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Abstract—Deep learning models have been widely adopted in
many application domains. Predicting the runtime performance
of deep learning models, such as GPU memory consumption and
training time, is important for boosting development productivity
and reducing resource waste. The reason is that improper
configurations of hyperparameters and neural architectures can
result in many failed training jobs or unsatisfactory models.
However, the runtime performance prediction of deep learning
models is challenging because of the hybrid programming
paradigm, complicated hidden factors within the framework
runtime, enormous model configuration space, and broad dif-
ferences among models. In this paper, we propose DNNPerf, a
novel ML-based tool for predicting the runtime performance of
deep learning models using Graph Neural Network. DNNPerf
represents a model as a directed acyclic computation graph and
incorporates a rich set of performance-related features based
on the computational semantics of both nodes and edges. We
also propose a new Attention-based Node-Edge Encoder for the
node and edge features. DNNPerf is evaluated on thousands of
configurations of real-world and synthetic deep learning models
to predict their GPU memory consumption and training time.
The experimental results show that DNNPerf achieves accurate
predictions, with an overall error of 7.4% for the training time
prediction and an overall error of 13.7% for the GPU memory
consumption prediction, confirming its effectiveness.

Index Terms—deep learning, AutoML, graph neural network,
runtime performance, performance prediction

I. INTRODUCTION

In recent years, deep learning (DL) has been widely adopted

in many application domains, such as computer vision [1],

speech recognition [2], and natural language processing [3].

Like many traditional software systems, DL models are also

highly configurable via a set of configuration options for

hyperparameters (e.g., the batch size and the dropout) and

neural architectures (e.g., the number of layers). To search for

the optimal configuration of a DL model that satisfies specific

requirements, developers usually run (e.g., via automated

machine learning tools) a large number of training jobs to

explore diverse configurations.

Different model configurations may lead to different quality

attributes (i.e., non-functional properties), among which runtime

performance (e.g., GPU memory consumption and training

time) is one of the most important because it directly affects

model quality and development productivity. Improper model
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configurations can unexpectedly degrade runtime performance

or result in many failed jobs or unsatisfactory models. For

instance, an overlarge batch size causes a job to exhaust all

GPU memory and raise an out-of-memory (OOM) exception.

According to a recent empirical study on 4,960 DL job failures

collected from Microsoft [4], 8.8% of the failed jobs were

caused by GPU OOM, which accounts for the largest category

in all the DL specific failures. We also observed that a number

of internal DL jobs inside Microsoft exhibited low GPU

utilization and ran slowly because of too small batch sizes

and other improper hyperparameter values. As a result, these

jobs had to be early stopped before reaching our expectations

due to over budget. Even worse, in the automated machine

learning (AutoML) scenario, other tens or hundreds of jobs

with the same batch size or similar neural architectures can

experience the same issues and fail. Therefore, predicting the

runtime performance of a DL model ahead of job execution

is critical for boosting development productivity and reducing

resource waste.

In the literature, there is already much research work for

estimating the runtime performance of programs [5]–[10]

and deployed systems [11]–[16] using program analysis and

machine learning (ML) techniques. Recently, some authors

advanced the estimation effort to DL models [17]–[20] using

analytic or machine learning methods. However, these studies

either cannot be directly applied or have limitations in precise

prediction due to the following challenges:

1) DL frameworks provide a hybrid programming paradigm:

developers invoke high-level interfaces only to construct

DL models, while low-level computational operations are

implemented with proprietary NVIDIA CUDA, cuDNN,

and cuBLAS APIs. Such a paradigm hides the internal

implementation details and thus makes it hard to model

the runtime performance accurately.

2) Many complicated hidden factors within the framework

runtime, such as garbage collection and operator exe-

cution order, affect the runtime performance of models

observably. However, understanding and extracting these

hidden factors could be very difficult, time-consuming,

and error-prone because they are volatile and fast-

changing with the rapid evolution of DL frameworks.

3) A DL model usually has an enormous configuration

space, and there are broad differences among various



kinds of models. Therefore, it is challenging to design a

general ML prediction model with high accuracy from

limited samples.

In this paper, we propose DNNPerf, a novel ML-based tool

for predicting the runtime performance of DL models with

Graph Neural Network (GNN) [21]. Our key observation is

that a DL model can be represented as a directed acyclic
computation graph [22]. Each node denotes a computational

operation called an operator (e.g., matrix addition), and an

edge delivers a tensor and specifies the execution dependency

between two nodes. The algorithmic execution of the model is

then represented as iterative forward and backward propagation

on such a computation graph. Node features consist of, for

example, the operator type (e.g., Conv2D), hyperparameters

(e.g., the kernel size), number of floating-point operations

(FLOPs), and sizes of input/output/weight/temporary tensors.

Typical edge features include the edge type (forward or

backward) and the size of the delivered tensor. Relevant

parameters of target devices, such as floating-point operations

per second (FLOPS), memory capacity, and bandwidth, are

also extracted as node or edge features. Moreover, we propose

a new Attention-based Node-Edge Encoder to better encode

the node and edge features by adapting the ideas of Graph

Attention Network (GAT) [23] and Edge Enhanced Graph

Neural Network (EGNN) [24].

We have implemented DNNPerf as a prediction model

trained from the runtime performance data of various kinds

of DL models. The full dataset includes: (1) 10,238 model

configurations of ten real-world DL models (e.g., VGG [25],

ResNet [1], and Vanilla RNN [26]), whose representative hy-

perparameter values are randomly generated within reasonable

ranges; (2) 8,403 model configurations, whose neural architec-

tures are randomly synthesized by Neural Architecture Search

(NAS) [27] algorithms. We explore two typical prediction tasks

for training time and GPU memory consumption; however, our

approach can be easily applied to other tasks, such as predicting

inference time and GPU power consumption. The experimental

results show that DNNPerf outperforms all the five compared

methods (e.g., BiRNN [5] and GBDT [28]) with an overall

mean relative error of 7.4% for the training time prediction and

an overall mean relative error of 13.7% for the GPU memory

consumption prediction. The improvement of MRE/RMSE

ranges from 10.6%/47.7 ms to 87.8%/276.9 ms for the training

time prediction task and from 1.9%/0.4 GB to 20.0%/2.3 GB

for the GPU memory consumption prediction task, confirming

the effectiveness of DNNPerf.

We summarize our main contributions as follows:

1) We propose a novel Graph Neural Network-based ap-

proach for predicting the runtime performance of deep

learning models accurately.

2) We design a rich set of node and edge features to capture

performance-related factors (e.g., compute and I/O). We

also propose a novel Attention-based Node-Edge Encoder

for the computation graph of a deep learning model.

3) We implement an end-to-end tool named DNNPerf and

1 from tensorflow.keras import layers, models
2 ...
3 model = models.Sequential()
4 model.add(layers.Conv2D(filters=32, kernel_size=(3, 3),

activation='relu', input_shape=(224, 224, 3)))↪→
5 model.add(layers.AveragePooling2D(pool_size=(2, 2)))
6 model.add(layers.Conv2D(filters=64, kernel_size=(3, 3),

activation='relu'))↪→
7 model.add(layers.AveragePooling2D(pool_size=(2, 2)))
8 model.add(layers.Flatten())
9 model.add(layers.Dense(units=1000, activation="softmax"))

10 model.compile(optimizer='SGD',
loss="categorical_crossentropy")↪→

11 model.fit(train_images, train_labels, batch_size,
epochs=60)↪→

Fig. 1: A sample Keras MNIST model constructed with the Conv2D,
AvgPool2D, Flatten, Dense, and Softmax operators.

Fig. 2: Computation graph for training the above model.

demonstrate its practical effectiveness through experi-

ments on thousands of configurations of real-world and

synthetic deep learning models.

II. BACKGROUND

A. Deep Learning Models and Computation Graphs

Being essentially mathematical functions, DL models are for-

malized by frameworks like TensorFlow [29] and PyTorch [30]

as tensor-oriented computation graphs (i.e., directed acyclic

graphs). The inputs and outputs of a computation graph or

a graph node are tensors (i.e., multidimensional arrays of

numerical values). Each node denotes a mathematical operation

called an operator (e.g., 2D convolution [31]). An edge pointing

from one output of node A to one input of B delivers a tensor

and specifies the execution dependency of such two nodes. A

DL model usually provides a set of configuration options for

its hyperparameters (e.g., the batch size and the dropout) and

neural architecture (e.g., the number of layers).

Figure 1 shows the snippet of a sample MNIST [32] training

program written in the Keras [33] API. The program constructs

a sequential model with the framework built-in Conv2D (2D

convolution with a 3×3 kernel size), AvgPool2D (2D average

pooling with a 2 × 2 pool size), Flatten (collapsing the

input tensor into one dimension), Dense (fully-connected layer

with 64 units), and Softmax (normalizing “the probability

distribution over k different classes” [22]) operators (lines



3–9). The above number of output channels (denoted by

the variable filters), kernel size, number of units, and

others are hyperparameters that control the training process.

For training, the framework constructs a computation graph

shown in Figure 2 with concrete hyperparameter values and

then applies iterative forward and backward propagation on

such a graph to learn the optimal learnable parameters (i.e.,

weights). The operators (nodes) in the middle of Figure 2 (e.g.,

AvgPool2d_BP) are automatically generated by TensorFlow

for backward propagation. The input data (Input_Data) is

fed through the computation graph and is manipulated by the

developer-specified operators (on the left of Figure 2). The

input labels (Input_Labels) and the produced outputs of

Dense are then backward propagated to compute the gradients

of the weights. Finally, an optimizer [34] updates the weights

to minimize the loss (e.g., the mean squared error between

actual and predicted outputs), marking the end of one training

iteration.

B. Graph Neural Networks

The graph is a common data structure for representing

elements and their relations, widely used in data analysis.

Recently, there have been emerging requirements to apply DL

techniques to learning from graph data. However, existing

models such as Convolutional Neural Network (CNN) [31]

and Recurrent Neural Network (RNN) [35] have limitations in

handling graphs because of the irregularity caused by unequal

node neighbors. Graph Neural Network (GNN) [21] is then

proposed to address this issue efficiently.

Graph Convolutional Network (GCN) [36] is the first popular

GNN, which learns localized spatial features by convolutional

filters. Graph Attention Network (GAT) [23] uses masked

self-attentional layers to address the shortcomings of prior

GCN-based methods. GAT does not require costly matrix

operations or knowing the graph structure upfront by specifying

different weights to different nodes in a neighborhood. In

some datasets, edge features also contain important graph

information; however, they are not adequately utilized by GCN

and GAT. Edge Enhanced Graph Neural Network (EGNN) [24]

builds a framework for a family of new GNNs that can exploit

the features of edges (including both undirected and multi-

dimensional ones) sufficiently. In our work, we adopt GNN

and propose a novel Attention-based Node-Edge Encoder for

better predicting the runtime performance of DL models.

III. DNNPERF: A GNN-BASED APPROACH

A. Problem Formulation

As mentioned before, a DL model M is represented as the

following directed acyclic graph (DAG) [22]:

M = 〈{ui}ni=1, {eij = (ui, uj)}i,j∈[1,n], {hpk}mk=1〉 .
Each node ui is an operator such as the above Conv2D
and AvgPool2D. A directed edge eij , pointing from node

ui to uj , delivers an output tensor of ui to uj as input

and also specifies the execution dependency. Each hpk is a

hyperparameter of some operator, such as the batch size and the

Fig. 3: Workflow of DNNPerf.

input tensor shape, whose domain is denoted as Bk. Model M
is assumed to be deterministic without control-flow operators

(e.g., loops and conditional branches) or dynamic structural

changes; hence, the execution flow and runtime performance

across different training iterations should be identical. We use

M(b1 ∈ B1, b2 ∈ B2, · · · , bm ∈ Bm) to denote one model
configuration of M. Then, ΔM, the configuration space of

M, is defined as follows:

ΔM = { M(b1, b2, · · · , bm) | bk ∈ Bk for k ∈ [1,m] } .
A runtime specification describes the execution environment,

which currently contains the information of target devices, such

as floating-point operations per second (FLOPS) and memory

capacity. All the actual runtime specifications constitute a

space denoted by S . Then, the runtime performance prediction

tasks for M can be formulated as a family of real regression

functions:

fi : ΔM × S → R .

Each fi is a performance function, taking a model configuration

and a runtime specification as parameters. Hence, our GNN-

based approach trains two typical performance functions

that return GPU memory consumption and training time,

respectively.

B. Workflow

Figure 3 illustrates the workflow of DNNPerf. It accepts

a DL model file, a model configuration specification, and a

runtime specification as input and reports runtime performance

values. DNNPerf implements a front-end parser using the built-

in model deserialization APIs of DL frameworks, which is

responsible for reading the input model file and reconstructing

the corresponding computation graph. The model configuration

specification includes tuned hyperparameters and their values.

The runtime specification contains the device information at

present.

DNNPerf traverses the computation graph to generate

the node and edge features automatically, strictly following

an operator execution order predefined by reference to the

framework implementations [37], [38]. It employs a novel

Attention-based Node-Edge Encoder (ANEE) to embed the

nodes and edges in several rounds (Section III-D). To improve

prediction accuracy and reduce the amount of training data,

DNNPerf further utilizes the node and edge semantics. The

details are summarized in Tables I and II. Finally, DNNPerf



TABLE I
NODE FEATURES.

Category Name Description
Operator (ht) Operator Type Type of the operator (e.g., Conv2D and AvgPool2D)

Hyperparameter (hp) Hyperparameter Type and value of each hyperparameter of the operator (e.g., kernel size and channel size)

Tensor (hd)

Weight Tensor Size
Sizes of weights (aka learnable parameters) and weight gradients (computed under backward
propagation for updating weights)

In/Out Tensor Size
Sizes of inputs, outputs, and output gradients (computed under backward propagation for
calculating weight gradients)

Temporary Tensor Size Sizes of temporary variables used by the operator
Computation Cost (hc) FLOPs Number of floating-point operations of the operator
Device (hr) FLOPS Peak floating-point operations per second

Memory Capacity Total amount of the device memory

TABLE II
EDGE FEATURES.

Category Name Description
Edge (et) Edge Type Type of the edge (“forward” or “backward”)

Tensor (ed) Tensor Size Size of the delivered tensor

Device (er) Bandwidth Bandwidth for accessing the delivered tensor

aggregates updated feature vectors and uses a multilayer

perceptron (MLP) [39] to output a result.

C. Model Encoding

We refer to the framework source code, identify hidden

factors carefully, and design a set of effective performance-

related features based on the computational semantics of both

nodes and edges. First, DNNPerf uses an operator’s type,

hyperparameters, sizes of different tensors, and FLOPs to cap-

ture operator-level factors. Secondly, DNNPerf uses an edge’s

type and size of the delivered tensor to capture the operator

execution order, tensor liveness [18], and I/O costs. Lastly,

selected device features such as FLOPS, memory capacity,

and bandwidth are extracted and associated with the nodes

and edges to capture those runtime factors such as garbage

collection, memory access, and distributed communication.
1) Initial Node Encoding: For each node of a computation

graph (such as the one in Figure 2), we associate it with a real-

valued feature vector h ∈ R
N1 , where N1 is the number of the

designed node features. h is composed of several sub-feature

vectors such that h = F (ht ‖ hp ‖ hd ‖ hc ‖ hr):

1) “‖” is the vector concatenation operation, and F is the

function for raw feature encoding and vector shape

alignment.

2) ht represents the operator type (e.g., Conv2D).

3) hp is a vector for encoding the operator’s hyperparame-

ters, whose length equals the number of all hyperparam-

eters.

4) hd stores the sizes of the weight, input, output, and

temporary tensors.

5) hc denotes the computation cost. Currently, we use

FLOPs.

6) hr encodes the device information affecting the operator

execution, such as GPU memory capacity and FLOPS.

Details are listed in Table I. For categorical features (e.g.,

operator type), we adopt the One-Hot encoding [40] strategy.

We take Conv2D, the 2D convolution operator [31], as an

example to illustrate how to compute the initial values of hc

(i.e., FLOPs) and hd. Let sz be the size of the data type in bytes

(e.g., 4 bytes for float data). The following hyperparameters

are needed: kernel size (ks), stride (sd), padding (pad ), and

dilation (dil ). We assume that each of them is an array of

two positive integers that specify the height- and width-related

information, respectively. Suppose that Conv2D receives an

input tensor whose shape is [N,Ci, Hi,Wi] (i.e., a batch of

N input samples with height Hi, width Wi, and Ci input

channels). Conv2D produces an output tensor whose shape

is [N,Co, Ho,Wo]. Co is the number of output channels. The

output height (Ho) and width (Wo) can be calculated as

follows [41]:

Ho =

⌊
Hi + 2× pad [0]− dil [0]× (ks[0]− 1)− 1

sd[0]
+ 1

⌋
,

Wo =

⌊
Wi + 2× pad [1]− dil [1]× (ks[1]− 1)− 1

sd[1]
+ 1

⌋
.

We now show how the FLOPs under forward propagation [42]

and tensor sizes (in bytes) of Conv2D are computed:

FLOPs(Conv2D) = 2× (Ci ×Hi ×Wi + 1)×N

× Co ×Ho ×Wo ,

IT (Conv2D) = sz ×N × Ci ×Hi ×Wi ,

OT (Conv2D) = sz ×N × Co ×Ho ×Wo ,

WT (Conv2D) = sz × (Ci ×Hi ×Wi + 1)× Co .

IT , OT , and WT are functions that return the sizes of the

input, output, and weight tensors, respectively.

Currently, DNNPerf supports 70+ common types of DL

operators.

2) Initial Edge Encoding: For each edge of a computation

graph, we associate it with a real-valued feature vector e ∈ R
N2 ,

where N2 is the number of the designed edge features. e is

composed of several sub-feature vectors such that e = et ‖
ed ‖ er:

1) et represents the edge type, whose initial value is either

“forward” or “backward” at present, depending on which



propagation stage the delivered tensor is used. et tries

to capture tensor liveness [18] that affects GPU memory

consumption.

2) ed denotes the size of the delivered tensor, while er

denotes the device bandwidth. These two features affect

I/O access latency, which in turn affects training time.

Details are listed in Table II.

3) Normalization: Since feature values vary widely,

DNNPerf scales the range of each feature to the interval [0, 1]
by MinMaxScaler [43]. DNNPerf does not use the neighbor-

level normalization from EGNN [24] because the average node

degree of a computation graph is much smaller than that of

previously studied large graphs such as social network graphs.

Suppose g is the computation graph of a model configuration

in the training dataset DS, and u is a node of g. We use hg,u

and hg,u,i to denote the initial feature vector of node u and its

i-th dimension, respectively. Then, the normalized node feature

vector ĥg,u = [ĥg,u,1, · · · , ĥg,u,N1 ] is produced as follows:

Si = {hg,u,i | g ∈ DS ∧ u ∈ g} ,
ĥg,u,i =

hg,u,i −minSi

maxSi −minSi
.

Similarly, we use eg,l and eg,l,i to denote the initial feature

vector of edge l and its i-th dimension, respectively. Then, the

normalized edge feature vector êg,l = [êg,l,1, · · · , êg,l,N2
] is

produced as follows:

Si = {eg,l,i | g ∈ DS ∧ l ∈ g} ,
êg,l,i =

eg,l,i −minSi

maxSi −minSi
.

D. Attention-based Node-Edge Encoder

To achieve high prediction accuracy while taking efficiency

into account, we propose a novel Attention-based Node-Edge

Encoder (ANEE) for multi-dimensional features, which is

shown in the middle part of Figure 3.

Original GCN and GAT models are restricted to only one-

dimensional real-valued edge features, which cannot capture

the effects of an edge. In comparison, ANEE captures both

the node and edge features. The operators of a DL model

contain less fan-out, and their runtime performance may vary

significantly. DNNPerf uses a global normalizer that achieves

better efficiency and accuracy. We also use weight sharing

for the encoder parameter matrices to reduce the number of

parameters, which benefits the training/inference time and GNN

model size. Therefore, compared with EGNN [24], ANEE is

lightweight and can achieve better efficiency.

ANEE performs multiple rounds of computation to encode

the nodes and edges. Suppose g is the computation graph of a

model configuration, u is a node, and l = (us, ud) is an edge

pointing from the source node us to the target ud. We use hi
g,u

and eig,l to denote the computed feature vectors of node u and

edge l in the i-th (i > 0) round, respectively. h0
g,u and e0g,l are

the initial normalized feature vectors mentioned before.

First, ANEE computes a preliminary result of hi
g,u (denoted

by h
i

g,u) locally as follows:

LeakyReLU(x) = max(0, x)− α×max(0,−x) ,

h
i

g,u = LeakyReLU(Wu × hi−1
g,u ) .

The activation function LeakyReLU is the leaky version of

Rectified Linear Unit (ReLU), α is the slope coefficient that

defaults to 0.01, and Wu is a parameter matrix.

Next, ANEE updates eig,l as follows:

eig,l = σ(aT × (h
i

g,s ‖ h
i

g,d)×We × ei−1
g,l ) .

σ is the sigmoid activation function, and We is a parameter ma-

trix. The attention mechanism uses a single-layer feedforward

neural network that is denoted by a weight vector a ∈ R
2×N1 .

aT is the transpose of a.

Then, ANEE gathers the information of u’s neighbors and

the associated edges to compute the final hi
g,u as follows:

f(u′, l′) = Softmax(Wm × eig,l′)× h
i

g,u′ ,

hi
g,u = LeakyReLU(

∑
l′=(u′,u)

f(u′, l′)) .

u′ is a neighbor node of u, l′ is their associated edge, and

Wm is a parameter vector. Softmax makes coefficients easily

comparable across different features and normalizes them

across all choices of features.

Finally, DNNPerf performs a global aggregation by summing

up all the node feature vectors. The aggregated result will be

fed to the predictor (an MLP layer) to generate the runtime

performance value.

E. Loss Function

The GNN-based prediction of GPU memory consumption

and training time can be reduced to a regression problem. We

use the mean squared error (MSE) to design a loss function:

L =

∑N
i=1(ŷi − yi)

2

N
.

N is the number of model configurations in the training set;

ŷi and yi are the predicted and realistic runtime performance

values of the i-th model configuration, respectively. We actually

tried the mean relative error (MRE) but found no better results,

so we adopted the more commonly used MSE.

IV. EXPERIMENTAL SETUP

A. Datasets

We collect 18,641 model configurations implemented with

TensorFlow v1.13.1 and divide them into two groups. The

first is an HPO (Hyperparameter Optimization) [44] dataset,

including 10,238 configurations of ten real-world models with

various hyperparameter combinations. In this dataset, the con-

figurations of five randomly selected DL models (LeNet [45],

ResNet-V1 [1], Inception-V3 [46], Vanilla RNN [26], and

LSTM [47]) are used for normal training, validation, and test,

in a proportion of 70:10:20. The rest models (AlexNet [48],

VGG [25], OverFeat [49], ResNet-V2 [1], and GRU [50]) are



TABLE III
STATISTICS OF THE HPO DATASET.

Model Name Node # Avg Node # Edge # Avg Edge # Config #
LeNet [18, 18] 18.0 [25,25] 25.0 800

ResNet-V1 [242, 796] 494.6 [413, 1,382] 854.7 622

Inception-V3 [12, 254] 95.2 [16, 449] 162.7 1,850

Vanilla RNN [20, 56] 38.0 [28, 82] 55.0 1,280

LSTM [20, 56] 38.0 [28, 82] 55.0 1,280

AlexNet (UNSEEN) [28, 28] 28.0 [40, 40] 40.0 800

VGG (UNSEEN) [38, 54] 46.7 [55, 79] 68.0 870

OverFeat (UNSEEN) [28, 28] 28.0 [40, 40] 40.0 800

ResNet-V2 (UNSEEN) [242, 796] 493.5 [413, 1,382] 852.9 656

GRU (UNSEEN) [20, 56] 38.0 [28, 82] 55.0 1,280

Total [12, 796] 102.9 [16, 1,382] 170.6 10,238

unseen by DNNPerf because their configurations do not exist in

the training set and are only used to evaluate the generalization

ability of DNNPerf (Section V-B). These ten models are

representative in computer vision, speech recognition, and

natural language processing, among which some (such as RNN,

LSTM, and GRU) are also widely used in various deep-learning-

for-software-engineering applications [51]–[54]. The second is

a NAS (Neural Architecture Search) [27] dataset, containing

8,403 configurations of NAS-searched models.

HPO dataset. We choose representative DL models from

the TensorFlow-Slim model library [55] and adopt a random

strategy based on the provided APIs to generate the model

configurations. We consider the batch size (16, 32, 48, 64,

80, 96, 112, and 128), number of input channels (1, 3, 5,

7, and 9), input height (224), and input width (224) as the

tuned hyperparameters. For VGG, we use different value

domains of the batch size (interval [16, 128]) and number of

input channels (interval [1, 10]). For AlexNet, OverFeat, and

LeNet, we additionally take the number of output channels

of their Conv2D operators as a tuned hyperparameter and

set its domain to an interval [default × 0.5, default × 2]. For

VGG model configurations, we generate them randomly from

the VGG-11, VGG-16, and VGG-19 models. Similarly, for

ResNet-V1 and ResNet-V2 model configurations, we generate

them randomly from the ResNet-50, ResNet-101, ResNet-152,

and ResNet-200 models. For Inception-V3, we assign random

numbers to the min_depth, depth_multiplier, and

end_point parameters of the Inception API. The statistics

of the HPO dataset are shown in Table III.

NAS dataset. We use the NAS search space illustrated

in Figure 4 to generate model configurations. The model

skeleton consists of combinations of several operator cells (e.g.,

Cell Types 1–5). Each cell contains a diverse combination of

different operators (e.g., Conv2D, Dense, and MaxPool2D)

and hyperparameters. The tuned hyperparameters include: (1)

batch size (16, 32, 48, 64, 80, 96, 112, and 128), input height

(224), input width (224), and number of input channels (1, 3, 5,

7, and 9); (2) number of output channels (16, 32, 64, 96, 128,

160, 256, 512, and 1,024) and kernel size (1× 1, 3× 3, and

5×5) for Conv2D; (3) kernel size (2×2) for MaxPool2D; (4)

number of units (128, 256, 512, 768, and 1,024) for Dense.

We use the “same” padding for each Conv2D operator to

avoid shape errors. The cells also contain randomly generated

Fig. 4: Example neural architectures in the NAS dataset.

TABLE IV
STATISTICS OF THE NAS DATASET.

Node # Total [20, 29] [30, 39] [40, 49] [50, 70]

Config # 8,403 499 4,445 2,974 485

Edge # Total [35, 49] [50, 64] [65, 79] [80, 115]

Config # 8,403 2,071 4,183 1,797 352

Dropout and MaxPool2D operators. The statistics of the

NAS dataset are shown in Table IV.

The first few iterations are bypassed until the training has

been stable. Afterward, we measure the runtime performance

(i.e., execution time and peak GPU memory consumption) of

three iterations and compute the average values.

B. Baselines

To compare with the GNN-based model of DNNPerf, we

consider the following models as baselines:

1) BiRNN (Bidirectional RNN) [5] is a two-layer bidirec-

tional RNN [35] with the LSTM [47] cell. Node features

include the name, type, and computation cost of the

operator, computed in the same way as the initial node

features of DNNPerf. We feed the node feature vectors to

BiRNN as an input sequence according to the topological

order of the computation graph. This baseline allows us

to identify how effective the GNN is in capturing the

data flow information of a computation graph.

2) ARNN (Adjacency BiRNN) [5] is an extension of

BiRNN [5]. The feature vector of a node is updated

by computing the average of vectors of predecessors,

successors, and itself. ARNN is a strong baseline because

it takes some structural information of a computation

graph into account.

3) MLP (Multilayer Perceptron) [39] is a traditional machine

learning model. Prior work [19] used it to predict operator

execution time. We evaluate MLP with the same node

features that DNNPerf uses.

4) GBDT (Gradient Boost Decision Tree) [28] is also a

traditional machine learning model. It was used by Chen

et al. [56] for encoding loop programs. GBDT uses the

same features as MLP.



5) BRP-NAS (Binary Relation Predictor-based NAS) [57]

is a graph convolutional network for the NAS dataset. It

encodes only graph topology, regardless of the runtime

factors (e.g., compute and I/O) of nodes and edges.

We have implemented BiRNN, ARNN, MLP, and BRP-

NAS with PyTorch v1.5.0 [30]; for GBDT, we use the built-in

functionality of scikit-learn v0.20.3 [58]. To tune these models,

we select the following hyperparameter values. For BiRNN and

ARNN, the learning rate is 0.0001, layer size is 1, and hidden

size is 512. For MLP, the learning rate is 0.001, and the number

of units of each layer is 512, 128, 16, and 1, respectively. For

GBDT, the learning rate is 0.01, the max tree depth is 30, and

the number of trees is 200. For BRP-NAS, the learning rate is

0.0001.

C. Implementation and Settings of DNNPerf

We have implemented DNNPerf with DGL (Deep Graph

Library) [59] v0.4.3, a package built on top of PyTorch for

easy implementation of graph neural networks.

We tune the hyperparameters of our GNN-based model on

the validation dataset by grid search [60]. The MLP uses hidden

layers of 512, 128, and 16 units; the size of the final output is

1. The number of message-passing rounds of ANEE is set to

3 (training time prediction) or 1 (GPU memory consumption

prediction). We use the Adam [34] optimizer with default

parameter values (α = 0.9 and β = 0.999), set the batch

size to 64 and the initial learning rate to 0.0001, and train

our model for 250 epochs (training time prediction) or 200

epochs (GPU memory consumption prediction). After tuning,

our model scales to about 737.2 graphs per second during

the training and about 1,800 graphs per second during the

inference. These graphs have 73.7 nodes and 119.7 edges on

average.

D. Evaluation Metrics

To assess the effectiveness of DNNPerf, we use the mean
relative error (MRE) and root-mean-square error (RMSE):

MRE =

∑N
i=1

∣∣∣ ŷi−yi

yi

∣∣∣
N

× 100% ,

RMSE =

√∑N
i=1(ŷi − yi)2

N
.

N is the number of data samples in the test set; ŷi and yi are the

predicted and realistic performance values of the i-th sample,

respectively. We choose these two metrics because they are

widely used to measure the accuracy of prediction models [11],

[18], [19]. The smaller the error, the higher the prediction

accuracy. For the prediction of GPU memory consumption and

training time, the units of RMSE values are gigabytes (GB)

and milliseconds (ms), respectively.

V. EVALUATION

We evaluate our proposed approach by addressing the

following Research Questions (RQs):

TABLE V
OVERALL EXPERIMENTAL RESULTS.

Model Prediction of Training Time
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 7.4 20.8 20.9 18.0 31.0 95.2

RMSE (ms) 58.5 151.4 113.9 106.2 122.6 335.4

HPO
MRE (%) 7.8 21.6 22.2 19.4 33.1 86.7

RMSE (ms) 51.9 107.7 95.2 94.7 120.4 294.3

NAS
MRE (%) 6.3 18.4 16.9 13.5 24.4 122.3

RMSE (ms) 75.7 242.6 159.5 136.4 129.3 441.0

Model Prediction of GPU Memory Consumption
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 13.7 22.3 25.5 21.5 15.6 33.7

RMSE (GB) 1.8 2.8 2.9 2.3 2.2 4.1

HPO
MRE (%) 13.2 22.1 26.7 22.1 14.2 31.5

RMSE (GB) 1.8 2.8 3.0 2.4 2.1 4.2

NAS
MRE (%) 15.3 22.8 21.7 19.4 20.2 40.5

RMSE (GB) 1.8 2.8 2.4 2.0 2.4 4.0

RQ1: How effective is DNNPerf in predicting runtime perfor-

mance?

RQ2: How general is DNNPerf to unseen DL models?

RQ3: How effective is DNNPerf in the ablation study?

Our experiments are conducted on an Azure Standard ND24s

virtual machine [61], which has 24 Intel Xeon E5-2690V4

(2.60 GHz, 35M Cache) vCPUs, 448 GB main memory, and 4

NVIDIA Tesla P40 (24 GB GDDR5X memory) GPUs, running

Ubuntu 18.04.

A. RQ1: How effective is DNNPerf in predicting the runtime
performance?

In this section, we compare DNNPerf with five baselines

(Section IV-B) on the same test set. Table V shows the MRE

and RMSE values of all six approaches for predicting runtime

performance. On average (see the “Overall” rows), DNNPerf

achieves an MRE of 7.4% and an RMSE of 58.5 ms for the

training time prediction and an MRE of 13.7% and an RMSE of

1.8 GB for the GPU memory consumption prediction, exceeding

the best MRE/RMSE values of the baselines: 18.0%/106.2 from

MLP and 15.6%/2.2 from GBDT. More specifically, DNNPerf

outperforms BiRNN by 13.4%/92.9, ARNN by 13.5%/55.4,

MLP by 10.6%/47.7, GBDT by 23.6%/64.1, and BRP-NAS

by 87.8%/276.9 in terms of MRE/RMSE for the training time

prediction; DNNPerf outperforms BiRNN by 8.6%/1.0, ARNN

by 11.8%/1.1, MLP by 7.8%/0.5, GBDT by 1.9%/0.4, and

BRP-NAS by 20.0%/2.3 in terms of MRE/RMSE for the GPU

memory consumption prediction. We also experiment on the

HPO and NAS models separately. The results demonstrate

that DNNPerf still excels in the baselines and confirm its

effectiveness. We think the reason is that DNNPerf captures

richer and more diverse performance-related information from

the operator, hyperparameter, and neural architecture than the

other approaches.

Table VI shows the prediction results on the HPO dataset.

The test model configurations are derived from five represen-

tative real-world models: LeNet, ResNet-V1, Inception-V3,

Vanilla RNN, and LSTM, which are already seen by DNNPerf

because the training dataset contains their configurations.

We choose various hyperparameters and larger value ranges



TABLE VI
EXPERIMENTAL RESULTS ON HPO MODELS.

Model Prediction of Training Time
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 8.5 28.8 32.0 22.5 27.6 69.0

RMSE (ms) 36.8 89.3 94.0 74.4 60.2 226.8

LeNet
MRE (%) 3.9 27.2 15.5 14.6 43.5 69.2

RMSE (ms) 7.1 64.5 32.7 23.2 44.6 87.0

ResNet-V1
MRE (%) 4.1 7.5 11.4 7.4 8.3 61.7

RMSE (ms) 60.0 84.2 109.3 74.5 130.5 505.3

Inception-V3
MRE (%) 12.7 28.7 41.9 18.5 47.7 95.8

RMSE (ms) 41.2 58.3 70.1 31.3 53.6 175.2

RNN
MRE (%) 8.5 41.3 41.0 36.0 21.1 77.3

RMSE (ms) 20.8 91.4 91.4 77.0 36.8 154.6

LSTM
MRE (%) 7.5 27.7 29.4 26.2 7.8 29.9

RMSE (ms) 38.5 126.9 131.4 117.4 37.9 183.7

Model Prediction of GPU Memory Consumption
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 12.8 24.3 30.5 18.1 16.8 63.2

RMSE (GB) 1.5 2.7 3.2 1.8 1.3 4.6

LeNet
MRE (%) 11.4 19.9 20.1 15.8 15.1 46.5

RMSE (GB) 1.3 2.6 2.2 1.6 1.6 3.5

ResNet-V1
MRE (%) 8.7 15.3 16.3 9.7 7.4 31.1

RMSE (GB) 1.6 2.9 3.0 1.7 1.7 4.8

Inception-V3
MRE (%) 14.8 25.8 27.4 17.5 27.8 57.2

RMSE (GB) 1.2 1.9 1.9 1.4 1.2 2.7

RNN
MRE (%) 10.8 16.8 22.2 17.1 16.7 114.5

RMSE (GB) 0.8 1.1 1.5 0.9 0.9 4.7

LSTM
MRE (%) 14.7 36.0 54.6 24.9 7.9 46.9

RMSE (GB) 2.1 4.2 5.5 2.8 1.3 6.5

(Section IV-A) to increase the diversity of runtime performance.

DNNPerf achieves satisfactory precision and outperforms the

baseline approaches in most cases by a large margin. The

overall MRE/RMSE improvement over the baseline approaches

ranges from 14.0%/23.4 to 60.5%/190 in predicting the training

time and from 4.0%/0.3 to 50.4%/3.1 in predicting the GPU

memory consumption. We notice that the overall RMSE value

of GBDT for the GPU memory consumption prediction is

slightly better than DNNPerf since GBDT has advantages on

models whose operator types are relatively simple (e.g., LSTM

and ResNet-V1). The experimental results demonstrate that

DNNPerf is very stable to diverse hyperparameter options.

The NAS dataset exhibits a great diversity of neural

architectures because the numbers of nodes and edges are

broadly distributed. We divide the dataset into several subsets

according to value ranges of the node number (internals

[20, 29], [30, 39], [40, 49], and [50, 70]) and the edge number

(internals [35, 49], [50, 64], [65, 79], and [80, 115]) separately.

Then, we conduct one experiment for each subset and show

the prediction results using line charts in Figures 5 and 6.

DNNPerf still achieves satisfactory precision and outperforms

all the baseline approaches. The MRE values of DNNPerf over

different numbers of nodes range from 5.8% to 7.2% for the

training time prediction and from 14.8% to 15.9% for the GPU

memory consumption prediction; the RMSE values range from

25.4 to 154.5 and from 1.6 to 2.3, respectively. The MRE

values of DNNPerf over different numbers of edges range

from 5.9% to 7.0% for the training time prediction and from

14.8% to 16.6% for the GPU memory consumption prediction;

the RMSE values range from 50.6 to 153.2 and from 1.6 to

2.0, respectively. The experimental results demonstrate that

DNNPerf has good stability on diverse neural architectures.
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Fig. 5: Experimental results of the training time prediction on NAS models.
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Fig. 6: Experimental results of the GPU memory consumption prediction on
NAS models.

B. RQ2: How general is DNNPerf to unseen DL models?

In this section, we evaluate the generalization ability of

DNNPerf, which is critical for its practical use. We construct

a test set consisting of the model configurations of AlexNet,

VGG, OverFeat, ResNet-V2, and GRU — these five models

are unseen by DNNPerf, as the training set does not include

any of their model configurations.

Table VII lists the values of MRE and RMSE, with the

overall results of DNNPerf surpassing the baseline approaches.

The improvement in MRE/RMSE ranges from 10.9%/40.4 to

83.5%/253.9 for the training time prediction task and from

0.2%/0.4 to 12.4%/2.2 for the GPU memory consumption

prediction task. BRP-NAS does not perform well due to

its design, which is limited to a specific NAS search space

without modeling the runtime performance-related features.

Other methods fail to encode the complete computation graph

and hidden runtime factors (such as operator scheduling and

tensor liveness), leading to inferior results. In summary, the



TABLE VII
EXPERIMENTAL RESULTS ON UNSEEN MODELS.

Model Prediction of Training Time
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 7.7 19.8 19.8 18.6 34.5 91.2

RMSE (ms) 55.1 111.8 95.5 99.1 131.2 309.0

AlexNet
MRE (%) 11.9 22.5 18.4 21.6 85.4 291.1

RMSE (ms) 13.6 27.1 28.6 26.5 90.4 264.6

VGG
MRE (%) 7.3 13.3 10.1 16.8 12.6 41.6

RMSE (ms) 84.2 164.6 92.3 154.4 148.6 339.0

OverFeat
MRE (%) 7.5 20.7 24.9 16.2 58.5 65.4

RMSE (ms) 24.3 90.7 77.9 77.6 178.6 154.4

ResNet-V2
MRE (%) 5.7 7.2 10.6 5.9 9.9 65.0

RMSE (ms) 91.1 98.1 118.1 65.9 175.2 584.0

GRU
MRE (%) 6.3 28.2 28.7 26.0 15.2 29.3

RMSE (ms) 29.7 118.7 118.9 105.8 59.1 130.7

Model Prediction of GPU Memory Consumption
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 13.3 21.6 25.7 23.1 13.5 23.5

RMSE (GB) 1.9 2.8 3.0 2.6 2.3 4.1

AlexNet
MRE (%) 13.5 30.3 42.6 38.2 16.2 11.2

RMSE (GB) 1.3 2.6 3.5 3.2 1.5 0.9

VGG
MRE (%) 15.8 17.9 17.9 16.8 16.5 29.0

RMSE (GB) 2.3 3.2 2.6 2.4 3.0 4.6

OverFeat
MRE (%) 13.6 28.7 35.1 34.5 14.0 13.6

RMSE (GB) 1.2 2.5 3.0 3.0 1.3 1.1

ResNet-V2
MRE (%) 8.3 14.3 15.1 9.6 8.4 30.2

RMSE (GB) 1.6 2.8 2.9 1.7 1.8 4.7

GRU
MRE (%) 13.8 18.0 20.1 17.8 12.1 30.3

RMSE (GB) 2.3 3.0 3.0 2.4 2.8 5.5

experimental results show that DNNPerf possesses strong

generalization ability.

C. RQ3: How effective is DNNPerf in the ablation study?

In this section, we run additional experiments to study the

impact of alternative design choices of DNNPerf, such as the

graph encoding and feature normalization methods:

1) DNNPerf-GAT replaces the ANEE layer (Section III-D)

with GAT [23]. Since GAT cannot perform local en-

coding on edge features through message passing, this

experiment aims to evaluate the effectiveness of ANEE.

2) DNNPerf-StandardScaler employs StandardScaler [62]

to normalize features “by removing the mean and scaling

to unit variance.” [58] This experiment aims to evaluate

which normalization method is more effective.

3) DNNPerf-NoTensorCost excludes the tensor size and

computation cost features listed in Tables I and II.

This experiment aims to evaluate the impact of runtime

performance-related features.

4) DNNPerf-ConcatEdge computes the sum of the node and

edge features separately, concatenates the results into a

vector, and inputs the vector to MLP.

5) DNNPerf-AvgReadout calculates the average of all

node features before feeding them into MLP. DNNPerf-

AvgReadout and the above DNNPerf-ConcatEdge are

used to evaluate the effectiveness of different global

aggregation methods.

Table VIII shows the overall prediction results of DNNPerf

and other variants on the complete test set. Firstly, after

replacing our ANEE encoder with GAT, the prediction accuracy

is decreased: the overall MRE/RMSE values increase by

4.3%/42.8 for the training time prediction and 3.4%/0.2 for

TABLE VIII
ABLATION STUDY.

Ablation Training Time GPU Memory Consumption
Description MRE (%) RMSE (ms) MRE (%) RMSE (GB)

DNNPerf 7.4 58.5 13.7 1.8
DNNPerf-GAT 11.7 101.3 17.1 2.0

DNNPerf-StandardScaler 11.8 56.0 15.0 2.0

DNNPerf-NoTensorCost 15.9 91.7 24.4 3.3

DNNPerf-ConcatEdge 8.0 60.5 15.2 1.9

DNNPerf-AvgReadout 20.9 100.9 19.8 2.4

the GPU memory consumption prediction. Nevertheless, the

training throughput and execution time of DNNPerf-GAT

improved from 737.2 graphs/second and 7.42 ms to 847.3

graphs/second and 4.74 ms. We do not try EGNN [24] because

it is much more costly than GAT in training (about 3X

slower). Secondly, the MinMaxScaler normalization method

outperforms StandardScaler in three out of four cases, showing

its effectiveness and stability. Although the RMSE value of

the training time prediction using StandardScaler is slightly

lower, the difference is very small. Thirdly, we find that

the features of the tensor size and computation cost are

noticeably effective for the runtime performance prediction.

After excluding them, the overall MRE/RMSE values increase

by 8.5%/33.2 for the training time prediction and 10.7%/1.5 for

the GPU memory consumption prediction. Finally, the results

of DNNPerf-ConcatEdge and DNNPerf-AvgReadout show that

concatenating the node and edge features and averaging the

node features do not improve prediction accuracy. The current

global aggregation, which sums all the node features, is more

suitable to represent the accumulated runtime performance of

a computation graph.

VI. DISCUSSION

A. Extensibility of DNNPerf

Currently, DNNPerf has supported representative real-world

DL models and 70+ types of operators. Users can extend

its capabilities by incorporating new operators to support

additional models. To add a new operator, users need to

formulate the features analytically based on its semantics and

implement the corresponding feature extraction scripts. Users

must also provide training data that contains the new operator.

DNNPerf can be easily adapted to predict a variety of

runtime performance metrics for both model training and

inference, such as inference time, GPU utilization, and GPU

power consumption. To achieve this, users need to collect new

training data with the relevant metrics as labels. Note that for

prediction tasks related to model inference, the front-end parser

should exclude operators involved in backpropagation from the

computation graph.

B. Training Cost of DNNPerf

A larger training dataset is generally helpful in increasing

the accuracy of a prediction model. However, the training

overhead also increases and may exceed what users can afford.

In this section, we report the training cost and accuracy of

DNNPerf on five datasets of varying sizes in Table IX. The

original training dataset comprises 9,964 model configurations



TABLE IX
TRAINING COST AND ACCURACY OF DNNPERF ON FIVE DATASETS OF

DIFFERENT SIZES.

Sample Memory Memory Time Time Collection Training
Size (Ratio) RMSE (GB) MRE (%) RMSE (ms) MRE (%) Time Time

9,964 (100%) 1.8 13.7 58.5 7.4 2.9 h (20 collectors) 2.5 h

4,982 (50%) 2.0 16.5 96.4 16.2 2.9 h (10 collectors) 1.5 h

1,992 (20%) 2.4 20.5 118.9 18.5 3.8 h (3 collectors) 1.0 h

996 (10%) 2.6 23.6 120.2 18.5 2.9 h (2 collectors) 30 min

498 (5%) 2.7 24.4 141.5 24.1 2.9 h (1 collector) 27 min

(excluding the testing and unseen ones), from which the other

datasets are randomly generated.

The collection of training data is efficient, as it can be

done in parallel, resulting in modest collection costs. For

instance, we collected the original training dataset in just 2.9

hours using twenty collectors, which is equal to collecting

the smallest dataset of 498 model configurations using one

collector. The more collectors, the less collection time. In

addition, training our GNN-based model is relatively quick, as

we completed the training with the original dataset in 2.5 hours.

Shrinking the dataset shortens the training time noticeably, but

the accuracy of DNNPerf also decreases. However, the results

are still acceptable because the MRE values remain within 25%

even with only 498 training samples. Our findings indicate

that DNNPerf can be easily adapted to a new deployment

environment at a reasonable cost.

C. Generality of DNNPerf

Our GNN-based approach is general and can be adapted

to other DL frameworks, such as PyTorch, as well as other

devices, such as the NVIDIA P100. To assess the generality

of DNNPerf, we have collected a total of 5,064 HPO (Hyper-

parameter Optimization) model configurations implemented

using PyTorch v1.5.1 on a single NVIDIA P100 GPU.

Because the framework implementation and hyperparameters

(e.g., the padding) of PyTorch are different from those of

TensorFlow, we apply Batch Normalization [63] to normalize

the data prior to the MLP layer of DNNPerf. In addition,

the input tensor size feature is enhanced to prevent the batch

size information from disappearing. We set the number of

message-passing rounds in ANEE to 2 and the learning rate

to 0.001.

The HPO dataset comprises the configurations of six real-

world DL models (AlexNet [48], LeNet [45], ResNet-V1 [1],

VGG-11, VGG-16, VGG-19 [25], and Inception-V3 [46]). The

specific combinations of hyperparameter values are outlined in

Section IV-A. The full dataset was randomly split for training

(80%) and testing (20%). We then retrained DNNPerf (for 200

epochs) and the baselines using the new dataset.

As shown in Table X, the experimental results show that the

overall MRE/RMSE improvement over the baseline approaches

ranges from 12.4%/20.5 to 94.4%/46.5 in predicting the training

time and from 0.3%/1.6 to 45.0%/2.2 in predicting the GPU

memory consumption. These findings indicate that DNNPerf

can be adapted to various frameworks and devices.

D. Stability of the Training Time across Iterations

Practical model training usually lasts many iterations. Since

it is an iterative process, the training time across iterations

TABLE X
EXPERIMENTAL RESULTS OF THE PYTORCH HPO MODELS ON ONE

NVIDIA P100 GPU.

Model Prediction of Training Time
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 18.491 105.3 93.1 68.8 112.9 30.9

RMSE (ms) 26.5 47.8 48.1 47.0 54.9 73.0

LeNet
MRE (%) 22.7 104.2 90.1 36.5 130.2 12.8

RMSE (ms) 20.7 22.2 21.9 21.6 20.3 21.6

ResNet-V1
MRE (%) 11.4 69.0 63.5 53.2 69.8 18.4

RMSE (ms) 18.5 28.1 27.6 26.8 27.2 27.3

Inception-V3
MRE (%) 11.2 8.7 8.6 10.7 14.2 66.0

RMSE (ms) 32.5 60.3 60.8 58.9 76.4 130.3

VGG
MRE (%) 39.6 248.1 199.2 230.4 250.2 46.5

RMSE (ms) 42.8 83.2 84.0 83.2 93.2 96.3

Model Prediction of GPU Memory Consumption
Name Metrics DNNPerf BiRNN ARNN MLP GBDT BRP-NAS

Overall
MRE (%) 14.6 59.5 51.8 14.9 17.5 44.6

RMSE (ms) 1.2 3.0 2.8 1.2 0.8 3.4

LeNet
MRE (%) 35.5 74.1 66.0 36.9 17.5 53.7

RMSE (ms) 2.2 4.2 4.1 2.2 0.6 3.1

ResNet-V1
MRE (%) 4.1 26.5 17.4 4.5 4.9 8.9

RMSE (ms) 0.6 3.0 2.0 0.6 0.6 1.1

Inception-V3
MRE (%) 7.5 7.6 15.5 9.6 9.0 53.9

RMSE (ms) 0.7 0.8 1.1 0.9 0.9 4.0

VGG
MRE (%) 11.6 41.5 40.5 11.0 10.6 92.7

RMSE (ms) 1.2 3.1 3.3 1.1 1.0 5.6

should be identical, provided a model has no control-flow

operators or dynamic structural changes (Section III-A). In

order to analyze such stability, we conducted 16 experiments

on the VGG, ResNet-V1, Inception-V3, and LSTM models

under both TensorFlow and PyTorch. We trained every model

configuration for an epoch of 1,000 iterations. Our analysis of

the collected data from each iteration (excluding the warm-up

ones) shows that the training time across iterations is fairly

stable, with a relative standard error (i.e., standard error [64]

divided by the mean) ranging from 0.2% to 1.6%. Therefore,

although DNNPerf predicts the training time per iteration, we

can still calculate the total training time by multiplying the

iteration count.

E. Threats to Validity

Threats to Internal Validity. We examine the framework

source code carefully to extract many performance-related

factors as the features, such as the tensor size, operator

computation cost (FLOPs), and device bandwidth (Tables I

and II). However, there exist hidden factors resulting in

unexpected fluctuations in runtime performance. For instance,

the proprietary NVIDIA CUDA, cuDNN, and cuBLAS APIs

invoked by the operator implementations use unpredictable

temporary GPU memory called workspace to boost runtime

performance. We refine our feature extraction to mitigate this

threat: we consult the NVIDIA development documentation,

profile the APIs using nvprof, and analyze the framework

runtime logs.

Threats to External Validity. In reality, there exist many

different kinds of DL models and fairly large configuration

spaces, which may reduce the effectiveness of DNNPerf. We

mitigate this threat by (1) enlarging the training set with more

diverse neural architectures and hyperparameter combinations;

(2) supporting more types of DL operators. The experimental



results confirm that DNNPerf is generally effective, even on the

configurations of unseen DL models (Section V-B). Another

threat is that we collect and evaluate configurations of only

TensorFlow [29] and PyTorch [30] models, but there are other

DL frameworks such as MXNet [65]. However, since these

frameworks use the same abstraction to represent models

and have similar runtime implementations, we believe that

our approach is general and can be adapted to support other

frameworks.

VII. RELATED WORK

Performance prediction for configurable systems. Many

researchers focus on predicting the performance of configurable

systems in a deployment environment [11]–[16], [66]–[68].

For example, DeepPerf [11] used less training data to train

a deep sparse neural network but still achieved much higher

prediction accuracy. It treated a configurable system as a black

box and ignored its internal mechanism since the system was

too large and complex. In contrast, our work analyses both DL

models and framework implementations carefully to extract

performance-related features as much as possible.

Performance prediction for DL models. Recently, there

have been some studies on predicting the runtime performance

of DL models [17]–[20], [57], [69]. For example, Paleo [17]

estimated execution time from FLOPs, and DNNMem [18]

pre-built an analytic model for GPU memory consumption es-

timation. However, these analytic approaches require extensive

manual work and are limited to specific tasks. Daniel et al. [19]

trained a DL model to predict the execution time of parts of a

target model, which could then be combined to estimate the

whole execution time. However, this approach ignored graph-

level factors that could impact performance, such as kernel

algorithm selection. Yeung et al. [20] predicted GPU utilization

based on FLOPS, input data size, and number of convolutional

layers, but did not consider other important factors such as

neural architecture, operator execution order, and I/O cost. The

AutoML community has also expressed interest in predicting

the learning performance (e.g., predictive accuracy) of DL

models [57], [70]–[77]. For instance, BRP-NAS “proposed a

GCN-based predictor for the end-to-end latency,” [57] using

operator type and computation graph structure as features;

however, its generalization ability of cross-model prediction

is limited. PPP-Net employed a Recurrent Neural Network

(RNN) to predict accuracy from the neural architecture, which

“avoided time-consuming training to obtain true accuracy but

with a slight drawback of regression error.” [70] Compared

to previous work, DNNPerf captures not only operator-level

features but also computation graph information and hidden

factors within frameworks. Our general GNN-based approach

requires less manual effort and delivers improved prediction

results.

VIII. CONCLUSION

In this paper, we have presented DNNPerf, a novel runtime

performance prediction tool for deep learning models. We

investigate performance-related features that are derived from

both the semantics of computation graphs and the hidden

factors of frameworks. By employing a GNN-based approach,

DNNPerf encodes these features and accurately predicts

training time and GPU memory consumption. DNNPerf is

also effective and robust to various choices of hyperparameters

and neural architectures, even to unseen models.
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