Text2Analysis: A Benchmark of Table Question Answering with
Advanced Data Analysis and Unclear Queries

Xinyi He'!*, Mengyu Zhou?’, Xinrun Xu**, Xiaojun Ma?, Rui Ding?, Lun Du?,
Yan Gao?, Ran Jia?, Xu Chen?, Shi Han?, Zejian Yuan', Dongmei Zhang?

! Xi’an Jiaotong University
2 Microsoft
3 Institute of Software Chinese Academy of Science
hxyhxy @stu.xjtu.edu.cn, xuxinrun20 @mails.ucas.ac.cn, yuan.ze.jian@xjtu.edu.cn,
{mezho, xiaojunma, juding, lun.du, gaoya, raji, xu.chen, shihan,dongmeiz } @microsoft.com

Abstract

Tabular data analysis is crucial in various fields, and large
language models show promise in this area. However, current
research mostly focuses on rudimentary tasks like Text2SQL
and TableQA, neglecting advanced analysis like forecasting
and chart generation. To address this gap, we developed the
Text2Analysis benchmark, incorporating advanced analysis
tasks that go beyond the SQL-compatible operations and re-
quire more in-depth analysis. We also develop five innovative
and effective annotation methods, harnessing the capabilities
of large language models to enhance data quality and quan-
tity. Additionally, we include unclear queries that resemble
real-world user questions to test how well models can un-
derstand and tackle such challenges. Finally, we collect 2249
query-result pairs with 347 tables. We evaluate five state-of-
the-art models using three different metrics and the results
show that our benchmark presents introduces considerable
challenge in the field of tabular data analysis, paving the way
for more advanced research opportunities.

1 Introduction

Tabular data analysis plays a crucial role in various fields,
and automated data analysis has the potential to enhance
people’s work efficiency significantly (Delen and Ram
2018a). The emergence of large language models has shown
promising capabilities to accelerate tabular data analy-
sis (Chen 2023; Ye et al. 2023; Ma et al. 2023; Jiang et al.
2023). Understanding the analytical abilities of these mod-
els, identifying the analysis processes they can replace, and
determining the analysis steps they can assist with have be-
come pressing questions in the field.

Existing research on tabular data analysis has limited cov-
erage of data analysis. As shown in Figure 2, data analysis
can be divided into descriptive, diagnostic, predictive, and
prescriptive analytics (Delen and Ram 2018b). The existing
Text2SQL and TableQA datasets (Dong and Lapata 2016;

The contributions by Xinyi He and Xinrun Xu have been
conducted and completed during their internships at Microsoft.
Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2007/1/1 BMW  Compact BMW 3-Series 142490 40109 12018
2008/1/1 BMW  Compact BMW 3-Series 112464 39488 11182
2009/1/1 BMW  Compact BMW 3-Series 90960 51491 13132
2010/1/1 BMW  Compact BMW 3-Series 100910 9033 8832
2007/1/1 BMW  Compact BMW 5-Series 54142 3549 17622
2007/1/1 BMW Fullsize BMW 7-Series 14773 2418 6067

Advanced Analysis:
W Please help me forecast the sales of different
. categories and models of BMW in 2011.
Forecasting:

Python code: Result:

Basic Insights:

% Does BMW have noticeably higher Sales?

Chart Generation:

‘(\{o}ﬂ Help me create a line chart to visualize the sales
g every year for BMW, Compat, BMW 3-Series.

In

Unclear Query:
‘{0}7 Help me create a (line) chart to visualize the sales
(every year) for BMW, Compat, BMW 3-Series. e
(=]

Figure 1: Examples of Text2Analysis Benchmark.

Katsogiannis-Meimarakis and Koutrika 2021) focus primar-
ily on rudimentary operations that are part of descriptive an-
alytics and can be mostly solved by SQL and OLAP opera-
tions. They pay limited attention to advanced analysis (see
§2.1) that require advanced operations and visualizations be-
yond rudimentary operations, such as calculating insights,
forecasting, and chart generation (see examples in Figure 1).

In the real world, many user queries are often described in
unclear ways (Wang et al. 2023). When solving advanced or



complex data analysis tasks with a large set of available tools
and APIs, it is hardly the case that a user could write clear
instructions with complete intent and parameters. As we will
discuss in §2.2, the most common “‘unclear query” type is
missing parameters for analysis tasks. E.g., the query “Help
me create a chart to visualize the sales for BMW, Compat,
BMW 3-Serie” does not explicitly specify the chart type to
be drawn or the field to be mapped to the x axis. Responding
accurately to these queries not only demands the semantic
parsing abilities of large language models but also requires
them to possess strong data analysis capabilities to recom-
mend intent beyond the query.

In this paper, we propose the Text2Analysis benchmark
which expands beyond rudimentary operations and clear
instructions. The benchmark incorporates unclear queries
that involve advanced data analysis. Similar to Text2SQL
datasets, in Text2Analysis the input is the (table, query) pair,
and the output is the (code, result) pair. The ground-truth
code only leverages a set of chosen data analysis APIs / op-
erations from public and customized Python libraries such
as Pandas, Prophet and Matplotlib.

Collecting the dataset is a difficult task because each sam-
ple in the Text2Aanlysis dataset simultaneously contains a
table, query, Python code, and result. It requires annotators
with related expert backgrounds and would consume a lot of
time. To accelerate the annotation process and increase the
volume of annotated data, we have developed five innova-
tive and reliable annotation methods. Those methods make
full use of large language models to perform forward anno-
tations, expansion with new tables, and expansion unclear
queries. Meanwhile, some methods also collect data from
the output, such as reverse generation from codes or results.
We collect 2249 (query, code, result) pairs with 347 tables.
To ensure annotation quality, iterative annotation and human
evaluation are employed. Their results and dataset distribu-
tion indicate that Text2Analysis has a diverse, high-quality
data analysis dataset.

Due to the numerous tasks involved in the problem and
the outputs consisting of both code and results, evaluat-
ing the generated solutions with appropriate metrics poses
a challenge. We have selected three metrics to evaluate
from different perspectives: executable code ratio, pass rate,
and regression metrics. The executable code ratio evaluates
the model’s ability to generate executable code. Pass rate
evaluates the correctness of the generated code. Regression
scores measure the predicting capability of the chosen model
within the generated code.

Furthermore, we provide an evaluation of five current
state-of-the-art models, including GPT family models, code
generation models, and tabular models. We evaluate their
performance in handling advanced analysis and unclear
queries. Our experiment indicates that large language mod-
els exhibit robust parsing and code generation aptitudes for
data analysis in the context of clear queries. However, they
grapple with complex libraries and unclear queries. To aug-
ment their efficacy, future research can concentrate on bol-
stering the capacity to recommend fields for sophisticated
analyses and tackling complex operations such as operations
with complex parameter input and model training.

Analytics
Descriptive Diagnostic Predictive Prescriptive

What happened? Why did it happen? What will happen? What should I do?

Rudimentary
Operations

{ Basic Insights: C

1Rank, RankLast, Attribution, Trend,

Operations that ll\/lonotonicity, Outlier, Unimodality,

can be executed
with SQL *—//l
 TableQA, | Reporting and Visualization

M (Chart Generation'

Figure 2: Advanced Analysis consists of Advanced Opera-
tions and Visualizations that are not covered by Rudimen-
tary Operations across descriptive, diagnostic, predictive,
and prescriptive analytics.

In summary, our main contributions are:

* We create the Text2Analysis benchmark which in-
cludes advanced analysis tasks and unclear queries
that were rarely addressed in previous research work.
The dataset and code will be open-sourced on
https://github.com/microsoft/Text2 Analysis.

* We propose five innovative and reliable annotation meth-
ods for the construction of NL2Code datasets. They uti-
lize large language models to accelerate the annotation
process and increase the volume of annotation.

* The performance of the baseline models is systematically
evaluated against our Text2Analysis benchmark. Our ex-
periments show the challenges to be solved in the future
to satisfy real-world table analysis needs.

2 Problem Definition

We introduce the Text2Analysis problem as follows:
(table, query) — (code, result). The input consists of a
table and a user query. The output consists of Python code
snippet(s) and the corresponding result(s). A table has n
fields T = (f1,..., fn), and each field consists of a field
header and field values. A query is related to data analy-
sis, particularly focusing on advanced analysis (§2.1) that
addresses the shortcomings of existing work and presents
a greater and more difficult challenge for models. Addition-
ally, it includes unclear queries (§2.2), which are often found
in real-world user scenarios and can more effectively evalu-
ate the model’s analytical capabilities.

2.1 Analysis Operations and Tasks

Text2Analysis expands the data analysis dataset to advanced
analysis tasks. As shown in Figure 2, Data analysis can be
divided into descriptive (what happened?), diagnostic (why
did it happen?), predictive(what will happen), and prescrip-
tive analytics (what should I do?) (Delen and Ram 2018b).
And reporting and visualization may follow each type of an-
alytics. Existing research on table-based data analysis tasks,



such as TableQA and Text2SQL (Dong and Lapata 2016;
Katsogiannis-Meimarakis and Koutrika 2021), has focused
mainly on part of descriptive analytics that can be solved
by SQL. They pay insufficient attention to advanced analy-
sis that are beyond the rudimentary operations and require
more in-depth analysis.

The advanced analysis portion of Text2Analysis selects
representative tasks from each type of analytics to form the
dataset. From descriptive and diagnostic analytics, basic in-
sights are chosen. From predictive analytics, forecasting is
selected. And from reporting and visualization, chart gener-
ation is chosen. A more detailed introduction to each task
will be provided after the following paragraph.

Advanced analysis, along with rudimentary operations,
form the Text2Analysis dataset. They can be combined to
form a complex analysis. rudimentary operations and ad-
vanced operations (tasks in advanced analysis that output
data such as tables and values, that is, tasks excluding report-
ing and visualization) can be interconnected, and reporting
and visualization can be performed subsequently for display.

We introduce the involved tasks one by one as follows:

1. Rudimentary Operations: These operations encom-
pass a set of functions and procedures that can be executed
using the Structured Query Language (SQL) (Date 1989).
Their primary purpose is to enable users to perform data
management, manipulation, and transformation on multi-
dimensional structured data. The main operations include
group by, aggregation, filter, sort, and so on.

2. Basic Insights: In the context of a multi-dimensional
dataset, an insight represents an interesting observation
about a particular subject from a specific perspective (Ding
etal. 2019; Ma et al. 2021; Chen, Yang, and Ribarsky 2009).
Text2Analysis incorporates seven commonly insights:

e Rank: Within a group comprising multiple values, the
highest value significantly exceeds all other values.

* RankLast: Within a group comprising multiple values, the
lowest value is notably smaller than all other values.

* Attribution: In a group of multiple non-negative values,
the highest value is equal to or larger than the sum of all
other values.

* Trend: A time series (segment) exhibits an increasing or
decreasing trend.

* Monotonicity: A time series (segment of) exhibits a con-
sistent and unidirectional increasing or decreasing trend.

* Outlier: A time series contains outliers, which deviate sig-
nificantly from the trend compared to the majority of points
and their neighbors.

* Unimodality: A (segment of) time series exhibits an uni-
modal distribution, characterized by a single peak or turning
point, and may display U-shaped patterns.

3. Forecasting: Forecasting involves predicting future
trends and outcomes by analyzing historical data using sta-
tistical methods, machine learning algorithms, and time se-
ries models (Taylor and Letham 2018; Hosseini et al. 2021).
This process identifies patterns and relationships within the
data, enabling informed predictions about future events.

4. Chart Generation: Chart generation refers to the rec-
ommendation and construction of prevalent charts derived
from a given table (Moritz et al. 2019; Luo et al. 2018; Zhou
et al. 2021).

We choose commonly used Python libraries for each task
as follows, to address the corresponding analysis query:

+ Rudimentary Operations: Pandas' (excluding plotting?).

 Each task of Basic Insights: Custom functions are imple-
mented to perform the mentioned tasks, and provide results
for evaluation.

« Forecasting: Greykite® (Forecaster), Prophet* (Prophet).
+ Chart Generation: Matplotlib® (pyplot).

2.2 Unclear Queries

In many real situations, users do not directly provide com-
plete queries, but rather give queries with some unclear in-
tents. There are various ways to address them, such as rec-
ommending completions for the missing intents or guiding
users to complete the query. This paper focuses on proposing
a benchmark and does not explore the solution methods in
depth. We only use the model for recommendations, which
can also satisfy the exploration of the next purpose.

Secondly, the analysis and recommendation capabilities
of large language models can be explored through unclear
queries. When recommending for unclear queries, the model
not only needs to possess semantic parsing capabilities but
also requires analytical recommendation capabilities. Ex-
ploring these capabilities of large language models is crucial
for better utilizing them in the analytical domain.

An unclear query lacks the essential information required
to perform tasks. In other words, in the query, there are miss-
ing parameters for generating the analysis code which con-
sists of operations from the chosen libraries. Since the same
task may require different parameters in different libraries,
we have combined the representatively used libraries for
each task in §2.1 and selected the essential parameters as
shown in Table 1. Some parameters are not provided for
missing parameters as follows:

* When a parameter is absent, the associated operator will
be excluded from use. The parameters for this scenarios are
dimension field for rudimentary operations, filter condition
for rudimentary operations, insight type for basic insights.

* Parameters are typically not mentioned in the query or
possess standard default values. The parameters for similar
scenarios are confidence for forecasting, p-value for basic
insights, measure aggregation for basic insights.

In addition to missing parameters, there are other types
of unclear queries, such as, ambiguous parameters, unclear
tasks. For ambiguous parameters, a query may have all pa-
rameters provided, but they are ambiguous or vague. E.g., a
table has two fields, UnitPrice and TotalPrice, but the query

"https://pandas.pydata.org/
2https://pandas.pydata.org/docs/reference/plotting html
*https://github.com/linkedin/greykite
“https://github.com/facebook/prophet
Shttps://matplotlib.org/



Tasks Parameters Meanings of Parameters and Missing Parameters Query
clear E.g., Which brand has the highest total sales in 20237
Rudimentary  field (msr_field) Measure field for sort or aggregation.

Operations

E.g., Which brand had the best overall in 2023?

Aggregation function, such as sum, average. . .

agg (aggfunc) g 0" \Which brand has the highest sales in 2023
clear E.g., Does total increase over time?
Basic Insights Field for the insight.
field : .
E.g., Is there an increase over time?
clear E.g., Forecast the cost data of different brands, categories and models of cars in 2012.

forecast field

Measure field used for forecasting.

Forecasting E.g., What will be for different categories and models of cars in 20127
teps / i Forecasting steps and/or frequency.
steps /-1req E.g., What will be the sales and cost data of different brands, categories and models of cars?
clear E.g., Help me create a bar chart to visualize the Frequency field for the HH field.
chart type Char type, including lineChart, barChart, scatterChart, pieChart.
yp E.g., Help me create a chart to visualize the Frequency field for the HH field.
Visualization - -
feld Fields for x-axis.
X hields E.g., Help me create a bar chart to visualize the Frequency field.
y fields Fields for y-axis.

E.g., Help me create a bar chart to visualize for the HH field.

Table 1: Taxonomy and Examples of Unclear Queries

only mentions “price”, resulting in ambiguity. Another ex-
ample is when a query mentions filtering “young people”,
but there is no universally accepted definition of “young”,
leading to varied age filters. There are more details in (Wang
et al. 2023), and we will not discuss this further in this paper.
For unclear tasks, a query does not explicitly specify what
task to use for analysis, e.g., “What should I do if I want
to get more profits”. This query only proposes a goal with-
out specifying any tasks, and solving such problems requires
stronger problem-solving abilities. In this work, we will not
discuss this further and will consider it as future work.

3 Text2Analysis Dataset

In this section, we introduce how to collect the
Text2Analysis dataset and ensure its quality. To better
accomplish the following annotation, we established a
tabular data annotation website based on Label Studio®.

3.1 Data Collection

According to the definition in §2, our benchmark requires
a quadruple (table, query, code, result) for each example.
However, it is extremely challenging to collect such quadru-
ples as the annotation cost is quite high. It requires annota-
tors with related expert backgrounds. Moreover, due to the
involvement of code, the quality and time requirements for
the annotators are even more stringent, resulting in an in-
creased annotation cost. To address this issue, we propose

Shttps://labelstud.io/

the following ingenious and reliable annotation methods uti-
lizing large language models as illustrated in Figure 3.

Forward Annotation: (table, query) — (code, result).
9 experts with extensive experience in the field of data anal-
ysis are invited to participate in the annotation process. First,
we collected real tables and queries from the annotation.
Subsequently, on the basis of them, the annotators labeled
the code. To accelerate the annotation process, we designed
an initial code generation tool and an automatic debugging
tool using large language models. Annotators generated the
initial version of the code, modified it, and iterated with the
automatic debugging tool to ensure the accuracy and exe-
cutability of the code.

In the initial code generation tool, we used the selected
libraries and encapsulated some functions for different tasks,
allowing the large language model to generate code using
these functions. For the automatic debugging tool, we input
the original query, original code, and error messages into the
large language model and carried out multiple iterations to
obtain executable code.

Reverse Generation from Codes Snippets: (table, code,
result) — (query). We have crawled and collected exe-
cutable code and tables from major data analysis libraries, as
detailed in Section §2.1. By employing a few-shot setting of
GPT-4 and human verification, we reverse-engineer the data
operations performed by the code to generate correspond-
ing user-friendly natural language queries. To enhance the
dataset’s diversity, we adjusted parameters within the code



:LLM D: Existing data

4 : LLM & Human (__): Generated data| HOW to get (@ : Table @ Query [

Text2 Analysis Dataset

Annotation Quality Assurance:
* I[terative Annotation §©ﬁ : g_/g

* Human Evaluation

: Code @ Result)

-

Forward Annotation

Reverse Generation from Codes

Human annotation

(B ©

E ®

§@& Initial code gen.

New Code New Result

&

New Query

Auto Debugging
I

\

@ @ @ } Clear query gen. @

v

High-quality subset | Example: Help me to forecast
the sales of different categories

and models of BMW in 2011.

ﬁ@aFinding the most
similar example

Expansion with New Tables

Imitating the example
Query & code gen.

S
Help me to forecast the total

passengers of different
Airport Code in the next year.

=f@)

New Code & Result

Query templates

Create a line chart with the Year.. ]

Reverse Generation from Results
"chart_type": "lineChart "

= .: )
xFields ear'
"xFields": ["Y "] L =

%@& Query gen.

"yFields": ["Portugal", "EU28"]

-

W{E plt.plot(xFields, yFields) ]

Figure 3: Collection and Generation of (table, query, code, result) Tuples in Text2Analysis.

snippets, resulting in a broader range of queries.

Reverse Generation from Results: (table, result) —
(code, query). Some existing datasets provide table and
analysis result but lack queries and code. We utilized these
results and designed code templates, which were filled in to
generate the corresponding code. Then, using result, code,
tables, and large language models, we generated queries. We
perform this method for chart generation on a high-quality
subset of chart corpus in AnaMeta (Zhou et al. 2021).

Expansion with New Tables: (table) — (query, code,
result). In order to enrich the diversity of tables and expand
our dataset, we expand with new high-quality tables. Af-
ter the previous processes, we collect a sub-dataset involv-
ing various tasks. We identify new tables and matched them
with similar example tables in the sub-dataset. We then use
large language models to mimic and generate corresponding
queries, code, and results for new tables from examples.

Expansion Unclear Queries: (clear query) —
(unclear query). In order to obtain more unclear queries,
we remove the corresponding parameters from the existing
queries and rewrite them. In the collected sub-dataset,
we have already annotated the task taxonomy. For the
corresponding task, we explicitly specify the corresponding
parameter that needs to be removed for a query (queryoiq)
and utilizes large language models to assist in generating
new unclear query (queryne,) in a user-oriented tone.
The unclear query also requires recommended lists of
corresponding codes (codene,) and results (result,ew)-
We use the table’s (table,q) existing codes (codey;q) and
results (result,;q) that can serve as outputs for the unclear
query, forming the recommended list. Because the existing
data collected for the table is filled in by real users or comes
from real data, it represents the most common analysis
queries and results for the table, making them suitable for

forming the recommended list of unclear query outputs.

3.2 Annotation Quality Assurance

To ensure the quality of Text2Analysis, we perform iterative
annotation and human evaluation.

Iterative Annotation and Refinement To enhance the
credibility of the large language model’s generation, each
time we use them for generation, we annotate and verify at
least 100 samples afterward. We then modify the instruc-
tions and examples, iterating through this process for at least
two rounds. This iterative approach ensure the accuracy and
quality of the generated examples, resulting in a more reli-
able and representative dataset for evaluation purposes.

Human Evaluation To evaluate the quality of
Text2Analysis annotations, we also perform a human
evaluation after the data collection is completed. We sample
100 (table, query, code, result) pairs and invited 7
experts with data analysis experience to perform the anno-
tation. The evaluation is conducted from five perspectives:
query, task taxonomy, unclear query taxonomy, code,
and result correctness using scores 0 or 1 (incorrect or
correct). Each sample is annotated twice. The average score
of each perspective is 0.96, 0.92, 0.93, 0.89, and 0.88,
respectively. The overall average score is 0.91 and Cohen’s
Kappa (Cohen 1960) is 0.79 (value range:[—1, 1]). This
indicates that Text2Analysis has a high annotation quality
and inter-annotator agreement.

3.3 Data Statistics and Distribution

Text2Analysis  encompasses a  total of 2249
(table, query, code, result) pairs, sourced from 347
distinct tables. Queries of Text2Analysis encompass a
variety of tasks, as demonstrated in Figure 4. And they
encompass a diversity of unclear queries, as demonstrated in



Rudimentary Operations

355
Forecasting
273
Chart Generation
1109

Figure 4: Analysis Task Distribution of All Queries.

Basic Insights
689

msr_field, 31 field, 215

agg func, 25

freq/steps, 92
forecast_field, 90 = Basic Insights

= Chart Generation

field, 343 = Forecasting
y_ 1€ el

<,
w

x field, 368

= Rudimentary Operations

chart_type, 253

Figure 5: Task & Parameter Distribution of Unclear Queries.

Figure 5. Those figures highlight the distribution of queries
and code and further showcase the diversity of the dataset
and the difficulty of the problem.

4 Evaluation Methodology
4.1 Baselines

We evaluate the performance of three types models namely
GPT family models, code Generation models and tabular
models on Text2Analysis:

GPT family models: GPT-4 models (OpenAl 2023) are
potent large-scale language models with the ability to gen-
erate human-like text and high-quality code. They perform a
wide range NLP tasks well with zero or few shots.

Code Generation models: StarChat-«/5 (Tunstall et al.
2023) and CodeGen2.5 (Nijkamp et al. 2023) are language
models specifically designed to serve as effective coding as-
sistants, providing valuable support to programmers.

StarChat-a/StarChat-3, derived from the StarCoder(Li
et al. 2023) family, are fine-tuned language models with 15.5
billion parameters, adept at aiding programmers across 80+
programming languages. Unlike original StarCoder models
that focused on code completion, StarChat versions are bet-
ter suited for Text2 Analysis tasks that require query instruc-
tions and task explanations.

CodeGen2.5, an autoregressive language model built
upon CodeGen2. The model is trained on StarCoderData
for 1.4T tokens, achieving competitive results compared to
StarCoderBase-15.5B with less than half the size.

Tabular models: TAPEX(Liu et al. 2022) (Table Pre-
training via Execution) is a straightforward yet highly ef-

fective pre-training method designed to enhance existing
models with table reasoning capabilities. It achieves state-
of-the-art performance on TableQA, Text2SQL and TabFact
datasets such as WikiSQL(Zhong, Xiong, and Socher 2017).

4.2 Evaluation Metrics

Due to the numerous tasks involved in the problem and
the outputs consisting of both code and results, evaluat-
ing the generated solutions with appropriate metrics poses
a challenge. We have selected three metrics to evaluate
from different perspectives. Executable code ratio evaluates
the model’s ability to generate executable code. Pass rate
evaluates the correctness of the generated code. Regression
scores measure the predicting capability of the chosen model
within the generated code.

Executable code ratio (ECR): It refers to the proportion
of generated code that is executable. It evaluates the model’s
ability to generate executable code.

#(samples_with_ezecutable_code)
#(total_samples)

ECR = 1

Pass Rate (pass@1): It is a metric for code generation
testing that indicates the proportion of code generated accu-
rately. In this work, there exists only one singular test case
for each sample, as queries are aimed at a specific table (test
case). So pass rate is equivalent to the accuracy in this work.

#(samples_with_correct_code)

@l =
pass #(samples_with_executable_code)

(@)

When determining whether a code snippet passes, it
should exactly match the results of executing the generated
code with the results of executing the annotated code. To
ensure a fair comparison, we standardize the output format
and establish a checker to avoid misidentifying results with
different formats but identical content as true negatives. The
standardized output format is as follows:

¢ The result must be one variable, one of pd.DataFrame,
List[int], List[float], List[str], int, float, str, dict.

e For chart generation, assign a result dictionary:
{“x_fields”: field_name, “y_fields”: [field_namel,
field_name2...],  “chart_type”:  chart_type}. = Choose
chart_type from lineChart, barChart, scatterChart, pieChart.

* For basic insights, answer the query in the same format as
one or more outputs from our custom function.

The rules of the checker are as follows:

 For each value, we convert it to a string for comparison,
including every value in lists, dictionaries, and DataFrames.
If it is a number, convert it to a string after rounding to two
decimal places. If it is a time, convert it to a string using a
consistent format.

¢ For the comparison between DataFrames and other types:
sometimes, a DataFrame is used to store a single value or a
list. If the DataFrame contains only one value, that is, one
row and one column, we extract it as a single value for sub-
sequent comparisons. If there is only one column, we extract
its values as a list for further comparisons.



Overall Rudimentary Operations Basic Insights Forecasting Chart Generation
Model ECR pass@1 ECR pass@1 ECR pass@1 ECR pass@1 ECR pass@1
GPT-4 69.46% 41.01% | 86.76% 56.82% 71.41%  7.31% 513%  35.71% | 79.62%  54.36%
StarChat-ov 39.60%  32.88% | 61.08% 48.34% 18.16%  14.29% 6.59% 0.00% 54.09%  32.84%
StarChat-3 60.06%  32.88% | 46.20% 41.46% 41.22% 1092% | 15.75%  2.33% | 88.91%  38.54%
CodeGen2.5 | 30.83% 19.39% | 30.70% 36.70% 28.16%  18.56% 0.73% 0.00% 39.95%  15.58%
TAPEX - - - 11.55% - - - - - -

Table 2: Baseline Performance on Text2Analysis. (ECR = executable code ratio, pass@ 1 = pass rate).

 For the comparison between lists/dictionaries and other
types: if a list or dictionary contains only one element, we
extract it as a single value for subsequent comparisons.

* For comparing DataFrames with DataFrames: if the oper-
ations do not include sorting, it is acceptable for the order
of rows in the DataFrames to be inconsistent. The header
names of newly generated columns are allowed to differ. For
missing steps/frequency forecasting, it is permissible for the
predicted results to be a subset of the ground truth or vice
versa, i.e., one table’s rows can contain another table’s rows.

Regression scores: For forecasting, it measures the pre-
dicting capability of the chosen model within the generated
code between the generated results and the ground truth. It
includes CORR, RMSE, MAE, and MedAE.

S M (regression_score;)

3

regression_score =
g #(total_samples)

where, M is the number of total_samples.

We choose to use regression scores for further evaluation
because pass rate does not provide a comprehensive assess-
ment of the quality of the generated forecasting code. For
example, if the library or forecasting model is altered in the
generated code, achieving an exact match with the results
executed from the annotated code can be challenging. How-
ever, regression metrics can still be used to assess the quality
of the predictions with ground truth.

To obtain the ground truth for forecasting, we preprocess
the input table. During data collection, we truncate the orig-
inal table according to the length of the time period required
for the query’s prediction. In other words, we extract a por-
tion of the table corresponding to the prediction length as
ground truth, while the remaining table is used as input for
the Text2Analysis task. It is worth noting that when calcu-
lating the statistical values in §3.3, truncated tables from the
same original table are still considered as one table.

S Experiments

We conduct experiments on the five baselines introduced
in §4.1. For the GPT family and code generation models,
we design instruction prompts that include the HTML ta-
ble, constraints on code generation libraries, requirements
for result formatting, and so on. The parameter details for
each model in the experiment are as follows:

e GPT-4: model: gpt-4-32k,
mum_length: 4096.

temperature: (0, maxi-

Model | CORRT RMSE| MAE| MedAE |
GPT4 0.10 0.27 0.24 0.27
StarChat-3 | 0.16 0.76 0.76 0.73

Table 3: Regression Scores for Forecasting. We show the
models with the highest ECR and pass@1 in Table 2. |
means smaller is better. CORR is better when its absolute
value is closer to 1. So when CORRE [0, 1], larger is better.

* StarChat-o: model: starchat-alpha’, temperature: 0.2,
max_new_tokens: 1024.

e StarChat-5: model: starchat-beta®, temperature: 0.2,
max_new_tokens: 1024.

+ CodeGen2.5: model: codegen25-7b-instruct’, tempera-
ture: 0.2, max_new_tokens: 1024.

» TAPEX: model: tapex-large-finetuned-wtq'”.

5.1 Main Results

As shown in Table 2, overall experimental results demon-
strate that GPT-4 outperforms other models. It achieves the
highest ECR on the majority of tasks and the highest pass
rate across all tasks. GPT-4’s relatively better performance
can be attributed to its code generation capabilities and con-
text learning abilities. The former allows it to generate more
accurate and executable code. The latter enables it to better
understand and integrate the given query and instructions.

Code generation models exhibit overall performance that
is comparable to GPT-4 in generating executable code. How-
ever, the pass rate of the generated code is relatively low,
with the overall pass rate being 24.86% lower than that of
GPT-4. This can be attributed to the limited in-context learn-
ing capabilities of these models, which results in a restricted
ability to capture the meaning of the given query and gener-
ate the correct code accordingly.

The tabular model is currently only capable of completing
rudimentary tasks. Their performance on the Text2Analysis
benchmark is subpar, with an pass rate of only 11.55%. One
reason for this is that rudimentary tasks in the benchmark in-
volve complex pivot operations and calculations, which ex-
isting tabular models struggle with. These models excel at

"https://huggingface.co/HuggingFaceH4/starchat-alpha
8https://huggingface.co/HuggingFaceH4/starchat-beta
*https://huggingface.co/Salesforce/codegen25-7b-instruct
"https://huggingface.co/microsoft/tapex-large-finetuned-wtq



Rudimentary ()pu atl nn\B 1sic Insights  Chart Generation Forecasting

f—% f—)%
Owﬂwom 074 0.79 0.80 0.81 (.79
0.66
I | I | | ‘ | 0-08 0,04 .03
H = -
> S A° $ O &
S ¢S FSEETE £
S/ & &Y X/ N
S R > &
<& & NN

Figure 6: ECR for Unclear Queries on GPT-4.

Rudimentary Operations Basic Insights ~Chart Generation Forecasting

0.86
0.61 0.61
0. 4; 041
0.310.30
I I 0£° 0.04 I 0.010.010.00

S O & S D
S F& SESSE
& 3

s

Figure 7: Pass rate for Unclear Queries on GPT-4.

querying tables to find values in the original table but falter
when it comes to performing complex calculations.

Table 3 presents the regression scores for the forecasting
task, demonstrating that the code generated by the baselines
has limited prediction capabilities. To successfully tackle
forecasting task, not only do the models need to generate
correct code, but they also need to select appropriate predic-
tion models. The current baseline models fall short in these
aspects, highlighting the need for further development and
research to improve their performance on forecasting tasks.

The overall performance of the baseline models leaves
room for improvement. Its best performance is on rudimen-
tary operations tasks, with an pass rate of only 57%. More-
over, on complicated forecasting, it can only reach an pass
rate of 14%. This highlights the significant exploration space
that still exists, presenting opportunities for further research
and the development of more advanced models.

5.2 Unclear Queries Results

When facing clear queries, models have strong parsing and
code generation capabilities for data analysis. As in Figure 7,
when the query is clear, the pass rate of chart generation is
as high as 86%. When facing a clear query, the model needs
to first parse the natural language into corresponding tasks
and parameters, and then generate the correct code.

The ability to recommend fields for advanced data analy-
sis tasks, particularly measure fields (columns with numeri-
cal attributes in a table), can be enhanced in large language
models. As shown in Figure 6, the ECR decreases by 8% on
the basic insights task when the field is missing. As shown
in Figure 7, when the measure field is missing, the pass rate

has decreased for most tasks, especially the chart generation
task, which has decreased by 25%. If we want to improve the
recommendation analysis, future work needs to consider in-
jecting the knowledge of recommending analytical columns
into the large language models.

The code generation capability for more complex libraries
needs to be enhanced. As shown in Figure 6 and Figure 7,
both the ECR and pass rate for forecasting tasks are below
1%. The forecasting task library involves more complex op-
erations such as parameter input and model training. In more
than 50% of the cases, GPT-4 generates incorrect parameters
or input parameters that are not included in the operations.
Additionally, in some instances, the code does not select the
correct model, rendering it unable to successfully fit the data.

6 Related Work
6.1 Tabular Benchmark

TableQA and Text2SQL are prevalent tasks in tabular data
analysis. These tasks involve answering user queries based
on a source table. Notable their datasets include WikiTable-
Questions (Pasupat and Liang 2015), WikiSQL (Zhong,
Xiong, and Socher 2017) and so on. Although numerous
related datasets encompass a wide variety of table types,
the primary focus remains on descriptive data analysis.
Text2Analysis expands to more tabular analysis tasks.

To address tabular tasks, pre-trained models like
TAPAS (Herzig et al. 2020), TAPEX(Liu et al. 2022), etc.
have been employed. Concurrently, large language models
have also been used in approaches like DATER (Ye et al.
2023), StructGPT (Jiang et al. 2023), etc. In this work, we
evaluate SOTA tabular models as comparison baselines.

6.2 Large Language Models

Recent advancements in large language models (LLMs) like
GPT-3.5 and GPT-4 (OpenAl 2023) have improved few-
shot prediction capabilities and human instruction follow-
ing. And they have shown promising capabilities to accel-
erate tabular data analysis (Chen 2023; Ye et al. 2023; Ma
et al. 2023; Jiang et al. 2023). Text2Analysis is proposed as
a new benchmark to further explore LLMs’ upper limits in
challenging tabular data analysis tasks.

7 Conclusion

In conclusion, we have presented the Text2Analysis dataset
that addresses the research gap in advanced analysis tasks
and unclear queries in the context of tabular data analy-
sis. Our dataset provides a comprehensive taxonomy of ad-
vanced analysis and unclear queries, which enables the eval-
uation of the analytical abilities of large language mod-
els. We have also proposed five innovative and reliable
annotation methods that leverage large language models
to accelerate the annotation process and increase the vol-
ume of annotation. Our evaluation of five SOTA models
on the Text2Analysis dataset reveals their strengths and
weaknesses in handling advanced analysis tasks and unclear
queries, providing valuable insights for future research.



References

Chen, W. 2023. Large Language Models are few(1)-shot
Table Reasoners. In Findings of the Association for Com-
putational Linguistics: EACL 2023, 1120-1130. Dubrovnik,
Croatia: Association for Computational Linguistics.

Chen, Y.; Yang, J.; and Ribarsky, W. 2009. Toward effective
insight management in visual analytics systems. In 2009
IEEE Pacific Visualization Symposium, 49-56. IEEE.

Cohen, J. 1960. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement,20(1):
37-46.

Date, C. J. 1989. A Guide to the SQL Standard. Addison-
Wesley Longman Publishing Co., Inc.

Delen, D.; and Ram, S. 2018a. Research challenges and
opportunities in business analytics. Journal of Business An-
alytics, 1(1): 2—-12.

Delen, D.; and Ram, S. 2018b. Research challenges and
opportunities in business analytics. Journal of Business An-
alytics, 1(1): 2-12.

Ding, R.; Han, S.; Xu, Y.; Zhang, H.; and Zhang, D. 2019.
QuickInsights: Quick and Automatic Discovery of Insights
from Multi-Dimensional Data. In Proceedings of the 2019
International Conference on Management of Data, SIG-
MOD ’19, 317-332. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450356435.

Dong, L.; and Lapata, M. 2016. Language to Logical Form
with Neural Attention. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 33—43. Association for Compu-
tational Linguistics.

Herzig, J.; Nowak, P. K.; Miiller, T.; Piccinno, F.; and Eisen-
schlos, J. 2020. TaPas: Weakly Supervised Table Parsing via
Pre-training. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 4320-4333.

Hosseini, R.; Yang, K.; Chen, A.; and Patra, S. 2021. A flexi-
ble forecasting model for production systems. arXiv preprint
arXiv:2105.01098.

Jiang, J.; Zhou, K.; Dong, Z.; Ye, K.; Zhao, W. X_; and Wen,
J.-R. 2023. StructGPT: A general framework for Large Lan-
guage Model to Reason on Structured Data.

Katsogiannis-Meimarakis, G.; and Koutrika, G. 2021. A
Deep Dive into Deep Learning Approaches for Text-to-SQL
Systems, 2846-2851. Association for Computing Machin-
ery. ISBN 9781450383431.

Li, R;; Allal, L. B.; Zi, Y.; Muennighoff, N.; Kocetkov, D.;
Mou, C.; Marone, M.; Akiki, C.; Li, J.; Chim, J.; Liu, Q.;
Zheltonozhskii, E.; Zhuo, T. Y.; Wang, T.; Dehaene, O.;
Davaadorj, M.; Lamy-Poirier, J.; Monteiro, J.; Shliazhko,
O.; Gontier, N.; Meade, N.; Zebaze, A.; Yee, M.-H.; Umap-
athi, L. K.; Zhu, J.; Lipkin, B.; Oblokulov, M.; Wang, Z.;
Murthy, R.; Stillerman, J.; Patel, S. S.; Abulkhanov, D.;
Zocca, M.; Dey, M.; Zhang, Z.; Fahmy, N.; Bhattacharyya,
U.; Yu, W.; Singh, S.; Luccioni, S.; Villegas, P.; Kunakov,
M.; Zhdanov, F.; Romero, M.; Lee, T.; Timor, N.; Ding, J.;
Schlesinger, C.; Schoelkopf, H.; Ebert, J.; Dao, T.; Mishra,
M.; Gu, A.; Robinson, J.; Anderson, C. J.; Dolan-Gavitt, B.;

Contractor, D.; Reddy, S.; Fried, D.; Bahdanau, D.; Jernite,
Y.; Ferrandis, C. M.; Hughes, S.; Wolf, T.; Guha, A.; von
Werra, L.; and de Vries, H. 2023. StarCoder: may the source
be with you!

Liu, Q.; Chen, B.; Guo, J.; Ziyadi, M.; Lin, Z.; Chen, W.;
and Lou, J.-G. 2022. TAPEX: Table Pre-training via Learn-
ing a Neural SQL Executor. In International Conference on
Learning Representations.

Luo, Y.; Qin, X.; Tang, N.; and Li, G. 2018. DeepEye: To-
wards Automatic Data Visualization. In 2018 IEEE 34th In-
ternational Conference on Data Engineering (ICDE), 101-
112. IEEE Computer Society.

Ma, P; Ding, R.; Han, S.; and Zhang, D. 2021. Metain-
sight: Automatic discovery of structured knowledge for ex-
ploratory data analysis. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, 1262—1274.
Ma, P; Ding, R.; Wang, S.; Han, S.; and Zhang, D.
2023. Demonstration of InsightPilot: An LLM-Empowered
Automated Data Exploration System.  arXiv preprint
arXiv:2304.00477.

Moritz, D.; Wang, C.; Nelson, G. L.; Lin, H.; Smith, A. M.;
Howe, B.; and Heer, J. 2019. Formalizing Visualization De-
sign Knowledge as Constraints: Actionable and Extensible
Models in Draco. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 25(1): 438-448.

Nijkamp, E.; Hayashi, H.; Xiong, C.; Savarese, S.; and
Zhou, Y. 2023. CodeGen2: Lessons for Training LLMs on
Programming and Natural Languages. arXiv preprint.

OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774.

Pasupat, P; and Liang, P. 2015. Compositional Seman-
tic Parsing on Semi-Structured Tables. In Proceedings of
the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers),
1470-1480. Beijing, China: Association for Computational
Linguistics.

Taylor, S. J.; and Letham, B. 2018. Forecasting at scale. The
American Statistician, 72(1): 37-45.

Tunstall, L.; Lambert, N.; Rajani, N.; Beeching, E.; Le Scao,
T.; von Werra, L.; Han, S.; Schmid, P.; and Rush, A.
2023. Creating a Coding Assistant with StarCoder. https:
//huggingface.co/blog/starchat. Accessed: 2023-08-15.

Wang, B.; Gao, Y.; Li, Z.; and Lou, J.-G. 2023. Know What
I don’t Know: Handling Ambiguous and Unknown Ques-
tions for Text-to-SQL. In Findings of the Association for
Computational Linguistics: ACL 2023, 5701-5714. Toronto,
Canada: Association for Computational Linguistics.

Ye, Y.; Hui, B.; Yang, M.; Li, B.; Huang, F,; and Li, Y.
2023. Large Language Models are Versatile Decomposers:
Decompose Evidence and Questions for Table-based Rea-
soning.

Zhong, V.; Xiong, C.; and Socher, R. 2017. Seq2SQL: Gen-
erating Structured Queries from Natural Language using Re-
inforcement Learning. CoRR, abs/1709.00103.

Zhou, M.; Li, Q.; He, X.; Li, Y.; Liu, Y.; Ji, W.; Han, S.;
Chen, Y.; Jiang, D.; and Zhang, D. 2021. Table2Charts:



Recommending Charts by Learning Shared Table Represen-
tations. In Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining, KDD 21,
2389-2399. ISBN 9781450383325.



