
122

Auto-Formula: Recommend Formulas in Spreadsheets using
Contrastive Learning for Table Representations

SIBEI CHEN∗, Renmin University of China, China

YEYE HE,Microsoft Research, USA

WEIWEI CUI,Microsoft Research, China

JU FAN, Renmin University of China, China

SONG GE,Microsoft Research, China

HAIDONG ZHANG,Microsoft Research, China

DONGMEI ZHANG,Microsoft Research, China

SURAJIT CHAUDHURI,Microsoft Research, USA

Spreadsheets are widely recognized as the most popular end-user programming tools, which blend the power

of formula-based computation, with an intuitive table-based interface. Today, spreadsheets are used by billions

of users to manipulate tables, most of whom are neither database experts nor professional programmers.

Despite the success of spreadsheets, authoring complex formulas remains challenging, as non-technical

users need to look up and understand non-trivial formula syntax. To address this pain point, we leverage the

observation that there is often an abundance of similar-looking spreadsheets in the same organization, which

not only have similar data, but also share similar computation logic encoded as formulas. We develop an

Auto-Formula system that can accurately predict formulas that users want to author in a target spreadsheet

cell, by learning and adapting formulas that already exist in similar spreadsheets, using contrastive-learning

techniques inspired by “similar-face recognition” from compute vision. Extensive evaluations on over 2K test

formulas extracted from real enterprise spreadsheets show the effectiveness of Auto-Formula over alternatives.

Our benchmark data is available at https://github.com/microsoft/Auto-Formula to facilitate future research.

CCS Concepts: • Information systems→ Data management systems.

Additional Key Words and Phrases: Spreadsheet Tables, Formula Prediction, Contextual Recommendation,

Contrastive Learning, Table Representation Learning, Table Embedding, Similar Tables, Similar Spreadsheets

1 INTRODUCTION
Spreadsheets, such as those in Microsoft Excel and Google Sheets, are commonly recognized as

the most popular end-user programming tools to manipulate tabular data [25, 31]. The intuitive

spreadsheet interface combines the power of formula calculations, with the ability to visually

inspect tables, and is widely used by billions of non-technical users (e.g., average enterprise users),

who are neither database experts nor professional programmers.

∗
Part of work done while at Microsoft.

Authors’ addresses: Sibei Chen, Renmin University of China, China, sibei@ruc.edu.cn; Yeye He, Microsoft Research, USA,

yeyehe@microsoft.com; Weiwei Cui, Microsoft Research, China, weiweicu@microsoft.com; Ju Fan, Renmin University of

China, China, fanj@ruc.edu.cn; Song Ge, Microsoft Research, China, songge@microsoft.com; Haidong Zhang, Microsoft

Research, China, haizhang@microsoft.com; Dongmei Zhang, Microsoft Research, China, dongmeiz@microsoft.com; Surajit

Chaudhuri, Microsoft Research, USA, surajitc@microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2024/6-ART122 $15.00

https://doi.org/10.1145/3654925

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 122. Publication date: June 2024.

HTTPS://ORCID.ORG/0009-0001-5331-5829
HTTPS://ORCID.ORG/0000-0003-2824-5299
HTTPS://ORCID.ORG/0000-0003-0870-7628
HTTPS://ORCID.ORG/0000-0003-4729-9903
HTTPS://ORCID.ORG/0000-0003-2178-3086
HTTPS://ORCID.ORG/0000-0001-7530-9553
HTTPS://ORCID.ORG/0000-0002-9230-2799
HTTPS://ORCID.ORG/0000-0001-8252-5270
https://github.com/microsoft/Auto-Formula
https://orcid.org/0009-0001-5331-5829
https://orcid.org/0000-0003-2824-5299
https://orcid.org/0000-0003-0870-7628
https://orcid.org/0000-0003-4729-9903
https://orcid.org/0000-0003-2178-3086
https://orcid.org/0000-0001-7530-9553
https://orcid.org/0000-0002-9230-2799
https://orcid.org/0000-0001-8252-5270
https://orcid.org/0000-0001-8252-5270
https://doi.org/10.1145/3654925

Target Cell (D41):
User need a
formula here

Reference Cell
(D354):

Learn form this
reference formula

(a) Target-sheet:
User is authoring a formula here (cell D41)

(b) Reference-sheet:
Auto-Formula learns from an existing formula here (cell D354)

Fig. 1. A pair of example spreadsheets that are “similar-sheets”, with similar style and color that are easy for
humans to spot (though the two have different data content, and different number of rows/columns). (Left)
Target-sheet: a user is trying to author a new formula on this target-spreadsheet, in the target-cell (D41, left),
where the ground-truth formula should be “=COUNTIF(C7:C37,C41)”; (Right) Auto-Formula learns-to-retrieve
an existing sheet on the right as a “similar-sheet”, and adapts an existing formula from cell D354 (because
D354’s surrounding region is similar to that of D41 on the left), to the target-cell (D41, left), by using the
same formulate-template but changing the parameters based on the local context of the target cell (D41, left).

User pain point: creating formulas. Despite the popularity of spreadsheets, creating formulas

in spreadsheets remains a key pain point for non-technical users – there is a long line of prior

studies that show it is both challenging [14, 19, 21, 33, 64]) and error-prone ([50, 53, 54]) for users

to create formulas from scratch in spreadsheets. In order to create any non-trivial formula in

spreadsheets (beyond the very simple AVG() and SUM()), users would first need to identify relevant

functions, and then understand the function syntax by reading documentations, which is close to

what is expected from professional developers and not trivial for non-technical enterprise users.

Figure 1(a) shows a real example spreadsheet, where a user is trying to author a new formula in

cell D41, with the intent to count the number of occurrences of the value displayed to the left (“Brown”,

in cell C41), within the column of data from cell C7 to C37. The ground-truth formula is therefore

“=COUNTIF(C7:C37,C41)”, which however is non-trivial for users to write, as an average spreadsheet

user is typically not familiar with the COUNTIF() function and its syntax. Note that this simple

formula has uses only one COUNTIF() function – today’s spreadsheet software supports hundreds of

functions (674 functions for Excel [10], and 512 for Google Sheets [11] as of April 2024). Furthermore,

our profiling of real spreadsheets shows that over 43% of formulas use multiple functions, and over

59% of formulas have multiple parameters, each of which needs to be programmed correctly, and

then stringed together appropriately, making the task of authoring formulas clearly challenging.

Given the aforementioned challenges, it is no surprise that lots of users find it hard to program

formulas, as evidenced by large numbers of such questions from user forums – for example, a single

Excel user forum in [4] shows over 20K user questions tagged as “formulas and functions”, which

underscores the scale of the challenges faced by users in authoring formulas for spreadsheets.

It would clearly be useful if we can help users to author formulas, by predicting the desired

formulas in a given spreadsheet cell, which can then be shown to users as “recommended formulas”
for users to verify and choose from.

2

Prior approach: using natural language context. To our knowledge, there is only one recent

work from Google that attacks the same formula-recommendation problem, called Spreadsheet-

Coder [23] that is studied in the context of Google Sheets [7], where the authors propose to predict

formula in a user-specified target cell, based on its surrounding Natural Language (NL) context –

intuitively, if the row label or column header of the target cell is “Total” or “Aggregate”, then the

desired formula will likely involve the function SUM() for the corresponding row or column.

Although this is clearly an interesting approach, we find it insufficient in our tests, especially

when the target formula is complex. For example, the target formula shown in Figure 1 uses the

function COUNTIF() with two parameters, which is hard to infer from the natural language context

alone, because even as humans, we may not be able to correctly guess this COUNTIF() formula by

looking at the surrounding NL-context alone (without knowing the actual intent of the user for

a formula in Cell D41). In our tests on real-world formulas extracted from real spreadsheets, we

find this prior approach in [23] to have low accuracy, and can only predict relatively simple short

formulas.

Auto-Formula: Leveraging “similar-sheets”. Given the difficulty of predicting formulas

based solely on the surrounding NL-context, in this work, we propose an alternative approach that

predicts formulas based on “similar-sheets”.

Intuition for how to predict accurately. Our key observation is that in the same organization, a

significant fraction of spreadsheets have similar-looking counterparts, like depicted in the pair of

examples in Figure 1. Such “similar-sheets” share similar patterns and content, both syntactically

(e.g., in terms of color schemes and fonts), and semantically (in terms of data content and formula-

logic). We find such similar-sheets often represent different subsets of data in practice – e.g.,

financial statements for different time periods, or sales reports for different geo locations.

In order to quantify the prevalence of “similar-sheets” in practice, we sample spreadsheets from

4 large organizations (Enron, PGE, TI, and Cisco, all crawled from public sources). We sample

spreadsheets for a manual inspection, and found that about 40 − 90% of spreadsheets have similar-

sheet counterparts like in Figure 1, showing its ubiquity.

Our unique insight is that such similar-sheets may already contain similar formula logic, pro-

grammed by other users in the same organization, and can be leveraged to accurately predict

a new formula that users want to author. For example, imagine that a user is trying to author

a formula in D41 of the spreadsheet in Figure 1(a), which we will refer to as the “target-sheet”,
because D41 is the “target-cell” that users want to fill in. If we can identify a similar-sheet of this

target-sheet, shown in Figure 1(b), which we refer to as a “reference-sheet”, and pinpoint a relevant

spreadsheet region centered around cell D354, which we call the “reference-cell”, we can actually

leverage this existing formula already programmed in the reference-cell, to accurately predict the

new formula that a user would need in the target-cell on the left. We emphasize that this approach

of “learning-from-similar-sheet” is much more reliable than leveraging NL-context only, especially

for complex formula-logic involving multiple functions that are hard even for humans to guess

from the target-sheet alone.

Key technical challenges. In this work, we explore the new direction of “formula-

recommendation by similar-sheet” that is not considered in the literature, where we face a number

of important technical challenges.

First, we need to reliably identify “similar-sheets” from large numbers of existing spreadsheets

in the same organization, which is challenging because two related sheets that may look apparent

to human eyes (e.g., the two in Figure 1), can still have different content/design/color etc., and may

be “shifted”, with different numbers of rows and columns (e.g., the “target-table” in Figure 1(a) has

3

only 37 rows, while the “reference-sheet” in Figure 1(b) has 350 rows), making a naive cell-by-cell

comparison approach ineffective.

Second, to make the matter worse, formula recommendation is an online “user-in-the-loop”

experience with strict latency requirement (e.g., a couple seconds at most), yet organizations today

have large amounts of spreadsheets, where the similar-sheets we aim to find are like “a needle in a

haystack”, which poses substantial efficiency and scalability challenges for this to be tractable.

Lastly, even after similar-sheets and similar-regions can be identified, we need to automatically

rewrite/adapt an existing formula from the reference-cell (e.g., “=COUNTIF(C6:C350,C354)” in Fig-

ure 1(b)) into the new “context” of the target-sheet (e.g., “=COUNTIF(C7:C37,C41)” in Figure 1(a),

which has the same formula-template, but different parameters referencing different cells of the

target-sheet). This is yet another challenge to address before an entire formula can be predicted

correctly for users.

Similar-sheets as a “face-recognition” problem. To predict formulas and find similar-sheets, we

develop a novel approach that models spreadsheets (consisting of cells in a two-dimensional

grid), as “pictures” in computer vision (consisting of pixels in a two-dimensional grid), so that

our “similar-sheet” problem becomes analogous to the classical “face recognition” problem (e.g.,

identifying similar faces belonging to the same person), studied extensively in the computer-vision

literature [47, 56, 59].

We build an Auto-Formula system for this problem, where we first employ weak supervision

to automatically harvest large amounts of training data for “similar-sheets”, from a large corpus

of real spreadsheets. We then train model representation of spreadsheets using dense embedding

vectors, based on a model architecture adapted from classical computer-vision (e.g., FaceNet and

triplet loss [56]), but tailored specifically to our spreadsheet problem. Our system is shown to be

effective when extensively evaluated using real spreadsheets.

Contributions. We make the following contributions:

• Wedevelop anAuto-Formula system for the important problem of formula recommendation, using

a novel approach that learns-to-adapt formulas from similar spreadsheet, which is substantially

more accurate than existing methods from the literature and in commercial systems.

• We propose two key primitives called “similar-sheet” and “similar-region”, using representation of

spreadsheets learned via contrastive-learning, that are inspired by “face recognition” in computer-

vision. These primitives are crucial for formula recommendation and can be of independent

interest in other spreadsheet applications.

• We systematically evaluate different methods for the formula-recommendation problem, using

large amounts of real formulas extracted from spreadsheets for the first time, which we crawl

and compile from public sources, that we will release for future research.

2 RELATEDWORK
Spreadsheet formula suggestion. SpreadsheetCoder [23] developed in the context of Google

Sheets, is the only recent work in the literature we are aware of that also studies the formula-

recommendation problem. It uses the natural language contexts in the surrounding cells to predict

the desired formula in a target cell (e.g., if column header says “total” or “sum”, then a SUM() function

will likely be used). In our experiments, we find this approach has low accuracy, especially for

complex formulas with multiple functions and parameters (e.g., Figure 1).

There is a related, but different type of coding-assistant, known as NL-to-code or semantic

parsing [17, 51, 64], where users would type a natural-language query (e.g., “SUM of sales for

FY23”, or “Count the number of Brown values in Column C” for the formula in Figure 1), for the

system to generate the desired formula/code. In contrast, in our formula-recommendation problem

4

(the problem studied in both SpreadsheetCoder and Auto-Formula), predictions are made in a

“contextual” manner, and without needing users to actually type in a natural language query, which

provides a friction-less experience as demos like [5, 7] would show.

Similar tables and spreadsheets. The problem of discovering similar table is studied in the

context of data lakes, e.g., union-table search [49], where tables with similar schemas are discovered.

Compared to tables, the spreadsheets we study are richer (with text and non-text features), and

more complex with no known table-boundaries (e.g., a spreadsheet may contain multiple tables,

with a target formula outside of any table like in Figure 1), which renders existing techniques not

directly applicable.

In terms of similar spreadsheet discovery, Mondrian [58] is the only prior work we are aware of,

where they pioneered an interesting task of layout detection by clustering spreadsheets. Mondrian

models regions in a spreadsheet as graph nodes, and uses a hand-crafted function to measure

similarity. We show in our experiments that our learned spreadsheet representation is not only

more accurate, but also orders of magnitude more efficient on large spreadsheet corpus, because

our embedding-based search leverages recent advances in approximate nearest neighbor (ANN)

search [36, 43, 46].

Face recognition in computer vision. The “similar-sheet” and spreadsheet representation

technique we develop in this work, is inspired by “face recognition” in computer vision [47, 56, 59],

where accurately finding “similar faces” (belonging to the same person) from an ocean of faces in a

database is the key challenge. If we view spreadsheets as images of faces, then spreadsheet-cells are

naturally like image-pixels, but instead of using RGB channels to represent pixels, we use each cell’s

syntactic (color, font, size, etc.) and semantic features (content embedding). We design architectures

inspired by computer vision but tailored specifically to our problem on spreadsheet tables, which

we show are effective in the table domain.

Other forms of suggestions in programming contexts. In the general programming context,

IntelliSense in Visual Studio [9] and GitHub Copilot [6] are some of the well-known examples

that provide contextualized auto-complete in IDEs, which are similar in spirit to Auto-Formula,

as both provide contextualized auto-complete-like recommendations, without requiring users to

issue natural-language queries. However, these systems target general programming environments

that focus on “code”, without considering “tables”. This is unlike Auto-Formula that is designed for

spreadsheets, where “tables” is a first class citizen, and the interaction between code/table is the

central focus for spreadsheet-formula recommendations.

In other data-table and data-pipeline related contexts, Auto-Suggest [61] proposes to predict

operator parameters in data pipelines and notebooks, using table-level features that can tailor to

different operators. EDAssistant [44] can suggest EDA operations in the context of exploratory data

analysis pipelines and notebooks. Auto-Pipeline [62] and Auto-Pandas [16] learn to predict multi-

step pipelines using many (input tables, target output) pairs. HAIPipe [22] and Learn2Clean [18]

can learn to select suitable operations in ML pipelines.

In spreadsheet environments, Program-by-Example systems such as FlashFill and TDE [27–

30, 34, 35, 65] ask users to provide input/output examples in order to synthesize programs/formulas,

which is another class of popular coding assistants. Auto-Tables [41] further learns-to-suggest

transformations without examples, based on the characteristics of input tables.

In the context of SQL, there are a number of additional systems that can specifically suggest SQL

queries or templates, such as QueRIE [15], SnipSuggest [37], SQLSugg [26], and Seq [39], etc.

All of these are orthogonal to spreadsheet formula-prediction, where code and tables are tightly

blended in the same spreadsheet grid, which is the unique characteristics that we leverage to

recommend formulas in this work (all without using other forms of input, such as natural language

queries, input/output examples, or query session information).

5

3 PRELIMINARIES
3.1 Spreadsheets and spreadsheet tables
Spreadsheets are widely used by billions of end-users to store and analyze data, in places like

Microsoft Excel and Google Sheets. Similar to relational tables in databases, spreadsheets also store

tabular data in a row-and-column format like in Figure 1. However, there are important differences

between the two, making spreadsheets more challenging to deal with.

No clear table boundary and structure. Spreadsheets are two-dimensional but allow flexible organi-

zation of data (table content), metadata (captions, hierarchical headers, etc.), and free-form texts,

organized in ad-hoc ways (e.g., a traditional “database column” may be stored in the horizontal

direction). The fact that spreadsheets lack explicit machine-understandable structures makes them

particularly challenging.

Mixed data and code/formula. Spreadsheets blend both data and code/formulas, in the same two-

dimensional grid, where formulas are programmed at the granularity of individual cells (e.g., the

formula in a cell can often be different from the formula in the neighboring cell). This rich interplay

between data and code is unique yet powerful, which poses new research challenges for our

community.

Rich non-textual styles. Unlike database tables or CSV/JSON tables, where each cell is just a string,

spreadsheet come with rich non-text styles (e.g., font, color, borders, size, etc., like in Figure 1),

which are meant to enhance readability for humans. Such visual features offer clues for humans,

and are equally important for our computer-vision-inspired algorithms.

Similar sheets:We observe that a large fraction (40%-90% based on our studies) of spreadsheets

created in the same organization often exhibit a high degree of similarity, often with similar

data/formula, and serve similar purposes (e.g., the financial statements for different time periods,

or the sales report for different geo-locations), like shown in Figure 1. This is a key property that

we leverage to accurately predict complex formulas.

3.2 Excel Formulas
In spreadsheets, a formula is a user-programmed expression in a cell, which consists of: (1) functions

such as SUM() and COUNTIF(), from hundreds of such options [3, 8], and (2) parameters to these

functions, which are often cell-locations like “B5” that refer to data in other cells.

Formula templates. Given a concrete formula 𝐹 , we can write it as 𝐹 = 𝐹 (𝑅), where 𝐹 is a

“formulate template” that consists of the functions and AST (abstract syntax tree) structure of the

formula 𝐹 . Such a formulate template 𝐹 does not have specific parameters, instead has “holes”

that need to be filled in, to produce a concrete formula. For instance, in Figure 1, the formula

=COUNTIF(C7:C37,C41) has a formula template of =COUNTIF(_:_,_), with three placeholders for

parameters.

Parameter cells. Parameter cells, written as 𝑅, reference to data in other cell locations, e.g., C41,

and can be used as parameters to instantiate a formula template 𝐹 into a concrete formula. Because

parameter cells reference the (dynamic) content of other locations, they are similar to “variables”

used in programming context.

Note that to work on two-dimensional tables, we can also have “parameter cell ranges”, which

refer to multiple cells in a continuous range (e.g., a row or column), such as C7:C37 shown in

Figure 1 (it specifies a column with 31 cells, in which a “count” operation needs to be performed).

6

3.3 Problem: Formula Recommendation
We will first introduce target sheet and target cell, before defining our “formula recommendation”

problem.

• Target sheet, denoted by 𝑆𝑇 , is a spreadsheet currently edited by users.

• Target cell, denoted by 𝐶𝑇 , is a cell in which the user wants to create a formula.

Definition 1. [Formula Recommendation]. For a given target sheet 𝑆𝑇 and a target cell 𝐶𝑇 ∈ 𝑆𝑇 ,
formula-recommendation is the problem of predicting the desired formula 𝐹𝑇 in 𝐶𝑇 , based on the

context of the sheet 𝑆𝑇 .

We emphasize that in our problem, a predicted formula is correct only if both its formula template

𝐹𝑇 , and parameter cells 𝑅𝑇 , can completely match the ground-truth (the actual formula entered by

users in the spreadsheet). For example, to predict the example in Figure 1 correctly, the algorithm

needs to predict both the formula template = COUNTIF(_:_,_), and each parameter cell correctly,

which are C7, C37 and C41, respectively.

Furthermore, in order to be general, we specifically include any valid spreadsheet formulas

that can be parsed by a formula parser. The formulas considered in our problem can therefore be

arbitrarily complex, with functions, cells, cell ranges, constants, etc., and and can be defined in a

recursive manner.

4 AUTO-FORMULA BY SIMILAR-SHEETS
We propose to learn-to-predict formulas, leveraging existing formulas that are already authored on

similar spreadsheets.

4.1 Intuition and Architecture Overview
In this section, we will start by giving an intuitive explanation of how Auto-Formula work.

Recall that unlike prior work [23], we propose to predict formulas leveraging an existing corpus

of spreadsheets (e.g., from the same organization), denoted by S. At a high level, our approach

works in three intuitive steps:

(S1) Search reference-sheets (by similar-sheet): In this first step, we identify one or more

reference-sheets, denoted by 𝑆𝑅 ∈ S, that are similar to our target sheet 𝑆𝑇 , using a new learned

primitive we develop called “similar-sheet”;
(S2) Search reference-formula (by similar-region): within each reference sheet 𝑆𝑅 , we identify a

reference-cell 𝐶𝑅 ∈ 𝑆𝑅 , whose “local spreadsheet regions” look similar to the “local region” around

the target-cell𝐶𝑇 , using a “similar-region” primitive we develop. If𝐶𝑅 contains a formula 𝐹𝑅 , this

is a promising reference-formula.
(S3) Search parameter-cells (by similar-region): Next, we need to adapt the reference-formula

𝐹𝑅 , into the local context of the target-sheet 𝑆𝑇 , by changing the parameter-cells of 𝐹𝑅 . We again

use the “similar-region” primitive to learn-to-adapt these parameters from 𝑆𝑅 to 𝑆𝑇 .

We explain this prediction process using an example below.

Example 1. We revisit our running example in Figure 1. Recall that a user is trying to create a

formula in our target-cell D41, from the left sheet (Figure 1(a)), which is our target-sheet 𝑆𝑇 .

In the first step (S1) search reference-sheets, we search in our spreadsheet corpus S, to find

reference-sheets that look similar to 𝑆𝑇 , using the “similar-sheet” primitive. The sheet shown in

Figure 1(b) is one such reference-sheet 𝑆𝑅 .

Next, in (S2) search reference-formula, from the reference-sheet in Figure 1(b), we search for a

region that looks similar to the region around our target-cell D41 in Figure 1(a), using a primitive

we call “similar-region”. The region around the cell D354 in Figure 1(b) looks very similar to the

7

Offline phase

Online phase

Spread Sheets
for training 𝐔

Weakly supervised
training data gen &

augmentation

Training Triples
(𝜙!, 𝜙", 𝜙#)

Coarse-grained
model 𝑀!

Fine-grained
model 𝑀"

(S1) Search
reference-sheets

(S2) Search
reference-formula

(S3) Search
parameter-cells

Predicted
Formula

sheet level region level

Spread Sheet for testing

Spread Sheets
for reference𝐒

COUNTIF(_:_, _)

Similar sheet

COUNTIF(C7:C37, C41)

Fig. 2. Overall system architecture of Auto-Formula.

region around D41, so we use the formula contained in D354, “=COUNTIF(C6:C350,C354)”, as our

reference-formula 𝐹𝑅 in the next step.

Finally, in (S3) search parameter-cells, wewill use the reference-formula 𝐹𝑅 to predict the formula

in the target-cell 𝐶𝑇 (D41 of Figure 1(a)). Specifically, we utilize the formula template of 𝐹𝑅 , in this

case COUNTIF(_:_,_), and we will try to fill in the parameters appropriately based on the local

context of the target sheet 𝑆𝑇 (Figure 1(a)), because using the original parameters C6, C350 and C354

in 𝐹𝑅 , taken from the reference-sheet 𝑆𝑅 in Figure 1(b), will likely be incorrect on the target-sheet

in Figure 1(a). Instead, we use the regions centered around C6, C350 and C354 in Figure 1(b), to look

for similar-looking regions in the target-sheet Figure 1(a). We find the regions around C7, C37 and

C41 of Figure 1(a) to be the most similar to C6, C350 and C354 of Figure 1(b), respectively, also using

the “similar-region” primitive. We can now fill the formula-template using these cells, to produce

COUNTIF(C7:C37,C41), which is the correct formula that the user wants in the target cell D41.

As one can probably tell from the example, that we have two key primitives across the three

steps above: (1) “similar-sheet” and (2) “similar-region”, which are crucial for us to correctly predict

the target formula, and are the key technical challenges we address in this paper.

Specifically, we imagine spreadsheets and spreadsheet-regions as “images”, where each cell

is like a pixel. We then develop deep models to learn suitable “dense vector representation” for

both spreadsheets and spreadsheet-regions, similar to how images can be represented as dense

vectors [45, 47, 56]. Using the vector-representations of spreadsheets and spreadsheet-regions, we

can then quickly find both “similar-sheet” and “similar-region”, leveraging standard approximate

nearest neighbor (ANN) search for vectors [43, 46].

System Architecture. Figure 2 shows the overall architecture of our system, which contains (1)

offline steps, shown in the top half of the figure, and (2) online steps that is shown in the lower half.

In the offline steps, we first automatically generate training examples of similar vs. dis-similar

spreadsheets, from a large crawl of 160K spreadsheets U, using weak-supervision and based on a

hypothesis-test we develop (Section 4.2). The training data U will then be used to learn spreadsheet

representation models, for effective similar-sheet and similar-region search (Section 4.4). Note

that because our 160K spreadsheets are crawled from across the web, the representation-model is

universal and applicable to all kinds of spreadsheets, where the learning step happens only once.
Given a new corpus of spreadsheets S in a new organization, we apply the representation models

8

(a) A confident example of similar-sheets (b) An example with no confident
prediction by sheet-names

(c) A pair of similar-sheets with
different sheet-names

Fig. 3. Weak-supervision using sheet-names. (a) Two files with two sequences of sheets, where all sheet-names
are identical, which likely indicate that the sheets between the two files are similar-sheets. (b) Two files with
only one sheet called “Sheet1” (a common name), for which weak-supervision is not confident that the two
are similar-sheets. (c) Example similar-sheets that do not share the same sheet-name, which will be missed
by our weak-supervision that performs hypothesis-tests on sheet-names.

(learned on U) to generate vector representations for each spreadsheet 𝑆 ∈ S, which we will then

index offline.

The online phase uses the three steps of (S1) search similar sheets, (S2) search reference formulas

and (S3) search parameter-cells, which as explained in Example 1 above, can accurately predict

likely formulas in a target spreadsheet cell.

4.2 Weakly-supervised training data generation
In order to learn a spreadsheet-representation model, so that we can reliably predict “similar-sheet”

and “similar-region”, the first step is to generate positive and negative examples, that correspond to

similar and dis-similar sheets/regions, respectively. Since manual labeling of examples is expensive

and hard to scale, we propose to use weak-supervision to automatically generate training data.

Find similar-sheets by sheet-names. Each spreadsheet file, usually stored in the .xlsx or .xls
format, typically contains multiple “sheets” [13], where each sheet is a two-dimension grid, similar

to a traditional table. For example, each screenshot shown in Figure 3 is a spreadsheet file, where the

tabs shown at the bottom of each file, such as “Instructions” and ‘WorkshopDetails” in Figure 3(a),

are sheets that belong to the same file.

Our key intuition for using weak-supervision to find similar-sheets, is that when two spread-

sheet files, denoted as 𝐹 and 𝐹 ′, contain multiple sheets, denoted as 𝐹 = (𝑠1, 𝑠2, . . . 𝑠𝑛) and

𝐹 ′ = (𝑠′
1
, 𝑠′

2
, . . . 𝑠′𝑛), yet all the names of these sheets match exactly 1-to-1 with each other, or

𝑛𝑎𝑚𝑒 (𝑠𝑖) = 𝑛𝑎𝑚𝑒 (𝑠′𝑖),∀𝑖 ∈ [𝑛], then these two files (𝐹 and 𝐹 ′), as well as their corresponding sheets
(𝑠𝑖 and 𝑠

′
𝑖), are likely to be similar.

Figure 3(a) shows such an example, where we have two separate spreadsheet files, stacked on

top of each other. We can see that the two sequences of sheets from the two files have identical

names, e.g., [“Instructions”, ‘WorkshopDetails”, . . .]. Intuitively, if the two spreadsheet files were

unrelated, it is highly unlikely for them to share the identical sequence of sheet-names just by

chance, so the two files are likely generated from the same source, following similar processes,

such that each pair of sheets are similar-sheets.

However, on the flip side, because two spreadsheet files 𝐹 and 𝐹 ′ have sheets sharing identical
names, does not mean that 𝐹 and 𝐹 ′ must be similar. Figure 3(b) shows such a counter-example,

where the two files both contain only one sheet called “Sheet1”, which is a really common sheet-

name (a default name generated by systems). That is not sufficient evidence for us to predict the

two sheets to be related – upon a closer inspection, the content in these sheets indeed looks very

different.

9

Weak supervision by hypothesis-tests. We clearly need to model the probabilities of seeing

different sequences of sheet-names (common vs. rare names, long vs. short sequences), for this to

be reliable. We therefore develop a weak supervision method, using a hypothesis test we propose.

Our null hypothesis 𝐻0 states that two given spreadsheets 𝐹 and 𝐹 ′ are not similar (a default
position that should apply in the majority of cases), and for the sheet-names of (𝑠1, 𝑠2, . . . 𝑠𝑛) and
(𝑠′
1
, 𝑠′

2
, . . . 𝑠′𝑛) to match is a just coincidence. We then explicitly model the probabilistic process of

drawing two sequences of sheets (𝑠1, 𝑠2, . . . 𝑠𝑛) and (𝑠′
1
, 𝑠′

2
, . . . 𝑠′𝑛) from a universe of sheet-names

– if we find the probability of two given sequences of names to collide is exceedingly small (e.g.,

smaller than typical 𝛼 thresholds like 0.05), we reject 𝐻0 and conclude that this is not a coincidence,

the two files 𝐹 and 𝐹 ′, as well as their sheets, are likely similar.

Specifically, let 𝑝𝑖 = 𝑃𝑟 (𝑛𝑎𝑚𝑒 (𝑠𝑖)) be the probability of encountering the sheet-name 𝑛𝑎𝑚𝑒 (𝑠𝑖),
when we draw a random sheet from all sheets in the universe. Let 𝑈 be the universe of all spread-

sheets, then 𝑝𝑖 =
𝑓 𝑟𝑒𝑞𝑈 (𝑛𝑎𝑚𝑒 (𝑠𝑖))

|𝑈 | , where 𝑓 𝑟𝑒𝑞𝑈 (𝑛𝑎𝑚𝑒 (𝑠𝑖)) is the frequency of 𝑛𝑎𝑚𝑒 (𝑠𝑖) in all

spreadsheets in𝑈 , and |𝑈 | is the total number of spreadsheets.

Given two sequences of sheets (𝑠1, 𝑠2, . . . 𝑠𝑛) and (𝑠′
1
, 𝑠′

2
, . . . 𝑠′𝑛), the chance of seeing the sheet-

names in the second to match exactly with the first, can then be calculated as

∏
𝑖∈[𝑛] 𝑝𝑖 (because

each time when we draw a sheet 𝑠′𝑖 , the probability that its name matches the name from the first

sequence, 𝑛𝑎𝑚𝑒 (𝑠𝑖), is 𝑝𝑖 , ∀𝑖 ∈ [𝑛]).1
Under the null-hypothesis, if we find the probability of our observation (two sequences of sheets

sharing identical names),

∏
𝑖∈[𝑛] 𝑝𝑖 , to be exceedingly small, e.g, smaller than the typical alpha of

0.05, we reject 𝐻0 and conclude that (𝑠𝑖 , 𝑠
′
𝑖) are similar sheets, for all 𝑖 ∈ [𝑛].

We demonstrate this process of hypothesis-test more concretely, using the following example.

Example 2. For the example in Figure 3(a), we find the first sheet-name “Instructions” to occur

100 times from a universe of 100𝐾 sheets, so the probability of drawing a random sheet from

the universe and seeing this name “Instructions”, is 100

100𝑘
= 0.1%. We do the same calculation for

the second sheet-name in the example, “WorkshopDetails”, which is rare that occurs 10 times in

total, so its probability is
10

100𝐾
, etc. When we do the full cross-product, we get a final p-value of∏

𝑖∈[𝑛] 𝑝𝑖 = 10
−13

, which is smaller than 0.05, making us to reject 𝐻0 and conclude that the two

sequences of sheets are similar.

For the case in Figure 3(b), because "Sheet1" is a common name that occurs 15𝑘 times out of a

total of 100𝐾 spreadsheets, its p-value is
15𝑘
100𝐾

= 0.15, which is not sufficient for us to reject 𝐻0, so

we cannot conclude that the two sheets in Figure 3(b) must be similar.

Generate positive/negative training pairs for sheets and regions. Using the hypothesis-test
above as weak-supervision, we automatically generate positive and negative training pairs, for

similar and dis-similar sheets as follows.

Similar sheets. To generate positive examples for similar sheets, we check pairs of spreadsheet

files (𝐹, 𝐹 ′), whose sequences of sheets (𝑠1, 𝑠2, . . . 𝑠𝑛) and (𝑠′
1
, 𝑠′

2
, . . . 𝑠′𝑛) have identical names. We

mark all (𝑠𝑖 , 𝑠
′
𝑖) ∀𝑖 ∈ [𝑛] as positive examples (similar-sheets), if

∏
𝑖∈[𝑛] 𝑝𝑖 ≤ 𝛼 , (e.g., 𝛼 = 0.05), so

that we can reject 𝐻0, like discussed above.

To generate negative examples for similar sheets, it is sufficient to sample two random sheets as

negative examples, because the chance of “collision” (the two being similar) in a large spreadsheet

corpus is vanishingly small. To be extra safe, we add an even stronger requirement – we sample

pairs of spreadsheet files (𝐹, 𝐹 ′), and only if the two sets of sheets (𝑠1, 𝑠2, . . . 𝑠𝑛) and (𝑠′
1
, 𝑠′

2
, . . . 𝑠′𝑛)

do not share even one common sheet-name, do we then proceed to use pairs of (𝑠𝑖 , 𝑠′𝑗) as negative
examples (dis-similar sheets).

1
We made a simplifying assumption of independence, which is analogous to 1-gram language-models to account for rare

events (sheet-names). Considering joint distributions of sheet-names is an alternative to estimate probabilities here.

10

Fig. 4. Our model architecture for spreadsheet representations. The model branches into two towards the
end, which are (1) a coarse-grained model𝑀𝑐 , for similar-sheet detection; and (2) a fine-grained model𝑀𝑓 ,
for similar-region detection.

Similar regions. Recall that in addition to similar-sheets, we also need to learn to detect similar-

regions (used in our steps S2 and S3 in Section 4.1).

To generate positive examples for similar-regions, we take a pair of similar-sheet (𝑠𝑖 , 𝑠
′
𝑖), and

check for all formulas on 𝑠𝑖 and 𝑠
′
𝑖 . If we have formula 𝑓 ∈ 𝑠𝑖 and 𝑓 ′ ∈ 𝑠′𝑖 , where the locations of 𝑓

and 𝑓 ′ are identical, or 𝐿𝑜𝑐 (𝑓) = 𝐿𝑜𝑐 (𝑓 ′) (e.g., one is in B59 of 𝑠𝑖 while the other is also in B59 of 𝑠′𝑖),
and furthermore their formula-expressions are also identical, or 𝑓 = 𝑓 ′ (e.g., both are SUM(A12:B40)),

then we are confident that the regions surrounding 𝐿𝑜𝑐 (𝑓) and 𝐿𝑜𝑐 (𝑓) must be similar-regions,

which we will use as positive examples.

To generate negative examples for similar-regions, we simply take the positive examples

(𝐿𝑜𝑐 (𝑓), 𝐿𝑜𝑐 (𝑓 ′)) above, and shift one of the locations 𝐿𝑜𝑐 (𝑓 ′) until it hits a different formula

𝑔 with 𝑔 ≠ 𝑓 , which is when we stop and mark (𝐿𝑜𝑐 (𝑓), 𝐿𝑜𝑐 (𝑔)) as a negative example for similar-

regions.

Discussion. We find our hypothesis-test based weak-supervision to be of high accuracy – e.g.,

when wemanually sample and verify positive/negative examples so generated, we find the precision

of positive/negative labels to be over 0.95.

However, at the same time, because this is a weak-supervision method, this is meant to only catch

“confident” positive/negative examples, but it will miss out on many others (i.e., high precision

but low recall, as we will show in our experiments in Section 5). For example, Figure 3(c) shows

two files, where their sheet-names are different, yet their actual content is similar (thus a positive

example for similar-sheets). Weak supervision will not be able to catch such cases as it relies solely

on strong sheet-name overlap, and does not consider actual content – using spreadsheet content

to detect similar-sheet and similar-region, for both high precision and recall, is the goal of our

learned-representation models below.

4.3 Training data augmentation
In order to improve model generalizability tables of varying sizes, we use data augmentation [24, 57]

to enhance our training dataset. Specifically, for a pair of similar sheets or regions (positive

examples), we randomly remove some fraction of rows and columns from one sheet/region in

the pair, and continue to use the resulting pair as positive examples, where the idea is that two

sheets/regions sharing the same template will continue to be considered “similar”, even if a small

number of rows and columns are inserted/removed (common in spreadsheets as users frequently

insert/remove rows and columns in an existing spreadsheet for their needs).

11

For similar sheets, we augment all positive pairs, by removing rows and columns with equal

probability 𝑝 (𝑝 is randomized between 0 − 10% for each sheet). For similar regions, we find it

beneficial to augment more carefully, e.g., by removing only the bottom-most rows and right-most

columns using the same probability 𝑝 , which tends to remove data rows and columns, while keeping

the table structures (e.g., column headers and entity columns) intact. For similar-sheets, we only

augment a random subset of all regions (20%).

4.4 Models for spreadsheet representation
Now that we have harvested lots of positive and negative examples for similar-sheet and similar-

regions, we proceed to train our spreadsheet-representation models. The goal here is to represent

sheets and regions as dense vectors using the models, so that when given a new pair of sheets

(𝑠, 𝑠′) or regions (𝐿𝑜𝑐 (𝑐), 𝐿𝑜𝑐 (𝑐′)), we can quickly and accurately compute their similarity.

Given the structure of spreadsheets where cells are laid out in a two-dimensional grid, it is natural

to think of them as “images” where pixels are also organized in a two-dimensional manner. And

for images there is a large literature from computer-vision for image representations [47, 56, 59].

Our representation models for spreadsheets are inspired by classical architectures in computer-

vision, but are tailored specifically to spreadsheets. Figure 4 shows the main architecture of our

models, which contains input, dimension reduction, feature extraction, and output layers, respec-

tively.

Recall that we need to have two models for “similar-sheet” and “similar-region”, respectively,

which is why our architecture branches out in the feature-extraction layers, into (1) coarse-grained

models (for similar-sheet) and (2) fine-grained models (for similar-region).

Next, we will go over these layers in turn below.

4.4.1 Input features.
Our first step in generating representations for spreadsheets, is to represent spreadsheets and

spreadsheet-regions as input feature vectors, so that we can feed them into deep models for

representation learning. Because spreadsheets and spreadsheet-regions are two-dimensional grids

consisting of cells, we will first describe how we generate input features for each cell.

Cell Features. Unlike database tables where each cell contains just a value, spreadsheet cells

contain not only content but also rich style features (color, font, font-size, borders, etc.) for human

consumption, which are all salient features for spreadsheet-representations and for finding similar-

sheets (e.g., in Figure 1). Therefore, we design “content-features” and “style-features” for each
spreadsheet cell, described below.

Content features 𝛾𝑐 . We use content features to represent the content in a cell, which in turn have

semantic and syntactic features.
• Semantic features. We directly apply a pre-trained natural-language embedding Sentence-

BERT[55], to produce a vector representation of each cell value, so that for example, “USA” and

“Canada” will be close by in this feature space. (This can also be easily replaced with alternative

embedding methods such as Glove [52], as we show in our experiments)

• Syntactic features. We represent the data type of each cell (numeric, text, empty, etc.), as a

categorical feature. In addition, we represent the syntactic-patterns of values (e.g., “DDDD-DD-DD”

for “2020-01-01”) also as features.

Style features 𝛾𝑠 . We represent rich styles encoded in spreadsheet cells, including background color,

font color, font sytle (bold/italic/etc.), font size, cell size (height and width) as a feature vector 𝛾𝑠 .

12

Cell:
A120

invalid cells
View window for the region around A120

View window for sheet

100 rows

10 columns

10 columns

100 rows

Fig. 5. Example of view windows. The blue box at the bottom represents a region centered at A120. The
green-box uses the view-window at top-left to represent the entire sheet.

Our final feature vector for each cell 𝐶 , denoted by 𝛾 (𝐶), is then the simple concatenation of

𝛾𝑐 (𝐶) and 𝛾𝑠 (𝐶).2

View window. Now that we have a feature vector 𝛾 (𝐶) for each cell, we need to represent

spreadsheets and spreadsheet-regions.

Because there are no explicit table boundaries in spreadsheets like we mentioned earlier (e.g.,

there may be multiple irregularly-shaped tables on the sheet), we use a fixed window of 𝑛𝑟 rows

and 𝑛𝑐 columns as our “view window” (similar to a view window that human eyes can focus on),

e.g., with 𝑛𝑟 = 100 rows and 𝑛𝑐 = 10 columns. This view window can move around in a spreadsheet

to represent different regions, like shown in Figure 5.

To represent the surrounding region of a cell 𝐶 , we use the (𝑛𝑟 × 𝑛𝑐) view window, centered at

the location of 𝐶 , denoted as 𝑉 (𝐶). The blue-box in Figure 5 shows such an example – to represent

the region around A120, we use the (𝑛𝑟 × 𝑛𝑐) blue-box centered around A120, as our view window

𝑉 (A120).
To represent an entire spreadsheet, we simply use a 𝑛𝑟 × 𝑛𝑐 view window starting from the

top-left corner of a spreadsheet, like shown by the green box in Figure 5, which is taken as a

representative region of the entire sheet.

Input vector. Finally, the input vector Φ𝑉 for a view window 𝑉 , representing a spreadsheet or

spreadsheet-region, is simply the cell-features for all cells in the view window stacked in 2D manner,

denoted as {𝛾 (𝐶) |∀𝐶 ∈ 𝑉 }. We maintain the same 2D structure for a 2D table region, with each

2
We note that formulas within cells can also be useful cell-level features. However, because we study spreadsheets as

static artifacts, where we do not know the order in which formulas are created, we choose not to use such features in

order to avoid using formula features that are not present when users author a test formula, so as to not over-estimate the

effectiveness of our method.

13

cell represented as a vector depicted in the vertical direction, like shown in the left-most segment

of Figure 4.

4.4.2 Dimension reduction layers.
We now move to the dimension-reduction layers, which is shown in the second segment of Figure 4.

These dimension-reduction layers are needed, because our input features of 𝛾 (𝐶) for each cell 𝐶 ,

is a concatenation of different types of features, resulting in hundreds of dimensions (Sentence-

BERT alone has hundreds of dimensions). We use the dimension-reduction layers (with shared

weights for each cell) to distill the features important for our task of spreadsheet representation.

These are implemented as Multi-Layer Perceptron (MLP) layers.

4.4.3 Feature extraction layers.
At the feature-extraction layers, shown in the third segment of Figure 4, we now branch out to two

variants of the model, which we call “coarse-grained” and “fine-grained” models, that are specialized

for “similar-sheet” and “similar-region”, respectively. In order to see why such a specialization is

needed, we revisit our running example below.

Example 3. Consider our example in Figure 1. To predict a formula in D41, we need to find the

similar-sheet for the sheet in Figure 1(a) on the left, which is the sheet in Figure 1(b) on the right.

We also need to find similar-regions, which for the region centered at D41 on the left, represented

by the view-window 𝑉𝑙 (D41), is the region centered at D354 on the right, denoted by 𝑉𝑟 (D354).
However, as we can intuitively see, for similar-sheet (e.g., Figure 1(a) and Figure 1(b)), the

comparison will likely need to be “fuzzy”, because while a pair of similar-sheets may have a lot in

common, they may still have different number of columns and rows (e.g., 37 rows vs. 350 rows in

this example), because the two sheets are often populated with different content.

In contrast, for similar-region comparisons (e.g.,𝑉𝑙 (D41) and𝑉𝑟 (D354)), our comparison will need

to be “precise”, because if we were to shift slightly, and use the region 𝑉𝑙 (D355) that shifts one cell
to the down from 𝑉𝑙 (D354), in terms of “fuzzy” similarity the two regions are still very similar, but

this slight shift will lead to a different and incorrect formula (e.g., we will recommend the formula

for “Green” in D355 from the right, instead of the desired formula for “Brown” in D354).

This example motivates us to use the same feature representations from previous layers, and

then branch out to two specialized models, for (1) coarse-grained spreadsheet-representation,

where “cell-by-cell alignment” is not important, for “fuzzy” sheet-level similar-sheet search; and (2)

fine-grained region representation, where cell-by-cell alignment is crucial, for “precise” region-level

similar-region search.

Architecture-wise, for the coarse-grained models, we use the classical Convolutional Neural

Network [45], which is translation invariant, and insensitive to shifts of rows and columns, but at

the same time it also “blurs” the boundary between cells that creates a “fuzzy” representation of

spreadsheets (e.g., even though the color schemes of Figure 1(a) and Figure 1(b) are not identical

cell-by-cell, they are similar enough in a global and fuzzy sense, which is what the coarse-grained

model can capture).

The architecture for the fine-grained models, on the other hand, will suffer if CNN was used,

because a blurry convoluted picture would make it hard for us to find the precise locations of

formulas and parameter-cells. As such, we use fully-connected networks here, which preserve cell

boundaries, so that we can identify precise similar-regions (e.g., 𝑉𝑙 (D41) and 𝑉𝑟 (D354) as discussed
in Example 3).

4.4.4 Output layers.
The output from the feature extraction layers above, are now dense vectors representing a coarse-

grained and fine-grained views of a spreadsheet region. We further perform 𝐿2 normalization

14

here, so that the resulting dense vectors can be directly used to compute similarity, between two

spreadsheets or spreadsheet-regions.

4.5 Train spreadsheets as “face recognition”
Using the model architectures above, we can now proceed to train spreadsheet representations, so

that we can effectively detect similar vs. dis-similar spreadsheet regions.

Here we take inspiration from classical computer-vision techniques for “face recognition” (e.g. [47,

56, 59]), where the key problem is to find “similar faces” belonging to the same person, from an

ocean of faces in a database (typically with the help of manually labeled similar vs. dis-similar

faces), where the differences between faces can be subtle. Our problem of “similar-sheet” and

“similar-region” is similar in spirit, in that we need to teach the models to learn to detect subtle

differences between spreadsheets.

Semi-hard triplet learning for similar-spreadsheets. In the face-recognition literature, the semi-hard
triplet-learning approach pioneered by FaceNet [56], is particularly effective. Intuitively, in semi-

hard learning, in each step, the algorithm selects many triplet examples (𝐴, 𝑃, 𝑁), where 𝐴 is an

anchor (a reference face), 𝑃 is a positive example to the anchor (a similar face), and𝑁 is a “semi-hard”

negative example (a different face, that nevertheless looks somewhat similar to 𝐴). By carefully

selecting (𝐴, 𝑃, 𝑁) triples as training progresses, one can make sure that the negative example 𝑁 is

always hard and useful to learn from, but at the same time it is not too hard for the gradient to

completely break down (or too easy for the model to not learn much).

We adapt the triplet learning framework to the spreadsheet domain. Specifically, we use the

triplet-loss as our training objective for our representation model shown in Figure 4:

𝑙𝑡𝑟𝑖𝑝𝑙𝑒𝑡 =𝑚𝑎𝑥 (∥𝜙𝐴 − 𝜙𝑃 ∥2 − ∥𝜙𝐴 − 𝜙𝑁 ∥2 +𝑚, 0) (1)

where (𝐴, 𝑃, 𝑁) are three spreadsheet-regions, with (𝐴, 𝑃) being a pair of automatically generated

positive examples from our weak-supervision step (Section 4.2), and (𝐴, 𝑁) a pair of negative

examples from the same process.

In order to compute the loss in Equation (1), we feed the input features representing 𝐴, 𝑃, 𝑁 ,

respectively, into the model of Figure 4, and then use the dense vectors produced from the output

layers of the model, denoted by 𝜙𝐴, 𝜙𝑃 , 𝜙𝑁 , respectively, to compute the triplet loss.

Here, ∥𝜙𝐴 − 𝜙𝑃 ∥2 measures the 𝐿2 distance between the representations for the two positive

examples 𝜙𝐴 and 𝜙𝑃 , which after training should ideally be small, while ∥𝜙𝐴 − 𝜙𝑁 ∥2 is the 𝐿2
distance between two negative examples, which should ideally be large. The extra 𝑚 term in

Equation (1) refers to margin, which is a hyper-parameter that encourages the model to continue

to push negative examples 𝑁 further away from positive examples 𝑃 , relative to anchor 𝐴, until

there is a safe margin𝑚 to differentiate the two.

Like training models for face-recognition, during each step in training, we continuously se-

lect semi-hard triples (𝐴, 𝑃, 𝑁) that are the most informative for models to learn, based on

the current state of the models. Specifically, we sample triples (𝐴, 𝑃, 𝑁) whose loss satisfies

0 < 𝑙𝑡𝑟𝑖𝑝𝑙𝑒𝑡 (𝐴, 𝑃, 𝑁) < 𝑚, which ensures that the selected triple (𝐴, 𝑃, 𝑁) is neither too hard

(with loss greater than𝑚), nor too easy (with loss equals 0).

This training process is summarized in Algorithm 1. After the training process converges, we

produce a coarse-grained representation model for similar-sheets, denoted by𝑀𝑐 , (shown at the top

of Figure 4), and a fine-grained representation model for similar-regions, denoted by𝑀𝑓 (shown in

the bottom half of Figure 4).

The full pseudo-code for the steps in the offline phase, can be found in an extended version of

the paper [2].

15

Algorithm 1: Offline training

Input: A large corpus of spreadsheets S
Output: Coase-grained model𝑀𝑐 , Fine-grained model𝑀𝑓

1 Initialize𝑀𝑐 ,𝑀𝑓 with random parameters.

2 𝑃𝑟𝑠𝑃 , 𝑃𝑟𝑠𝑁 , 𝑃𝑟𝑟𝑃 , 𝑃𝑟𝑟𝑁 = 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎𝐺𝑒𝑛(S)
3 for each 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ [1,𝑇] do
4 (𝜙𝑐𝐴 , 𝜙𝑐𝑃 , 𝜙𝑐𝑁) = 𝑆𝐻𝑆𝑎𝑚𝑝𝑙𝑒 (𝑃𝑎𝑖𝑟𝑠𝑃 , 𝑃𝑎𝑖𝑟𝑠𝑁 ,𝑀𝑐

)
5 (𝜙 𝑓𝐴 , 𝜙 𝑓𝑃 , 𝜙 𝑓𝑁) = 𝑆𝐻𝑆𝑎𝑚𝑝𝑙𝑒 (𝑃𝑎𝑖𝑟𝑟𝑃 , 𝑃𝑎𝑖𝑟𝑟𝑁 ,𝑀𝑓

)
6 𝑙𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑐 =𝑚𝑎𝑥 (∥𝜙𝑐𝐴 − 𝜙𝑐𝑃 ∥2 − ∥𝜙𝑐𝐴 − 𝜙𝑐𝑁 ∥2 +𝑚, 0)
7 𝑙𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑓 =𝑚𝑎𝑥 (∥𝜙 𝑓𝐴 − 𝜙 𝑓𝑃 ∥2 − ∥𝜙 𝑓𝐴 − 𝜙 𝑓𝑁 ∥2 +𝑚, 0)
8 Perform SGD training on𝑀𝑐 with 𝑙𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑐 .

9 Perform SGD training on𝑀𝑓 with 𝑙𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑓 .

10 end

4.6 Auto-Formula: Putting it together
Now that we have described each component, we will walk through our system end-to-end,

explaining how the components connect with each other. For this purpose, we will revisit our

architecture diagram in Figure 2.

In the offline training time, we crawl a large corpus of 160K spreadsheets, denoted by U, from
across the web. We develop a weak-supervision method based on hypothesis tests, which when

applied to the spreadsheet corpus, can automatically generate large amounts of positive and

negative examples for similar-sheets/similar-regions (Section 4.2). The positive/negative examples

so produced are fed into our representation-learning models (Section 4.4), which uses semi-hard

triplet learning to train two relatedmodels, one coarse-grainedmodel𝑀𝑐 , for similar-sheet detection,

and one fine-grained model𝑀𝑓 for similar-region detection, respectively, like shown by the two

orange boxes in Figure 2 (Section 4.5).

Because the models so produced are universally applicable to spreadsheets across the web U,
the training process only happens once. For a new collection of spreadsheets of interest (e.g., from

within an organization), denoted as S, we only need to perform inference on each spreadsheet 𝑆 ∈ S.
Specifically, (1) we generate a dense vector representation𝑀𝑐 (𝑆) for the entire sheet 𝑆 , which is a

sheet-level “signature” analogous to LSH. We add each𝑀𝑐 (𝑆) into a standard ANN index, denoted

as 𝐼𝑑𝑥𝑐 (S) = {𝑀𝑐 (𝑆) |𝑆 ∈ S}, for efficient retrieval at online time. Furthermore, (2) we can optionally

also index promising regions𝑉 (𝐶) from existing spreadsheets, whose center-cell𝐶 contain formulas

that may be used as reference-formulas. We perform inference using the fine-grained model𝑀𝑓

on such region 𝑉 (𝐶), and add the resulting vector𝑀𝑓 (𝑉 (𝐶)) to a region-level fine-grained index

𝐼𝑑𝑥 𝑓 , defined as: 𝐼𝑑𝑥 𝑓 (S) = {𝑀𝑓 (𝑉 (𝐶)) |𝑆 ∈ S,𝐶 ∈ 𝑆,C has a formula}.
At online time, we perform the three steps outlined in Section 4.1 (also shown in the lower part

of Figure 2), where the coarse-grained index 𝐼𝑑𝑥𝑐 (S) can be used to quickly find similar-sheets (step

S1), and the fine-grained index 𝐼𝑑𝑥 𝑓 (S) can be used to quickly find similar-regions for formulate

template (step S2), and then used again to find parameter-cells that can be filled into formulate

templates (step S3). These ANN indexes 𝐼𝑑𝑥𝑐 (S) and 𝐼𝑑𝑥 𝑓 (S), are the key reasons for us to find

similar-sheets and regions, both accurately and efficiently.

We note that in this study, we focus exclusively on model-based predictions of formulas. There

are additional opportunities to further improve prediction quality, such as post-processing predicted

formulas, by validating formulas against the local context of the spreadsheet. These are optimizations

orthogonal to our learning-based approach, which we will leave as future work.

16

5 EXPERIMENTS
We conduct extensive evaluation on real spreadsheet data to evaluate the efficiency and effectiveness

of different approaches. Our benchmark data is available at [1] to facilitate future research.

5.1 Experimental setup

Datasets. For this study, we crawled 160K spreadsheets (“.xlsx” files) from the public web, de-

noted by U, to train our representation models𝑀𝑐 and𝑀𝑓 . We hold out spreadsheets from a few

large fortune-500 organizations (described in more detail below), denoted by T, to test formula-

recommendation. The test spreadsheet corpora T are held completely separate from the training

corpora U, and are therefore not seen when training𝑀𝑐 and𝑀𝑓 , so that we can test model general-

izability to new and unseen spreadsheets.

Our holdout test spreadsheets T come from the following four domains:

Cisco. Cisco is a large technology company. We use spreadsheets crawled from the public-facing

“cisco.com” domain as test data in our experiments.

PGE. PGE is a large energy company. We similarly use spreadsheets from the public-facing “pge.com”

domain as our test data.

TI. Texas Instruments (TI) is a semiconductor company, and we use data from the “ti.com” domain.

Enron. The Enron Corpus
3
is a large spreadsheet corpus extracted from the Enron Corporation.

This spreadsheet corpus has been used in a number of prior studies [32, 38].

Let Td be the spreadsheet corpora from an enterprise domain 𝑑 above. Recall that in our approach

outlined in Figure 2, to predict formula in a new spreadsheet 𝑆 ∈ Td, our models𝑀𝑐 and𝑀𝑓 (trained

on the separate U) will not need to be retrained, and we only need to perform inference calls using

𝑀𝑐 and𝑀𝑓 on spreadsheets that already exist in the same enterprise, referred to as the “reference

set” Sd ⊂ Td, to identify similar sheets for recommendations.

For each enterprise corporaTd above, we select a subset of spreadsheets and sample formulas from

these spreadsheets as our test cases for formula predictions
4
, and using the remaining spreadsheets

in the same Td as our reference set Sd. We test two ways of selecting test spreadsheets:

(1) Random: we randomly sample 10% of spreadsheets from each Td as tests and use the remaining

spreadsheets as reference Sd;
(2) Timestamp: we order all spreadsheets in Td by last-modified timestamps, and select the 10% of

spreadsheets most recently edited as our tests, with the remaining as reference Sd.
Note that “timestamp” setting is more challenging but also realistic, as it models the real usage

scenario where for a newly edited spreadsheet, we would hope to rely on previously created

spreadsheets as “references”, to recommend formulas on the new spreadsheet. We find our approach

to be effective in both “random” and “timestamp”. In the remainder of the paper, we report results

in the “timestamp” setting by default, and will defer results in the “random” setting to a full version

of the paper.

Table 1 summarizes the key statistics of our test dataset across all four enterprise domains.

Evaluation Metrics. We evaluate both the quality and efficiency of different methods for formula

recommendation.

Quality. For each test case, if an algorithm 𝐴 predicts a formula, we compare it with the ground

truth and mark it as a "hit" when the two match exactly.
3
https://github.com/SheetJS/enron_xls

4
For each test spreadsheet, we sample at most 10 formulas to avoid over-representation, as some spreadsheets can have

large (thousands) of formulas.

17

Table 1. Statistics of test data.
All PGE Cisco TI Enron

of workbooks 12,750 459 213 1,549 10,529

of sheets 51,037 1,214 682 4,200 44,941

of formulas 3,056,810 45,268 357,018 258,403 2,396,121

of test formulas (Random) 3,815 1,000 923 1,000 892

of test formulas (Timestamps) 2,932 594 409 1,260 669

In a test set with 𝑛 test cases, we count the number of cases for which an algorithm 𝐴 produces a

prediction, denoted as 𝑛𝑝𝑟𝑒𝑑 (note that𝐴may not make a prediction in all cases, if it is not confident).

We count the number of predicted cases that are “hits” (exact match with the ground-truth), denoted

as 𝑛ℎ𝑖𝑡 . The quality of the predictions can then be evaluated using the usual precision/recall/F1

measures:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑛ℎ𝑖𝑡

𝑛
, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑛ℎ𝑖𝑡

𝑛𝑝𝑟𝑒𝑑

𝐹1 =
2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Efficiency. We measure the latency of algorithms using wall-clock time. All experiments were

conducted on a Ubuntu 18.04 Linux VM with 24 vCPU cores and 188G memory.

Methods Compared. We compare the following methods.

Mondrian [58]. Mondrian is a novel method to detect the layout of spreadsheets by clustering

similar spreadsheets. A graph-node matching algorithm is proposed, which uses a hand-crafted

similarity function to detect similar sheets. While Mondrian is not designed for formula-prediction,

its graph-matching-based sheet-clustering is comparable to our learned approach to similar-sheets.

We use authors original implementation on GitHub [12] for this comparison.

SpreadsheetCoder [23]. While we were unable to run the code from SpreadsheetCoder [23] (their

GitHub repo explicitly mentions that their code is not meant to be runnable
5
), we found that this

technique is already implemented in Google Sheets [7], as a formula recommendation feature

that predicts formulas based on natural-language contexts. We therefore randomly sampled 180

formulas, and manually invoke these test cases in Google Sheets to perform this comparison.

GPT [20]. Language models like GPT are capable of understanding tables [42, 48, 63] and perform

table tasks. To predict formulas using GPT, we use prompt-engineering techniques, such as Chain-

of-thought reasoning (COT) [60], and Retrieval-Augmented-Generation (RAG) [40] that embeds

and retrieves similar sheets/regions to dynamically select best few-shot examples.

Specifically, we vary our GPT prompts along 4 dimensions:

(1) Example Selection (3x settings):

– Zero-shot: we use no demo examples in this setting;

– Few-shot, using-common-formula: we use few-shot examples that consist of formulas com-

monly found in spreadsheets (e.g., SUM and AVG) in this setting;

– Few-shot, using-RAG-formulas: we use few-shot examples dynamically retrieved from similar

spreadsheets (using Glove embedding to represent spreadsheets and regions, indexed using

ANN techniques FAISS), following a Retrieve-Augmented-Generation (RAG) paradigm [40].

(2) Chain of Through (2x settings):

– With COT: we ask the model to decompose the task, and reason step-by-step in this setting,

following a Chain-of-Thought (COT) approach proposed in [60]

– Without COT: we ask the model to provide answers directly, without using COT.

(3) Table regions (2x settings):
5
https://github.com/google-research/google-research/tree/master/spreadsheet_coder

18

https://github.com/google-research/google-research/tree/master/spreadsheet_coder

Table 2. Quality comparisons of all test cases from 4 test corpora (Cisco/Enron/PGE/TI), where we report
Recall (R), Precision (P), and F1. The leftmost “Overall Average” column reports average results on these 4
corpora. Figure 6 shows the corresponding PR curves of the numbers reported here.

Overall Average Cisco Enron PGE TI

Metric R P F1 R P F1 R P F1 R P F1 R P F1

Auto-Formula 0.54 0.99 0.70 0.36 0.99 0.53 0.34 0.99 0.50 0.94 1 0.97 0.54 0.99 0.69
Mondrian 0.39 0.43 0.48 [Time Out] [Time Out] 0.93 0.97 0.95 0.54 0.76 0.63

Weak Supervision 0.24 0.78 0.33 0.07 0.39 0.12 0.02 1 0.04 0.47 0.97 0.64 0.39 0.75 0.52

Weak Supervision

Weak Supervision

Fig. 6. Quality comparisons using PR curves, on all test cases from 4 test corpora (Cisco/Enron/PGE/TI).
Mondrian times out on two corpora (Cisco and Enron), and are thus not shown on two of these figures.

– Precise-table-region: we provide all cells within the target table boundary, as table context in

the prompt, which allows the model to focus on the table of interest.

– Large-sheet-region: we provide all cells within a large N by M region (which may include more

than one table) as table context in the prompt, to allow the model to infer cross-table fomulas.

(4) Model variations (2x settings):
– GPT-3.5-turbo: this is the most recent version of GPT-3.5, known as gpt-3.5-turbo-1106.

– GPT-4: this is the stable version of GPT-4, which points to gpt-4-0613.

This creates a total of 24 prompt variants. We additionally “union” the best results from the 24

prompts, by counting a test case as correct as long as one of the 24 prompts can correctly predict

the ground-truth formula, which we will report as GPT-Union (best-of-24-prompts).

Weak Supervision. We compare with a simple version of the our method that uses only weak-

supervision, with two sheets being “similar” if they pass our hypothesis-tests (Section 4.2). Like

Mondrian, we use the formula found from the reference-sheet that is closest to the target-cell as

the predicted formula.

Auto-Formula. This is our proposed method in Section 4. In our experiments, use a view window of

100 × 10 (100 rows and 10 columns). The dimensionality of our embedding for the coarse-grained

model is 896, while that of the fine-grained model is 16000 (16 dimensions per cell, times 10 × 100

cells in the view-window).

5.2 Quality Comparisons

ComparisonwithMondrian andWeak-Supervision.We show the key precision/recall numbers

in Table 2, and the corresponding PR-curves in Figure 6. These results are tested on all 2932 sampled

formulas shown in Table 1. Auto-Formula substantially outperforms other methods in all four test

corpus (Cisco/Enron/PGE/TI).

19

Table 3. “GPT-Union” results using 24 prompt engineering variants.

Example selection

Chain of

Thought

Table

Regions

Model

Variations

Recall Precision F1

Zero-shot

With COT

Precise-table

GPT-3.5 0 0 0

GPT-4 0.033 0.034 0.033

Large-sheet

GPT-3.5 0 0 0

GPT-4 0.033 0.033 0.034

Without

COT

Precise-table

GPT-3.5 0.011 0.011 0.011

GPT-4 0.044 0.045 0.044

Large-sheet

GPT-3.5 0 0 0

GPT-4 0.039 0.039 0.039

Few-shot,

common-formula

With COT

Precise-table

GPT-3.5 0.006 0.006 0.006

GPT-4 0.044 0.047 0.045

Large-sheet

GPT-3.5 0 0 0

GPT-4 0.017 0.018 0.017

Without

COT

Precise-table

GPT-3.5 0.006 0.006 0.006

GPT-4 0.039 0.039 0.039

Large-sheet

GPT-3.5 0 0 0

GPT-4 0.028 0.028 0.028

Few-shot,

RAG-formulas

With COT

Precise-table

GPT-3.5 0.206 0.211 0.208

GPT-4 0.233 0.235 0.234

Large-sheet

GPT-3.5 0.239 0.242 0.24

GPT-4 0.172 0.174 0.173

Without

COT

Precise-table

GPT-3.5 0.256 0.263 0.259

GPT-4 0.239 0.24 0.239

Large-sheet

GPT-3.5 0.244 0.249 0.246

GPT-4 0.161 0.162 0.161

GPT-union (best-of-24-prompts) 0.461 0.461 0.461

Auto-Formula produces high-precision predictions (over 0.9 for the top-1 prediction), consistently

across all 4 test corpora. We believe this is crucial to ensure good user experience, because users will

likely find persistently incorrect predictions annoying. The recall of Auto-Formula, however, varies

substantially (from 0.3 to 0.9) across different test corpora. We believe this is influenced by the

characteristics of the underlying spreadsheets – for certain test corpus (e.g., “Cisco”), many of the

underlying spreadsheets are “singletons”, with a unique design pattern and no “similar-sheets” from

the corpus for us to learn from, which limits the “best possible recall” of any similar-sheet-based

methods.

Mondrian produces lower precision and recall, and we note that it times-out on 2 out of 4 test

corpora after running for 1 week, because it uses a variant of agglomerative clustering that is cubic

in the number of spreadsheets.

Weak-supervision produces good precision, but low recall. This is expected because weak-

supervision employs rigid name-based rules to ensure high precision, which will miss out on

similar-sheets that are named differently, thus lowering its recall.

Comparison with SpreadsheetCoder. Because we need to manually trigger the recommendation

feature in Google Sheets, for this test we evaluate using 180 randomly-sampled test formulas.

Table 4 shows that SpreadsheetCoder produces substantially lower accuracy. This is not entirely

surprising, because it is really difficult (even for humans) to infer a desired formula from only the

natural language context (e.g., Figure 1), especially for complex formulas.

Comparison with GPT. Table 3 shows detailed results using 24 different prompt strategies

presented. Among all prompts, the RAG-based method has the best F1 of 0.25, which however is

still substantially lower than our method with over 0.9 F1.

20

Table 4. Quality comparison with SpreadsheetCoder and GPT, on a sampled subset of 180 formulas.

Recall Precision F1

Auto-Formula 0.8 0.993 0.886
SpreadsheetCoder 0.039 0.171 0.064

GPT-union (best-of-24-prompts) 0.461 0.461 0.461

10 100 1000 10000

Number of spreadsheets

100

101

102

103

104

S
e
c
o
n
d
s

Latency for formula prediction

Auto-Formula

(Sentence-BERT)

Auto-Formula

(GloVe)

Mondrian

Fig. 7. Scalability comparisons: as we
increase the number of “reference”
spreadsheets in the same enterprise.

r<
40

40
≤r
<6

0

60
≤r
<1

00

10
0≤

r<
25
0

25
0≤

r

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

r<
40

40
≤r
<6

0

60
≤r
<1

00

10
0≤

r<
25
0

25
0≤

r
0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is
io
n

Fig. 8. Varying number of rows: we bucketize test cases
based on the number of rows in the target sheet (𝑟), which
are shown on the x-axis.

l<3
(25)

l=3
(42)

3<l<7
(41)

7≤l<20
(42)

20≤l
(30)

0

1

R
e
c
a
ll

l<3
(25)

l=3
(42)

3<l<7
(41)

7≤l<20
(42)

20≤l
(30)

0

1

P
r
e
c
is
io
n

l<3
(25)

l=3
(42)

3<l<7
(41)

7≤l<20
(42)

20≤l
(30)

0

1

F
1

Auto-Formula SpreadsheetCoder

Fig. 9. Quality comparisons: formulas are bucke-
tized based on formula lengths (complexity).

Conditional
(31)

Math
(120)

String
(12)

Date
(13)

Other
(4)

0

1

R
e
c
a
ll

Conditional
(31)

Math
(120)

String
(12)

Date
(13)

Other
(4)

0

1

P
r
e
c
is
io
n

Conditional
(31)

Math
(120)

String
(12)

Date
(13)

Other
(4)

0

1

F
1

Auto-Formula SpreadsheetCoder

Fig. 10. Quality comparisons: formulas are buck-
etized based on formula types (math, string, etc.).

In Table 4, we add a method marked as “GPT-union: best-of-24-prompt”, where we “union” all 24

prompts, and mark a case as “correct” for GPT as long as one prompt can get the case right (this

is optimistic since without ground-truth, we don’t know which prompt is the best beforehand).

Even with the optimistic “union”, GPT’s result is only around 0.5. We carefully analyzed GPT

results, and find the low performance of GPT unsurprising, because: (1) the desired formula is often

complex with multiple functions and parameters, which sometimes are hard even for humans to

guess (e.g., the formula in Figure 1); (2) spreadsheet formulas can often involve multiple tables, but

large spreadsheet context with multiple tables often cannot fit in GPT’s 4096-token context, leading

to incorrect predictions; (3) our task requires GPT to predict formula template and parameters

correctly, which is challenging, like discussed above; (4) finally, we believe GPT has not seen many

spreadsheets (.XLSX files) in its pre-training, making it not best suited for spreadsheet formula

predictions.

5.3 Efficiency Comparisons
We evaluate the latency and scalability of different methods on real spreadsheet data. Recall that

the formula-recommendation problem requires interactive response time, because we need to make

a prediction right when users select a target spreadsheet cell, so that they can verify/accept the

21

suggested formula. Therefore, for each method, we differentiate between two types of running

time: (1) pre-processing (offline), which is the time it takes to process the entire spreadsheet in

preparation for online predictions, and (2) formula prediction (online), which is the time it takes to

make an online prediction, after users selecting a target cell.

Figure 7 shows the latency of the crucial part of online prediction, where we vary the number of

underlying spreadsheets available in an organization, from 10 to 10000.

We observed that Auto-Formula is orders of magnitude faster than Mondrian (which takes

over 3 hours to process 1000 spreadsheets, and timed out after 1 week for 10000 spreadsheets).

Auto-Formula is substantially more efficient, because we represent spreadsheet-regions as dense

vectors, for which approximate nearest-neighbors (ANN) can be found efficiently leveraging recent

advances in this area (we build ANN indexes using Faiss [36]). In comparison, Mondrian uses custom-

made graph-matching that is not easy to index, and its clustering step is similar to agglomerative

clustering with cubic complexity, making it hard to scale to large spreadsheet collections.

Between two Auto-Formula variants, with GloVe and Sentence-BERT embedding, we find

Sentence-BERT to be more expensive, though both are acceptable, with sub-second latency even

with 10000 spreadsheets.

For offline pre-processing, we report the average latency to process one spreadsheet, for Mon-

drian, Auto-Formula-with-Glove and Auto-Formula-with-Sentence-BERT as 2051.05, 55.83 and

0.88 seconds, respectively.

5.4 Sensitivity Analysis

Sensitivity to sheet size. To measure the impact of the size of the target spreadsheet on Auto-

Formula, we bucketize the test cases by the number of rows, and report the resulting precision/recall

in Figure 8. For 𝑟𝑒𝑐𝑎𝑙𝑙 , there is a significant variation. This is because 𝑟𝑒𝑐𝑎𝑙𝑙 is influenced by the

factor of whether similar sheets exist. For 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, we observed that test cases with a smaller

number of rows (less than 40) have a lower precision, at 0.704, while the precision for other test

cases is around 0.95. This occurs because when the sheets size are significantly smaller than the

window size, the window is filled with a substantial amount of blank cells. Consequently, the model

perceives these two windows to be more similar. For test cases where the sheets can fully occupy

the window, Auto-Formula performs exceptionally well.

Sensitivity to formula complexity. Since longer formulas are naturally more difficult to predict,

we define formula complexity as the number of nodes in its parsed abstract syntax tree, which

corresponds to its length. We group formulas based on their lengths, and report the results in

Figure 9. The 𝑟𝑒𝑐𝑎𝑙𝑙 of Auto-Formula in different groups is not significantly different, while the

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is all close to 1, indicating that Auto-Formula is not sensitive to the complexity of the

varying formula. For SpreadsheetCoder, it performs better on formulas with three or less nodes,

suggesting that it is relatively more successful with simple formulas.

Sensitivity to formula types. We also categorize the formulas into five types: "conditional" (with

IF-ELSE), "math", "string", "date" and "other" and report our results in each category in Figure 10.

Auto-Formula is also not sensitive to formula types, except for type “string”, where its recall

dips, suggesting that string-transformations are likely more ad-hoc in nature and more difficult to

learn from similar sheets. For SpreadsheetCoder, we found that it performs better in simple math

calculations (e.g., SUM).

Sensitivity to embedding models. Since we use two alternative embedding models to obtain the

content representation of spreadsheet cells, GloVe and Sentence-BERT, we study their impact in

22

0.2 0.3 0.4

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is
io
n

Cisco

0.2 0.3 0.4

Recall

0.4

0.6

0.8

1.0

Enron

0.7 0.8 0.9

Recall

0.9985

0.9990

0.9995

1.0000

PGE

0.2 0.4 0.6

Recall

0.7

0.8

0.9

1.0

TI

GloVe Sentence_BERT

Fig. 11. PR-curves: Sensitivity to embedding used (GloVe vs. Setence-BERT)

0.1 0.2 0.3 0.4

Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
r
e
c
is
io
n

Cisco

0.2 0.3 0.4

Recall

0.4

0.6

0.8

1.0

Enron

0.6 0.8

Recall

0.97

0.98

0.99

1.00

PGE

0.2 0.4 0.6

Recall

0.7

0.8

0.9

1.0

TI

No Content Feature No Style Feature Auto-Formula

Fig. 12. Ablation study: PR-curves without using content and style features.

0.1 0.2 0.3 0.4

Recall

0.2

0.4

0.6

0.8

1.0

P
r
e
c
is
io
n

Cisco

0.2 0.3 0.4

Recall

0.4

0.6

0.8

1.0

Enron

0.6 0.8

Recall

0.6

0.7

0.8

0.9

1.0

PGE

0.2 0.4 0.6

Recall

0.5

0.6

0.7

0.8

0.9

1.0

TI

Fine-grained-only Coarse-grained-only Auto-Formula

Fig. 13. Ablation study: PR-curves without the separation of coarse-grained and fine-grained models.

0.1 0.2 0.3 0.4

Recall

0.4

0.6

0.8

1.0

P
r
e
c
is
io
n

Cisco

0.2 0.3 0.4

Recall

0.4

0.6

0.8

1.0

Enron

0.7 0.8 0.9

Recall

0.990

0.995

1.000

PGE

0.2 0.4 0.6

Recall

0.7

0.8

0.9

1.0

TI

No-DA Coarse-grained-DA-only (similar-sheets) Full-DA (Auto-Formula)

Fig. 14. Effect of Data Augmentation (DA). Quality comparison between (1) No Data Augmentation; (2) With
coarse-grained-DA-only; (3) with Full-DA (Auto-Formula), on all 4 test corpora.

23

Figure 11. Overall, we observe that the two have similar quality, except on PGE, where Sentence-

BERT has a slight advantage over GloVe. Given that GloVe is shown to be noticeably faster than

Sentence-BERT, we believe this presents a natural trade-off between quality (Sentence-BERT is

slightly better) and efficiency (GloVe is more efficient), for practical applications.

5.5 Ablation studies
We performs ablation studies to understand the benefits of different components in Auto-Formula.

No content or style features. In order to see the imporance of the content and sytle-based features

in our spreadsheet representation, we remove the content features and style features, respectively,

and report their effects in Figure 12. It can be seen that both types of features are important, as

removing either leads to a substantial drop in quality.

No separation of coarse-grained/fine-grained similarity. Recall that in Auto-Formula, we

create two variants of similarity models, one “coarse-grained” similarity for the detection of similar

sheets, and another “fine-grained” similarity for the detection of similar regions. To see the benefit

of the separation, we create an ablation study in which we run the Auto-Formula end-to-end, using

only the coarse-grained model or the fine-grained embedding model, and report the results in

Figure 13. We can see that Auto-Formula outperforms both Coarse-grained-only and Fine-grained-

only, with the gain over Coarse-grained-only being substantial, showing the need of fine-grained

models to tell the subtle differences between two spreadsheet-regions that shifted only slightly,

which however is crucial to correct prediction formula-templates and reference-ranges.

Compared to "Fine-grained-only," the performance of Auto-Formula is slightly but noticeably

better, because it is more capable of detecting similar-sheets that have different rows and columns

than the fine-grained model. We note that using coarse-grained models in similar-sheet detection

has benefits beyond quality, because coarse-grained models use substantially smaller embedding

vectors (892 vs. 16000 for fine-grained models), making it orders of magnitude more efficient to

store, index and query, using ANN-based indexing techniques.

No Data Augmentation (DA). Figure 14 shows the results with and without data augmenta-

tion (DA). We observe a sizable drop in quality with No-DA, as augmentation (by removing

rows/columns) allows the model to identify similar sheets/regions in a more robust manner. Coarse-

grained-DA-only (for similar sheets) yields a similar drop in quality on average.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we study the problem of formula recommendation, where we develop a new approach

to accurately predict formulas, by learning and adapting formulas from similar-sheets. Future

directions include extending the similar-sheet primitive to enable other spreadsheet applications,

such as content auto-filling, table error detection, and security-related use cases.

ACKNOWLEDGMENTS
We thank three anonymous reviewers for their constructive feedback, as well as the helpful feedback

from Microsoft’s Excel Formula AI team.

This work was partly supported by the NSF of China (62122090 and 62072461), the Beijing

Natural Science Foundation (L222006), the Research Funds of Renmin University of China, and the

Outstanding Innovative Talents Cultivation Funded Programs 2024 of Renmin University of China.

24

REFERENCES
[1] [n. d.]. Auto-Formula: Benchmark data. https://github.com/microsoft/Auto-Formula, https://1drv.ms/f/s!

AkvY8ho1gepOiptfygjBTFLp_V3rtg?e=Ls1ses.

[2] [n. d.]. Auto-Formula: extended version. https://github.com/microsoft/Auto-Formula.

[3] [n. d.]. Excel formula. https://support.microsoft.com/en-au/office/overview-of-formulas-in-excel-ecfdc708-9162-49e8-

b993-c311f47ca173.

[4] [n. d.]. Excel Forum: 20K+ questions tagged as “formulas and functions” (Retrieved 2023-09). https://techcommunity.

microsoft.com/t5/forums/filteredbylabelpage/board-id/ExcelGeneral/label-name/formulas%20and%20functions/.

[5] [n. d.]. Formula suggestion experience:. https://1drv.ms/i/s!AkvY8ho1gepOipteE2g_8Mjj5TFQlg?e=f6C2x9.

[6] [n. d.]. Github Copilot. https://github.com/features/copilot.

[7] [n. d.]. Google blog: New intelligent suggestions for formulas and functions in Google Sheets (Retrieved 2023-09). https:

//workspaceupdates.googleblog.com/2021/08/intelligent-formula-and-function-suggestions-in-google-sheets.html.

[8] [n. d.]. Google Sheets formula. https://support.google.com/docs/table/25273.

[9] [n. d.]. IntelliSense. https://code.visualstudio.com/docs/editor/intellisense.

[10] [n. d.]. List of Excel functions. https://support.microsoft.com/en-us/office/excel-functions-alphabetical-b3944572-

255d-4efb-bb96-c6d90033e188.

[11] [n. d.]. List of Google Sheets functions. https://support.google.com/docs/table/25273?hl=en.

[12] [n. d.]. Mondrian on GitHub (Retrieved 2023-09). https://github.com/HPI-Information-Systems/Mondrian.

[13] [n. d.]. Spreadsheet workbook. https://support.microsoft.com/en-us/office/insert-or-delete-a-worksheet-19d3d21e-

a3b3-4e13-a422-d1f43f1faaf2.

[14] Robin Abraham, Margaret M Burnett, and Martin Erwig. 2008. Spreadsheet Programming.

[15] Javad Akbarnejad, Gloria Chatzopoulou, Magdalini Eirinaki, Suju Koshy, Sarika Mittal, Duc On, Neoklis Polyzotis, and

Jothi S Vindhiya Varman. 2010. SQL QueRIE recommendations. Proceedings of the VLDB Endowment 3, 1-2 (2010),
1597–1600.

[16] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. AutoPandas: neural-backed generators

for program synthesis. Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–27.

[17] Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 1415–1425.

[18] Laure Berti-Equille. 2019. Learn2clean: Optimizing the sequence of tasks for web data preparation. In The world wide
web conference. 2580–2586.

[19] Polly S Brown and John D Gould. 1987. An experimental study of people creating spreadsheets. ACM Transactions on
Information Systems (TOIS) 5, 3 (1987), 258–272.

[20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[21] Chris Chambers and Chris Scaffidi. 2010. Struggling to excel: A field study of challenges faced by spreadsheet users. In

2010 IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE, 187–194.
[22] Sibei Chen, Nan Tang, Ju Fan, Xuemi Yan, Chengliang Chai, Guoliang Li, and Xiaoyong Du. 2023. Haipipe: Combining

human-generated and machine-generated pipelines for data preparation. Proceedings of the ACM on Management of
Data 1, 1 (2023), 1–26.

[23] Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, and Denny Zhou. 2021. Spread-

sheetcoder: Formula prediction from semi-structured context. In International Conference on Machine Learning. PMLR,

1661–1672.

[24] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. 2020. Randaugment: Practical automated data augmenta-

tion with a reduced search space. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops. 702–703.

[25] Martin Erwig. 2009. Software engineering for spreadsheets. IEEE software 26, 5 (2009), 25.
[26] Ju Fan, Guoliang Li, and Lizhu Zhou. 2011. Interactive SQL query suggestion: Making databases user-friendly. In 2011

IEEE 27th International Conference on Data Engineering. IEEE, 351–362.
[27] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. ACM Sigplan Notices

46, 1 (2011), 317–330.

[28] Sumit Gulwani. 2016. Programming by examples. Dependable Software Systems Engineering 45, 137 (2016), 3–15.

25

https://github.com/microsoft/Auto-Formula
https://1drv.ms/f/s!AkvY8ho1gepOiptfygjBTFLp_V3rtg?e=Ls1ses
https://1drv.ms/f/s!AkvY8ho1gepOiptfygjBTFLp_V3rtg?e=Ls1ses
https://github.com/microsoft/Auto-Formula
https://support.microsoft.com/en-au/office/overview-of-formulas-in-excel-ecfdc708-9162-49e8-b993-c311f47ca173
https://support.microsoft.com/en-au/office/overview-of-formulas-in-excel-ecfdc708-9162-49e8-b993-c311f47ca173
https://techcommunity.microsoft.com/t5/forums/filteredbylabelpage/board-id/ExcelGeneral/label-name/formulas%20and%20functions/
https://techcommunity.microsoft.com/t5/forums/filteredbylabelpage/board-id/ExcelGeneral/label-name/formulas%20and%20functions/
https://1drv.ms/i/s!AkvY8ho1gepOipteE2g_8Mjj5TFQlg?e=f6C2x9
https://github.com/features/copilot
https://workspaceupdates.googleblog.com/2021/08/intelligent-formula-and-function-suggestions-in-google-sheets.html
https://workspaceupdates.googleblog.com/2021/08/intelligent-formula-and-function-suggestions-in-google-sheets.html
https://support.google.com/docs/table/25273
https://code.visualstudio.com/docs/editor/intellisense
https://support.microsoft.com/en-us/office/excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188
https://support.microsoft.com/en-us/office/excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188
https://support.google.com/docs/table/25273?hl=en
https://github.com/HPI-Information-Systems/Mondrian
https://support.microsoft.com/en-us/office/insert-or-delete-a-worksheet-19d3d21e-a3b3-4e13-a422-d1f43f1faaf2
https://support.microsoft.com/en-us/office/insert-or-delete-a-worksheet-19d3d21e-a3b3-4e13-a422-d1f43f1faaf2
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[29] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit Chaudhuri. 2018. Transform-Data-by-

Example (TDE) an extensible search engine for data transformations. Proceedings of the VLDB Endowment 11, 10 (2018),
1165–1177.

[30] Yeye He, Kris Ganjam, Kukjin Lee, Yue Wang, Vivek Narasayya, Surajit Chaudhuri, Xu Chu, and Yudian Zheng. 2018.

Transform-data-by-example (tde) extensible data transformation in excel. In Proceedings of the 2018 International
Conference on Management of Data. 1785–1788.

[31] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin Swidan, and David Hoepelman. 2016.

Spreadsheets are code: An overview of software engineering approaches applied to spreadsheets. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. IEEE, 56–65.

[32] Felienne Hermans and Emerson Murphy-Hill. 2015. Enron’s spreadsheets and related emails: A dataset and analysis.

In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2. IEEE, 7–16.
[33] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2012. Measuring spreadsheet formula understandability.

arXiv preprint arXiv:1209.3517 (2012).

[34] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Jagadish. 2017. Foofah: Transforming data by example.

In Proceedings of the 2017 ACM International Conference on Management of Data. 683–698.
[35] Zhongjun Jin, Yeye He, and Surajit Chauduri. 2020. Auto-Transform: learning-to-transform by patterns. Proceedings of

the VLDB Endowment 13, 12 (2020), 2368–2381.
[36] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on

Big Data 7, 3 (2019), 535–547.
[37] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu. 2010. SnipSuggest: Context-aware

autocompletion for SQL. Proceedings of the VLDB Endowment 4, 1 (2010), 22–33.
[38] Bryan Klimt and Yiming Yang. 2004. Introducing the Enron corpus.. In CEAS, Vol. 45. 92–96.
[39] Eugenie Yujing Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, and Rachel Pottinger. 2023. Workload-

Aware Query Recommendation Using Deep Learning.. In EDBT. 53–65.
[40] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler,

Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp

tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.
[41] Peng Li, Yeye He, Cong Yan, Yue Wang, and Surajit Chauduri. 2023. Auto-Tables: Synthesizing multi-step transforma-

tions to relationalize tables without using examples. arXiv preprint arXiv:2307.14565 (2023).
[42] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman, Dongmei Zhang, and

Surajit Chaudhuri. 2023. Table-GPT: Table-tuned gpt for diverse table tasks. arXiv preprint arXiv:2310.09263 (2023).
[43] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin. 2019. Approximate nearest

neighbor search on high dimensional data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475–1488.

[44] Xingjun Li, Yizhi Zhang, Justin Leung, Chengnian Sun, and Jian Zhao. 2023. Edassistant: Supporting exploratory data

analysis in computational notebooks with in situ code search and recommendation. ACM Transactions on Interactive
Intelligent Systems 13, 1 (2023), 1–27.

[45] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. 2022. A Survey of Convolutional Neural Networks:

Analysis, Applications, and Prospects. IEEE Trans. Neural Networks Learn. Syst. 33, 12 (2022), 6999–7019. https:

//doi.org/10.1109/TNNLS.2021.3084827

[46] Ting Liu, Andrew Moore, Ke Yang, and Alexander Gray. 2004. An investigation of practical approximate nearest

neighbor algorithms. Advances in neural information processing systems 17 (2004).
[47] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. 2017. Sphereface: Deep hypersphere

embedding for face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.
212–220.

[48] Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. 2024. Large Language Model for Table Processing: A

Survey. arXiv preprint arXiv:2402.05121 (2024).
[49] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table union search on open data. Proceedings of

the VLDB Endowment 11, 7 (2018), 813–825.
[50] Raymond R Panko. 1998. What we know about spreadsheet errors. Journal of Organizational and End User Computing

(JOEUC) 10, 2 (1998), 15–21.
[51] Panupong Pasupat and Percy Liang. 2015. Compositional semantic parsing on semi-structured tables. arXiv preprint

arXiv:1508.00305 (2015).
[52] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation.

In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543.
[53] Stephen G Powell, Kenneth R Baker, and Barry Lawson. 2009. Errors in operational spreadsheets. Journal of

Organizational and End User Computing (JOEUC) 21, 3 (2009), 24–36.

26

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827

[54] Kamalasen Rajalingham, David R Chadwick, and Brian Knight. 2008. Classification of spreadsheet errors. arXiv
preprint arXiv:0805.4224 (2008).

[55] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In

Conference on Empirical Methods in Natural Language Processing. https://api.semanticscholar.org/CorpusID:201646309

[56] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A unified embedding for face recognition and

clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition. 815–823.
[57] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data augmentation for deep learning. Journal of

big data 6, 1 (2019), 1–48.
[58] Gerardo Vitagliano, Lucas Reisener, Lan Jiang, Mazhar Hameed, and Felix Naumann. 2022. Mondrian: Spreadsheet

Layout Detection. In Proceedings of the 2022 International Conference on Management of Data. 2361–2364.
[59] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. 2018. Cosface:

Large margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 5265–5274.

[60] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022.

Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing
Systems 35 (2022), 24824–24837.

[61] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data preparation steps using data science

notebooks. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 1539–1554.
[62] Junwen Yang, Yeye He, and Surajit Chaudhuri. 2021. Auto-pipeline: synthesizing complex data pipelines by-target

using reinforcement learning and search. arXiv preprint arXiv:2106.13861 (2021).
[63] Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bohan Zhang, Guanlin Li, Zijun Yao, Kangli Xu, Jinchang Zhou,

Daniel Zhang-Li, et al. 2024. TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios.

arXiv preprint arXiv:2403.19318 (2024).
[64] Wei Zhao, Zhitao Hou, Siyuan Wu, Yan Gao, Haoyu Dong, Yao Wan, Hongyu Zhang, Yulei Sui, and Haidong Zhang.

2024. NL2Formula: Generating Spreadsheet Formulas from Natural Language Queries. arXiv preprint arXiv:2402.14853
(2024).

[65] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-join: Joining tables by leveraging transformations. Proceedings
of the VLDB Endowment 10, 10 (2017), 1034–1045.

Received October 2023; revised January 2024; accepted February 2024

27

https://api.semanticscholar.org/CorpusID:201646309

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Spreadsheets and spreadsheet tables
	3.2 Excel Formulas
	3.3 Problem: Formula Recommendation

	4 Auto-Formula by similar-sheets
	4.1 Intuition and Architecture Overview
	4.2 Weakly-supervised training data generation
	4.3 Training data augmentation
	4.4 Models for spreadsheet representation
	4.5 Train spreadsheets as ``face recognition''
	4.6 Auto-Formula: Putting it together

	5 Experiments
	5.1 Experimental setup
	5.2 Quality Comparisons
	5.3 Efficiency Comparisons
	5.4 Sensitivity Analysis
	5.5 Ablation studies

	6 Conclusions and Future Work
	Acknowledgments
	References

