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Abstract
We present an ensemble-based approach using
deep learning models for the accurate and
interpretable detection of Macular Telangiectasia
Type 2 (MacTel) from a large dataset of Optical
Coherence Tomography (OCT) scans. Leveraging
data from the MacTel Project by the Lowy
Medical Research Institute and the University
of Washington, our dataset consists of 5200
OCT scans from 780 MacTel patients and 1820
non-MacTel patients. Employing ResNet18 and
ResNet50 architectures as supervised learning
models along with the AdaBoost algorithm, we
predict the presence of MacTel in patients and
reflect on interpretability based on the Grad-CAM
technique to identify critical regions in OCT
images influencing the models’ predictions. We
propose building weak learners for the AdaBoost
ensemble by not only varying the architecture but
also varying amounts of labeled data available for
training neural networks to improve the accuracy
and interpretability. Our study contributes to
interpretable machine learning in healthcare,
showcasing the efficacy of ensemble techniques
for accurate and interpretable detection of rare
retinal diseases like MacTel.

1. Introduction
Interpretable machine learning plays a vital role in
healthcare, enabling accurate and transparent predictions for
informed decision-making. Optical coherence tomography
(OCT) imaging has emerged as a valuable tool for
diagnosing and monitoring retinal diseases (Lee et al.,
2017; Ting et al., 2019). In this study, we focus on the
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classification of Macular Telangiectasia Type 2 (MacTel)
using OCT images, aiming to provide early and precise
detection of this neurodegenerative disease (Issa et al.,
2013). MacTel is a rare disease and historically was
often misdiagnosed, though diagnosis has improved with
increased awareness of the disease. Conventionally, MacTel
diagnosis relies on a multimodal image set and a clinician
being familiar with the disease (Chew et al., 2023). As
OCTs have become more widely available in the clinic
(De Fauw et al., 2018), we aim to find out if deep learning
models can accurately predict MacTel based solely on the
OCT image. Furthermore, information learned through
these models will inform the research in this domain. Using
deep learning framework for MacTel classification has been
under-explored due to limited data availability (Loo et al.,
2022). In this work, we propose an ensemble solution that
enhances the interpretability and performance of MacTel
classification models. Our methods employ deep learning
models, such as ResNet18 and ResNet50, and leverage
the AdaBoost ensemble method for model accuracy and
interpretability improvement.

We conduct extensive experiments using a large OCT
datasets and evaluate performance via standard metrics for
classification tasks, including accuracy, precision, recall,
F1 score, area under the curve (AUC), and average
precision. Additionally, we utilize the Grad-CAM technique
to visualize the regions of OCT images that contribute to the
models’ predictions, providing insights into the important
features used for classification. Our experimental results
demonstrate improvements in both interpretability and
classification accuracy compared to using individual models.
These findings highlight the potential of our proposed
ensemble approach to accurately classify MacTel while
providing meaningful explanations for the predictions.

2. Methods and Methodology
2.1. OCT Image Dataset

We use datasets obtained using a SPECTRALIS OCT device,
collected through the MacTel Project Natural History
Observation Registry Study, which includes 2636 OCT
scans from 780 MacTel patients and 131 non-MacTel
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Figure 1. Example of several OCT slices for middle part of the
scan for a patient with MacTel shown in the first row and a patient
without MacTel shown in the second row.

patients, augmented with an additional 2564 scans of non-
MacTel patients collected by the University of Washington
(UW). The dimensions of the OCT volumes varied in terms
of width and height. Figure 1 illustrates several OCT
B-scans for a MacTel patient in the first row and a non-
MacTel patient in the second row, focusing on the region
around the fovea. To ensure uniformity in sample size, all
volumes were resampled to a fixed dimension of 496 x 768
x 196 B-scans using linear interpolation. To streamline
computations and concentrate on relevant areas, we select
the central third of B-scans from each volume and resample
them into three B-scans. These three B-scans were then
combined to form an RGB image with three channels, where
each channel represented a single B-scan. This flattening
approach enabled us to leverage contextual information from
neighboring B-scans in two-dimensional neural network
architectures. The resulting dataset consisted of 5200
volumes. To enhance the model’s robustness, we apply
data augmentation techniques such as random horizontal
flips and center crops. We randomly divide the dataset into
training, validation, and test sets, with an 80:10:10 ratio at
the patient level. The training and validation sets were used
for model training and hyperparameter tuning, while the test
set was reserved for the final model performance evaluation.

2.2. Deep Learning Models Training and Evaluation

We use supervised learning methods to train ResNet18 and
ResNet50 architectures using the available labels to classify
MacTel patients. We use PyTorch implementations for these
models and stochastic gradient descent optimizer with a
learning rate of 0.001 and a batch size of 32. To initialize
the models’ weights, we utilized pre-trained weights from
ImageNet, a large-scale dataset consisting of natural images.
Subsequently, we fine-tuned the models’ weights on our
OCT dataset for 100 epochs, incorporating early stopping
based on the binary cross-entropy validation loss.

We explore the application of ensemble methods on OCT
images to improve the performance of deep learning models.
Previous studies explored ensemble techniques for patients
with diabetic retinopathy based on fundus images (Jiang

et al., 2019) and based on OCT angiography images (Heisler
et al., 2020), as well as for breast cancer detection (Zheng
et al., 2020) and retinal vessel segmentation (Memari et al.,
2017). To extend that idea, we propose building weak
learners by not only varying the architecture but also
leveraging varying amounts of labeled data available for
training ResNet18 and ResNet50 architectures. We employ
the AdaBoost algorithm to effectively combine the results of
several individual models (Freund et al., 1999; 1996). The
objective is to reduce the bias of each strong classifier and
benefit from the diversity of the individual deep learning
models within the ensembles.

To evaluate the performance of the trained models, we use
several metrics, including accuracy, precision, recall, F1
score, AUC and average precision, which we compute on
the reserved test set. We use Grad-CAM as the explainability
method to further interpret the models and gain insight into
their decision-making processes (Zhou et al., 2016). These
methods allow us to visualize the regions of the OCT images
that the models attended to when making predictions and
provide a way to validate the models’ predictions and gain
insight into the underlying biological mechanisms (Altan,
2022; Tjoa & Guan, 2020; van der Velden et al., 2022; Saeed
& Omlin, 2023).

2.3. Adaboost Algorithm

We propose the DL-AdaBoost algorithm, outlined in
Algorithm 1, as a boosting approach to combine multiple
hypothesis models (or weak learners), which are trained
deep learning models, into a unified and improved model.
The algorithm iteratively adjusts the weights assigned to
each model based on their performance, aiming to minimize
the weighted error. At each iteration, the sample distribution
is updated to emphasize challenging samples. The algorithm
terminates when the weighted error becomes convergent
and reaches a stable state. The outputs of DL-AdaBoost
are the learned weights along with the final integrated
model, which is a weighted combination of the individual
models. The weights assigned to each model, denoted as
α, reflect their contribution to the ensemble. To aggregate
the predictions, we utilize α as weights to combine the
predicted probabilities generated by the deep learning
models. Additionally, we leverage the class activation
maps (CAMs) inferred from the global pooling layer of the
deep learning models (Selvaraju et al., 2017). The CAMs
provide a visual representation, resembling a thermogram,
highlighting suspected pathology within the image. We
also combine CAMs of the weak learners based on the
learned weights to captures the collective contributions of
the individual models in the ensemble.
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Algorithm 1 DL-AdaBoost

Input: (xi, yi) where i = 1, ...,m, xi is the feature
vector, and yi is the label of xi, hypothesis models ht for
t = 1, ..., T , built based on a portion of labeled data and
choice of architecture
Initialize: distribution of samples: D1(i) =

1
m

repeat
for t = 1 to T do

Select hypothesis model ht

Compute weighted error ϵ = P[h(x) ̸= y]

Compute weight α = 1
2 ln

(
1−ϵt
ϵt

)
Update Dt+1(i) =

Dt(i) exp(−αyiht(xi))
Zt

;
where Zt is the normalization factor

end for
until weighted error is convergent
Output: weights α, final model H(x) =

∑T
t=1 αtht(x)

3. Results and Discussions
We show the test set results of our experiments in Table 1,
showcasing the performance evaluation of ResNet50 and
ResNet18 trained on different percentages of labeled data
(i.e., weak learner). It is evident that both architectures
exhibit satisfactory performance in MacTel classification.
However, as the amount of labeled data increases, the
performance of ResNet18 models consistently improves in
comparison to ResNet50. This trend may be attributed to the
higher susceptibility of ResNet50, which has approximately
23 million parameters, to overfitting, unlike ResNet18.

We construct three ensemble models using different
combinations of weak learners, namely RESNET50-
ADB, RESNET18-ADB, and RESNET(50&18)-ADB. In
RESNET50-ADB, only weak learners based on the
ResNet50 architecture are utilized in DL-AdaBoost.
Similarly, RESNET18-ADB consists of weak learners
exclusively from the ResNet18 architecture. Finally,
RESNET(50&18)-ADB incorporates weak learners from
both ResNet18 and ResNet50 architectures. Table 2 presents
the weights learned for each ensemble. These weights
signify the importance assigned to each individual model
within the ensemble.

Table 3 displays the performance results of these ensembles
on the test set. The DL-AdaBoost ensemble method
effectively enhances the overall model performance across
almost all evaluated metrics. The ensembles consistently
outperform the individual models trained with different
percentages of labeled data, highlighting the advantages
of incorporating multiple weak learners within an ensemble
framework. Notably, RESNET(50&18)-ADB exhibits
the highest performance among the ensembles. This
can be attributed to its utilization of a larger number of

individual learners from both the ResNet50 and ResNet18
architectures. The combination of these architectures
leverages their complementary strengths, resulting in
improved performance compared to ensembles based on
individual architectures alone.

Additionally, we conduct a visual analysis of the Grad-
CAM results, as shown in Figure 2 and 3. In Figure 2,
we present the results for individual and ensemble models
when ResNet50 (Figure 2a) and ResNet18 (Figure 2b)
architectures are used separately. Panels a-e display the
results for individual models trained on various percentages
of labeled data, while panels c and f show the flattened RGB
version of the OCT image and the corresponding Grad-CAM
based on the ensemble model, respectively.

In Figure 3, we present the Grad-CAM results when both
architectures are used in the ensemble model. Panels a-
d represent the results for individual models trained on
different percentages of labeled data for ResNet50, while
panels f-i display the results for individual models trained
on different percentages of labeled data for ResNet18.
Panel e and j show the flattened OCT image and the Grad-
CAM based on the ensemble model RESNET(50&18)-
ADB, respectively. By comparing the results of the
ensemble model RESNET(50&18)-ADB to the individual
weak learners, we observe that the ensemble approach yields
more focused results on the pathology of interest. This
indicates the effectiveness of the ensemble approach in
enhancing the localization of the target pathology, further
supporting the advantage of leveraging multiple models in
the ensemble framework.

(a) Results for ResNet50 (b) Results for ResNet18

Figure 2. Grad-CAM results for individual and ensemble models
for a patient with MacTel when architectures are used separately;
a-e show results for individual models learned based on various
amounts of labeled data from 10% to 100%, c and f show flattened
OCT image and grad-CAM based on ensemble model, respectively.

4. Conclusion
Our approach for MacTel classification using OCT
images, employing interpretable deep learning models
and ensemble methods, demonstrated promising results.
The ResNet18 and ResNet50 architectures effectively
classified MacTel, and the ensemble method further
improved overall model performance. The visual analysis
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Table 1. Test set performance of individual models trained on various amounts of labeled data for ResNet50 and ResNet18

ARCHITECTURE % OF LABELS AUC AVG PREC ACC F1 RECALL PRECISION

RESNET50 10% 0.946 0.939 0.884 0.868 0.844 0.892
25% 0.958 0.953 0.898 0.884 0.867 0.903
50% 0.937 0.934 0.870 0.861 0.893 0.831

100% 0.947 0.935 0.898 0.888 0.898 0.878

RESNET18 10% 0.855 0.842 0.764 0.762 0.840 0.697
25% 0.943 0.926 0.858 0.828 0.760 0.910
50% 0.949 0.946 0.868 0.864 0.929 0.807

100% 0.965 0.963 0.890 0.878 0.876 0.879

Table 2. Weights learned by DL-AdaBoost for each individual model used in the ensemble: RESNET50-ADB: ensemble only based on
ResNet50, RESNET18-ADB: ensemble only based on ResNet18, and RESNET(50&18)-ADB: ensemble based on both architectures

ARCHITECTURE RESNET50 RESNET18

% OF LABELS 10% 25% 50% 100% 10% 25% 50% 100%

RESNET50-ADB 0.231 0.274 0.210 0.285 - - - -
RESNET18-ADB - - - - 0.170 0.224 0.275 0.332
RESNET(50&18)-ADB 0.130 0.158 0.110 0.149 0.072 0.096 0.130 0.155

Table 3. Test set performance of ensembles; RESNET50-ADB: ensemble only based on ResNet50 architecture, RESNET18-ADB:
ensemble only based on ResNet18 architecture, and RESNET(50&18)-ADB: ensemble based on both architectures

ENSEMBLE MODEL AUC AVG PREC ACC F1 RECALL PRECISION

RESNET50-ADB 0.965 0.964 0.916 0.906 0.902 0.910
RESNET18-ADB 0.968 0.960 0.918 0.909 0.907 0.911
RESNET(50&18)-ADB 0.975 0.973 0.922 0.912 0.902 0.923

Figure 3. Grad-CAM results for individual and ensemble models for a patient with MacTel when both architectures are used in the
ensemble; a-d show results for individual models learned based on various amounts of labeled data from 10% to 100% for ResNet50,
f-i show results for individual models learned based on various amounts of labeled data from 10% to 100% for ResNet18, e and j show
flattened OCT image and grad-CAM based on ensemble model, respectively.
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of Grad-CAM results highlighted the ensemble’s ability to
provide focused and localized predictions. These findings
contribute to interpretable machine learning in healthcare,
enhancing the interpretability and performance of MacTel
classification. Future research can explore the approach’s
applicability to other retinal diseases and incorporate
additional interpretable machine learning techniques for
further improvement in interpretability and clinical utility.
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