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ABSTRACT

We investigate the combinatorial multi-armed bandit problem where an action is
to select k arms from a set of base arms, and its reward is the maximum of the
sample values of these k arms, under a weak feedback structure that only returns
the value and index of the arm with the maximum value. This novel feedback
structure is much weaker than the semi-bandit feedback previously studied and
is only slightly stronger than the full-bandit feedback, and thus it presents a new
challenge for the online learning task. We propose an algorithm and derive a regret
bound for instances where arm outcomes follow distributions with finite supports.
Our algorithm introduces a novel concept of biased arm replacement to address
the weak feedback challenge, and it achieves a distribution-dependent regret bound
of O((nk/∆) log(T )) and a distribution-independent regret bound of Õ(

√
nkT ),

where ∆ is the reward gap and T is the time horizon. Notably, our regret bound
is comparable to the bounds obtained under the more informative semi-bandit
feedback. We demonstrate the effectiveness of our algorithm through experimental
results.

1 INTRODUCTION

We address a combinatorial bandit problem where, in each round, the agent selects a set of k arms
from a pool of n arms. Each selected arm produces an independent random outcome, and the reward
of the selected set of arms is determined by the maximum value among these outcomes. Following the
selection of arms in a round, the agent receives feedback consisting of the maximum outcome value
and the identity of the arm that achieved this value. The goal of the agent is to maximize the reward
accrued over a time horizon. We term this sequential decision-making problem the k-MAX bandit with
max value-index feedback. The outcomes of arms are assumed to be independent random variables
across arms and rounds. Initially, we consider arm outcomes according to binary distributions, and
then extend our analysis to arbitrary discrete distributions with finite supports. The performance of
the agent is evaluated based on the expected cumulative regret over a predefined time horizon, which
quantifies the difference between the cumulative reward achieved by selecting a set with maximum
expected reward in each round and the cumulative reward achieved by the agent.

As a concrete motivating application scenario, consider an online platform recommending some
products, e.g., Netflix, Amazon, and Spotify. Assume there is in total n products for recommendation
on the platform. The goal is to display a subset of k product items to a user that best fit the user
preference. The feedback can be limited, as we may only observe which displayed product item the
user clicked on and their subsequent rating of that product. Many other problems can be formulated
in our setting, such as project portfolio selection (Blau et al., 2004; Jekunen, 2014), team formation
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(Kleinberg & Raghu, 2018; Sekar et al., 2021; Lee et al., 2023; Mehta et al., 2020), and sensor
placement problems (Golovin & Krause, 2011; Asadpour & Nazerzadeh, 2016).

The problem presents two main challenges. Firstly, the reward function is the maximum value
function, which is nonlinear and depends not only on the expected values of the constituent base
arms. As demonstrated in the numerical section, high-risk, high-reward arms may outperform stable-
outcome arms in this scenario, even though their expected outcome may be the same. The second
challenge is due to the limited feedback. The agent only observes the maximum value and the identity
of an arm that achieves this value, which makes it difficult to learn about other non-winning arms.

The problem we consider shares similarities with some combinatorial bandit problems (Cesa-Bianchi
& Lugosi, 2012; Chen et al., 2013; 2016b), but it differs in the feedback structure. Specifically, the
max value-index feedback structure is neither the semi-bandit nor the full-bandit feedback, which
are commonly studied in the bandit literature. To elaborate, let X1, . . . , Xn be independent random
variables corresponding to arm outcomes. In the semi-bandit feedback, the feedback consists of all
values {Xi | i ∈ S} for any set S of arms. In contrast, the full-bandit feedback includes only the
maximum value, max{Xi | i ∈ S}, under the maximum value reward function. The max value-index
feedback, on the other hand, provides both the maximum value max{Xi | i ∈ S} and the index
I ∈ argmax{Xi | i ∈ S}. Thus, the max value-index feedback is much weaker than the semi-bandit
feedback, and only slightly stronger than the full-bandit feedback. This week feedback structure
provides very limited information on a non-winning arm j ̸= I: it is unclear whether j loses because
its current outcome is low by chance, or it cannot win anyway even with its highest support value.
This poses a severe challenge in learning the information of all arms.

We present algorithms and regret bounds for the k-MAX problem with max value-index feedback,
under different assumptions regarding the information available about arm outcomes. Our results show
that despite considerably more limited feedback, comparable regret bounds to those of combinatorial
semi-bandits can be achieved for the k-MAX bandit problem with max value-index feedback.

1.1 RELATED WORK

The problem we study has connections with combinatorial multi-armed bandits (CMAB) (Cesa-
Bianchi & Lugosi, 2012; Chen et al., 2013; 2016b). Most existing work on CMAB problems focuses
on the semi-bandit feedback setting, as seen in (Chen et al., 2013; Kveton et al., 2015a). The k-MAX
problem with semi-bandit feedback was addressed in (Chen et al., 2016a), where the solution is
simpler compared to our paper due to the semi-bandit feedback assumption.

In most works on full-bandit CMAB problems, restrictions are typically imposed on the reward
function. For instance, Rejwan & Mansour (2020) considered the sum reward function, while only a
few algorithms have been proposed for non-linear reward functions. In a bipartite setting where the
agent selects a pair of arms from a row of K items and a column of L items, Katariya et al. (2017)
examined the minimum value reward function for rank-1 bandit problems. It is worth noting that the
rank-1 assumption holds for Bernoulli-distributed arms in the general setting under the maximum
value reward function. On the other hand, Gopalan et al. (2014) investigated the full-bandit CMAB
with general rewards using a Thompson sampling algorithm. However, computing the posteriors in
the algorithm is computationally intensive, and the regret bound has a large exponential constant.
More recently, Agarwal et al. (2021a) proposed a merge and sort algorithm under the assumption that
the distributions of arm outcomes obey a first-order stochastic dominance (FSD) condition. However,
this condition is restrictive, as it fails to hold for binary distributions. Additionally, Agarwal et al.
(2021b) proposed an adaptive accept-reject algorithm (DART) that sequentially identifies good arms
based on mean rewards obtained by playing actions containing that arm. However, this algorithm
relies on the arm-ordering assumption that the goodness of arms is ordered by their expected reward,
which is not satisfied in k-MAX bandit. In summary, existing full-bandit CMAB solutions either do
not apply to our problem or have exponential computational complexity.

A related work is on combinatorial cascading bandits, e.g. Kveton et al. (2015b). Here the agent
chooses an ordered sequence from the set of arms and the outcomes of arms are revealed one by
one until a stopping criteria is met. Chen et al. (2016b) generalized the problem to combinatorial
semi-bandits with probabilistically triggered arms (CMAB-T). The main difference with our setting is
that CMAB-T and cascading bandits in particular assume more feedback information and is inherently
semi-bandit. In the recommendation system scenario, cascading bandits assume that the user would
follow the recommendation order and investigate each item one by one and stop when clicking on an
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Table 1: Known regret bounds for CMAB problems under different settings.
Feedback Reward Assumptions Regret

Chen et al. (2016a) semi-bandit general general O(nk∆ log(T ))
Rejwan & Mansour (2020) full-bandit linear sub-Gaussian O(nk∆ log(T ))

Katariya et al. (2017) full-bandit min rank-1 O(K+L
∆ log(T ))

Agarwal et al. (2021a) full-bandit general FSD Õ(n1/3k1/2T 2/3)

Agarwal et al. (2021b) full-bandit general arm-ordering Õ(k
√
nkT )

Kveton et al. (2015b) cascading-bandit max Bernoulli O(nk∆ log(T ))
Our work value-index max general O(nk∆ log(T ))

attractive item, while our setting essentially removes this sequential order assumption and allows the
user to browse through the items in any order and only returns the value and index of the selected
item as the feedback. Another difference with the cascading bandit is that we consider more general
distributions of arm outcomes. Our work also bears resemblance to MNL bandits (Agrawal et al.,
2019), in which the user selects an item following a multinormial logit (MNL) model, which is
different from our k-MAX selection model. They assume that item values are known, while handling
unknown item values is one of the main challenges we are facing.

We summarize some known results on regret bounds for CMAB problems in Table 1. In the table, ∆
denotes the gap between the optimum expected regret of a set and the best suboptimal expected regret
of a set. Agarwal et al. (2021a) and Agarwal et al. (2021b) only provide distribution-independent
regret bounds, which are worse than the Õ(

√
nkT ) distribution-independent regret bounds that follow

from our distribution-dependent regret bounds.

The index feedback bear resemblance to comparison observations in dueling bandits (Ailon et al.,
2014; Sui et al., 2017), which only provide which arm wins in a two-way or multi-way comparisons,
with the purpose of identifying the single best arm. In contrast, our approach incorporates the value
information to guide the learning process with the aim of finding the best combination of arms with
the expected maximum value outcome.

1.2 SUMMARY OF CONTRIBUTIONS

Our contributions can be summarized as follows:

•We introduce and investigate a novel combinatorial bandit problem, which involves maximizing the
reward function based on maximum value-index feedback. This feedback structure falls between the
extensively studied full-bandit and semi-bandit feedback types, offering slightly more information
than full-bandit feedback. In contrast to the full-bandit scenario, we incorporate additional knowledge
of the maximum-value index, a feature observed in certain real-world applications. Our work can
be viewed as a progression towards resolving full-bandit CMAB problems with non-linear reward
functions, under relatively modest assumptions.

•We introduce algorithms tailored for binary distributions of arm outcomes. We first discuss the case
when the order of arm outcome values is known. Then for the case when the ordering of values is
a priori unknown to the algorithm, we propose a variant of the CUCB algorithm that leverages the
novel concept of biased arm replacement. We demonstrate that this algorithm achieves a regret upper
bound comparable to that observed in scenarios where the ordering of values is known in advance.
Consequently, it offers performance similar to that achievable under semi-bandit feedback.

•We extend the algorithm to address the more general case of arbitrary discrete distributions with
finite supports. By establishing an equivalence relationship between the binary distributions and
arbitrary discrete distributions, we reduce the general case back to the binary distribution case to
solve the problem.

Organization of the paper In Section 2, we formally define the problem. In Section 3, we first
establish key properties of the reward function and then present our algorithms and regret bounds
for the case of binary distributions of arm outcomes. Section 4 discusses extensions to arbitrary
discrete distributions with finite supports. Our numerical results are presented in Section 5. Finally,
we summarize our work in Section 6. Proofs of theorems are provided in the Appendix.
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2 PROBLEM FORMULATION

We consider a sequential decision-making problem involving an agent and a set of n arms, denoted
as A = [n] = {1, 2, . . . , n}. For each arm i ∈ A, its outcome is sampled according to a random
variable Xi with a discrete distribution having a finite support. The outcomes of arms in all rounds are
independent across both arms and rounds. Let 0 = vi,0 < vi,1 < · · · < vi,si denote the values of the
support of the distribution of Xi, where si is a positive integer, and si + 1 is the size of the support.
Let pi,j = Pr[Xi = vi,j ] for j ∈ {0, 1, . . . , si}, with 0 <

∑si
j=1 pi,j ≤ 1. Let v = (v1, . . . ,vn)

and p = (p1, . . . ,pn), where vi = (vi,1, . . . , vi,si) with vi,j ∈ [0, 1], and pi = (pi,1, . . . , pi,si).
For the special case of binary distributions, we use pi and vi instead of pi,1 and vi,1, respectively.
Both v and p, as well as the si’s in the general case, are unknown parameters to the agent. Further
discussion about the real-world implications of our assumptions regarding the arm support is provided
in Appendix A.

We define F = {S ∈ 2A | |S| = k} as the set of actions, where 0 < k < n is an integer. At each
round t, the agent selects an action St ∈ F . The agent observes the maximum outcome value of
selected arms and the index of an arm achieving this maximum outcome value, and receives the
reward corresponding to the maximum outcome value. We denote the expected reward of an action S
as rS(p,v) = E[max{Xi | i ∈ S}], which is a function of parameters p and v.

The performance of the agent is measured by the cumulative regret, defined as the difference of the
expected cumulative reward achieved by playing the best action and the expected cumulative reward
achieved by the agent. Denote OPT(p, v) = max{rS(p, v) | S ∈ F}. An (α, β)-approximation
oracle takes (p′, v′) as input and returns a set S such that Pr[rS(p′, v′) ≥ α OPT(p′, v′)] ≥ β where
α is the approximation ratio and β is the success probability. If the agent uses an (α, β)-approximation
oracle, then we consider the (α, β)-approximation regret defined as

R(T ) = T α β OPT(p, v)− E

[
T∑

t=1

rSt
(p, v)

]
.

The general offline k-MAX problem can be approximately solved by a greedy algorithm to achieve
a (1 − 1/e) approximation, or by a polynomial-time approximation scheme (PTAS) to achieve a
(1− ε) approximation for any ε > 0 (Chen et al., 2016a). The binary k-MAX problem can be solved
exactly using dynamic programming (Du et al., 2024), and the Bernoulli k-MAX problem can be
solved exactly by ordering values and selecting the top k valued items.

3 ALGORITHMS AND REGRET BOUNDS FOR BINARY DISTRIBUTIONS

In this section, we present algorithms and regret bounds for the k-MAX problem with max value-index
feedback with arm outcomes according to binary distributions. We first establish some properties of
reward functions which are crucial for our regret analysis. Next we discuss the scenario when the
ordering of v1, . . . , vn values is known. Then, we consider the case when the ordering of v1, . . . , vn
is a priori unknown. We present an algorithm and establish that it achieves the same regret bound as
when the ordering is known, up to constant factors.

For the convenience of exposition, we assume that values v1, . . . , vn are distinct. This ensures that for
any action St, there is a unique arm achieving the maximum value over the arms in St. Alternatively,
allowing for non-unique values can be addressed by using a deterministic tie-breaking rule. Further
discussion on this matter can be found in Appendix B.

We define an extended set B of arms as the union of two sets of arms, namely Z and V . The first set
Z = az1, . . . , a

z
n consists of n arms whose outcomes are according to independent Bernoulli random

variables Z1, . . . , Zn with mean values p1, . . . , pn. The second set V = {av1, . . . , avn} consists of n
arms whose outcomes are deterministic with corresponding values v1, . . . , vn. Note that the outcome
of each arm i ∈ A can be written as Xi = ViZi. Each time an action St is played, we obtain
information for some of the arms in B. We call these arms triggered arms and observe their outcome
values as feedback. An important observation is that when arms are ordered in decreasing order with
respect to their values, lower-order arms being triggered implies that higher-order arms had zero
outcomes. We define T z

i,t as the number of times arm azi is triggered, and T v
i,t as the number of times

arm avi is triggered up to time step t.

Additional notation For any two vectors x,x′ ∈ Rn, we write x ≥ x′ if xi ≥ x′
i for all i ∈ [n].

4



Published as a conference paper at ICLR 2024

3.1 PROPERTIES OF REWARD FUNCTION

For the prevailing case of binary distributions of arm outcomes, for any set S ∈ F , under the
assumption that arms in A are ordered in decreasing order of values v1, . . . , vn, the expected reward
can be expressed as:

rS(p,v) =
∑
i∈S

vipi
∏

j∈S:j<i

(1− pj), (3.1)

where the product over an empty set has a value of 1.

There are two key properties of the reward function in (3.1) that we leverage in our regret analysis:
monotonicity and bounded smoothness, as we define and reason below.

Monotonicity The first property is monotonicity.

Lemma 3.1. For every S ∈ F , rS(p,v) is increasing in every pi and vi.

It is clear from (3.1) that rS(p,v) is monotonically increasing in vi. Additionally, it can be shown
to be monotonically increasing in pi by taking the first-order derivative with respect to pi and
demonstrating that it is non-negative.

Bounded Smoothness The second property is relative triggering probability modulated (RTPM)
bounded smoothness, which, with a slight abuse of notation, is defined as follows: for an arbitrary set
of arms B with expected outcome values µ, and rS(µ) denoting the expected reward of action S.

Definition 3.2 (RTPM smoothness). The RTPM smoothness holds for reward functions rS if there
exist constants bi > 0 for i ∈ [n] such that, for any two vectors of expected outcomes µ and µ′, for
every action set S,

|rS(µ)− rS(µ
′)| ≤

∑
i∈S

qµ,S
i bi|µi − µ′

i|,

where qµ,S
i denotes the triggering probability of arm i under action S and the expected arm outcomes

µ. Note that when rS(µ) is increasing in µ, and µ ≥ µ′, we can remove the absolute value in the
above inequality.

The definition of RTPM smoothness is a generalization of the condition in (Wang & Chen, 2017),
extended to incorporate the triggering probability qµ,S

i and weight bi to modulate the standard 1-norm
condition. This modification allows us to account for arm-specific values, as we will demonstrate in
our next lemma. The intuition behind this definition is that we underweight the importance of arms
with small triggering probability in the expected reward, since even if we cannot accurately estimate
the expected value of such arms, we incur very little loss in the expected reward due to their low
triggering probabilities. This will be an important point in our regret analysis.

Let qp,Si be the triggering probability for arm azi and action S, and q̃p,Si be the triggering probability
for arm avi and action S. Note that qp,Si =

∏
j<i(1 − pj) and q̃p,Si = qp,Si pi, because arm azi is

triggered when all arms j < i (with higher values) has outcome Zj = 0, while arm avi is triggered
when arm i ∈ A is the winning arm. The following lemma is a key for our regret analysis.

Lemma 3.3. The expected reward functions in (3.1) satisfy the RTPM condition with respect to the
extended set B of arms, i.e. for every S, p and p′, v, and v′, it holds

|rS(p,v)− rS(p
′,v′)| ≤ 2

∑
i∈S

qp,Si v′i|pi − p′i|+
∑
i∈S

q̃p,Si |vi − v′i|.

Furthermore, if p ≥ p′, then we can remove the factor 2 in the last inequality.

The lemma can be intuitively explained as follows: When an arm i ∈ A has a small value v′i or the
corresponding arm azi is unlikely to be triggered (small q), the estimation error on pi does not effect
much on the reward estimate. Similarly, if the arm is unlikely to win (small q̃), the estimate error
on vi does not affect much on the reward estimate. This concept is crucial for proving our regret
bounds. For arms less likely to win due to small value or small winning probability, we may not be
able to estimate their value and probability parameters accurately due to scarce observations. The
lemma suggests that this is not a critical issue for regret analysis. To prove Lemma 3.3, we consider a
sequence of vectors changing from (p,v) to (p′,v′) and add up the changes in expected rewards.
The full proof is provided in Appendix E.2.
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Algorithm 3.1 CUCB algorithm for unknown ordering of values
1: For i ∈ A, T z

i ← 0, T v
i ← 0 ▷ Number of triggering times for az

i and av
i

2: For i ∈ A, p̂i ← 1, v̂i ← 1 ▷ Initial estimation of parameters
3: for t = 1, 2, . . . , T do
4: For i ∈ A, ρi ←

√
3 log(t)
2Ti

, ρ̃i ← 1{T v
i = 0}

5: For i ∈ A, p̄i ← min{p̂i + ρi, 1}, v̄i ← min{v̂i + ρ̃i, 1} ▷ UCB indices
6: S ← Oracle(p̄, v̄) ▷ Oracle is the dynamic programming algorithm in (Du et al., 2024)
7: Play S and observe winner index i∗ and value vi∗
8: if T v

i∗ = 0 then
9: Reset T z

i∗ ← 0, T v
i∗ ← 1, v̂i∗ ← vi∗

10: end if
11: For i ∈ S such that v̂i ≥ vi∗ : T z

i ← T z
i + 1

12: For i ∈ S such that v̂i > vi∗ : p̂i ← (1− 1/T z
i )p̂i

13: For i ∈ S such that v̂i = vi∗ : p̂i ← (1− 1/T z
i )p̂i + 1/T z

i

14: end for

3.2 ALGORITHM FOR KNOWN ORDERING OF VALUES

We discuss the case of known ordering of values as a theoretically important step towards the more
challenging case when the ordering of values is a priori unknown to the algorithm. For the case of
known ordering of values, we can solve the k-MAX problem by using the standard CUCB algorithm.
For space reasons, we provide the full algorithm and regret analysis in Appendix D and Appendix E.3.
The estimates of parameters p and v are initialized to vectors with all elements equal to 1. At each
time step in which vj is observed to be the maximum value in the selected action, we update the
estimate of vj and the estimates for pi for arms in the action set ordered before j. The algorithm
maintains an upper confidence bound (UCB) for both parameters and feeds the UCB values to the
approximation oracle to determine the next action.

3.3 ALGORITHM FOR UNKNOWN ORDERING OF VALUES

We now consider the case when the agent lacks knowledge about the ordering of values. This lack
of knowledge significantly reduces the information that can be deduced from observed feedback.
To understand this, let us examine the situation when the value vi of arm avi is yet observed. In the
scenario where the ordering of values is known, the triggering of azi occurs when arm i has higher
value than that of the winning arm j. Consequently, we can deduce that Zi must be zero. However, in
the case when the ordering is unknown, we cannot make this deduction. It remains uncertain whether
Zi has a value of zero or one. Consider a round t where action St is played, and arm j ∈ St emerges
as the winner with value vj . While the value-index pair (vj , j) is observed, the value vi for an arm
i ∈ St is still unknown. Consequently, we cannot determine whether vi < vj or vi > vj . In the
former case, the outcome of arm i could be a non-zero value that remains unobserved, whereas it
takes a value of zero in the latter case. Notably, the triggering of azi hinges on whether the value of vi
is known. This aspect diverges from the CMAB-T framework. A conservative approach would be to
apply CUCB algorithm for the known ordering case directly, and only increment the triggering count
T v
i for arm avi after vi is observed. Parameters for arm i ∈ A would be updated only when T v

i ̸= 0.
However, this conservative approach may cause the arms with low pi and low vi (bad arms with high
risk and low reward) to be selected often, since their UCB values will be kept as v̄i = 1 and p̄i = 1.
This would lead to significant regret.

We propose a variant of the CUCB algorithm outlined in Algorithm 3.1, which introduces the novel
concept of biased arm replacement: We do not wait to update pi only after observing value vi,
but replace it with another arm with biased estimate of v̂i = 1. This approach treats azi as always
triggered initially, allowing every arm a high chance of being a winner. As a result, the true winners
gradually emerge, while arms whose values have not yet been observed are still given opportunities.
Essentially, we extend CUCB by using a biased estimate of (p′i, v

′
i) with v′i = 1 to replace parameters

(pi, vi) of an unobserved arm. Our analysis shows that this bias can be controlled, and it still leads to
a good regret bound. We present the result and an outline of the analysis below.

For each action S ∈ F , we define the gap ∆S = max{αOPT(p,v) − rS(p,v), 0}. We call an
action S bad if ∆S > 0. For each arm i ∈ A contained in at least one bad action, we define
∆i

min = min{∆S | S : i ∈ S, qp,Si , q̃p,Si > 0,∆S > 0} and ∆i
max = max{∆S | S : i ∈
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S, qp,Si , q̃p,Si > 0,∆S > 0}. For every arm i ∈ A not contained in a bad action, we define
∆i

min =∞ and ∆i
max = 0. Let ∆min = mini∈[n] ∆

i
min and ∆max = maxi∈[n] ∆

i
max.

Theorem 3.4. For the k-MAX problem with max value-index feedback, under assumption that
ordering of values is unknown to the algorithm a priori and ∆min > 0, Algorithm 3.1 has the
following distribution-dependent regret bound, for some constants c1 and c2,

R(T ) ≤ c1

n∑
i=1

(
k

∆i
min

+ log

(
k

∆i
min

+ 1

))
log(T )+c2

n∑
i=1

((
log

(
k

∆i
min

+ 1

)
+ 1

)
∆max + 1

)
.

Theorem 3.4 implies a regret upper bound of O((nk/∆min) log(T )). This result aligns with the bound
for the simpler case presented in Theorem D.1, up to constant factors. Furthermore, Theorem 3.4
implies a Õ(

√
nkT ) distribution-independent regret bound (Appendix E.5). For modifications to

Algorithm 3.1 aimed at improving the dependency of the regret upper bound on k, please refer to
Appendix E.6.

Proof sketch We outline the proof of Theorem 3.4. The complete proof can be found in Appendix
E.5. Our problem does not fit into the standard CMAB-T framework. As discussed earlier, the
algorithm assumes that azi is always triggered and takes value zero. However, this may not be
accurate when vi is actually less than the value of the winning arm. Consequently, the estimates
produced by the algorithm are biased. We cannot simply apply the regret result of CMAB-T or follow
its analysis to reach our desired outcome. To address this challenge, we introduce the concept of
biased arm replacement. In each round t, for every arm i with parameters (pi, vi) and T v

i,t = 0, we
replace it with another arm having biased parameters (p′i, v

′
i), where p′i = pivi and v′i = 1. We give

subscript t to (p′,v′) in the following analysis as their values depend on T v
i,t. The two arms have

the same expected outcome but their effect on the reward among k selected arms are different yet
satisfying an order property, which is shown in the following lemma.

Lemma 3.5. For every set S ∈ F , rS(p,v) ≤ rS(p
′,v′).

Next, we consider the contribution of action St to the regret, denoted as ∆St , under the assumption
that the approximation oracle performs well (Ft : rSt

(p̄t, v̄t) ≥ α OPT(p̄t, v̄t)), where p̄t, v̄t are
the values of p̄, v̄ at the end of round t. By Lemma 3.5, for each t such that 1 ≤ t ≤ T , we have

α OPT(p′
t,v

′
t) ≥ α OPT(p,v). (3.2)

Thus,

∆St ≤ α OPT(p′
t,v

′
t)− rSt(p,v)

≤ α OPT(p′
t,v

′
t)− rSt

(p,v) + rSt
(p̄t, v̄t)− α OPT(p̄t, v̄t)

≤ rSt
(p̄t, v̄t)− rSt

(p,v) = (rSt
(p̄t, v̄t)− rSt

(p′
t,v

′
t)) + (rSt

(p′
t,v

′
t)− rSt

(p,v)).

The first inequality arises from condition (3.2), the second from the approximation oracle, and the
third from the monotonicity of rS in p and v. We refer to the term inside the first bracket as the
regret caused by estimation error ∆e

St
, and the term inside the second bracket as the regret caused

by replacement error ∆r
St

. To derive a tight regret upper bound, we show that the regret bound for
the estimation error dominates that of the replacement error. This justifies the intuition behind using
replacement arms. Now, let us examine these two terms separately.

By Lemma 3.3, we have
∆e

St
≤
∑
i∈St

qp
′,S

i v̄i,t(p̄i,t − p′i,t).

Note that we do not need to include the vi term, as v′i,t = v̄i = 1 for all i when vi is not observed,
and v′i,t = v̄i = vi after vi is observed. In both cases, there is no estimation error for vi.

We apply Lemma 3.3 to obtain

∆r
St
≤ 2

∑
i∈St

qp,Si v′i,t(pi − p′i,t) +
∑
i∈St

q̃p,Si (v′i,t − vi).

To sum up, we have

∆St
≤
∑
i∈St

qp
′,S

i v̄i,t(p̄i,t − p′i,t) + 2
∑
i∈St

qp,Si v′i,t(pi − p′i,t) +
∑
i∈St

q̃p,Si (v′i,t − vi).

7
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Algorithm 4.1 CUCB algorithm for arbitrary distributions with finite supports
1: For i ∈ A, σ(i)← 0 ▷ Number of known values for arm i
2: For i ∈ A, T z

i,0 ← 0, T v
i,0 ← 0 ▷ Number of triggering times for the fictitious arm

3: For i ∈ A, p̂i,0 ← 1, v̂i,0 ← 1 ▷ Initial estimates of parameters for the fictitious arm
4: for t = 1, 2, . . . do
5: For i ∈ A and j ∈ [σ(i)]0, ρi,j ←

√
3 log(t)
2Ti,j

, ρ̃i,j ← 1{T v
i,j = 0} ▷ Confidence radius of parameters

6: For i ∈ A and j ∈ [σ(i)]0, p̄i,j ← min{p̂i,j + ρi,j , 1}, v̄i,j ← min{v̂i,j + ρ̃i,j , 1} ▷ UCB indices
7: use Eq. (4.2) to convert the binary form of p̄ (treated as p̃) to the multi-valued form p̆ (treated as p)
8: S ← Oracle(p̆, v̄) ▷ k-MAX PTAS oracle (Chen et al., 2016a)
9: Play S and observe winner index i∗ and value v

10: if v /∈ {v̂i∗,j , j ∈ [σ(i∗)]} then
11: σ(i∗)← σ(i∗) + 1, T z

i∗,σ(i∗) ← 0, T v
i∗,σ(i∗) ← 1, v̂i∗,σ(i∗) ← v

12: end if
13: For i ∈ S and j ∈ [σ(i)]0 such that v̂i,j ≥ v: T z

i,j ← T z
i,j + 1

14: For i ∈ S and j ∈ [σ(i)]0 such that v̂i,j > v: p̂i,j ← (1− 1/T z
i,j)p̂i,j

15: For i ∈ S and j ∈ [σ(i)]0 such that v̂i,j = v: p̂i,j ← (1− 1/T z
i,j)p̂i + 1/T z

i,j

16: end for

We can bound the first term by following the proof of the regret bound for the standard CMAB-T
problem, stated in Theorem C.1 for completeness. To see this, recall that we have reset the count Ti

and the estimate pi at the time observing vi. This is because p′i,t = pivi when vi is unknown and
p′i,t = pi afterwards. However, for both stages, our estimates are accurate such that they always lie
within the confidence interval which decreases as the counter number increases.

For the second term, we note that p′i,t = pivi in the first stage, and p′i,t = pi after observing vi.
Therefore, the contribution to regret by the second term is zero in the second stage. For the first
stage, this term can be analyzed in a similar way as the last term. The key observation is that
pi − p′i,t = pi(1− vi) ≤ pi. This eliminates a large regret factor that would be introduced if we use
the conservative CUCB approach as describe before.

Finally, we note that the analysis for the last summation term is the same as the case where the
ordering of values is known, since there is no change to the triggering process of arms in V .

Summing up the resulting bounds over time horizon T , we show that the first term dominates the
other two terms, which leads to our theorem.

4 ARBITRARY DISTRIBUTIONS OF ARM OUTCOMES WITH FINITE SUPPORTS

We consider the more general case of arbitrary discrete distributions of arm outcomes with finite
supports, which accommodates the case of binary distributions as a special case. We show that it is
possible to represent a variable corresponding to an arm outcome with a set of binary variables. This
allows us to extend to the general case of discrete distributions with finite supports.

To see this, let Xi be a random variable with an arbitrary discrete distribution with finite sup-
port as defined in Section 2. Recall that Pr[Xi = vi,j ] = pi,j , for j ∈ {0, 1, . . . , si},
where vi,j ∈ [0, 1] and vi,0 = 0. Let Xi,1, . . . , Xi,si be independent binary random
variables such that Xi,j takes value vi,j with probability p̃i,j , and value 0 otherwise. We
can obtain the conversion between these two set of parameters by the following equations:

p̃i,j =
pi,j

1−
∑si

l=j+1 pi,l
,∀j ∈ [si]. (4.1) pi,j =

 si∏
l=j+1

(1− p̃il)

 p̃ij ,∀j ∈ [si]. (4.2)

It can be readily checked that max{Xi,j | j ∈ [si]} has the same distribution as random variable
Xi. In this way, we establish the equivalence between binary variables and any discrete variables
with a finite support in terms of the max operator. This means that we can use our algorithm to solve
the k-MAX problem for any discrete distributions of arm outcomes with finite supports. We present
Algorithm 4.1 for the general discrete distributions with finite support. The algorithm is an extension
of Algorithm 3.1, adapted to allow unknown support sizes of arm distributions.

8
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Figure 1: Regret for Algorithm 3.1 and benchmarks used for comparison, for different distributions
of arm outcomes as defined in Appendix F.

Recall that we work with binary arms with outcomes according to {Xi,j , i ∈ [n], j ∈ [si]} where
si + 1 is the support size of Xi. To handle unknown support size si, we introduce a counter σ(i) to
denote the number of observed values of Xi and dynamically maintain a list of these observed values.
We increase this counter and reset the triggering times and probability estimates for the σ(i)-th arm
whenever we observe a new value for Xi. On the other hand, we use a fictitious arm (denoted with
index 0) with value 1 as a placeholder for those arms whose values remain unobserved. Since we do
not know the support size, we always keep this fictitious arm and update its probability estimates just
as a normal binary arm. If an observed value of Xi is 1, we apply the deterministic tie-breaking rule
to enforce that the fictitious arm is always ordered higher than the real binary arm with value 1 (see
Appendix B on tie-breaking). In the algorithm, we use notation [m]0 = {0, 1, 2, . . . ,m}.
Note that we convert UCBs of the binary arms to multi-valued forms according to relationship in
Equation (4.2) and use the k-MAX PTAS in (Chen et al., 2016a) as the offline oracle. We cannot
use the dynamic programming algorithm in (Du et al., 2024), because if we use the binary form, we
need an oracle such that for each binary arm (i, j) with outcome Xi,j , if (i, j) is selected, then all
(i, j′) for j′ ∈ [si] must also be selected because they correspond to the same base arm Xi. Due to
the space constraint, we provide the theoretical regret guarantee in Appendix E.7.

5 NUMERICAL RESULTS

We perform experiments to evaluate the performance of Algorithm 3.1 on specific problem instances.
We compare our algorithm with three baseline methods: the well-known UCB algorithm treating
each set of size k as one arm, the standard CUCB algorithm for semi-bandit CMAB (Chen et al.,
2013), and DART (Agarwal et al., 2021b) for full-bandit CMAB. We use the greedy algorithm as the
offline oracle. The code we use is available at: https://github.com/Sketch-EXP/kmax.
We consider settings with n = 9 arms and sets of cardinality k = 3. We tested on three different arm
distributions such that a single arm changes from one scenario to another. We expect the algorithm to
perform well for all three cases. For space reasons, we show the detailed setup in Appendix F. We
run each experiment for a horizon time of T = 5000. In each round, we select arms according to the
offline oracle and sample their values for updates. We compare the reward to that of the optimal set
S∗. We repeat the experiments 20 times and average the cumulative regrets.

Results Figure 1 presents the regrets of Algorithm 3.1 and three baseline methods across the three
scenarios. It is evident that our algorithm achieves significantly lower regrets compared to the UCB
algorithm and DART. Furthermore, our regret curve closely aligns with that of the CUCB method
under the semi-bandit CMAB setting, indicating that we do not incur substantial losses despite
receiving much less feedback.

6 CONCLUSION

We investigated the k-MAX combinatorial multi-armed bandit problem under maximum value-index
feedback. This feedback, situated between semi-bandit and full-bandit feedback, provides less
information compared to semi-bandit feedback. For the binary arm case, we propose a CUCB-based
algorithm that introduces a novel concept of biased arm replacement, and for the general finite
support case, we reduce it to the binary case and uses a fictitious arm to handle unknown support
sizes. Through rigorous analysis, we demonstrated that our algorithms guarantee a regret upper
bound comparable to that observed under semi-bandit feedback, albeit with some constant factors.

Future research could explore the k-MAX problem under full-bandit feedback, as well as extending
the k-MAX objective to other variants such as the second max or soft max objectives. Furthermore,
there is potential value in considering other CMAB problems under feedback scenarios between
semi-bandit and full-bandit feedback, where biased arm replacement may also be applicable.
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SUPPLEMENTARY MATERIALS

A FURTHER DISCUSSION ON MOTIVATION

Our work focuses on k-MAX bandit for general arm distributions with finite, unknown support. We
further discuss the real-world implications of our assumption regarding the arm support.

Unknown support Firstly, we argue that in some cases, the agent has no knowledge of the feedback
scale. For example, in bidding or donation scenarios, the agent may not have access to the internal
values of the bidders or donors beforehand. Similarly, in sensor detection, the agent does not know
the informativeness of sensors before receiving signals.

Moreover, we would like to emphasize the distinction between the choices that the platform offers
and the internal values of the items that a user actually perceives. On most systems, choices may be
offered on a 1-10 or 1-100 scale. If we treat this as the case of known support size, the support size
would be 10 or 100, respectively. However, the user or customer may value a given item with only
one or a few possible values. By treating these possible values as unknown supports, we may have a
much smaller support size to deal with on each random variable, resulting in smaller regret.

Finite support We also argue that our assumption of finite support is applicable across various
applications, as categorical ratings or ranks are commonly used in the real world. Additionally, we
note the possibility of extending our results to accommodate continuous reward distributions by
discretizing continuous arm distributions. However, discretization may introduce a tradeoff between
discretization granularity and regret bound.

Furthermore, it is worth noting that the observation made in the previous paragraph applies here as
well. In many cases, even though the support size may be infinite based on the values offered by the
platform (e.g., real-valued feedback), the actual value of the customer for an item may only have a
few possible internal values. Therefore, treating the variable as having finite and unknown support
size could effectively reduce regret in numerous practical scenarios.

B FURTHER DISCUSSION ON TIE-BREAKING

In Section 3, we assume that all values v1, v2, . . . , vn are unique, and state that this is equivalent to
allowing for non-unique values with a deterministic tie-breaking rule. In this appendix, we provide a
more formal argument for this equivalence.

Deterministic tie-breaking means that whenever two arms i and j appear in the same action S and
their outcomes have the same values vi = vj , and this outcome is the maximum among all outcomes
of arms in S, we deterministically decide which of i or j would win according to a predefined order.
Without loss of generality, we assume the predefined order dictates that the smaller indexed arm
always wins in tie-breaking; that is, if vi = vj , then arm i wins if i < j.

For any problem instance with the above tie-breaking rule, we can convert it to another instance where
all values are unique, showing that the two instances essentially behave the same. The conversion
involves adding lower-order digits to the current value of vi’s to make all values unique while
respecting the deterministic tie-breaking rule. The actual conversion is as follows: Suppose a problem
instance in the deterministic tie-breaking setting is (p,v), and without loss of generality, assume that
v1 ≥ v2 ≥ · · · ≥ vn. Let ε0 > 0 be an arbitrarily small value. Let ε = ε0/n. Then we construct
a new problem instance (p′,v′), such that p′ = p, and for all i, v′i = vi + (n − i)ε. With this
construction, we know that if vi > vj , then i < j, and v′i = vi + (n − i)ε > vj + (n − j)ε = v′j ;
if vi = vj and i < j, then v′i = vi + (n − i)ε > vj + (n − j)ε = v′j . This means we have all
unique values with v′1 > v′2 > · · · > v′n, and the value order respects the previous value order
together with the deterministic tie-breaking rule. Because p′ = p, we know that for any action S,
the winning index distribution for these two instances must be the same. Moreover, for every i,
|v′i − vi| = (n − i)ε < ε0, which means the reward value of the new instance is arbitrarily close
to the original instance. Therefore, through the above construction, we show that any problem
instance under the deterministic tie-breaking rule can be viewed as an instance with unique values
that are arbitrarily close to the original values. This demonstrates that the problem instances under
the deterministic tie-breaking rule can be treated equivalently as instances with unique values with
essentially the same result.
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In the recommender system setting, deterministic tie-breaking models the scenario where customers
instinctively seek additional clues or information when faced with two similar items to make a
selection, rather than relying solely on chance. There may be a discrepancy between the value
feedback based on the choices offered by the agent and the internal values of the items, depending on
the granularity of the feedback scale. For example, consider four items A, B, C, and D presented to
a user on a five-star scale. Initially, A, B, and C are shown, and the user favors A, rating it 4 stars.
Later, when B, C, and D are shown, the user prefers B and also rates it 4 stars. Although the user
gives the same value feedback to both A and B, there may be additional factors not captured in the
feedback, leading to deterministic tie-breaking when choosing between A and B simultaneously.
Random tie-breaking, on the other hand, may be of interest primarily for mathematical curiosity or
theoretical exploration.

C CMAB-T FRAMEWORK AND ADDITIONAL NOTATION

We review the framework and results for the classical CMAB problem with triggered arms considered
by (Wang & Chen, 2017). In this problem, the expected reward is a function of action S and expected
values of arm outcomes µ. We denote the probability that action S triggers arm i as pµ,S

i . It is
assumed that in each round, the values of triggered arms are observed by the agent. The CUCB
algorithm (Chen et al., 2013) is used to estimate the expectation vector µ directly from samples.

The following theorem pertains to the standard CMAB problem with triggered arms (CMAB-T). It
is assumed that the CMAB-T problem instance satisfies monotonicity and 1-norm TPM bounded
smoothness (Definition 3.2 with bi = B for all i ∈ [n]). We will use some of the proof steps and the
result of this theorem in proofs of our results.

Theorem C.1 (Theorem 1 in (Wang & Chen, 2017)). For the CUCB algorithm on a CMAB-T
problem instance satisfying monotonicity and 1-norm TPM bounded smoothness, we have the
following distribution-dependent regret bound,

R(T ) ≤ 576B2k

(
n∑

i=1

1

∆i
min

)
log(T ) +

(
n∑

i=1

(
log

(
2Bk

∆i
min

+ 1

)
+ 2

))
π2

6
∆max + 4Bn

where ∆min = infS:i∈S,pµ,S
i >0,∆S>0 ∆S .

We next give various definitions used in our analysis. The definitions are given specifically for binary
distributions of arm outcomes.

We define two sets of triggering probability (TP) groups. Let j be a positive integer. For the set Z of
arms we define the triggering probability group Szi,j as

Szi,j = {S ∈ F | 2−j < qp,Si ≤ 2−j+1}.

We define the triggering probability group Svi,j for the set V of arms similarly. We note that the
triggering probability groups divide actions that trigger arm i into separated groups such that the
actions in the same group contribute similarly to the regret bound.

Let Nz
i,j,t be the counter of the cumulative number of times i in TP group Sz

i,j is selected at the end
of round t. Similarly, we use Nv

i,j,t to denote the counter of the cumulative number of times i in TP
group Sv

i,j is selected at the end of round t.

We define the event-filtered regret for a sequence of events {Et} as

R(T, {Et}) = T α OPT(p,v)− E

[
T∑

t=1

1(Et)rSt
(p,v)

]
which means that the regret is accounted for in round t only if event Et occurs in round t.

We next define four good events as follows:

E1 The approximation oracle works well, i.e.

Ft = {rSt(p̄, v̄) ≥ α OPT(p̄, v̄)}.
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Algorithm D.1 CUCB algorithm for known ordering of values
1: For i ∈ A, Ti ← 0 ▷ Number of triggering times for azi
2: For i ∈ A, p̂i ← 1, v̂i ← 1 ▷ Initial estimation of parameters
3: for t = 1, 2, . . . , T do
4: For i ∈ A, ρi ←

√
3 log(t)
2Ti

▷ Confidence radius values
5: For i ∈ A, p̄i ← min{p̂i + ρi, 1}, v̄i ← v̂i ▷ UCB values
6: S ← Oracle(p̄, v̄) ▷ Oracle decides the next action
7: Play S and observe winner index i∗ and value vi∗
8: Update v̂i∗ for winner arm i∗: v̂i∗ ← vi∗
9: For i ∈ S such that i ≤ i∗: Ti ← Ti + 1

10: For i ∈ S such that i < i∗: p̂i ← (1− 1/Ti)p̂i
11: p̂i∗ ← (1− 1/Ti∗)p̂i∗ + 1/Ti∗

12: end for

E2 The parameter vector p is estimated well, i.e. for every i ∈ [n] and t ≥ 1,

Ni,t = {|p̂i,t−1 − pi| < ρi,t}

where p̂i,t−1 is the estimator of pi at round t and ρi,t :=
√

3 log(t)/(2Ti,t−1). We denote
this event with Nt.

E3 Triggering is nice for Z given a set of integers {jimax}i∈[n], i.e. for every TP group Szi,j
defined by arm i and 1 ≤ j ≤ jimax, under the condition

√
6 log(t)/(Nz

i,j,t−1/3)2
−j ≤ 1,

it holds T z
i,t−1 ≥ 1

3N
z
i,j,t−12

−j . We denote this event with Gzt .

E4 Triggering is nice for V , i.e. for every arm i ∈ A, under the condition Nz
i,j,t−1 ≥

3p−1
i log(t)2j , there is T v

i,t−1 ̸= 0. Equivalently, we can define this event in terms of
TP group Sv

i,j by removing the factor of p−1
i , i.e., under the condition Nv

i,j,t−1 ≥ 3 log(t)2j .
We denote this event with Gvt .

Note that E1, E2 and E3 are also used in (Wang & Chen, 2017), and event E4 is newly defined for
our problem. We can easily show the following bound by using the Hoeffding’s inequality.

Lemma C.2. For each round t ≥ 1, it holds Pr(¬Gvt ) ≤ n/t2.

D CUCB ALGORITHM FOR KNOWN ORDERING OF VALUES

We propose the CUCB algorithm defined in Algorithm D.1. As discussed in the main text, the
estimates of parameters p and v are initialized to vectors with all elements equal to 1. At each time
step in which vj is observed to be the maximum value in the selected action, we update the estimate
of vj and the estimates for pi, for arms in the action set ordered before j. The algorithm maintains an
upper confidence bound (UCB) for both parameters and feeds the UCB values to the approximation
oracle to determine the next action.

Theorem D.1. For the k-MAX problem with max value-index feedback, under assumption that
ordering of values is a priori known to the algorithm and ∆min > 0, Algorithm D.1 has the following
distribution-dependent regret bound,

R(T ) ≤ c1

n∑
i=1

(
k

∆i
min

+ log

(
k

∆i
min

+ 1

))
log(T )+c2

n∑
i=1

((
log

(
k

∆i
min

+ 1

)
+ 1

)
∆max + 1

)
,

where c1 and c2 are some positive constants.

In Theorem D.1, the only term in the regret bound that depends on horizon time T is the first
summation term. In this summation term, the summands have two terms, one scaling linearly with
k/∆i

min and other scaling logarithmically with k/∆i
min, which are due to uncertainty of parameters p

and v, respectively. Hence, we may argue that the uncertainty about values of parameters p has more
effect on regret than uncertainty about values of parameters v. The regret bound in Theorem D.1
implies a Õ(

√
T ) distribution-independent regret bound.
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To see how the regret analysis of the algorithm can be decomposed to a CMAB-T problem, we
consider the contribution of each action to regret, i.e, ∆St

= max{α OPT(p,v) − rSt
(p,v), 0}.

Let Ft be the good event {rSt
(p̄, v̄) ≥ α OPT(p,v)} meaning that the approximation oracle works

well. By the smoothness condition, under Ft we have

∆St
≤ rSt

(p̄t, v̄t)− rSt
(p,v) ≤

∑
i∈St

qp,Si v̄i,t(p̄i,t − pi) +
∑
i∈St

q̃p,Si (v̄i,t − vi).

Clearly, the first term corresponds to regret from the set of arms Z , and the second term corresponds
to regret from the set of arms V . We bound ∆St

by bounding the two summation terms individually.
The first summation term is standard in existing literature. For bounding the second term, we need to
make extra steps as our estimates for vi are not more and more accurate as the number of selections
of arm i increases. The UCB value for vi remains at the upper bound value 1 until arm avi is triggered
once and we then know the exact value of vi. We show the proof of Theorem D.1 in Appendix E.3.

E PROOFS

E.1 PROOF OF LEMMA 3.1
Without loss of generality, consider S = {1, . . . , k} under assumption v1 ≥ · · · ≥ vk. The expected
regret can be written as

rS(p,v) = p1v1 + (1− p1)p2v2 + · · ·+ (1− p1) · · · (1− pk−1)pkvk.

It is clear from the expression that rS(p,v) is monotonic increasing in vi.

Let us consider rS(p,v) for arbitrarily fixed v. Taking derivative with respect to pi, we have

d

dpi
rS(p,v) = (1−p1) · · · (1−pi−1)

vi − pi+1vi+1 −

∑
j>i

(1− pi+1) · · · (1− pj)pj+1vj+1

 .

We claim that the term inside the bracket is non negative. This can be shown as follows,

vi − pi+1vi+1 −

∑
j>i

(1− pi+1) · · · (1− pj)pj+1vj+1


≥ vi(1− pi+1)− (1− pi+1)pi+2vi+2 − (1− pi+1)(1− pi+2)pi+3vi+3 − · · ·
≥ (1− pi+1)(1− pi+2) · · · (1− pk−1)(vi − pkvk)

≥ (1− pi+1)(1− pi+2) · · · (1− pk)vi

≥ 0.

Thus, the reward function is monotonic increasing in pi.

E.2 PROOF OF LEMMA 3.3
For the purpose of this proof only, we assume that the arms are ordered in decreasing order of values.
This applies to both v and v′. Recall that

rS(p,v) =
∑
i∈S

vipi
∏

j∈S:j<i

(1− pj).

Let p = (p1, . . . , pk) and p′ = (p′1, . . . , p
′
k), and p(0) = p′, p(j) = (p1, . . . , pj , p

′
j+1, . . . , p

′
k), for

1 ≤ j < k, and p(k) = p. Similarly, let v = (v1, . . . , vk) and v′ = (v′1, . . . , v
′
k), and v(0) = v′,

v(j) = (v1, . . . , vj , v
′
j+1, . . . , v

′
k), for 1 ≤ j < k, and v(k) = v.

Let us define

f(p(j),v(j)) = p1v1 + · · ·+ (1− p1) · · · (1− pj−1)pjvj + (1− p1) · · · (1− pj)p
′
j+1v

′
j+1 + · · ·

Clearly, we have rS(p,v) = f(p(k),v(k)) and rS(p
′,v′) = f(p(0),v(0)). Note that

f(p(j−1),v(j−1)) = p1v1+ · · ·+(1−p1) · · · (1−pj−1)p
′
jv

′
j +(1−p1) · · · (1−p′j)p

′
j+1v

′
j+1+ · · ·
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The only difference is caused by position j. By definition of triggering probabilities qp,Si and q̃p,Si
we can write,

|f(p(j),v(j))− f(p(j−1),v(j−1))| =|qp,Sj (pjvj − p′jv
′
j −

∑
i>j

(1− p′j+1) . . . (1− p′i−1)p
′
iv

′
i(pj − p′j)|

≤qp,Sj pj |vj − v′j |+ qp,Sj v′j |pj − p′j |

+ qp,Sj (p′j+1v
′
j+1 + (1− p′j+1)p

′
j+2v

′
j+2 + . . .)|pj − p′j |

≤2qp,Sj v′j |pj − p′j |+ q̃p,Sj |vj − v′j |
where the first inequality is due to the triangle inequality and the second inequality is due to the
monotonicity property. If p ≥ p′, we only need to consider the first two terms in the second line.

Now we note that

|rS(p,v)− rS(p
′,v′)| = |f(p(k),v(k))− f(p(0),v(0))|

≤
k∑

j=1

|f(p(j),v(j))− f(p(j−1),v(j−1))|

Summing up over j we obtain the statement of the lemma.

E.3 PROOF OF THEOREM D.1
We consider the contribution of action St to regret ∆St , for every t ≥ 1. Let Mi := ∆i

min. Recall
that ∆S = max{α · OPTp,v − rS(p,v), 0}. Assume that ∆St

≥ MSt
where MS = maxi∈S Mi.

Note that if ∆St
< MSt

then ∆St
= 0, since we have either an empty set, or ∆St

< MSt
< Mi for

some i ∈ St.

By the smoothness condition, we have

∆St
≤ rSt

(p̄t, v̄t)− rSt
(p,v) ≤

∑
i∈St

qp,Si v̄i,t(p̄i,t − pi) +
∑
i∈St

q̃p,Si (v̄i,t − vi).

Since ∆St
≥MSt

, we add and subtract MSt
from the last expression and we have,

∆St
≤ −MSt

+ 2

(∑
i∈St

qp,Si v̄i,t(p̄i,t − pi) +
∑
i∈St

q̃p,Si (v̄i,t − vi)

)

≤ 2

(∑
i∈St

qp,Si v̄i,t(p̄i,t − pi)−
Mi

4k

)
+ 2

(∑
i∈St

q̃p,Si (v̄i,t − vi)−
Mi

4k

)
.

Let us call the first term ∆p
St

and the second term ∆v
St

. We bound ∆St
by bounding the two

summation terms individually.

Note that we can bound the term ∆p
St

following the same procedure as in the proof for Theorem C.1.
However, we cannot use the same procedure for ∆v

St
. The key difference is that our estimate for vi

will not be more and more accurate as the number of selections of arm i increases. We know the
exact value of vi as soon as it is triggered once. We assume that arm i is in TP group Sv

i,j . Let ji be
the index of the TP group with St ∈ Sv

i,ji
. We take jimax = log(4k/Mi + 1).

• Case 1: 1 ≤ ji ≤ jimax. In this case, q̃p,Si ≤ 2 · 2−ji ,

q̃p,Si (v̄i,t − vi) ≤ 2 · 2−ji 1{T v
i,t = 0}

Under the good event Gvt , when Nv
i,ji,t−1 ≥ 3 log(t) · 2j , the contribution to regret is zero.

Otherwise, it is bounded by,

q̃p,Si (v̄i,t − vi) ≤ 2 · 2−ji .

• Case 2: ji ≥ jimax + 1. In this case,

q̃p,Si (v̄i,t − vi) ≤ 2 · 2−ji ≤ Mi

4k
.

Thus the term does not contribute to regret in this case.
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We next calculate the filtered regret under the good events mentioned above and the event that
∆St
≥MSt

. Note that

R(T, {∆St
≥MSt

},Ft,Nt,Gzt ,Gvt ) ≤
T∑

t=1

∆p
St

+

T∑
t=1

∆v
St
.

For the event E3 we set jimax = log(4k/Mi + 1). By Theorem C.1 in Appendix C, we know that
under good events E1, E2 and E3, the first term is bounded by

T∑
t=1

∆p
St
≤ 1152k

(
k∑

i=1

1

Mi

)
log(T ) + 4n

and, otherwise, the corresponding filtered regrets are

R(T,¬Ft) ≤ (1− β)T ·∆max

R(T,¬Nt) ≤
π2

3
n∆max

R(T,¬Gzt ) ≤
π2

6

(
n∑

i=1

log

(
4k

Mi
+ 1

))
∆max.

Now, we focus on bounding the contribution of the second term to regret. Note that under event E4,

T∑
t=1

∆v
St

=

n∑
i=1

∞∑
j=1

Nv
i,j,T−1∑
s=0

κji,T (Mi, s)

where

κj,T (M, s) =

{
2 · 2−j if s < 3 log(T ) · 2j
0 if s ≥ 3 log(T ) · 2j .

For every arm i and j ≥ 1, we have
Nv

i,j,T−1∑
s=0

κji,T (Mi, s) ≤
3 log(T )·2ji∑

s=0

κji,T (Mi, s) = 6 log(T ).

Hence, the contribution of the second term to regret is bounded by

n∑
i=1

∞∑
j=1

Nv
i,j,T−1∑
s=0

κji,T (Mi, s) ≤ 6

(
n∑

i=1

log

(
4k

Mi
+ 1

))
log(T ).

The filtered regrets for the case when event E4 fails to hold is bounded by,

R(T,¬Gvt ) ≤
T∑

i=1

Pr(¬Gvt )∆max ≤
π2

6
n∆max.

We obtain the distribution-dependent regret bound by adding up the filtered regrets calculated above.
The corresponding distribution-independent regret bound is implied by taking Mi =

√
16nk/T for

every i ∈ [n].

E.4 PROOF OF LEMMA 3.5
Without loss of generality assume that S = [k] and v1 ≥ v2 ≥ · · · ≥ vk. Recall that we can write

rS(p,v) = p1v1 + (1− p1)p2v2 + . . .+ (1− p1) . . . (1− pk−1)pkvk.

Now, for p = (p1, . . . , pk) and p′ = (p′1, . . . , p
′
k), let

p(j) = (p′1, . . . , p
′
j , pj+1, . . . , pk)

and define similarly v(j) for v and v′. After changing p1 to p′1 = p1v1 and v1 to v′1 = 1,

rS(p
(1),v(1)) = p1v1 + (1− p1v1)p2v2 + · · ·+ (1− p1v1) · · · (1− pk−1)pkvk.

Clearly we have rS(p
(1),v(1)) ≥ rS(p,v). Following the same argument, we can see that

rS(p
(2),v(2)) ≥ rS(p

(1),v(1)). Continuing this way to rS(p
(k),v(k)) we can prove the lemma.
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E.5 PROOF OF THEOREM 3.4
By the RTPM smoothness condition, as discussed in the main text, we have

∆St
≤
∑
i∈St

qp
′,S

i v̄i,t(p̄i,t − p′i,t) + 2
∑
i∈St

qp,Si v′i,t(pi − p′i) +
∑
i∈St

q̃p,Si (v′i,t − vi).

Key step: bounding the contribution of each action to regret Let Mi = ∆i
min. Assume that

∆St
≥ MSt

where MS = maxi∈S Mi. As in the known value ordering case, we can bound ∆St

such that,

∆St
≤−MSt

+ 2

(∑
i∈St

qp
′,S

i v̄i,t(p̄i,t − p′i,t) + 2
∑
i∈St

qp,Si v′i,t(pi − p′i) +
∑
i∈St

q̃p,Si (v′i,t − vi)

)

≤2

(∑
i∈St

qp
′,S

i v̄i,t(p̄i,t − p′i,t)−
Mi

8k

)
+ 4

(∑
i∈St

qp,Si v′i,t(pi − p′i)−
Mi

8k

)

+ 2

(∑
i∈St

q̃p,Si (v′i,t − vi)−
Mi

8k

)
. (E.1)

Let ji be the index of the TP group of St such that St ∈ Sz
i,ji

. We bound ∆St
by bounding the three

summation terms in (E.1) separately.

Bounding the first term. Recall that we reset T z
i,t and Nz

i,j,t at the time we observe vi. This is because
p′i,t = pivi and v′i,t = 1 when vi is unknown (first stage) and p′i,t = pi and v′i,t = vi after observing
vi (second stage). A key observation is that within both stages our estimates are accurate in the
sense that under event E2, the approximation error decreases as the counter number increases in the
following way.

p̄i,t − p′i,t ≤ 2ρi = 2

√
3 log(t)

2T z
i,t−1

.

We note that for the second stage where vi is observed, this term is similar to the ∆p
St

term in the
known value ordering case. Specifically, under event E3,

p̄i,t − p′i,t ≤ min

{√
18 log(t)

2−ji ·Nz
i,ji,t−1

, 1

}
thus

qp
′,S

i v̄i,t(p̄i,t − p′i,t) ≤ min

{√
72 · 2−ji log(T )

Nz
i,ji,t−1

, 2 · 2−ji

}
.

For the event E3, let jimax = log(8k/Mi+1). In the case ji ≥ jimax+1, this term does not contribute
to regret as we have,

qp
′,S

i (p̄i,t − p′i,t) ≤ 2 · 2−ji ≤ Mi

8k

Similarly, for 1 ≤ ji ≤ jimax, there is no contribution to regret if Nz
i,j,t−1 ≥ lji,T (Mi) where

lj,T (M) =

⌊
4608 · 2−jk2 log(T )

M2

⌋
.

For the first stage, we note that the event E3 is not required to hold, as we treat azi as always triggered
and the triggering is always nice for Z in the first stage. Thus for the first stage we have,

qp
′,S

i v̄i,t(p̄i,t − p′i,t) ≤ min

{√
6 log(T )

T z
i,t−1

, 1

}
This term does not contribute to regret if T z

i,t−1 ≥ l′T (Mi) where

l′T (M) =

⌊
384k2 log(T )

M2

⌋
.
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Bounding the second term. Take jimax = log(8k/Mi + 1). Similarly as the first term, in the case
ji ≥ jimax + 1, the contribution to regret is non-positive. For 1 ≤ ji ≤ jimax, as p′i,t = pivi, we have

qp,Si v′i,t(pi − p′i,t) ≤ 2 · 2−jipi(1− vi).

Under the event E4, we know that the contribution to regret is zero if Nz
i,ji,t−1 ≥ 3p−1

i log(T ) · 2j .
Otherwise, it is upper bounded by 2 · 2−jipi.

Bounding the third term. Take jimax = log(8k/Mi + 1). In the case ji ≥ jimax + 1, the contribution
to regret is non-positive. For 1 ≤ ji ≤ jimax, we have q̃p,Si ≤ 2 · 2−jipi, thus

q̃p,Si (v̄i,t − vi) ≤ 2 · 2−jipiρ̃i = 2 · 2−jipi · 1{T v
i,t = 0}.

Under the event E4, we know that the contribution to regret is zero if Nz
i,ji,t−1 ≥ 3p−1

i log(T ) · 2j .
Otherwise, it is upper bounded by

q̃p,Si (v̄i,t − vi) ≤ 2 · 2−jipi

Note that this bound is the same as the bound for the second term.

Summing over the time horizon Next, we sum up ∆St over time T and calculate the filtered
regret under the above mentioned good events and the event that ∆St

≥ MSt
, i.e, R({∆St

≥
MSt
},Ft,Nt,Gzt ,Gvt ).

By equation (E.1), we know that the filtered regret can be upper bounded by sum of three terms over
the time horizon T . By Theorem C.1 in Appendix C, we know under good events E1, E2 and E3, the
second stage of the first term is bounded by

2

(∑
i∈St

qp,Si v̄i,t(p̄i,t − p′i,t)−
Mi

8k

)
≤ 2304k

(
n∑

i=1

1

Mi

)
log(T ) + 4n

and, otherwise, the corresponding filtered regrets are bounded by,

R(T,¬Ft) ≤ (1− β)T∆max

R(T,¬Nt) ≤
π2

3
n∆max

R(T,¬Gzt ) ≤
π2

6

n∑
i=1

log

(
8k

Mi
+ 1

)
∆max.

To bound the first term, we also need to derive a bound for the first stage when the value is not
observed. This is bounded by,

2

(∑
i∈St

qp
′,S

i (p̄i,t − p′i,t)−
Mi

8k

)
≤

n∑
i=1

l′T (Mi)∑
s=1

2

√
6 log(T )

s
= 64k

(
n∑

i=1

1

Mi

)
log(T ).

Following similar analysis as for the ∆v
St

term of Theorem D.1, we have that

2

T∑
t=1

(∑
i∈St

q̃p,Si (v′i,t − vi)−
Mi

8k

)
≤ 12

n∑
i=1

log

(
8k

Mi
+ 1

)
log(T ).

Similarly, we can bound

4

T∑
t=1

(∑
i∈St

qp,Si v′i,t(pi − p′i,t)−
Mi

8k

)
≤ 24

n∑
i=1

log

(
8k

Mi
+ 1

)
log(T ).

The filtered regret for the case where event E4 fails to hold is bounded by,

R(T,¬Gvt ) ≤
T∑

i=1

Pr(¬Gvt )∆max ≤
π2

6
n∆max.
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We obtain the distribution-dependent regret by adding up the filtered regrets calculated above.
Similarly as before, the distribution-independent regret is implied by taking Mi =

√
64nk/T for

every i ∈ [n]. The distribution-independent regret bound is Õ(
√
T ), the same as cascading bandits

upper bound.

R(T ) ≤ c1

(√
nkT + log

(√
nkT + 1

))
log T + c2

((
log
(√

nkT + 1
)
+ 1
)
∆max + 1

)
.

E.6 FURTHER IMPROVEMENT OF REGRET BOUND DEPENDENCY ON k

We can further improve the regret upper bound dependency on k from k to log(k) using TPVM
condition in (Liu et al., 2022). We outline the steps and changes as follows.

Algorithm In the algorithm, besides maintaining a confidence bound for the mean value of p, we
also maintain a confidence bound for its variance as Algorithm 1 in (Liu et al., 2022).

Verification for TPVM Following the notations in (Liu et al., 2022), let p′ = p+ ζ + η, then

|rS(p,v)− rS(p
′,v′)| ≤ Bv

√√√√∑
i∈S

qp,Si

ζ2i
(1− pi)pi

+B1

∑
i∈S

qp,Si ηi +
∑
i∈S

q̃p,Si |vi − v′i|

which satisfies TPVM with respect to the base arm set Z with (Bv, B1, λ) = (2, 0, 1).

To see this, consider the first term of the RTPM condition in Lemma 3.3,

2
∑
i∈S

qp,Si v′i|pi − p′i| = 2
∑
i∈S

√
qp,Si pi(1− pi)

√
v′i

2qp,Si

pi(1− pi)
|pi − p′i|2

≤ 2
∑
i∈S

√
q̃p,Si

√
v′i

2qp,Si

pi(1− pi)
|pi − p′i|2 ≤ 2

√∑
i∈S

qp,Si

|pi − p′i|2
(1− pi)pi

where the first inequality is due to definition of triggering probabilities, and the second inequality is
due to the fact that

∑
i∈S q̃p,Si ≤ 1 and v′i ≤ 1.

Regret analysis Recall that we have ∆St
≤ ∆e

St
+∆r

St
. We make changes to bound the estimation

error ∆e
St

. We note that the replacement error will not be affected. We define Fe = {∆St
≤ 2∆e

St
}

and Fr = {∆St
≤ 2∆r

St
}. We note that R(T ) ≤ R(T,Fe) + R(T,Fr). We consider the filtered

regret under Fe.

We replace the confidence radius specified in the good event (E2) by the confidence radius specified
in Lemma 8 of (Liu et al., 2022),

(E2) The parameter vector p is estimated well, i.e. for every i ∈ [n] and t ≥ 1,

Ni,t = {|p̂i,t−1 − pi| < ρi,t}

where p̂i,t−1 is the estimator of pi at round t and ρi,t := 4
√
3
√

pi(1−pi) log(t)
Ti−1,t

+ 28 log(t)
Tt−1,t

.

Under Fe and (E2), we have

∆St
≤ 8
√
3

√√√√∑
i∈St

min

{
log(t)

Ti−1,t
, 1/28

}
qp,si + 56

∑
i∈St

min

{
log(t)

Ti−1,t
, 1/28

}
qp,si

We note that we can still use the technique of arm replacement to show that within both stages our
estimates for p are accurate. As explained in the proof of Theorem 3.4, the first stage corresponds to
a degenerated case where arms are always triggered, and the second stage corresponds to the case of
standard probabilistically triggered arms. Following steps of Lemma 10 and Lemma 11 in Appendix
C.3 in (Liu et al., 2022), we can conclude that

R(T,Fe) ≤ O

(
n∑

i=1

log

(
k

∆i
min

)
log k

∆i
min

log(T )

)
.
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And from Theorem 3.4, we know that

R(T,Fe) ≤ O

(
n∑

i=1

log

(
k

∆i
min

)
log(T )

)
.

Therefore, we improve the regret upper bound from O((k/∆) log T ) to O((log k/∆) log T ).

E.7 THEORETICAL GUARANTEE OF ALGORITHM 4.1
We claim the comparable regret bound upper bound as in Theorem 3.4 holds for Algorithm 4.1.

Theorem E.1. For the k-MAX problem with max value-index feedback, under the general case
of arbitrary discrete distributions of arm outcomes with finite support as defined in Section 2 and
under assumption ∆min > 0, Algorithm 4.1 has the following (1 − ε, 1) distribution-dependent
regret bound when using the k-MAX PETAS oracle from (Chen et al., 2016a) that guarantees (1− ε)
approximation,

R(T ) ≤ c1

n∑
i=1

(
k

∆i
min

+ log

(
k

∆i
min

+ 1

))
si log(T )+c2

n∑
i=1

si

((
log

(
k

∆i
min

+ 1

)
+ 1

)
∆max + 1

)
.

We explain the derivation steps in details.

Let 0 = vi,0 < vi,1 < · · · < vi,si denote values of the support of distribution of Xi, where si is a
positive integer, and si+1 is the support size. Recall that pi,j = Pr[Xi = vi,j ] for j ∈ {0, 1, . . . , si},
with 0 <

∑si
j=1 pi,j ≤ 1.

By Equation (4.1), for each variable Xi, we can replace it with a set of binary variables Xi,j’s. We
provide more detailed explanation to justify this reduction. For ease of discussion, we restate the
equation here:

p̃i,j =

{
pi,j

1−
∑si

l=j+1 pi,l
if 1 ≤ j < si

pi,si if j = si.

The key is to verify that Yi = max{Xi,j | j ∈ [si]} has the same distribution as the original random
variable Xi. In fact, for every vi,j in Xi’s support, the probability of Yi = vi,j is equal to the
probability that for all j′ > j, Xi,j′ = 0 and Xi,j = vi,j . By Equation (E.1), the latter probability is∏

j′>j(1− p̃i,j′) · p̃i,j =
∏si

j′=j+1(1−
pi,j′

1−
∑si

l=j′+1
pi,l

) · pi,j

1−
∑si

l=j+1 pi,l
=
∏si

j′=j+1(
1−

∑si
l=j′ pi,l

1−
∑si

l=j′+1
pi,l

) ·
pi,j

1−
∑si

l=j+1 pi,l
= pi,j . Therefore, the probability of Yi = vi,j is the same as the probability of

Xi = vi,j . Since Yi can only take values from the support values of Xi, we can see that Yi and Xi

have the same distribution.

Given the above fact, we can see that for each variable Xi, we can replace it with variables Xi,j’s,
so that when we select a set S of Xi’s, max{Xi, i ∈ S} has the same distribution as max{Xi,j , i ∈
S, j ∈ [si]}, because max{Xi, i ∈ S} = max{Yi, i ∈ S} = max{max{Xi,j | j ∈ [si]}, i ∈ S} =
max{Xi,j , i ∈ S, j ∈ [si]}.
Consider the contribution of action St to regret. By the above reduction,

∆St
≤ α OPT(p,v)− rSt

(p,v)

= α OPT(p̃,v)− rSt(p̃,v).

For the remaining steps, we will treat the regret rSt
(p,v) as that of the set of equivalent binary arms.

We note that we convert the UCBs of the binary arms (p̄, v̄) to their multi-valued forms and use
the k-MAX PTAS offline oracle. Again, if the approximation oracle works well, by Equation (E.1),
we have rSt(p̄, v̄) ≥ α OPT(p̄, v̄). Therefore, by the arm replacement implementing on the set of
binary arms,

∆St ≤ (rSt(p̄, v̄)− rSt(p
′
t,v

′
t)) + (rSt(p

′
t,v

′
t)− rSt(p,v))

By the RTPM condition applied to the set of binary arms,

∆St
≤
∑
i∈St

si∑
j=0

qp
′,S

i,j v̄i,j,t(p̄i,j,t−p′i,j,t)+2
∑
i∈St

si∑
j=0

qp,Si,j v′i,j,t(pi,j−p′i,j,t)+
∑
i∈St

si∑
j=0

q̃p,Si,j (v′i,j,t−vi,j).
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Figure 2: Regret for Algorithm 4.1 and considered benchmark algorithms, for different distributions
of arm outcomes.

In Algorithm 4.1, we relax the assumption of knowing the support size of arm distributions by
introducing a counter σ(i) for each arm Xi. This means for some i and binary arms {Xi,j , j =
1, . . . , si − σ(i)} whose values vi,j have not been observed, we replace them with a single fictitious
binary arm, instead of si − σ(i) fictitious arms. This is clearly justified, as the replaced arms have
values v′i,j = 1. For each term inside the summations, we can bound following the arguments as in
Theorem 3.4. We can obtain the regret upper bound as claimed.

F SUPPLEMENTARY INFORMATION FOR SIMULATIONS

In this section, we provide supplementary information for Section 5 on numerical results.

Setup We consider settings with n = 9 arms and sets of cardinality k = 3 for the following
distributions of arms:

D1 v = (0.1, 0.2, . . . , 0.9)⊤. p is such that pi = 0.3 for 1 ≤ i ≤ 6, and pi = 0.5 otherwise.

D2 Similar to D1, but we modify arm 1 to have a larger probability p1 = 0.9.

D3 Similar to D1, but we modify the last arm to have a smaller probability p9 = 0.2. Despite
having the same expected value as arm 6, arm 9 is included in the optimal set.

Note that the optimal super arm is S∗ = {7, 8, 9} in all cases. Distributions D1, D2 and D3 represent
different scenarios. D1 is the base case. In D2, there is a stable arm with low value, while in D3 there
is a high-risk high-reward arm. Both are not easy to observe and cause challenges for our algorithm
design, especially the latter type of arms, which can outperform less-risky arms under the maximum
value reward function.

We also verify Algorithm 4.1 for the general case of arbitrary discrete distributions of arm outcomes
with finite supports. For each arm distribution, we slightly vary the non-zero arm values by adding
a small value perturbations to vi, such that each arm i takes two different non-zero values centered
around vi. We assume the small value perturbation follows Gaussian distribution with mean vi and
standard deviation 0.03.

Regret plots We show the regrets of Algorithm 3.1 and three baseline methods in Figure 1. The
regret plots for the categorical settings using Algorithm 4.1 are shown in Figure 2. We plot the 1-
approximation regrets instead of (1−1/e)-approximation regret as the offline greedy oracle performs
much better than (1− 1/e)-approximation in this case. We can see that our algorithm performs well,
achieving much lower regrets in all cases.

Discussion on DART We note that DART does not perform well in our binary setting. This can be
attributed to mainly two reasons. As mentioned in the section of related works, DART assumes that
arms can be ordered according to their mean rewards obtained by playing actions containing them.
However, in our case, arm values cannot be determined in this way. DART is therefore inherently
unsuitable for our tasks. Moreover, DART requires a threshold ∆ to accept and reject. In our case, it
is hard for DART to distinguish between good and bad arms. To reach a sufficiently small threshold,
DART takes over 10000 rounds of iterations. On the other hand, our algorithm can correctly order
arms at 5000 rounds, as shown in the regret plots. For these reasons, we do not include DART as a
benchmark for the categorical setting.
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