Details of Synthetic Data
	Generation for Numerical Features
	Generation for Categorical Features
	Generation for Temporal Feature

	Appendix C. Configurations for Evaluation on Synthetic Data
	Varying # Records
	Varying # Features
	Varying Numerical Feature Ratio
	Varying Seasonality Ratio from Temporal Feature

	Appendix D. Ablation Study
	Appendix E. Complete Results on Synthetic Data
	Appendix F. API Calls for XGBoost, EBM, mgcv and pyGAM
	EBM
	pyGAM
	XGBoost

	References

