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Abstract

We consider the adaptive influence maximization problem: given a network and a bud-
get k, iteratively select k seeds in the network to maximize the expected number of adopters.
In the full-adoption feedback model, after selecting each seed, the seed-picker observes all the
resulting adoptions. In the myopic feedback model, the seed-picker only observes whether
each neighbor of the chosen seed adopts. Motivated by the extreme success of greedy-
based algorithms/heuristics for influence maximization, we propose the concept of greedy
adaptivity gap, which compares the performance of the adaptive greedy algorithm to its
non-adaptive counterpart. Our first result shows that, for submodular influence maximiza-
tion, the adaptive greedy algorithm can perform up to a (1− 1/e)-fraction worse than the
non-adaptive greedy algorithm, and that this ratio is tight. More specifically, on one side
we provide examples where the performance of the adaptive greedy algorithm is only a
(1−1/e) fraction of the performance of the non-adaptive greedy algorithm in four settings:
for both feedback models and both the independent cascade model and the linear threshold
model. On the other side, we prove that in any submodular cascade, the adaptive greedy
algorithm always outputs a (1− 1/e)-approximation to the expected number of adoptions
in the optimal non-adaptive seed choice. Our second result shows that, for the general
submodular diffusion model with full-adoption feedback, the adaptive greedy algorithm
can outperform the non-adaptive greedy algorithm by an unbounded factor. Finally, we
propose a risk-free variant of the adaptive greedy algorithm that always performs no worse
than the non-adaptive greedy algorithm.

1. Introduction

The influence maximization problem (InfMax) is an optimization problem that asks which
seeds a viral marketing campaign should target (e.g. by giving free products) so that
the propagation from these seeds influences the most people in a social network. That
is, given a graph, a stochastic diffusion model defining how each node is infected by its
neighbors, and a limited budget k, how to pick k seeds such that the expected number of
total infected nodes in this graph at the end of the diffusion is maximized. This problem
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has significant applications in viral marketing, outbreak detection, rumor controls, etc, and
has been extensively studied (cf. Chen et al. (2013), Li et al. (2018)).

For InfMax, most of the existing work has considered submodular diffusion models,
especially the independent cascade model and the linear threshold model (Kempe et al.,
2003). Likewise, we also focus on submodular diffusion models. In submodular diffusion
models, a vertex v’s marginal probability of becoming infected after a new neighbor t
is infected given S as the set of v’s already infected neighbors is at least the marginal
probability that v is infected after t is newly infected given T ⊇ S as the set of v’s already
infected neighbors (see the paragraph before Theorem 2.4 for more details). Intuitively, this
means that the influence of infected nodes are substitutes and never have synergy.

When submodular InfMax is considered, nearly all the known algorithms/heuristics are
based on a greedy algorithm that iteratively picks the seed that has the largest marginal
influence. Some of them improve the running time of the original greedy algorithm by
skipping vertices that are known to be suboptimal (Leskovec et al., 2007; Goyal et al.,
2011a), while the others improve the scalability of the greedy algorithm by using more
scalable algorithms to approximate the expected total influence (Borgs et al., 2014; Tang
et al., 2014, 2015; Cheng et al., 2013; Ohsaka et al., 2014) or computing a score of the
seeds that is closely related to the expected total influence (Chen et al., 2009, 2010a, 2010b;
Goyal et al., 2011b; Jung et al., 2012; Galhotra et al., 2016; Tang et al., 2018; Schoenebeck
& Tao, 2019b). Arora et al. (2017) benchmark most of the aforementioned variants of the
greedy algorithms.

In this paper, we study the adaptive influence maximization problem, where seeds are
selected iteratively and feedback is given to the seed-picker after selecting each seed. Two
different feedback models have been studied in the past: the full-adoption feedback model
and the myopic feedback model (Golovin & Krause, 2011). In the full-adoption feedback
model, the seed-picker sees the entire diffusion process of each selected seed, and in the
myopic feedback model the seed-picker only sees whether each neighbor of the chosen seed
is infected.

Past literature focused on the adaptivity gap—the ratio between the performance of
the optimal adaptive algorithm and the performance of the optimal non-adaptive algo-
rithm (Golovin & Krause, 2011; Peng & Chen, 2019; Chen & Peng, 2019). However,
even in the non-adaptive setting, InfMax is known to be APX-hard (Kempe et al., 2003;
Schoenebeck & Tao, 2019b). As a result, in practice, it is not clear whether the adaptivity
gap can measure how much better an adaptive algorithm can do.

In this paper, we define and consider the greedy adaptivity gap, which is the ratio between
the performance of the adaptive greedy algorithm and the non-adaptive greedy algorithm.
We focus on the gap between the greedy algorithms for three reasons. First, as we men-
tioned, the APX-hardness of InfMax renders the practical implications of the adaptivity
gap unclear. Second, as we remarked at the beginning, the greedy algorithm is used almost
exclusively in the context of influence maximization. Third, the iterative nature of the
original greedy algorithm naturally extends to the adaptive setting.

304



Adaptive Greedy versus Non-Adaptive Greedy for Influence Maximization

1.1 Our Results

We show that, for the general submodular diffusion models, with both the full-adoption
feedback model and the myopic feedback model, the infimum of the greedy adaptivity
gap is exactly (1 − 1/e) (Section 3). In addition, this result can be extended to the two
well-studied submodular diffusion models: the independent cascade model and the linear
threshold model. This is proved in two steps.

As the first step, in Section 3.1, we show that there are InfMax instances where the
adaptive greedy algorithm can only produce (1−1/e) fraction of the influence of the solution
output by the non-adaptive greedy algorithm. This result is surprising: one would expect
that the adaptivity is always helpful, as the feedback provides more information to the seed-
picker, which makes the seed-picker refine the seed choices in future iterations. Our result
shows that this is not the case, and the feedback, if overly used, can make the seed-picker
act in a more myopic way, which is potentially harmful.

As the second step, in Section 3.2, we show that the adaptive greedy algorithm always
achieves a (1−1/e)-approximation of the non-adaptive optimal solution, so its performance
is always at least a (1 − 1/e) fraction of the performance of the non-adaptive greedy al-
gorithm. In particular, combining the two steps, we see that when the adaptive greedy
algorithm output only obtains a (nearly) (1− 1/e)-fraction of the performance of the non-
adaptive greedy algorithm, the non-adaptive greedy algorithm is (almost) optimal. This
worst-case guarantee indicates that the adaptive greedy algorithm will never be too bad.

As the second result, in Section 4, we show that the supremum of the greedy adaptivity
gap is infinity, for the general submodular diffusion model with full-adoption feedback. This
indicates that the adaptive greedy algorithm can perform significantly better than its non-
adaptive counterpart. We also show, with almost the same proof, that the adaptivity gap
in this setting (general submodular model with full-adoption feedback) is also unbounded.

All the results above hold for the “exact” deterministic greedy algorithm where a vertex
with the exact maximum marginal influence is chosen as a seed in each iteration. However,
most variants of the greedy algorithm used in practice are randomized algorithms that find a
seed with a marginal influence close to the maximum with high probability in each iteration.
In Section 5, we discuss how our results for the exact greedy algorithm can be adapted to
those greedy algorithms used in practice.

Finally, in Section 6, we propose a risk-free but more conservative variant of the adap-
tive greedy algorithm, which always performs at least as well as the non-adaptive greedy
algorithm. In Section 7, we compare this variant of the adaptive greedy algorithm with
the adaptive greedy algorithm and the non-adaptive greedy algorithm by implementing
experiments on social networks in our daily lives.

1.2 Related Work

The influence maximization problem was initially posed by Domingos and Richardson
(2001), Richardson and Domingos (2002). Kempe et al. (2003) proposed the linear threshold
model and the independent cascade model, and show that they are submodular. Whenever
a diffusion model is submodular, the greedy algorithm was shown to obtain a (1 − 1/e)-
approximation to the optimal number of infections (Nemhauser et al., 1978; Kempe et al.,
2003, 2005; Mossel & Roch, 2010). For undirected networks, the greedy algorithm pro-

305



Chen, Peng, Schoenebeck, & Tao

vides a (1 − 1/e + c)-approximation for some constant c > 0 for the independent cascade
model (Khanna & Lucier, 2014), while the approximation guarantee of the greedy algorithm
for the linear threshold model is still asymptotically (1 − 1/e) (i.e., the constant improve-
ment +c to the approximation guarantee in the independent cascade model does not occur
in the linear threshold model) (Schoenebeck et al., 2020).

For adaptive InfMax, Golovin and Krause (2011) showed that InfMax with the inde-
pendent cascade model and full-adoption feedback is adaptive submodular1, which implies
that the adaptive greedy algorithm obtains a (1− 1/e)-approximation to the adaptive opti-
mal solution. On the other hand, InfMax for the independent cascade model with myopic
feedback, as well as InfMax for the linear threshold model with both feedback models,
are not adaptive submodular. In particular, the adaptive greedy algorithm fails to obtain
a (1− 1/e)-approximation for the independent cascade model with myopic feedback (Peng
& Chen, 2019). Peng and Chen (2019) showed that the adaptivity gap for the indepen-
dent cascade model with myopic feedback is at most 4 and at least e/(e− 1), and they also
showed that both the adaptive and non-adaptive greedy algorithms perform a 0.25(1−1/e)-
approximation to the adaptive optimal solution. D’Angelo et al. (2021b) improved these re-
sults by showing that the adaptivity gap under the same setting is at most 2e/(e−1) ≈ 3.164
and non-adaptive greedy algorithms perform a 0.5(1− 1/e)-approximation. The adaptivity
gap for the independent cascade model with full-adoption feedback, as well as the adaptiv-
ity gap for the linear threshold model with both feedback models, are still open problems,
although there is some partial progress (Chen & Peng, 2019; D’Angelo et al., 2021a).

Our paper is not the first work studying the adaptive greedy algorithm. Previous work
focused on improving the running time of the adaptive greedy algorithm (Han et al., 2018;
Sun et al., 2018). However, to the best of our knowledge, our work is the first one that
compares the adaptive greedy algorithm to its non-adaptive counterpart.

Finally, we remark that there do exist InfMax algorithms that are not based on
greedy (Bharathi et al., 2007; Goldberg & Liu, 2013; Angell & Schoenebeck, 2017; Schoenebeck
& Tao, 2017, 2019a; Schoenebeck et al., 2019), but they are typically for non-submodular
diffusion models.

We summarize the existing results about the adaptivity gap and our new results about
the greedy adaptivity gap in Table 1.

2. Preliminaries

All graphs in this paper are simple and directed. Given a graph G = (V,E) and a vertex
v ∈ V , let Γ(v) and deg(v) be the set of in-neighbors and the in-degree of v respectively.

1. Informally, if we have two observations ϕ1 and ϕ2 such that ϕ2 includes ϕ1 (i.e., the status of all the
edges/vertices observed in ϕ1 are also observed in ϕ2), adaptive submodularity says that the marginal
increment of the total expected number of infections when including an extra seed s given ϕ1 is no less
than the marginal increment of the total expected number of infections when including the extra seed
s given ϕ2. We refer the readers to Reference (Golovin & Krause, 2011) for the formal definition of
adaptive submodularity.
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model AG GAG inf GAG sup

ICM, full-adoption
≥ e/(e− 1)
(Chen & Peng, 2019)

1− 1/e
(Thm 3.1)

unknown

ICM, myopic

≥ e/(e− 1), ≤ 4
(Peng & Chen, 2019)
≤ 2e/(e− 1)
(D’Angelo et al., 2021b)

1− 1/e
(Thm 3.1)

≤ 4e/(e− 1)
(Peng & Chen, 2019)
≤ 2e2/(e− 1)2

(D’Angelo et al., 2021b)

LTM, full-adoption unknown
1− 1/e
(Thm 3.1)

unknown

LTM, myopic unknown
1− 1/e
(Thm 3.1)

unknown

GSM, full-adoption ∞ (Thm 4.2)
1− 1/e
(Thm 3.1)

∞ (Thm 4.1)

GSM, myopic
≥ e/(e− 1)
(Peng & Chen, 2019)

1− 1/e
(Thm 3.1)

unknown

Table 1: Results for the adaptivity gap (AG), the infimum of the greedy adaptivity gap
(GAG inf) and the supremum of the greedy adaptivity gap (GAG sup), where
ICM stands for the independent cascade model, LTM stands for the linear threshold
model, and GSM stands for the general submodular diffusion model.

2.1 Triggering Model

We consider the well-studied triggering model (Kempe et al., 2003), which is commonly
used to capture “general” submodular diffusion models. A more general way to capture
submodular diffusion models is the general threshold model (Kempe et al., 2003) with sub-
modular local influence functions. All our results hold under this setting as well. We will
discuss this in Appendix B.

Definition 2.1 (Kempe et al. (2003)). The triggering model, IG,F , is defined by a graph
G = (V,E) and for each vertex v a distribution Fv over all the subsets of its in-neighbors
{0, 1}|Γ(v)|. Let F = {Fv | v ∈ V }.

On an input seed set S ⊆ V , IG,F (S) outputs a set of infected vertices as follows:
1. Initially, only vertices in S are infected. Each vertex v samples a subset of its in-

neighbors Tv ⊆ Γ(v) from Fv independently. We call Tv the triggering set of v.
2. In each subsequent round, a vertex v becomes infected if a vertex in Tv is infected in

the previous round.
3. After a round where no additional vertices are infected, the set of infected vertices is

the output.

IG,F in Definition 2.1 can be viewed as a random function IG,F : {0, 1}|V | → {0, 1}|V |.
In addition, if the triggering set Tv is fixed for each vertex v, then IG,F is deterministic.
Given v, its triggering set Tv, and an in-neighbor u ∈ Γ(v), we say that the edge (u, v)
is live if u ∈ Tv, and we say that (u, v) is blocked if u /∈ Tv. It is easy to see that, when
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the triggering sets for all vertices are sampled, IG,F (S) is the set of all vertices that are
reachable from S when removing all blocked edges from the graph.

We define a realization of a graph G = (V,E) as a function φ : E → {L, B} such that

φ(e) = L if e ∈ E is live and φ(e) = B if e ∈ E is blocked. Let IφG,F : {0, 1}|V | → {0, 1}|V |
be the deterministic function corresponding to the triggering model IG,F with vertices’
triggering sets following realization φ. We write φ ∼ F to indicate that a realization φ is
sampled according to F = {Fv}.

The triggering model captures the well-known independent cascade and linear threshold
models. In the two definitions below, we define the two models in terms of the triggering
model, which is sufficient for this paper. In Appendix A, we present the original definitions
and give some intuitions for the two models for those readers who are not familiar with
them.

Definition 2.2. The independent cascade model ICM is a special case of the triggering model
IG,F where G = (V,E,w) is an edge-weighted graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E
and Fv is the distribution such that each u ∈ Γ(v) is included in Tv with probability w(u, v)
independently.

Definition 2.3. The linear threshold model LTM is a special case of the triggering model
IG,F where G = (V,E,w) is an edge-weighted graph with w(u, v) > 0 for each (u, v) ∈ E
and

∑
u∈Γ(v)w(u, v) ≤ 1 for each v ∈ V , and Fv is the distribution defined as follows: order

v’s in-neighbors u1, . . . , uT arbitrarily (where T is the in-degree of v), sample a real number
r in [0, 1] uniformly, and

Tv =

{
{ut} if r ∈

[∑t−1
i=1 w(ui, v),

∑t
i=1w(ui, v)

)
∅ if r ≥

∑T
i=1w(ui, v)

.

Intuitively, Tv includes at most one of v’s in-neighbors such that each ut is included with
probability w(ut, v).

Given a triggering model IG,F , let σG,F : {0, 1}|V | → R≥0 be the global influence function

defined as σG,F (S) = Eφ∼F [|IφG,F (S)|]. We drop the subscripts G,F and write the global
influence function as σ(·) when there is no ambiguity.

A function f mapping from a set of elements to a non-negative value is submodular if
f(A∪{v})− f(A) ≥ f(B ∪{v})− f(B) for any two sets A,B with A ⊆ B and any element
v /∈ B.

Theorem 2.4 (Kempe et al. (2003)). For any triggering model IG,F , σG,F (·) is submodular.
In particular, σG,F (·) is submodular for both ICM and LTM.

2.2 InfMax and Adaptive InfMax

Definition 2.5. The influence maximization problem (InfMax) is an optimization problem
which takes inputs G = (V,E), F , and k ∈ Z+, and outputs a seed set S that maximizes
the expected total number of infections: S ∈ argmaxS⊆V :|S|≤k σ(S).

In the remaining part of this subsection, we define the adaptive version of the influence
maximization problem. We will define two different models: the full-adoption feedback model
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and the myopic feedback model. Suppose a seed set S ⊆ V is chosen by the seed-picker,
and an underlying realization φ is given but not known by the seed-picker. Informally,
in the full-adoption feedback model, the seed-picker sees all the vertices that are infected
by S in all future iterations, i.e., the seed-picker sees IφG,F (S). In the myopic feedback
model, the seed-picker only sees the states of S’s neighbors, i.e., whether each vertex in
{v | ∃s ∈ S : s ∈ Γ(v)} is infected.

Define a partial realization as a function ϕ : E → {L, B, U} such that ϕ(e) = L if e is
known to be live, ϕ(e) = B if e is known to be blocked, and ϕ(e) = U if the status of e is
not yet known. We say that a partial realization ϕ is consistent with the full realization
φ, denoted by φ ' ϕ, if φ(v) = ϕ(v) whenever ϕ(v) 6= U. For ease of notation, for an edge
(u, v) ∈ E, we will write φ(u, v), ϕ(u, v) instead of φ((u, v)), ϕ((u, v)).

Definition 2.6. Given a triggering model IG=(V,E),F with a realization φ, the full-adoption

feedback is a function Φf
G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ such that

• ϕ(u, v) = φ(u, v) for each u ∈ IφG,F (S), and

• ϕ(u, v) = U for each u /∈ IφG,F (S).

Definition 2.7. Given a triggering model IG=(V,E),F with a realization φ, the myopic
feedback is a function Φm

G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ such that

• ϕ(u, v) = φ(u, v) for each u ∈ S, and

• ϕ(u, v) = U for each u /∈ S.

An adaptive policy π is a function that maps a seed set S and a partial realization ϕ
to a vertex v = π(S, ϕ), which corresponds to the next seed the policy π would choose
given ϕ and S being the set of seeds that has already been chosen. Naturally, we only care
about π(S, ϕ) when ϕ = Φf

G,F,φ(S) or ϕ = Φm
G,F,φ(S), although we define π that specifies an

output for any possible inputs S and ϕ. Notice that we have defined π as a deterministic
policy for simplicity, and our results hold for randomized policies. Let Π be the set of all
possible adaptive policies.

Notice that an adaptive policy π completely specifies a seeding strategy in an iterative
way. Given an adaptive policy π and a realization φ, let S f(π, φ, k) be the first k seeds
selected according to π with the underlying realization φ under the full-adoption feedback
model. By our definition, S f(π, φ, k) can be computed as follows:

1. initialize S = ∅;

2. update S = S ∪ {π(S,Φf
G,F,φ(S))} for k iterations;

3. output S f(π, φ, k) = S.

Define Sm(π, φ, k) similarly for the myopic feedback model, where Φm
G,F,φ(S) instead of

Φf
G,F,φ(S) is used in Step 2 above.

Let σf(π, k) be the expected number of infected vertices given that k seeds are chosen

according to π, i.e., σf(π, k) = Eφ∼F [|IφG,F (S f(π, φ, k))|]. Define σm(π, k) similarly for the
myopic feedback model.
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Definition 2.8. The adaptive influence maximization problem (adaptive InfMax) is an op-
timization problem which takes as inputs G = (V,E), F , and k ∈ Z+, and outputs an adap-
tive policy π maximizing the expected total number of infections: π ∈ argmaxπ∈Π σ

f(π, k)
or π ∈ argmaxπ∈Π σ

m(π, k) (depending on the feedback model used).

2.3 Adaptivity Gap and Greedy Adaptivity Gap

The adaptivity gap is defined as the ratio between the performance of the optimal adaptive
policy and the performance of the optimal non-adaptive seeding strategy. In this paper, we
only consider the adaptivity gap for triggering models.

Definition 2.9. The adaptivity gap with full-adoption feedback is

sup
G,F,k

maxπ∈Π σ
f(π, k)

maxS⊆V,|S|≤k σ(S)
.

The adaptivity gap with myopic feedback is defined similarly.

The (non-adaptive) greedy algorithm iteratively picks a seed that has the maximum
marginal gain to the objective function σ(·):

1. initialize S = ∅;

2. update for k iterations S ← S ∪ {s}, where s ∈ argmaxs∈V (σ(S ∪ {s}) − σ(S)) with
tie broken in an arbitrarily consistent order;

3. return S.

Let Sg(k) be the set of k seeds output by the (non-adaptive) greedy algorithm.
The greedy adaptive policy πg is defined as πg(S, ϕ) = s such that

s ∈ argmax
s∈V

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s})
∣∣∣− ∣∣∣IφG,F (S)

∣∣∣] ,
with ties broken in an arbitrary consistent order.

Definition 2.10. Given a triggering model IG,F and k ∈ Z+, the greedy adaptivity gap with

full-adoption feedback is σf(πg ,k)
σ(Sg(k)) . The greedy adaptivity gap with myopic feedback is defined

similarly.

Notice that, unlike the adaptivity gap in Definition 2.9, we leave G,F, k unspecified
(instead of taking a supremum over them) when defining the greedy adaptivity gap. This

is because we are interested in both supremum and infimum of the ratio σf(πg ,k)
σ(Sg(k)) . Notice

that the infimum of the ratio maxπ∈Π σ
f(π,k)

maxS⊆V,|S|≤k σ(S) in Definition 2.9 is 1: the optimal adaptive

policy is at least as good as the optimal non-adaptive policy, as the non-adaptive policy
can be viewed as a special adaptive policy; on the other hand, it is easy to see that there
are InfMax instances such that the optimal adaptive policy is no better than non-adaptive
one (for example, a graph containing k vertices but no edges). For this reason, we only care
about the supremum of this ratio.
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3. Infimum of Greedy Adaptivity Gap

In this section, we show that the infimum of the greedy adaptivity gap for the triggering
model is exactly (1 − 1/e), for both the full-adoption feedback model and the myopic
feedback model. This implies that the greedy adaptive policy can perform even worse
than the conventional non-adaptive greedy algorithm, but it will never be significantly
worse. Moreover, we show that this result also holds for both ICM (Definition 2.2) and LTM

(Definition 2.3). The theorem below formalizes those above-mentioned results.

Theorem 3.1. For the full-adoption feedback model,

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k

σf(πg, k)

σ(Sg(k))
= 1− 1

e
.

The same result holds for the myopic feedback model.

In Section 3.1, we show by providing examples that the greedy adaptive policy in the
worst case will only achieve (1− 1/e+ ε)-approximation of the expected number of infected
vertices given by the non-adaptive greedy algorithm, for both ICM and LTM.

In Section 3.2, we show that the greedy adaptive policy has performance at least (1−1/e)
of the performance of the non-adaptive optimal seeds (Theorem 3.5). Theorem 3.5 provides
a lower bound on the greedy adaptivity gap for the triggering model and is also interesting
on its own. At the end of Section 3.2, we prove Theorem 3.1 by putting the results from
Section 3.1 and Section 3.2 together.

3.1 Tight Examples

In this subsection, we show that the adaptive greedy algorithm can perform worse than
the non-adaptive greedy algorithm by a factor of (1 − 1/e + ε), for both ICM and LTM and
any ε > 0. This may be surprising, as one would expect that the feedback provided to the
seed-picker will refine the seed choices in future iterations. Here, we provide some intuitions
why adaptivity can sometimes hurt. Suppose there are two promising sequences of seed
selections, {s, u1, . . . , uk} and {s, v1, . . . , vk}, such that

• s is the best seed which will be chosen first;

• {s, u1, . . . , uk} has a better performance;

• the influence of u1, . . . , uk are non-overlapping, the influence of v1, . . . , vk are non-
overlapping, but the influence of ui, vj overlaps for each i, j; moreover, if u1 is picked as
the second seed, the greedy algorithm, adaptive or not, will continue to pick u2, . . . , uk,
and if v1 is picked as the second seed, v2, . . . , vk will be picked next;

Now, suppose there is a vertex t elsewhere which can be infected by both s and v1, such
that

• if t is infected by s, which slightly reduces the marginal influence of v1, v1 will be less
promising than u1;

• if t is not infected by s, v1 is more promising than u1;
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• in average, when there is no feedback, v1 is still less promising than u1, even after
adding the increment in t’s infection probability to v1’s expected marginal influence.

In this case, the non-adaptive greedy algorithm will “go to the right trend” by selecting
u1 as the second seed; the adaptive greedy algorithm, if receiving feedback that t is not
infected by s, will “go to the wrong trend” by selecting v1 next.

As a high-level description of the lesson we learned, both versions of the greedy al-
gorithms are intrinsically myopic, and the feedback received by the adaptive policy may
make the seed-picker act in a more myopic way, which could be more hurtful to the final
performance.

We will assume in the rest of this section that vertices can have positive integer weights,
as justified in the following remark.

Remark 3.2. For both ICM and LTM, we can assume without loss of generality that each
vertex has a positive integer weight, so that, in InfMax, we are maximizing the expected
total weight of the infected vertices instead of maximizing the expected number of infected
vertices as before. Suppose we want to make a vertex v have weight W ∈ Z+. We can con-
struct W −1 vertices w1, . . . , wW−1, and create W −1 directed edges (v, w1), . . . , (v, wW−1)
with weight 1. (Recall from Definition 2.2 and Definition 2.3 that the graphs in both ICM

and LTM are edge-weighted, and the weights of edges completely characterize the collection
of triggering set distributions F .) It is straightforward from Definition 2.2 and Definition 2.3
that, for both ICM and LTM, each of w1, . . . , wW−1 will be infected with probability 1 if v is
infected. In addition, both the greedy algorithm and the greedy adaptive policy will never
pick any of w1, . . . , wW−1 as seeds, as seeding v is strictly better. Therefore, we can consider
the subgraph consisting of v, w1, . . . , wW−1 as a gadget that representing a vertex v having
weight W .

The following lemma shows that, for both the full-adoption and the myopic feedback
models, under ICM, the greedy adaptive policy can perform worse than the non-adaptive
greedy algorithm by a factor of almost (1− 1/e).

Lemma 3.3. For any ε > 0, there exists G,F, k such that IG,F is an ICM and

σf(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε,

σm(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε.

Proof. We will construct an InfMax instance (G = (V,E,w), k+1) with k+1 seeds allowed.
Let W ∈ Z+ be a sufficiently large integer divisible by k2k(k − 1) and whose value is to be
decided later. Let Υ = W/k2. The vertex set V contains the following weighted vertices:

• a vertex s that has weight 2W ;

• a vertex t that has weight 4kΥ;

• 2k vertices u1, . . . , uk, v1, . . . , vk that have weight 1;

• 2k2 vertices {wij | i = 1, . . . , 2k; j = 1, . . . , k}

– w11, . . . , w1k have weight W
k ;
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– for each i ∈ {2, . . . , k}, wi1, . . . , wik have weight 1
k (1− 1

k )i−1W + 4k−2
k−1 Υ;

– for each i ∈ {k + 1, . . . , 2k}, wi1, . . . , wik have weight 1
k (1− 1

k )kW .

The edge set E is specified as follows:

• create two edges (v1, t) and (s, t);

• for each i = 1, . . . , k, create 2k edges (ui, w1i), (ui, w2i), . . . , (ui, w(2k)i), and create k
edges (vi, wi1), (vi, wi2), . . . , (vi, wik).

For the weights of edges, all the edges have weight 1 except for the edge (s, t) which has
weight 1/k.

It is straightforward to check that

σ({s}) = w(s) +
1

k
w(t) = 2W + 4Υ, (1)

∀i ∈ {1, . . . , k} : σ({ui}) = w(ui) +

2k∑
j=1

w(wji) = 1 +W + (4k − 2)Υ, (2)

σ({v1}) = w(v1) + w(t) +

k∑
j=1

w(w1j) = 1 + 4kΥ +W, (3)

∀i ∈ {2, . . . , k} : σ({vi}) = w(vi) +

k∑
j=1

w(wij) = 1 +

(
1− 1

k

)i−1

W +
k(4k − 2)

k − 1
Υ,(4)

and the influence of the remaining vertices are significantly less than these.
Since s has the highest influence, both the greedy algorithm and the greedy adaptive

policy will choose s as the first seed.
The non-adaptive greedy algorithm will choose u1, . . . , uk iteratively for the next k seeds,

and the expected number of infected vertices by the seeds chosen by non-adaptive greedy
algorithm is

σ({s, u1, . . . , uk}) = w(s) +
1

k
w(t) +

k∑
i=1

w(ui) +
2k∑
i=1

k∑
j=1

w(wij) = (k + 2)W + o(W ). (5)

To show the former claim, letting Ui = {s, u1, . . . , ui} and U0 = {s}, and supposing without
loss of generality that the non-adaptive greedy algorithm has chosen Ui for the first (i+ 1)
seeds (notice the symmetry of u1, . . . , uk), it suffices to show that, for any vertex x, we have

σ(Ui ∪ {ui+1})− σ(Ui) ≥ σ(Ui ∪ {x})− σ(Ui). (6)

To consider an x that makes the right-hand side large, it is easy to see that we only need
to consider one of ui+1, . . . , uk, v1, v2, as the remaining vertices clearly have less marginal
influence. By symmetry, σ(Ui ∪ {ui+1}) = σ(Ui ∪ {ui+2}) = · · · = σ(Ui ∪ {uk}). Therefore,
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we only need to consider x being v1 or v2. It is straightforward to check that

σ(Ui ∪ {ui+1})− σ(Ui) = 1 +W + (4k − 2)Υ, (7)

σ(Ui ∪ {v1})− σ(Ui) = 1 + (4k − 4)Υ +
k − i
k

W ≤ 1 +W + (4k − 4)Υ, (8)

σ(Ui ∪ {v2})− σ(Ui) = 1 +
k − i
k

(
1− 1

k

)
W +

(k − i)(4k − 2)

k − 1
Υ

≤ 1 +W − W

k
+ (4k + 5)Υ. (9)

Recall that Υ = W/k2, straightforward calculations show that σ(Ui ∪ {ui+1}) − σ(Ui) is
maximum.

For the greedy adaptive policy, we have seen that s will be the first seed chosen. The
second seed picked by the greedy adaptive policy will depend on whether t is infected by
s. Notice that the status of t is available to the policy in both the full-adoption feedback
model and the myopic feedback model, so the arguments here, as well as the remaining part
of this proof, apply to both feedback models. By straightforward calculations, the greedy
adaptive policy will pick v1 as the next seed if t is not infected by s, and the policy will
pick a seed from u1, . . . , uk otherwise.

In the latter case, the policy will eventually pick the seed set {s, u1, . . . , uk}, which will
infect vertices with a total weight of

w(s) + w(t) +
k∑
i=1

w(ui) +
2k∑
i=1

k∑
j=1

w(wij) = (k + 2)W + o (W )

with probability 1 (notice that we are in the scenario that t has been infected by s).
In the former case, we can see that the third seed picked by the policy will be v2

instead of any of u1, . . . , uk. In particular, v2 contributes 1 + (1− 1
k )W + k(4k−2)

k−1 Υ infected
vertices. On the other hand, since w11, . . . , wik have already been infected by v1, the
marginal contribution for each ui is σ({ui}) − w(w1i) = 1 + W + (k − 1) · 4k−2

k−1 Υ − 1
kW ,

which is less than the contribution of v2. By similar analysis, we can see that the greedy
adaptive policy in this case will pick the seed set {s, v1, . . . , vk}, which will infect vertices
with a total weight of

w(s) + w(t) +

k∑
i=1

w(vi) +

k∑
i=1

k∑
j=1

w(wij) =

(
2 +

k∑
i=1

(
1− 1

k

)i−1
)
W + o (W )

=

(
2 + k

(
1−

(
1− 1

k

)k))
W + o (W )

in expectation.
Since t will be infected with probability 1

k , the expected weight of infected vertices for
the greedy adaptive policy is

1

k
((k + 2)W + o (W )) +

(
1− 1

k

)
·

((
2 + k

(
1−

(
1− 1

k

)k))
W + o (W )

)
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≤

(
3 + k

(
1−

(
1− 1

k

)k))
W + o (W ) .

Putting this together with Equation (5), both σf(πg ,k)
σ(Sg(k)) and σm(πg ,k)

σ(Sg(k)) in this case are at
most (

3 + k
(

1−
(
1− 1

k

)k))
W + o (W )

(k + 2)W + o (W )
,

which has limit 1− 1/e when both W and k tend to infinity.

The following lemma shows that, for both the full-adoption and the myopic feedback
models, under LTM, the greedy adaptive policy can perform worse than the non-adaptive
greedy algorithm by a factor of almost (1− 1/e).

Lemma 3.4. For any ε > 0, there exists G,F, k such that IG,F is an LTM and

σf(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε,

σm(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε.

Proof. We will construct an InfMax instance (G = (V,E,w), k+1) with k+1 seeds allowed.
Let W ∈ Z+ be a sufficiently large integer divisible by k2k(k− 1) and whose value are to be
decided later. Let Υ = W/k2. The vertex set V contains the following weighted vertices:

• a vertex s that has weight 2W ;

• a vertex t that has weight 4kΥ;

• k vertices u1, . . . , uk that have weight 1;

• k vertices v1, . . . , vk such that w(v1) = W and w(vi) = W (1 − 1
k )i−1 + 4k2−6k

k−1 Υ for
each i = 2, . . . , k;

• k vertices vk+1, . . . , v2k such that w(vk+1) = · · · = w(v2k) = W (1− 1
k )k.

The edge set E and the weights of edges are specified as follows:

• create two edges (v1, t) and (s, t) with weights 1− 1
k and 1

k respectively;

• create 2k2 edges {(ui, vj) | i = 1, . . . , k; j = 1, . . . , 2k}, each of which has weight 1
k .

It is easy to check that each vertex v satisfy
∑

u∈Γ(v)w(u, v) ≤ 1, as required in Defini-
tion 2.3.

The remaining part of the analysis is similar to the proof of Lemma 3.3. The first seed
chosen by both algorithms is s. After this, each ui has marginal influence 1+ 1

k

∑2k
i=1w(vi) =

1 +W + (4k− 6)Υ + (1− 1
k ) 1

k · 4kΥ = 1 +W + (4k− 2− 4
k )Υ (notice that each of v1, . . . , v2t

is infected with probability 1/k, and t’s probability of infection increases from 1/k to 1 if v1

is infected by ui). Since t is infected by s with probability 1
k , the marginal influence of v1

without any feedback is (1− 1
k )w(t)+w(v1) = W+(4k−4)Υ. If t is known to be infected, the

marginal influence of v1 is W , and the marginal influence of each ui is 1 +W + (4k − 6)Υ.
If t is known to be uninfected, then seeding v1 will infect t with probability 1. In this
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case, the marginal influence of v1 is W + 4kΥ, and the marginal influence of each ui is
1 + W + (4k − 2)Υ. By comparing these values, the non-adaptive greedy algorithm will
pick one of u1, . . . , uk as the second seed, and the greedy adaptive policy will pick v1 as
the second seed if t is not infected and one of u1, . . . , uk as the second seed if t is infected.
(Notice that w(v1) > w(v2) > · · · > w(vk) > w(vk+1) = · · · = w(v2k).)

Simple analyses show the non-adaptive greedy algorithm will choose {s, u1, . . . , uk},
which will infect all of v1, . . . , v2k with probability 1, and the greedy adaptive policy will
choose {s, v1, . . . , vk} with a very high probability 1 − 1

k , which will leave vk+1, . . . , v2k

uninfected. Since s, v1, . . . , v2k are the only vertices with weight Θ(W ) and we have both∑k
i=1w(vi) = (4 + k(1 − (1 − 1

k )k))W + o(W ) and
∑2k

i=1w(vi) = (4 + k)W + o(W ), the
lemma follows by taking the limit W →∞ and k →∞.

3.2 Lower Bound

We prove the following theorem in this subsection, which states that, for both the full-
adoption and myopic feedback models, under the general triggering model, the greedy adap-
tive policy can achieve at least (1 − 1/e) fraction of the performance of the non-adaptive
optimal solution.

Theorem 3.5. For a triggering model IG,F , we have both

σf(πg, k) ≥
(

1− 1

e

)
max

S⊆V,|S|≤k
σ(S) and σm(πg, k) ≥

(
1− 1

e

)
max

S⊆V,|S|≤k
σ(S).

For a high-level idea of the proof, let S with |S| = i be the seeds picked by πg for the
first i iterations and S∗ be the optimal non-adaptive seed set: S∗ ∈ argmax|S′|≤k σ(S′).
Given S as the existing seeds and any feedback (myopic or full-adoption) corresponding to
S, we can show that the marginal increment to the expected influence caused by the (i+1)-
th seed picked by πg is at least 1/k of the marginal increment to the expected influence
caused by S∗. Then, a standard argument showing that the greedy algorithm can achieve a
(1 − 1/e)-approximation for any submodular monotone optimization problem can be used
to prove this theorem.

Theorem 3.5 is implied by the following three propositions. In the remaining part
of this section, we let S∗ be an optimal seed set for the non-adaptive InfMax: S∗ ∈
maxS⊆V,|S|≤k σ(S).

We first show that the global influence function after fixing a partial seed set S and any
possible feedback of S is still submodular.

Proposition 3.6. Given a triggering model IG,F , any S ⊆ V , any feedback model (either
full-adoption or myopic) and any partial realization ϕ that is a valid feedback of S (i.e.,
∃φ : ϕ = Φf

G,F,φ(S) or ∃φ : ϕ = Φm
G,F,φ(S), depending on the feedback model considered),

the function T : {0, 1}|V | → R≥0 defined as T (X) = Eφ'ϕ[|IφG,F (S ∪X)|] is submodular.

Proof. Fix a feedback model, S ⊆ V , and ϕ that is a valid feedback of S. Let S be the set
of infected vertices indicated by the feedback of S. Formally, S is the set of all vertices that
are reachable from S by only using edges e with ϕ(e) = L.

We consider a new triggering model IG′,F ′ defined as follows:
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• G′ shares the same vertex set with G;

• The edge set of G′ is obtained by removing all edges e in G with ϕ(e) 6= U;

• The distribution F ′v is normalized from Fv. Specifically, for each Tv ⊆ Γ(v), let p(Tv)
be the probability that Tv is chosen as the triggering set under Fv. Let Γ′(v) be the
set of v’s in-neighbors in G′, and we have Γ′(v) ⊆ Γ(v) by our construction. Then,
F ′v is defined such that Tv ⊆ Γ′(v) is chosen as the triggering set with probability
p(Tv)/

∑
T ′v⊆Γ′(v) p(T

′
v).

A simple coupling argument reveals that

T (X) = E
φ'ϕ

[∣∣∣IφG,F (S ∪X)
∣∣∣] = σG′,F ′(S ∪X). (10)

We define a coupling of a realization φ of G with φ ' ϕ to a realization φ′ of G′ in a natural
way: φ(e) = φ′(e) for all edges e in G′. From our construction of F ′ = {F ′v}, it is easy to see
that, when φ is coupled with φ′, the probability that φ is sampled under IG,F conditioning
on φ ' ϕ equals the probability that φ′ is sampled under IG′,F ′ . Under this coupling, it is
easy to see that u is reachable from S by live edges under φ if and only if it is reachable
from S by live edges under φ′. This proves Equation (10).

Finally, by Theorem 2.4, σG′,F ′(·) is submodular. Therefore, for any two vertex sets
A,B with A ⊆ B and any u /∈ B,

T (A ∪ {u})− T (A) = σG′,F ′(S ∪A ∪ {u})− σG′,F ′(S ∪A)

is weakly larger than

T (B ∪ {u})− T (B) = σG′,F ′(S ∪B ∪ {u})− σG′,F ′(S ∪B)

if u /∈ S, and
T (A ∪ {u})− T (A) = T (B ∪ {u})− T (B) = 0

if u ∈ S. In both case, the submodularity of T (·) holds.

Next, we show that the marginal gain to the global influence function after selecting one
more seed according to πg is at least 1/k fraction of the marginal gain of including all the
vertices in S∗ as seeds.

Proposition 3.7. Given a triggering model IG,F , any S ⊆ V , any feedback model, and any
partial realization ϕ that is a valid feedback of S, let s = πg(S, ϕ) be the next seed chosen
by the greedy policy. We have

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣] ≥ 1

k

(
E
φ'ϕ

[∣∣∣IφG,F (S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣]) .

Proof. Let S∗ = {s∗1, . . . , s∗k}. By the greedy nature of πg, we have

∀v : E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s})
∣∣∣] ≥ E

φ'ϕ

[∣∣∣IφG,F (S ∪ {v})
∣∣∣] ,
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and this holds for v being any of s∗1, . . . , s
∗
k in particular.

Let S∗i = {s∗1, . . . , s∗i } for each i = 1, . . . , k and S∗0 = ∅, the proposition concludes from
the following calculations

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣]

≥1

k

k∑
i=1

(
E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s∗i })
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣])

≥1

k

k∑
i=1

(
E
φ'ϕ

[∣∣∣IφG,F (S ∪ S∗i−1 ∪ {s∗i })
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S ∪ S∗i−1)
∣∣∣]) (Proposition 3.6)

=
1

k

(
E
φ'ϕ

[∣∣∣IφG,F (S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣]) ,

where the last equality is by a telescoping sum, by noticing that S∗i = S∗i−1 ∪ {s∗i } and
S∗ = S∗k .

Finally, we prove the following proposition which is a more general statement than
Theorem 3.5.

Proposition 3.8. For a triggering model IG,F and any ` ∈ Z+, we have σf(πg, `) ≥ (1 −
(1− 1/k)`)σ(S∗), and the same holds for the myopic feedback model.

Proof. We will only consider the full-adoption feedback model, as the proof for the myopic
feedback model is identical. We prove this by induction on `. The base step for ` = 1 holds
trivially by Proposition 3.7 by considering S = ∅ in the proposition.

Suppose the inequality holds for ` = `0. We investigate the expected marginal gain
to the global influence function by selecting the (`0 + 1)-th seed. For a seed set S ⊆
V with |S| = `0 and a partial realization ϕ, let P (S, ϕ) be the probability that the
policy πg chooses S as the first `0 seeds and ϕ is the feedback. That is, P (S, ϕ) =

Prφ∼F

(
S f (πg, φ, `0) = S ∧ Φf

G,F,φ(S) = ϕ
)
. The mentioned expected marginal gain is

σf (πg, `0 + 1)− σf (πg, `0)

=
∑

S,ϕ:|S|=`0

P (S, ϕ)

(
E
φ'ϕ

[∣∣∣IφG,F (S ∪ {πg(S, ϕ)})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣])

≥
∑

S,ϕ:|S|=`0

P (S, ϕ) · 1

k

(
E
φ'ϕ

[∣∣∣IφG,F (S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣]) (Proposition 3.7)

≥
∑

S,ϕ:|S|=`0

P (S, ϕ) · 1

k

(
E
φ'ϕ

[∣∣∣IφG,F (S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣])

=
1

k
σ(S∗)− 1

k
σf(πg, `0),

where the last equality follows from the law of total probability.
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By rearranging the above inequality and the induction hypothesis,

σf (πg, `0 + 1) ≥ 1

k
σ(S∗) +

k − 1

k
σf (πg, `0)

≥

(
1

k
+
k − 1

k

(
1−

(
1− 1

k

)`0))
σ(S∗)

=

(
1−

(
1− 1

k

)`0+1
)
σ(S∗),

which concludes the inductive step.

By taking ` = k and noticing that 1 − (1 − 1/k)k > 1 − 1/e, it is easy to see that
Proposition 3.8 implies Theorem 3.5.

Finally, putting Theorem 3.5, Lemma 3.3 and Lemma 3.4 together, Theorem 3.1 can be
concluded easily.

Proof of Theorem 3.1. Since ICM and LTM are special cases of triggering models, we have

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
≥ inf

G,F,k

σf(πg, k)

σ(Sg(k))

and

inf
G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))
≥ inf

G,F,k

σf(πg, k)

σ(Sg(k))
.

Lemma 3.3 and Lemma 3.4 show that both

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
and inf

G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))

are at most 1− 1/e. On the other hand, Theorem 3.5 implies

σf(πg, k)

σ(Sg(k))
≥ σf(πg, k)

σ(S∗)
≥ 1− 1

e

for any triggering model IG,F and any k, where S∗, as usual, denotes the optimal seeds in
the non-adaptive setting.

Putting these together, Theorem 3.1 concludes for the full-adoption feedback model.
Since all those inequalities hold for the myopic feedback model as well, Theorem 3.1 con-
cludes for all feedback models.

4. Supremum of Greedy Adaptivity Gap

In this section, we show that, for the full-adoption feedback model, both the adaptivity
gap and the supremum of the greedy adaptivity gap are unbounded. As a result, in some
cases, the adaptive version of the greedy algorithm can perform significantly better than its
non-adaptive counterpart.
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Theorem 4.1. The greedy adaptivity gap with full-adoption feedback is unbounded: there
exists a triggering model IG,F and k such that

σf(πg, k)

σ(Sg(k))
= 2Ω(log log |V |/ log log log |V |).

Theorem 4.2. The adaptivity gap for the general triggering model with full-adoption feed-
back is infinity.

In Section 4.1, we consider a variant of InfMax such that the seeds can only be chosen
among a prescribed vertex set V ⊆ V , where V is specified as an input to the InfMax
instance. We show that, under this setting with LTM, both the adaptivity gap and the supre-
mum of the greedy adaptivity gap with the full-adoption feedback model are unbounded
(Lemma 4.5). Since it is common in practice that only a subset of nodes in a network is
visible or accessible to the seed-picker, Lemma 4.5 is also interesting on its own. In Sec-
tion 4.2, we show that how Lemma 4.5 can be used to prove Theorem 4.1 and Theorem 4.2.
Notice that Theorem 4.1 and Theorem 4.2 hold for the standard InfMax setting without
a prescribed set of seed candidates, but we do not know if they hold for LTM (instead, they
are for the more general triggering model).

We first present the following lemma revealing a special additive property for LTM, which
will be used later.

Lemma 4.3. Suppose IG,F is LTM. If U1, U2 ⊆ V with U1 ∩ U2 = ∅ satisfy that there is no
path from any vertices in U1 to any vertices in U2 and vice versa, then σ(U1) + σ(U2) =
σ(U1 ∪ U2).

Proof. For any seed set S ⊆ V , σ(S) can be written as follows:

σ(S) =
∑
φ

Pr(φ is sampled) ·
∣∣∣IφG,F (S)

∣∣∣ . (11)

For U1 and U2 in the lemma statement, since each vertex can only have at most one
incoming live edge (in Definition 2.3, each Tv has size at most 1), under any realization φ,
each vertex v ∈ V \ (U1 ∪ U2) that is reachable from vertices in U1 ∪ U2 is reachable from

either vertices in U1 or vertices in U2, but not both. Therefore, |IφG,F (U1)| + |IφG,F (U2)| =

|IφG,F (U1 ∪ U2)| for any φ, and the lemma follows from considering the decomposition of
σ(U1) and σ(U2) according to (11).

4.1 On LTM with Prescribed Seed Candidates

Definition 4.4. The influence maximization problem with prescribed seed candidates is
an optimization problem which takes as inputs G = (V,E), F , k ∈ Z+, and V ⊆ V ,
and outputs a seed set S ⊆ V that maximizes the expected total number of infections:
S ∈ argmaxS⊆V :|S|≤k σ(S). The adaptive influence maximization problem with prescribed
seed candidates has the same definition as it is in Definition 2.8, with the exception that
the range of the function π is now V , and Π is the set of all such policies.

Lemma 4.5. For InfMax with prescribed seed candidates with LTM and the full-adoption
feedback, the adaptivity gap is infinity, and the greedy adaptivity gap is 2Ω(log |V |/ log log |V |).
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Proof. For d,W ∈ Z+ with d being sufficiently large and W � dd+1, we construct the
following (adaptive) InfMax instance with prescribed seed candidates:

• the edge-weighted graph G = (V,E,w) consists of a (d + 1)-level directed full d-ary
tree with the root node being the sink (i.e., an in-arborescence) and W vertices each
of which is connected from the root node of the tree; the weight of each edge in the
tree is 1/d, and the weight of each edge connecting from the root to those W vertices
is 1;

• the number of seeds is given by k = 2(d+1
2 )d;

• the prescribed set for seed candidates V is the set of all the leaves in the tree.

Since the leaves are not reachable from one to another, Lemma 4.3 indicates that
choosing any k vertices among V , i.e., the leaves, infects the same number of vertices
in expectation. It is easy to see that a single seed among the leaves will infect the root
node with probability 1/dd, and those W vertices will be infected with probability 1 if
the root of the tree is infected. Thus, for any seed set S ⊆ V , by assuming all ver-
tices in the tree are infected (in the sake of finding an upper bound for σ(S)), we have

σ(S) ≤ 1
dd
· |S| ·W +

∑d
i=0 d

i < |S|W
dd

+dd+1. This gives an upper bound for the performance
of both the non-adaptive greedy algorithm and the non-adaptive optimal seed set.

Now, we analyze the seeds chosen by the greedy adaptive policy. At a particular iteration
when executing the greedy adaptive policy, we classify the internal tree nodes (i.e., the nodes
that are neither leaves nor the root) into the following three types:

• Unexplored: the subtree rooted at this internal node contains no seed.

• Explored: the subtree rooted at this internal node contains seeds, and no edge in the
path connecting this internal node to the root is known to be blocked (i.e., all edges
in the path have statuses either L or U).

• Dead: if an edge in the path connecting this internal node to the root is known to be
blocked.

Here we give some intuitions for the behavior of the greedy adaptive policy. Our objec-
tive is to infect the root, which will infect those W vertices that constitute most vertices
of the graph. Before the root is infected, once an internal node is known to be “dead”, the
policy should never choose any seed from the leaves that are descendants of this node, as
those seeds will never have a chance to infect the root (this explains our naming). More-
over, as we will see soon, the greedy adaptive policy will keep “exploring” an explored node
before starting to “exploring” an unexplored node, until this explored node becomes dead.

We will show that, if the root node is not infected yet, at any iteration of the greedy
adaptive policy, each internal level of the tree can contain at most one explored node. This
is a formal statement describing what we meaned just now by saying that we should keep
exploring an explored node.

Firstly, since only one seed can be chosen at a single iteration, among all the nodes at a
particular level of the tree, at most one of them can change the status from “unexplored”
to “explored”. Suppose for the sake of contradiction that, at a particular iteration of the
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greedy adaptive policy, an internal node v′ which is previously unexplored become explored,
while there is already another explored node v at the same level of v′. Suppose this is the
first iteration we see two explored nodes at the same level. Let u be the least common
ancestor of v and v′. Let `u be the level containing u. It is easy to see that all the nodes
on the path from v to the root, which includes u, are explored (they cannot be unexplored,
as the descendants of each of those nodes contains the descendants of v, which contain
seeds; they cannot be dead, for otherwise v is dead). Since v and v′ are the first pair of
explored nodes at the same level, before the iteration where v′ is explored, all nodes on the
path between v′ and u are unexplored (excluding u). Let du be the number of u’s children
that are not dead. Given the feedback from previous iterations, since all the descendants
of v′ and all the nodes on the path between v′ and u (excluding u) are unexplored, the
probability that a seed from a leaf that is a descendant of v′ infects u is 1

d`u−1·du . On the
other hand, if at this same iteration we pick a seed from a leaf which is a descendant of v
and the path from this leaf to v contains no blocked edge, the probability that this seed
infects u is at least 1

d`u−2(d−1)du
. This is because there is at least one dead node that is

a descendant of v (we know that all the nodes on the path between v and the root are
explored and uninfected, and we know that seeds have been chosen among the leaves on
the subtree rooted at v; the only reason that those seeds have not made the root infected
is that there are dead nodes that “block the cascade”, and we know there is no dead node
on the path between v and the root). Since the only way that a seed corresponding to
either v or v′ can infect the root is to first infect u and we have 1

d`u−2(d−1)du
> 1

d`u−1·du , the

marginal influence of a seed corresponding to v′ is smaller than the marginal influence of
a seed corresponding to v. In other words, “exploring” v′ provide less marginal influence
than “exploring” v, which leads to the desired contradiction.

Next, we evaluate the expected number of seeds required to infect the root, under the
greedy adaptive policy. Suppose the tree only has two levels (i.e., a star). The number
of seeds among the leaves required to infect the root is a random variable with uniform
distribution on {1, . . . , d}, with expectation d+1

2 . We will show that, by induction on the
number of levels of the tree, with a d-level tree as it is in our case, the expected number
of seeds required to infect the root is (d+1

2 )d, which equals to k
2 . Let x1, . . . , xd be the d

children of the root node. By the claim we showed just now, at most one of x1, . . . , xd can
be “explored” at any iteration. The greedy adaptive policy will do the following: it first
explores one of x1, . . . , xd, say, x1; it will continue exploring x1 until x1 is dead or until
the root is infected. The only situation that x1 is dead is that x1 is infected but the edge
between x1 and the root is blocked. Therefore, the greedy adaptive policy will attempt to
infect x1, x2, x3, . . . one by one, until one of those children infects the root. By the induction
hypothesis, the expected number of seeds required to infect each of x1, . . . , xd is (d+1

2 )d−1.
Let X be the random variable indicating the smallest d′ such that xd′ is in the triggering
set of the root (this means that the greedy adaptive policy will need to infect x1, . . . , xd′ in
order to infect the root). Then the expect number of seeds required to infect the root is

d∑
d′=1

(
Pr(X = d′) · d′

(
d+ 1

2

)d−1
)

=

(
d+ 1

2

)d
,
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where d′(d+1
2 )d−1 is the expected number of seeds required to infected all of x1, . . . , xd′ by

the linearity of expectation.
After proving that the expected number of seeds required to infect the root is (d+1

2 )d = k
2 ,

by Markov’s inequality, the k seeds chosen according to the greedy adaptive policy will infect
the root with probability at least 1/2. Therefore, σf(πg, k) ≥ 1

2W , and the optimal adaptive
policy can only be better: maxπ∈Π σ

f(π, k) ≥ σf(πg, k) ≥ 1
2W .

Putting these together, both the adaptivity gap and the supremum of the greedy adap-
tivity gap is at least

1
2W

kW
dd

+ dd+1
=

1
2W

1
2d−1 (1 + 1

d)dW + dd+1·
= Ω

(
2d
)
,

if setting W = dd+10 � dd+1. The lemma concludes by noticing d = Ω( log |V |
log log |V |) (in

particular, |V | = W + o(W ) = dd+10 + o(dd+10), so log |V | = Θ(d log d) + o(d log d),

log log |V | = Θ(log d) + o(log d), and d = Ω( log |V |
log log |V |)).

4.2 Proof of Theorem 4.1, 4.2

To prove Theorem 4.1 and Theorem 4.2, we construct an InfMax instance with a special
triggering model IG,F which is a combination of ICM and LTM.

Definition 4.6. The mixture of ICM and LTM is a triggering model IG,F where G = (V,E,w)
is an edge-weighted graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E and each vertex v is
labelled either IC or LT such that Tv is sampled according to Fv described in Definition 2.2
if v is labelled IC and Tv is sampled according to Fv described in Definition 2.3 if v is labelled
LT. In addition, each vertex v labelled L satisfies

∑
u∈Γ(v)w(u, v) ≤ 1.

To conclude Theorem 4.1 and Theorem 4.2, we construct an edge-weighted graph G =
(V,E,w) on which the greedy adaptive policy significantly outperforms the non-adaptive
greedy algorithm. Let M � dd+1 be a large integer. We reuse the graph with a tree and W
vertices in the proof of Lemma 4.5. We create M such graphs and name them T1, . . . , TM .
Let L = dd be the number of leaves in each Ti. Let ZL = {1, . . . , L} and ZML be the set
of all M -dimensional vectors whose entries are from ZL. For each z = (z1, . . . , zM ) ∈ ZML ,
create a vertex az and create a directed edge from az to the zi-th leaf of the tree Ti for
each i = 1, . . . ,M . The weight of each such edge is 1. Let A = {az | z ∈ ZML }. Notice
that |A| = LM and each az ∈ A is connected to M vertices from T1, . . . , TM respectively.
The leaves of T1, . . . , TM are labelled as IC, and the remaining vertices are labelled as LT.
Finally, set k = 2(d+1

2 )d as before.
Due to that M is large, it is more beneficial to seed a vertex in A than a vertex elsewhere.

In particular, seeding a root in certain Ti infects W vertices, while seeding a vertex in A
will infects M · (1

d)dW �W vertices in expectation.
It is easy to see that, in the non-adaptive setting, the optimal seeding strategy is to

choose k seeds from A such that they do not share any out-neighbors, in which case the
k chosen seeds will cause the infection of exactly k leaves in each Ti. This is also what
the non-adaptive greedy algorithm will do. As before, to find an upper bound for any
seed set S with |S| = k, we assume that all vertices in each Ti are infected, and we have

σ(S) ≤M
(
k · 1

dd
W +

∑d
i=0 d

i
)
.

323



Chen, Peng, Schoenebeck, & Tao

By the same analysis in the proof of Lemma 4.5, by choosing k seeds among A as de-
scribed above, which is equivalent as choosing k leaves in each of T1, . . . , TM simultaneously,
the root in each Ti is infected with probability at least 1

2 . Therefore, the expected total
number of infected vertices is at least M · 1

2W .
It may seem problematic that the greedy adaptive policy may start to seed the roots

among T1, . . . , TM when it sees that there are already a lot of infected roots (so seeding a
root is better than seed a vertex in A). However, since M � dd+1, by simple calculations,
this can only happen when there are already (1−o(1))M trees with infected roots, in which
case the number of infected vertices is already much more than M · 1

2W .
Putting these together as before, both the adaptivity gap and the supremum of the

greedy adaptivity gap is at least

M · 1
2W

M(kW
dd

+ dd+1)
=

1
2W

1
2d−1 (1 + 1

d)dW + dd+1·
= Ω

(
2d
)
,

if fixing W = dd+10 � dd+1. Theorem 4.2 concludes by letting d → ∞. To conclude
Theorem 4.1, we need to show that d = Ω(log log |V |/ log log log |V |). To see this, we set
M = dd+10 which is sufficiently large for our purpose. Since we have L = dd, we have
|V | = LM + o(LM ) = dd

d+11
+ o(dd

d+11
), which implies d = Ω(log log |V |/ log log log |V |).

5. Greedy Algorithms in Practice and Robustness of Our Results

Recall that, in the greedy algorithm, we find a vertex s that maximizes the marginal gain of
the influence σ(S ∪ {s})− σ(S) in each iteration. However, computing the function σ(·) is
known to be #P-hard for both ICM (Chen et al., 2010) and LTM (Chen et al., 2010a). In prac-
tice, the greedy algorithm is implemented with σ(·) estimated by Monte Carlo simulations
(where σ(·) is approximated by sampling a sufficient number of realizations φ, computing

|IφG,F (S)| for each realization φ, and taking an average over them), reverse reachable sets
coverage (see Section 7.1 for details), or other randomized approximation algorithms. As a
result, in reality, when implementing the greedy algorithm, a vertex s that approximately
maximizes the marginal gain of the influence is found in each iteration with high probability.
In this section, we discuss the applicability of all our results in previous sections under this
approximation setting. In Section 5.1, We first define the (ε, δ)-greedy algorithm where in
each iteration a vertex s that approximately maximizes the marginal gain σ(S∪{s})−σ(S)
within factor (1− ε) is found with probability at least (1− δ), which captures the practical
implementations of greedy algorithms. In Section 5.2, we discuss the robustness of our
results by studying under what ε and δ our results hold.

5.1 (ε, δ)-Greedy Algorithms

Definition 5.1. An (ε, δ)-greedy algorithm is a randomized iterative algorithm that satisfies
the following:

1. the algorithm initializes S = ∅;
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2. for each of the k iterations, with probability at least 1− δ, the algorithm finds s ∈ V
such that

σ(S ∪ {s})− σ(S) ≥ (1− ε) max
s′∈V

(
σ(S ∪ {s′})− σ(S)

)
,

and update S ← S ∪ {s};

3. the algorithm outputs S.

Since an (ε, δ)-greedy algorithm is an approximation version of the “exact” greedy algo-
rithm, it achieves an approximation ratio that is close to (1− 1/e). The proof is standard,
and we include it here for completeness.

Theorem 5.2. For any ε ≤ 1
k , an (ε, δk )-greedy algorithm gives a (1−1/e−ε)-approximation

for submodular InfMax with probability (1− δ).

Proof. Let S∗ = {s∗1, . . . , s∗k} be an optimal solution which maximizes σ(·), and let S =
{s1, . . . , sk} be the seed set output by any (ε, δ/k)-greedy algorithm with ε ≤ 1/k. Let
S∗i = {s∗1, . . . , s∗i } and Si = {s1, . . . , si}. In particular, let S∗0 = S0 = ∅. Similar to
Proposition 3.7, we will show that, for each i = 0, 1, . . . , k − 1,

σ(Si+1)− σ(Si) ≥
1− ε
k

(σ(Si ∪ S∗)− σ(Si)) with probability at least 1− δ

k
. (12)

This is because

σ(Si+1)− σ(Si) ≥ (1− ε)
(

max
s∈V

(σ(Si ∪ {s})− σ(Si))

)
(by definition of (ε, δ)-greedy)

≥ (1− ε) 1

k

k∑
j=1

(
σ(Si ∪ {s∗j})− σ(Si)

)
(since s is the maximizer)

≥ 1− ε
k

k∑
j=1

(
σ(Si ∪ S∗j )− σ(Si ∪ S∗j−1)

)
(submodularity of σ(·))

=
1− ε
k

(σ(Si ∪ S∗)− σ(Si)) . (telescoping sum)

Next, similar to Proposition 3.8, we can prove by induction that for each i = 1, . . . , k

σ(Si) ≥

(
1−

(
1− 1

k

)i
− ε

)
σ(S∗) with probability at least 1− iδ

k
. (13)

The base step for i = 1 follows from Equation (12):

σ(S1) = σ(S1)− σ(S0) ≥ 1− ε
k

(σ(S0 ∪ S∗)− σ(S0)) >

(
1

k
− ε
)
σ(S∗).

For the inductive step, by Equation (12) again, we have, with probability at least (1− δ/k),

σ(Si+1)− σ(Si) ≥
1− ε
k

(σ(Si ∪ S∗)− σ(Si)) ≥
1− ε
k

(σ(S∗)− σ(Si)),
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which implies

σ(Si+1) ≥ 1− ε
k

σ(S∗) +
k − 1 + ε

k
σ(Si).

By the induction hypothesis, with probability at least (1− iδ
k ), we have

σ(Si) ≥

(
1−

(
1− 1

k

)i
− ε

)
σ(S∗).

Putting these together by a union bound, with probability at least 1− (i+1)δ
k , we have

σ(Si+1) ≥ 1− ε
k

σ(S∗) +
k − 1 + ε

k

(
1−

(
1− 1

k

)i
− ε

)
σ(S∗)

=

(
1−

(
1− 1

k

)i+1

− ε+
ε

k

(
1− ε−

(
1− 1

k

)i))
σ(S∗)

(elementary calculations)

≥

(
1−

(
1− 1

k

)i+1

− ε

)
σ(S∗), (since ε ≤ 1

k and i ≥ 1)

which concludes the inductive step.
The theorem concludes by taking i = k in Equation (13) and noticing that 1 − (1 −

1/k)k > 1− 1/e.

We can define the (ε, δ)-greedy adaptive policy similarly.

Definition 5.3. An adaptive policy π is a (ε, δ)-greedy adaptive policy if, for any S ⊆ V
and any partial realization ϕ, with probability at least 1− δ, we have π(S, ϕ) = v for v such
that

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {v})
∣∣∣− ∣∣∣IφG,F (S)

∣∣∣] ≥ (1− ε) max
s∈V

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s})
∣∣∣− ∣∣∣IφG,F (S)

∣∣∣] .
5.2 Greedy Adaptivity Gap for (ε, δ)-Greedy Algorithms

We re-exam all the theorems and lemmas in Section 3 and Section 4. Throughout this
section, we use Agε,δ to denote the set of all (ε, δ)-greedy algorithms and Πg

ε,δ to denote the
set of all (ε, δ)-greedy adaptive policies. Since the greedy adaptive policy we are studying
now is randomized, for any (ε, δ)-greedy adaptive policy πg ∈ Πg

ε,δ, the values σf(πg, k) and
σm(πg, k) are the expected numbers of infected vertices under the full-adoption feedback
setting and the myopic feedback setting respectively, where the expectation is taken over both
the sampling of a realization and the randomness when implementing πg. Correspondingly,
for a randomized non-adaptive (ε, δ)-greedy algorithm Ag ∈ Agε,δ, we will slightly abuse
the notation and use σ(Ag, k) to denote the expected number of infected vertices when k
seeds are chosen based on algorithm Ag, where the expectation is again taken over both the
sampling of a realization and the randomness when implementing Ag.

The argument behind all the proofs in this section is the same, which we summarize
as follows. To show that the greedy adaptivity gap remains the same in the (ε, δ)-greedy
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setting, we find an ε that is small enough such that, in the InfMax instance we constructed,
requiring the marginal influence being at least a (1− ε) fraction of the maximum marginal
influence is the same as requiring the maximum marginal influence. This is done by setting
ε to be small enough such that the only seed that produces the marginal influence within
(1− ε) of the maximum marginal influence is the seed that produce the maximum marginal
influence. By definition, the (ε, δ)-greedy algorithm/policy will behave exactly the same as
their exact deterministic counterpart with probability at least 1− δ. By setting δ = o(1/k)
and taking a union bound over all the k iterations, with probability at least 1 − o(1), the
(ε, δ)-greedy algorithm/policy will behave the same way as the exact deterministic greedy
algorithm/policy.

5.2.1 Infimum of Greedy Adaptivity Gap for (ε, δ)-Greedy Algorithms

In this section, we show that, for ε = o(1/k) and δ = o(1/k), the infimum of the greedy
adaptivity gap for (ε, δ)-greedy algorithms is between 1−1/e−ε and 1−1/e. We will formally
state what exactly we mean by this, and we will prove this by showing that Lemma 3.3,
Lemma 3.4 and Theorem 3.5 can be adapted in the (ε, δ)-greedy setting.

The following lemma extends Lemma 3.3 to the (ε, δ)-greedy setting.

Lemma 5.4. Given any two functions ε : Z+ → R+ and δ : Z+ → R+ satisfying ε(k) =
o(1/k) and δ(k) = o(1/k), for any τ > 0, there exists G,F, k such that IG,F is an ICM and,
for any adaptive policy πg ∈ Πg

ε(k),δ(k) and any non-adaptive algorithm Ag ∈ Agε(k),δ(k), we
have

σf(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ and

σm(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ.

Proof. We construct the same InfMax instance (G = (V,E,w), k + 1) as it is in the proof
of Lemma 3.3, with only one change: set Υ = ε(k + 1) ·W instead of the previous setting
Υ = W/k2.2 Notice that ε(k+ 1) means the value of the function ε(·) with input k+ 1, not
ε times (k + 1). To avoid possible confusion, we write ε := ε(k + 1) and δ := δ(k + 1) for
this proof. The remaining part of the proof is an adaption of the proof of Lemma 3.3 to
the (ε, δ) setting.

We first show that, for any Ag ∈ Agε,δ, with probability at least 1− (k+ 1) · δ = 1− o(1),
Ag will output {s, u1, . . . , uk}.

From Equation (1), (2), (3) and (4), by the definition of (ε, δ)-greedy, with probability
at least 1 − δ, the first seed chosen must have expected influence at least (1 − ε)σ({s}) ≥
(1− o(1/k)) · 2W . Since any other vertex does not have an influence which is even close to
2W , the first seed chosen by Ag is s with probability at least 1− δ.

Next, we show that, if Ag has chosen s and i vertices from {u1, . . . , uk} after i + 1
iterations, Ag will choose the next seed from {u1, . . . , uk} with probability 1 − δ. Let
Ui = {s, u1, . . . , ui} and U0 = {s} as before. Without loss of generality, we only need to
show that, supposing Ag has chosen Ui as the first (i + 1) seeds, with probability at least
1 − δ, Ag will choose a vertex from {ui+1, . . . , uk} as the next seed. By our calculation in

2. If ε(k+1) ·W is not an integer, we can always make W large enough and find a positive rational number
ε′ < ε(k + 1) such that ε′W ∈ Z+. The remaining part of the proof will not be invalidated by this
change.
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Equation (7), (8) and (9), with probability at least 1− δ, Ag will choose a seed x such that

σ(Ui ∪ {x})− σ(Ui) ≥ (1− ε)(σ(Ui ∪ {ui+1})− σ(Ui))

> W + (4k − 2)Υ− 1.1εW = W + (4k − 3.1)Υ,

where the last inequality is due to ε(W + (4k − 2)Υ) = ε(W + o(W )) < 1.1εW = 1.1Υ.
On the other hand, from Equation (8) and (9), choosing v1 or v2 as the next seed does not
provide enough marginal gain to σ(·):

σ(Ui ∪ {v1})− σ(Ui) ≤ 1 +W + (4k − 4)Υ < (1− ε)(σ(Ui ∪ {ui+1})− σ(Ui)),

σ(Ui ∪ {v2})− σ(Ui) ≤ 1 +W − W

k
+ (4k + 5)Υ

= W + 4kΥ− ω(Υ) (since Υ = εW = o
(
W
k

)
)

< (1− ε)(σ(Ui ∪ {ui+1})− σ(Ui)),

and the marginal influence of the remaining vertices other than v1 and v2 are even smaller.
Therefore, we conclude that, with probability at least 1 − δ, Ag will choose a vertex from
{ui+1, . . . , uk} as the next seed.

Putting these together, by a union bound, with probability 1− (k + 1)δ = 1− o(1), Ag

will choose {s, u1, . . . , uk}, which will infected (k + 2)W + o(W ) vertices in expectation, as
calculated in the proof of Lemma 3.3. Therefore,

σ(Ag, k + 1) ≥ (1− (k + 1)δ)((k + 2)W + o(W )) + (k + 1)δ · 0 = kW − o(kW ).

Second, we prove, for any greedy adaptive policy πg ∈ Πg
ε,δ, π

g will choose {s, v1, . . . , vk}
with probability at least 1 − 1/k − (k + 1)δ = 1 − o(1). By the same analysis in the non-
adaptive case, with probability (1− δ), the first seed chosen by πg is s. We assume that s
fails to infect t which happens with probability 1 − 1/k, and this is given as the feedback
to πg. The marginal influence of v1 is then w(t) + w(v1) +

∑k
i=1w(w1i) = 4kΥ + 1 + W .

With probability at least 1−δ, πg will choose a second seed with marginal influence at least
(1− ε)(4kΥ + 1 +W ) > W + 4kΥ− ε · 1.1W = W + (4k − 1.1)Υ. It is easy to see that v1

is the only vertex that can provide enough marginal influence. In particular, the marginal
influence of each of u1, . . . , uk is 1 + W + (4k − 2)Υ, which is less than W + (4k − 1.1)Υ,
the marginal influence of v2 is 1 + (1 − 1

k )W + k · 4k−2
k−1 Υ = W + 4kΥ − ω(Υ) (notice that

k · 4k−2
k−1 Υ = 4kΥ + Θ(Υ) and W/k = ω(Υ)), which is less than W + (4k − 1.1)Υ, and the

marginal influence of v3, . . . , vk are even smaller than that of v2.
We have shown that the first two seeds are s and v1 with probability at least 1−1/k−2δ.

Next, we show that, for each i = 1, . . . , k− 1, if πg has chosen s, v1, . . . , vi, with probability
(1− δ), πg will choose vi+1 as the next seed. Suppose πg has chosen s, v1, . . . , vi. From the
proof of Lemma 3.3, we have seen that vi+1 has the highest marginal influence, which is
1 + (1 − 1/k)iW + k · 4k−2

k−1 Υ. With probability at least 1 − δ, πg will choose a seed with
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marginal influence at least (1− ε) fraction of this value:

(1− ε)

(
1 +

(
1− 1

k

)i
W + k

4k − 2

k − 1
Υ

)

>

(
1− 1

k

)i
W + k

4k − 2

k − 1
Υ− ε

((
1− 1

k

)i
W + k

4k − 2

k − 1
Υ

)

≥
(

1− 1

k

)i
W + k

4k − 2

k − 1
Υ− ε

((
1− 1

k

)1

W + k
4k − 2

k − 1
Υ

)

≥
(

1− 1

k

)i
W + k

4k − 2

k − 1
Υ− 1.1Υ.

(since ε(1− 1
k )1W < εW = Υ and εk 4k−2

k−1 Υ = Θ(4kεΥ) = o(Υ) < 0.1Υ)

The marginal influence of vi+2 is (1 − 1/k)i+1W + k 4k−2
k−1 Υ = (1 − 1/k)iW + k 4k−2

k−1 Υ −
1
k (1 − 1/k)iW < (1 − 1/k)iW + k 4k−2

k−1 Υ − 0.63Wk , which is less than the value above (as
Υ = o(W/k)). The marginal influence of vi+3, . . . , vk are even smaller, and we do not need
to consider them. The marginal influence of u1 is

∑k
j=i+1w(wj1) = (1− 1/k)iW + (k− i) ·

4k−2
k−1 Υ ≤ (1− 1/k)iW + (k − 1) · 4k−2

k−1 Υ < (1− 1/k)iW + k 4k−2
k−1 Υ− 2Υ, which is again less

than the value above.
Putting these together, by a union bound, with probability (1−1/k)(1−(k+1)δ) = o(1),

πg will choose {s, v1, . . . , vk}, which can infect, as computed in the proof of Lemma 3.3,
k(1− (1− 1/k)k)W + o(kW ) vertices. Therefore,

σf(πg, k) = σm(πg, k) ≤ (1− o(1))

(
k

(
1−

(
1− 1

k

)k)
W + o(kW )

)
+ o(1) · |V |

= k

(
1−

(
1− 1

k

)k)
W + o(kW ).

The theorem concludes by taking the ratio of the computed upper-bound of σf(πg, k) =
σm(πg, k) and the computed lower-bound of σ(Ag, k), and then taking the limits k → ∞
and W →∞.

Remark 5.5. Lemma 5.4 provides an upper bound for each of σf(πg ,k)
σ(Ag ,k) and σm(πg ,k)

σ(Ag ,k) , where
the numerator and the denominator in each ratio represent the number of infected vertices
(in the non-adaptive setting and the adaptive setting respectively) in expectation. The same
proof for Lemma 5.4 can be used to show the following stronger version of Lemma 5.4. Let
IφG,F (πg, k) be the set of infected vertices when the adaptive policy πg is used and the

underlying live-edge realization is φ. Let IφG,F (Ag, k) have similar meaning corresponding
to non-adaptive algorithm Ag. The same proof for Lemma 5.4 implies that, under the same
setting in Lemma 5.4, for both full-adoption and myopic feedback models, we have

Pr
φ∼F

(
|IφG,F (πg, k)|

|IφG,F (Ag, k)|
≤ 1− 1

e
+ τ

)
≥ 1− 2(k + 1)δ − 1

k
= 1− o(1), (14)
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where we have taken a union bound of the “bad” events that the “correct” seed is not
chosen in each of the (k + 1) iterations in both πg and Ag, as well as the “bad” event that
s infects t (with probability 1/k).

The following lemma extends Lemma 3.4 to the (ε, δ)-greedy setting.

Lemma 5.6. Given any two functions ε : Z+ → R+ and δ : Z+ → R+ satisfying ε(k) =
o(1/k) and δ(k) = o(1/k), for any τ > 0, there exists G,F, k such that IG,F is an LTM and,
for any adaptive policy πg ∈ Πg

ε(k),δ(k) and any non-adaptive algorithm Ag ∈ Agε(k),δ(k), we
have

σf(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ and

σm(πg, k)

σ(Ag, k)
≤ 1− 1

e
+ τ.

Proof. We construct the same InfMax instance (G = (V,E,w), k+1) as it is in the proof of
Lemma 3.4, with only one change: set Υ = ε ·W instead of the previous setting Υ = W/k2.
The remaining part of the proof is exactly the same as how we have adapted the proof of
Lemma 3.3 to Lemma 5.4. We omit the details here.

Remark 5.7. Similarly, we can prove a stronger version of Lemma 5.6 given by exactly
the same equation (14).

Next, it is easy to show that Theorem 3.5 holds for the (ε, δ)-greedy setting.

Theorem 5.8. For a triggering model IG,F , any ε ∈ (0, 1/k], any function δ : Z+ → R+

such that δ(k) = o(1/k), and any πg ∈ Πg
ε,δ(k), we have

σf(πg, k) ≥
(

1− 1

e
− ε
)

max
S⊆V,|S|≤k

σ(S) and σm(πg, k) ≥
(

1− 1

e
− ε
)

max
S⊆V,|S|≤k

σ(S).

Proof. Let S∗ ∈ argmaxS⊆V,|S|≤k σ(S) be an optimal non-adaptive seed set. For any S ⊆ V ,
any partial realization φ that is a valid feedback of S under any feedback model (either

full-adoption or myopic), letting s∗ ∈ argmaxs′ Eφ'ϕ[|IφG,F (S ∪ {s′})|] be the vertex which
maximizes the expected marginal influence given ϕ, with probability at least 1− δ, πg will
pick the next seed s = πg(S, ϕ) such that

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣]

≥(1− ε)
(

E
φ'ϕ

[∣∣∣IφG,F (S ∪ {s∗})
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣]) (Definition 5.3)

≥1− ε
k

(
E
φ'ϕ

[∣∣∣IφG,F (S ∪ S∗)
∣∣∣]− E

φ'ϕ

[∣∣∣IφG,F (S)
∣∣∣]) . (Proposition 3.7)

We can then prove that, for any ` ∈ Z+, both σf(πg, `) and σm(πg, `) are no less than
(1− (1−1/k)`−ε)σ(S∗), by using the same arguments in the proof of Proposition 3.8. The
theorem concludes by taking ` = k.

Finally, we formally state and prove that, when ε = o(1/k) and δ = o(1/k), the infimum
of the adaptivity gap under the (ε, δ)-greedy setting is between 1 − 1/e − ε and 1 − 1/e,
which adapts Theorem 3.1 to the (ε, δ)-greedy setting.
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Theorem 5.9. Given any two functions ε : Z+ → R+ and δ : Z+ → R+ such that
ε(k) = o(1/k) and δ(k) = o(1/k), we have

inf
G,F,k:IG,F is ICM

 inf
πg∈Πg

ε(k),δ(k)

Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

 ∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,F,k:IG,F is ICM

 sup
πg∈Πg

ε(k),δ(k)

Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

 ∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,F,k:IG,F is LTM

 inf
πg∈Πg

ε(k),δ(k)

Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

 ∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,F,k:IG,F is LTM

 sup
πg∈Πg

ε(k),δ(k)

Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

 ∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,F,k

 inf
πg∈Πg

ε(k),δ(k)

Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

 ∈
(

1− 1

e
− ε(k), 1− 1

e

)
,

inf
G,F,k

 sup
πg∈Πg

ε(k),δ(k)

Ag∈Ag
ε(k),δ(k)

σf(πg, k)

σ(Ag, k)

 ∈
(

1− 1

e
− ε(k), 1− 1

e

)
.

All the six statements above also hold for the myopic feedback model.

Proof. Since σ(Ag, k) ≤ maxS⊆V,|S|≤k σ(S) always hold, the lower bound 1− 1
e − ε holds for

each of the six statements according to Theorem 5.8. Then, Lemma 5.4 implies the first two
statements, Lemma 5.6 implies the third and the fourth. Finally, since both ICM and LTM

are special cases of the triggering model, the left-hand side of the fifth statement is at most
the left-hand side of the first (or the third), and the left-hand side of the sixth statement
is at most the left-hand side of the second (or the fourth). Thus, the first four statements
imply the last two.

5.2.2 Supremum of Greedy Adaptivity Gap for (ε, δ)-Greedy Algorithms

We first show that Lemma 4.5 holds for the (ε, δ)-greedy setting for very mild restric-
tions on ε and δ. the following lemma shows that, under the (ε, δ)-greedy setting where
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ε = O(log log k/ log k) and δ = o(1/k), the greedy adaptivity gap for InfMax with pre-
scribed seed candidates with LTM and full-adoption feedback is 2Ω(log |V |/ log log |V |).3 Notice
that Lemma 5.10 below is a stronger claim: it says that the greedy adaptive policy sig-
nificantly outperforms any non-adaptive InfMax algorithm, including the non-adaptive
greedy algorithm and even the optimal non-adaptive algorithm.

Lemma 5.10. There exists a constant c > 0 such that, given any two functions ε : Z+ → R+

and δ : Z+ → R+ such that ε(k) ≤ c log log k
log k and δ(k) = o(1/k), for InfMax with prescribed

seed candidates with LTM, there exists k such that, for any valid seed set S (i.e., S is a subset
of the candidate set V and |S| ≤ k) and any πg ∈ Πg

ε(k),δ(k), we have

σf(πg, k)

σ(S)
≥ 2c log(|V |)/ log log(|V |).

Proof. The sketch of the proof of this lemma follows the proof of Lemma 4.5. We construct
the same InfMax instance with the same k, V , d,W as given in the proof of Lemma 4.5.
Again, by Lemma 4.3, choosing any k vertices among V infects the same number of vertices
in expectation. We can reach the same conclusion that σ(S) < |S|W

dd
+ dd+1 by the same

arguments. It then remains to analyze the greedy adaptive policy.
Consider an arbitrary greedy adaptive policy πg ∈ Πg

ε(k),δ(k). Let the three status
“unexplored”, “explored” and “dead” have the same meanings as they are in the proof of
Lemma 4.3. Correspondingly, we will show that, with probability at least 1−kδ(k) = 1−o(1),
if the root node is not infected yet, at any iteration of the greedy adaptive policy, each internal
level of the tree can contain at most one explored node.

Let v, v′, u, `u, du have the same meaning as in the proof of Lemma 4.5. We have already
seen that, at the current iteration, choosing v′ is suboptimal, and choosing v′ yields a
marginal influence which is at most a fraction

1

d`u−1du
/

1

d`u−2(d− 1)du
= 1− 1

d

of the marginal influence of v. Therefore, if we set ε such that ε < 1
d , the next seed chosen by

the policy πg will not be a leaf that is a descendent of an unexplored node with probability
at least 1 − δ. By a union bound, with probability at least 1 − kδ = 1 − o(1), if the root
node is not infected yet, it will never happen that, at an iteration, there are more than one
explored node in the same level.

The remaining part of the proof is almost the same. Since this crucial claim holds with
probability at least 1− o(1), the same induction argument shows that σf(πg, k) ≥ 1

2W , and

we have σf(πg ,k)
σ(S) = Ω(2d) = 2Ω(log |V |/ log log |V |) as long as ε < 1

d . Noticing that d = Ω( log k
log log k )

(in particular, since k = 2(d+1
2 )d, log k = d log d+ O(d) and log log k = log d+ o(log d), we

have d = Ω( log k
log log k )), implying 1

d = O( log log k
log k ). The lemma holds with a sufficiently small

c.

3. Lemma 4.5 also says that the adaptivity gap under the same setting is infinity. Since the adaptivity
gap is about optimal algorithm/policy which is irrelevant to the greedy algorithm, this result holds as
always, and it makes no sense to “adapt” it into the setting in this section. Similarly, Theorem 4.2 is
also irrelevant here, and it holds as always.
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Finally, we extend Theorem 4.1 to the (ε, δ)-greedy setting.

Theorem 5.11. For any constant c > 0, given any two functions ε : Z+ → R+ and
δ : Z+ → R+ such that ε(k) = O( 1

k2+c ) and δ(k) = o(1/k), there exists a triggering model

IG,F and k such that, for any valid seed set S (i.e., S is a subset of the candidate set V and
|S| ≤ k) and any πg ∈ Πg

ε(k),δ(k), we have

σf(πg, k)

σ(S)
≥ 2c

′ log(|V |)/ log log(|V |),

where c′ > 0 is a universal constant.

Proof. The sketch of the proof follows from Section 4.2. We construct the same InfMax
instance with the same triggering model that is a mixture of ICM and LTM. The analysis for
the non-adaptive algorithms is the same. We have σ(S) ≤ M(k · 1

dd
W + dd+1) for any S

with |S| ≤ k.
Consider any πg ∈ Πg

ε(k),δ(k). Consider an arbitrary iteration. Let az ∈ A be the
seed that maximizes the marginal influence, which will be the one picked by the exact
greedy adaptive policy. Recall that a vertex in A corresponds to the selection of a seed
among the leaves in each of T1, . . . , TM . Naturally, az makes the optimal selection in all
the M trees. From the argument in the proof of Lemma 4.5, in each tree Ti and in each
iteration, as long as the seed selected in Ti satisfies that there is at most one explored node
at each level of Ti, we will have the greedy adaptivity gap being 2Ω(log |V |/ log log |V |) on the
subgraph Ti, and the same argument in Section 4.2 shows that the greedy adaptivity gap
overall is 2Ω(log log |V |/ log log log |V |). To conclude the proof of this theorem, we will show that
ε = O( 1

k2+c ) is sufficient to make sure that this will happen for all T1, . . . , TM .
To show this, we consider a suboptimal a′z ∈ A such that, at some tree Ti, there are

more than one explored node at some level of Ti, and we find a lower bound of the difference
between the marginal influence of az and the marginal influence of a′z. Let v, v′, u, `u, du
have the same meaning as in the proof of Lemma 4.5. Let pu be the probability that, given
the feedback at the current iteration, the path connecting from u to the root contains only
live edges (i.e., u will infect the root). Then the marginal influence of v′ is at most

1

d`u−1du
· pu ·W + d+ 1

(where the second term d is the number of nodes on the path from v′ to the root, which
can potentially be infected), and the marginal influence of v is at least

1

d`u−2(d− 1)du
· pu ·W.

The difference is at least

Wpu ·
1

d`u−2du

(
1

d− 1
− 1

d

)
− d− 1 ≥ W

dd(d− 1)
− d− 1,

where we used the fact that du ≤ d and pu ≥ 1
dd−`u

.
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On the other hand, the marginal influence of az is at most M(W + d + 1) (we have
assumed the root is infected at this iteration for each of T1, . . . , TM ). It suffices to find an
ε such that

W

dd(d− 1)
− d− 1 > εM(W + d+ 1).

Since we have set W = M = dd+10, this is equivalent to

d10

d− 1
− d− 1 > εdd+10

(
dd+10 + d+ 1

)
,

which implies

ε = O

(
1

d2d+11

)
.

Finally, recalling that k = 2(d+1
2 )d, elementary calculations shows that ε = O( 1

k2+c ) is a
sufficient condition to the above:

1

k2+c
=

1

22+c

(
2

d+ 1

)2d+cd

<

(
1

d

)2d+cd

· 22d+cd =
1

d2d+11
· 22d+cd

2(cd−11) log d
,

and the second term in the product above tends to 0 as d→∞.

6. A Variant of Greedy Adaptive Policy

Although we have seen that the adaptive version of the greedy algorithm can perform worse
than its non-adaptive counterpart, in general, we would still recommend the use of it as
long as it is feasible, as it can also perform significantly better than the non-adaptive greedy
algorithm (Theorem 4.1) while never being too bad (Theorem 3.5). As we remarked, the
adaptivity may be harmful because exploiting the feedback may make the seed-picker too
myopic. In this section, we propose a less aggressive risk-free version of the greedy adaptive
policy, πg−, in that it balances between the exploitation of the feedback and the focus on
the average in the conventional non-adaptive greedy algorithm.

First, we apply the non-adaptive greedy algorithm with |V | seeds to obtain an order L
on all vertices. Then for any S ⊆ V and any partial realization ϕ, πg−(S, ϕ) is defined to be
the first vertex v in L that is not known to be infected. Formally, v is the first vertex in L
that are not reachable from S when removing all edges e with ϕ(e) ∈ {B, U}. This finishes
the description of the policy.

This adaptive policy is always no worse than the non-adaptive greedy algorithm, as it is
easy to see that those seeds chosen by πg are either seeded or infected by previously selected
seeds in πg−.

However, πg− can sometimes be conservative. It is possible that πg− has the same
performance as the non-adaptive greedy algorithm, but πg is much better. Especially, when
there is no path between any two vertices among the first k vertices in L, πg− will make the
same choice as the non-adaptive greedy algorithm. The InfMax instance in Section 4.2 is
an example of this.

We have seen that πg− sometimes performs better than πg (e.g., in those instances
constructed in the proofs of Lemma 3.3 and Lemma 3.4) and sometimes performs worse
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than the πg (e.g., in the instance constructed in Section 4.2). Therefore, given a particular
InfMax instance, for deciding which of πg− and πg to be used (we should never consider
the non-adaptive greedy algorithm if adaptivity is available, as it is always weakly worse
than πg−), we recommend a comparison of the two policies by simulations. Notice that
the seed-picker can randomly sample a realization φ and simulate the feedback the policy
will receive. Thus, given IG,F , both πg− and πg can be estimated by taking an average
over the numbers of infected vertices in a large number of simulations. In the next section,
we evaluate the three algorithms—the non-adaptive greedy algorithm, the greedy adaptive
policy πg and the conservative greedy adaptive policy πg−—empirically by experiments on
social networks in our daily lives.

7. Empirical Experiments

In this section, we compare the three algorithms—the non-adaptive greedy algorithm, the
greedy adaptive policy πg and the conservative greedy adaptive policy πg−—empirically by
experiments on the social networks in our daily lives. Below is a quick summary of the
results obtained from our experiments.

1. The greedy adaptive policy πg outperforms the conservative greedy adaptive policy
πg− and the non-adaptive greedy algorithm in most scenarios.

2. The conservative greedy adaptive policy πg− always outperforms the non-adaptive
greedy algorithm.

3. Occasionally, the greedy adaptive policy πg is outperformed by the conservative adap-
tive policy πg−, or even the non-adaptive greedy algorithm.

Notice that our results in Section 3 support the third observation, and the second observa-
tion follows easily from our definition of πg− in the last section.

In the proofs of Lemma 3.3 and Lemma 3.4 in Sect. 3.1, we have constructed two graphs
where the greedy adaptive policy performs worse than the non-adaptive greedy algorithm.
We test the performances of the three algorithms empirically on the two graphs in Sect. 7.4.

7.1 Reverse Reachable Sets

In this section, we discuss a popular type of greedy-based algorithm—the reverse-reachable-
set-based algorithms. Our experiments have also made use of reverse reachable sets.

In all those reverse-reachable-set-based algorithms, including RIS (Borgs et al., 2014),
TIM+ (Tang et al., 2014), IMM (Tang et al., 2015), EPIC (Han et al., 2018), a sufficient
number of reverse reachable sets are sampled. Each reverse reachable set is sampled as
follows: first, a vertex v is sampled uniformly at random; second, sample the live edges
in the graph where each vertex chooses a triggering set according to the triggering model
(undirected graphs are treated as directed graphs with anti-parallel edges); lastly, the reverse
reachable set consists of exactly those vertices from which v is reachable.

After collecting sufficiently many reverse reachable sets, the algorithms choose k seeds
that attempt to cover as many reverse reachable sets as possible (we say a reverse reachable
set is covered if it contains at least 1 seed), and this is done by a greedy maximum coverage
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Dataset Number of Vertices Number of Edges Average Degree

Nethept 15,233 31,387 4.12
CA-HepPh 12,008 118,505 19.73
DBLP 317,080 1,049,866 6.62
com-YouTube 1,134,890 2,987,624 5.26

Table 2: Datasets for experiments

way: iteratively select the seed that maximizes the extra number of reverse reachable sets
covered by this seed.

The meat of those reverse-reachable-set-based algorithms is that, given a seed set S,
the probability that a randomly sampled reverse reachable set is covered by S is exactly
the probability that a vertex selected uniformly at random from the graph is infected by
S. Therefore, when sufficiently many reverse reachable sets are sampled, the fraction of the
reverse reachable sets covered by S is a good approximation to σ(S)/|V |.

7.2 Experiments Setup

We implement the experiments on four undirected graphs, shown in Table 2. All of our
datasets come from (Leskovec & Krevl, 2014), and these networks are also popular choices
in other empirical work. We implement the three algorithms with k = 200 seeds.

For the diffusion model, we implement both ICM and LTM. For ICM, the weight of each
edge is set to 0.01. For LTM, each undirected edge (u, v) is viewed as two anti-parallel directed
edges such that w(u, v) = 1/ deg(v) and w(v, u) = 1/deg(u). For each dataset, we sample
three realizations φ1, φ2, φ3 as the “ground-truth”. Therefore, a total of six experiments are
performed for each dataset: the two models ICM and LTM for each of the three realizations.
For each of those six experiments, when a seed s is chosen, all vertices that are reachable
from s in the ground-truth realization are considered infected, and given as the feedback.
In particular, we consider the full-adoption feedback in our experiments.

To implement the three algorithms, we sample 1,000,000 reverse reachable sets, and
perform the greedy maximum coverage algorithm described in the last sub-section which
iteratively selects the seed that maximizes the number of extra reverse reachable sets covered
by this seed. We iteratively select seeds in this way until a sufficient number of seeds are
selected (we decided to select 10,000 seeds, which turns out to be sufficient), and we ordered
them in a list. Naturally, the non-adaptive greedy algorithm choose the first k = 200 seeds in
this list. The conservative greedy adaptive policy iteratively select the first not-yet-selected
seed in the list that is not known to be infected, as described in Section 6.

As for the greedy adaptive policy, the first seed is the same as the one for non-adaptive
greedy algorithm and the conservative greedy adaptive policy. In each future iteration, the
vertices that are infected (given as the feedback) are removed from the graph, and 1,000,000
new reverse reachable sets are sampled on the remainder graph. Notice that, for LTM, the
degrees of the vertices in the remainder graph may decrease, which increases the weights
of the incoming edges of these vertices. Then, a seed that covers a maximum number of
reverse reachable sets is selected as the next seed.
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We remark that removing infected vertices from the graph and sampling reverse reach-
able sets on the remainder graph is the correct way to implement the algorithm. Since we
are considering the full-adoption feedback, we know that there is no directed live edge from
an infected vertex to an uninfected vertex, for otherwise the uninfected vertex should have
been infected. When sampling the reverse reachable set, the triggering set of any uninfected
vertex should not intersect with any infected vertex. Given an arbitrary uninfected vertex
v and letting X be the set of all infected vertices, v should include each vertex in Γ(v) \X
to its triggering set with probability 0.01 independently under ICM, and v should include
exactly one vertex chosen uniformly at random in Γ(v) \X to its triggering set under LTM.
Consequently, for both ICM and LTM, we can and we should remove those infected vertices
from the graph and sample reverse reachable sets in the remainder graph.

7.3 Results

As we mentioned, for each dataset, we have six figures corresponding to ICM and LTM for
each of the three realizations φ1, φ2, φ3. In each figure, the x-axis is the number of seeds,
and the y-axis is the number of infected vertices in the realization. The three curves
correspond to the outcomes of the three algorithms. Figure 1, 2, 3 and 4 correspond
to the datasets Nethept, CA-HepPh, DBLP, and com-YouTube respectively. The three
observations mentioned at the beginning of this section can be easily observed from the
figures.

7.4 Experiments on Graphs Constructed in Sect. 3.1

For ICM, based on the construction in the proof of Lemma 3.3, we build five graphs with the
parameter W set to 10k2k(k−1) and the parameter k set to 10, 15, 20, 25 and 30 respectively.
We implement the experiment with weighted vertices (see Remark 3.2). That is, we set the
weight of the vertex u to be W instead of creating W −1 vertices that are connected from u.
The expected number of infections for a given seed set is evaluated with 10,000 Monte Carlo
simulations. Notice that all the edges in our construction have weight 1 except for the edge
(s, t), which has weight 1/k. Thus, there can be only two possible realizations φ(s,t) and
φ¬(s,t) where the edge (s, t) is live and blocked respectively. In addition, φ(s,t) and φ¬(s,t)

are realized with probability 1/k and 1− 1/k respectively. For the greedy adaptive policy,
we test the performances of the policy on both graphs, and the overall performance is then
given by the weighted average. In all the tests, the non-adaptive greedy algorithm selects
the seed set {s, u1, . . . , uk} and the greedy adaptive policy selects the seed set {s, v1, . . . , vt},
exactly as we predicted in the proof of Lemma 3.3. Since each vertex {s, u1, . . . , uk} has
in-degree 0, the seeds selected by the non-adaptive greedy algorithm cannot infect each
other. Therefore, the conservative greedy adaptive policy selects exactly the same seed set
as the non-adaptive greedy algorithm, and we omit the test for the conservative greedy
adaptive policy. The experimental results are shown in Table 3. The first two rows show
the expected numbers of infected vertices for the two algorithms, and the last row shows
the ratios between the performance of the greedy adaptive policy and the performance of
the non-adaptive greedy algorithm. We can see that the greedy adaptive policy performs
worse than its non-adaptive counterpart in all cases, and the gap becomes larger as the size
of the graph grows (with k increasing).
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k 10 15 20 25 30

non-adaptive 1.426× 1023 5.607× 1038 5.413× 1055 5.855× 1073 4.418× 1092

adaptive 1.176× 1023 4.338× 1038 4.030× 1055 4.247× 1073 3.144× 1092

gap 0.825 0.774 0.744 0.725 0.712

Table 3: The results for ICM with the graph in Lemma 3.3.

For LTM, based on the construction in the proof of Lemma 3.4, we build three graphs
with the parameter W set to 10k2k(k−1) and the parameter k set to 10, 15, 20 respectively.
For each k, we randomly sample k realizations φ1, . . . , φk. Since t has two incoming edges
(s, t) and (v1, t) with weights 1/k and 1 − 1/k respectively, we let (s, t) appears in φ1 and
(v1, t) appears in φ2, . . . , φk. (Recall that the greedy adaptive policy will select seeds that
are of worse quality than the non-adaptive greedy algorithm in the case it receives the
feedback that (s, t) is blocked.) The remaining edges are sampled randomly based on LTM

in each φi.
We observe that the non-adaptive greedy algorithm always selects {s, u1, . . . , uk} as we

expected. However, for the greedy adaptive policy, it sometimes selects the “bad” seed set
{s, v1, . . . , vk} as predicted in the proof of Lemma 3.4, and it sometimes selects the “good”
seed set {s, u1, . . . , uk}. The chance it selects the bad seed set (i.e., more accurately reflects
our prediction) becomes higher when the number of Monte-Carlo simulations increases.
This is natural: when the number of Monte Carlo simulations increases, the greedy adaptive
policy is more likely to choose the locally optimal seed at each iteration; if it does, it will
lead to a “bad” seed set. On the other hand, with less Monte Carlo simulations, the policy
sometimes chooses a locally sub-optimal seed, which is actually beneficial in that it deviates
from the “path” leading to a “bad” seed set. To be more specific, we have seen that, after
selecting s as the first seed, if we receive the feedback that t is not infected by s, the
marginal influence of v1 is slightly larger than any of u1, . . . , uk. The choice of the second
seed is pivotal: we reach a “bad” seed set if we select v1 as the second seed, and we reach
a “good” seed set if u1 is selected. The policy will select v1 as the second seed only when
its marginal influence is greater than all of u1, . . . , uk. However, this theoretical fact is not
always empirically observed due to the errors in the Monte Carlo estimation.

The experimental results for k = 10, 15, 20 with various numbers of Monte Carlo simu-
lations are shown in Table 4. We can see that the gap becomes larger when the number of
Monte Carlo simulations increases (with the only exception where k = 15 with 106 Monte
Carlo simulations). Again, since the non-adaptive greedy algorithm always selects the seed
set {s, u1, . . . , uk} and the vertices in this set have in-degree 0, the conservative greedy
adaptive policy always selects the same seed set, and we omit the corresponding results.

In conclusion, we have observed that the greedy adaptive policy, to different extents,
consistently performs worse than the non-adaptive greedy algorithm (as well as the conser-
vative greedy adaptive policy) in the graphs we constructed in Lemma 3.3 and Lemma 3.4.
We have empirically verified our theoretical postulation that the greedy adaptive policy can
perform worse than the non-adaptive greedy algorithm in some special scenarios.
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Figure 1: The results for the dataset Nethept. The three rows correspond to the three
realizations φ1, φ2, φ3, the left column is for ICM, and the right column is for LTM.
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Figure 2: The results for the dataset CA-HepPh. The three rows correspond to the three
realizations φ1, φ2, φ3, the left column is for ICM, and the right column is for LTM.
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Figure 3: The results for the dataset DBLP. The three rows correspond to the three real-
izations φ1, φ2, φ3, the left column is for ICM, and the right column is for LTM.
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Figure 4: The results for the dataset com-YouTube. The three rows correspond to the three
realizations φ1, φ2, φ3, the left column is for ICM, and the right column is for LTM.
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# of MC 102 103 104 105 106

non-adaptive 1.422× 1023 1.422× 1023 1.422× 1023 1.422× 1023 1.422× 1023

adaptive 1.335× 1023 1.275× 1023 1.146× 1023 1.121× 1023 1.121× 1023

gap 0.939 0.896 0.806 0.788 0.788
The results for k = 10

# of MC 102 103 104 105 106

non-adaptive 5.602× 1038 5.602× 1038 5.602× 1038 5.602× 1038 5.602× 1038

adaptive 5.276× 1038 5.212× 1038 4.910× 1038 4.203× 1038 4.241× 1038

gap 0.942 0.930 0.877 0.750 0.757
The results for k = 15

# of MC 102 103 104 105 106

non-adaptive 5.411× 1055 5.411× 1055 5.411× 1055 5.411× 1055 5.411× 1055

adaptive 5.183× 1055 4.864× 1055 4.612× 1055 4.227× 1055 3.924× 1055

gap 0.958 0.899 0.852 0.781 0.725
The results for k = 20

Table 4: The results for LTM with the graph in Lemma 3.4

8. Conclusion and Open Problems

We have seen that the infimum of the greedy adaptivity gap is exactly (1 − 1/e) for ICM,
LTM, and general triggering models with both the full-adoption feedback model and the
myopic feedback model. We have also seen that the supremum of this gap is infinity for the
full-adoption feedback model. One natural open problem is to find the supremum of the
greedy adaptivity gap for the myopic feedback model. Another natural open problem is to
find the supremum of the greedy adaptivity gap for the more specific ICM and LTM.

The greedy adaptivity gap studied in this paper is closely related to the adaptivity
gap studied in the past. Since the non-adaptive greedy algorithm is always a (1 − 1/e)-
approximation of the non-adaptive optimal solution, a constant adaptivity gap implies a
constant greedy adaptivity gap. For example, the adaptivity gap for ICM with myopic
feedback is at most 4 (Peng & Chen, 2019), so the greedy adaptivity gap in the same setting
is at most 4

1−1/e . In addition, the greedy adaptive policy is known to achieve a (1 − 1/e)-

approximation to the adaptive optimal solution for ICM with full-adoption feedback (Golovin
& Krause, 2011), so the adaptivity gap and the greedy adaptivity gap could either be both
constant or both unbounded for ICM with full-adoption feedback model, but it remains open
which case is true. The adaptivity gap for ICM with full-adoption feedback, as well as the
adaptivity gap for LTM with both feedback models, are all important open problems. We
believe these problems can be studied together with the greedy adaptivity gap.
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Appendix A. Original Definitions and Some Intuitions for ICM and LTM

In the original definition, ICM is defined such that each vertex u attempts only once to infect
each of its not-yet-infected out-neighbor v with probability w(u, v).

Definition A.1. The independent cascade model ICG is defined by a directed edge-weighted
graph G = (V,E,w) such that w(u, v) ≤ 1 for each (u, v) ∈ E. On input seed set S ⊆ V ,
ICG(S) outputs a set of infected vertices as follows:

1. Initially, only vertices in S are infected.

2. In each subsequent round, each vertex u infected in the previous round infects each
(not yet infected) out-neighbor v with probability w(u, v) independently.

3. After a round where there is no additional infected vertices, ICG(S) outputs the set
of infected vertices.

It is straightforward to see that this definition is equivalent to Definition 2.2.
The basic idea behind the original LTM is that the influence from the in-neighbors of a

vertex is additive.

Definition A.2. The linear threshold model LTG is defined by a directed edge-weighted
graph G = (V,E,w) such that

∑
u:u∈Γ(v)w(u, v) ≤ 1 for each v ∈ V . On input seed set

S ⊆ V , LTG(S) outputs a set of infected vertices as follows:

1. Initially, only vertices in S are infected, and for each vertex v a threshold θv is sampled
uniformly at random from [0, 1] independently.

2. In each subsequent round, a vertex v becomes infected if∑
u:u∈Γ(v) and u is infected

w(u, v) ≥ θv.

3. After a round where there is no additional infected vertices, LTG(S) outputs the set
of infected vertices.

Kempe et al. (2003) showed that the definition above is equivalent to Definition 2.3. For
an intuition of this, consider a not-yet-infected vertex v and a set of its infected neighbors
INv ⊆ Γ(v). v will be infected by vertices in INv with probability

∑
u:u∈INv

w(u, v), as
Pr
(
θv ≤

∑
u:u∈INv

w(u, v)
)

=
∑

u:u∈INv
w(u, v). In the case where v becomes infected, we

can attribute its infection to exactly one of its infected neighbors. The infection will be
attributed to neighboring infected vertex u with probability equal to w(u, v) (in which case
Tv = {u}). Overall, the probability that v includes an incoming edge from {(u, v) : u ∈ INv}
is exactly

∑
u:u∈INv

w(u, v).
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Appendix B. On General Threshold Model

In this section, we show that all our theoretical results in this paper hold for submodular
general threshold model, a model that is more general than the triggering model.4 In
Section B.1, we define the general threshold model, and we define the two feedback models,
the full-adoption and the myopic, based on the general threshold model. In Section B.2,
we justify that all our results in this paper hold for submodular general threshold model.
Notice that, however, our empirical results in Section 7 depend on the reverse reachable set
technique, which is only compatible with the triggering model.

B.1 General Threshold Model and Feedback

Definition B.1 (Kempe et al. (2003)). The general threshold model, IG,F , is defined
by a graph G = (V,E) and for each vertex v a monotone local influence function fv :
{0, 1}|Γ(v)| → [0, 1] with fv(∅) = 0. Let F = {fv | v ∈ V }.

On an input seed set S ⊆ V , IG,F (S) outputs a set of infected vertices as follows:
1. Initially, only vertices in S are infected, and for each vertex v the threshold θv is

sampled uniformly at random from the interval (0, 1] independently.
2. In each subsequent round, a vertex v becomes infected if the influence of its infected

in-neighbors, INv ⊆ Γ(v), exceeds its threshold: fv(INv) ≥ θv.
3. After a round where no additional vertices are infected, the set of infected vertices is

the output.

IG,F in Definition B.1 can be viewed as a random function IG,F : {0, 1}|V | → {0, 1}|V |. In
addition, if the thresholds of all the vertices are fixed, this function becomes deterministic.
Correspondingly, we define a realization of a graph G = (V,E) as a function φ : V →
(0, 1] which encodes the thresholds of all vertices. Let IφG,F : {0, 1}|V | → {0, 1}|V | be the
deterministic function corresponding to the general threshold model IG,F with vertices’
thresholds following realization φ. We will interchangeably consider φ as a function defined
above or a |V | dimensional vector in (0, 1]|V |, and we write φ ∼ (0, 1]|V | to mean a random
realization is sampled such that each θv is sampled uniformly at random and independently
as it is in Definition B.1.

Like the triggering model, the general threshold model also captures the independent
cascade and linear threshold models.

• ICM is a special case of the general threshold model IG,F where G = (V,E,w) is
an edge-weighted graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E and fv(INv) =
1−

∏
u∈INv

(1− w(u, v)) for each fv ∈ F .

• LTM is a special case of the general threshold model IG,F where G = (V,E,w) is an
edge-weighted graph with w(u, v) > 0 for each (u, v) ∈ E and

∑
u∈Γ(v)w(u, v) ≤ 1 for

each v ∈ V and fv(INv) =
∑

u∈INv
w(u, v) for each fv ∈ F .

4. In particular, a diffusion model that is captured by the general threshold model with submodular local
influence functions but not the triggering model, named decreasing cascade model, was discovered in
the full version of (Kempe et al., 2003); this indicates that even the general threshold model with
submodular local influence functions is strictly more general than the triggering model. Salek et al.
(2010) completely characterized the necessary and sufficient condition under which a general threshold
model can be captured by a triggering model.
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Given a general threshold model IG,F , the global influence function is then defined as

σG,F (S) = Eφ∼(0,1]|V | [|I
φ
G,F (S)|]. Mossel and Roch (2010) showed that σ(·) is monotone and

submodular if each fv(·) is monotone and submodular. We normally say that a general
threshold model IG,F is submodular if each fv ∈ F is submodular. Notice that this implies
σ(·) is submodular.

In the remaining part of this section, we define the full-adoption feedback model and the
myopic feedback model corresponding to the general threshold model.

When the seed-picker sees that a vertex v is not infected (v may be a vertex adjacent to

IφG,F (S) in the full-adoption feedback model, or a vertex adjacent to S in the myopic feedback
model), the seed-picker has certain partial information about v’s threshold. Specifically, let
INv be v’s infected in-neighbors that are observed by the seed-picker. By seeing that v is
not infected, the seed-picker knows that the threshold of v is in the range (fv(INv), 1], and
the posterior distribution of θv is the uniform distribution on this range.

Let the level of a vertex v, denoted by ov, be a value which either equals a character
X indicating that it is infected, or a real value ϑv ∈ [0, 1] indicating that θv ∈ (ϑv, 1]. Let
O = {X} ∪ [0, 1] be the space of all possible levels. A partial realization ϕ is a function
specifying a level for each vertex: ϕ : V → O. We say that a partial realization ϕ is
consistent with the full realization φ, denoted by φ ' ϕ, if φ(v) > ϕ(v) for any v ∈ V such
that ϕ(v) 6= X.

Definition B.2. Given a general threshold model IG=(V,E),F with a realization φ, the full-

adoption feedback is a function Φf
G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ

such that

• ϕ(v) = X for each v ∈ IφG,F (S), and

• ϕ(v) = fv(I
φ
G,F (S) ∩ Γ(v)) for each v /∈ IφG,F (S).

Definition B.3. Given a general threshold model IG=(V,E),F with a realization φ, the
myopic feedback is a function Φm

G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ
such that

• ϕ(v) = X for each v ∈ S, and

• for each v /∈ S, ϕ(v) = X if fv(S ∩ Γ(v)) ≥ φ(v), and ϕ(v) = fv(S ∩ Γ(v)) if
fv(S ∩ Γ(v)) < φ(v).

Notice that, in both definitions above, a vertex v that does not have any infected neigh-
bor (i.e., v /∈ S such that IφG,F (S) ∩ Γ(v) = ∅ for the full-adoption feedback model or
S ∩ Γ(v) = ∅ for the myopic feedback model) always satisfies ϕ(v) = 0, as fv(∅) = 0 by
Definition B.1.

After properly defining the two feedback models, the definition of the adaptive policy
π, as well as the definitions of the functions S f(·, ·, ·),Sm(·, ·, ·), σf(·, ·), σm(·, ·), are exactly
the same as they are in Section 2.2. The definitions of the adaptivity gap and the greedy
adaptivity gap are also the same as they are in Section 2.3.
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B.2 Extending of Our Results to General Threshold Model

We will show in this section that all our results can be extended to the submodular general
threshold model. Recall that a general threshold model is submodular means that all the
local influence functions fv’s are submodular. In this section, whenever we write IG,F ,
we refer to the general threshold model in Definition B.1, not the triggering model in
Definition 2.1.

B.2.1 Infimum of Greedy Adaptivity Gap

Theorem 3.1 is extended as follows.

Theorem B.4. For the full-adoption feedback model,

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))

= inf
G,F,k: IG,F is submodular

σf(πg, k)

σ(Sg(k))
= 1− 1

e
.

The same result holds for the myopic feedback model.

Recall that Theorem 3.1 can be easily implied by Lemma 3.3, Lemma 3.4 and Theo-
rem 3.5. Since Lemma 3.3 and Lemma 3.4 are for specific models ICM and LTM which are
compatible with both the triggering model and the general threshold model, their validity
here is clear. Following the same arguments, Theorem B.4 can be implied by Lemma 3.3,
Lemma 3.4 and the following theorem which is the counterpart to Theorem 3.5.

Theorem B.5. If IG,F is a submodular general threshold model, then we have both

σf(πg, k) ≥
(

1− 1

e

)
max

S⊆V,|S|≤k
σ(S) and σm(πg, k) ≥

(
1− 1

e

)
max

S⊆V,|S|≤k
σ(S).

Similar to the proof of Theorem 3.5, Theorem B.5 can be proved by showing the three
propositions: Proposition 3.6, Proposition 3.7 and Proposition 3.8. It is straightforward to
check that Proposition 3.7 and Proposition 3.8 hold for the general threshold model with
exactly the same proofs. Now, it remains to extend Proposition 3.6 to the general threshold
model, which is restated and proved below.

Proposition B.6. Given a submodular general threshold model IG,F , any S ⊆ V , any
feedback model (either full-adoption or myopic) and any partial realization ϕ that is a valid
feedback of S (i.e., ∃φ : ϕ = Φf

G,F,φ(S) or ∃φ : ϕ = Φm
G,F,φ(S), depending on the feedback

model considered), the function T : {0, 1}|V | → R≥0 defined as T (X) = Eφ'ϕ[|IφG,F (S∪X)|]
is submodular.

Proof. Fix a feedback model, S ⊆ V and ϕ that is a valid feedback of S. Let T = {v |
ϕ(v) = X} be the set of infected vertices indicated by the feedback of S. We consider a
new general threshold model IG′,F ′ defined as follows:

• G′ is obtained by removing vertices in T from G (and the edges connecting from/to
vertices in T are also removed);
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• For any v ∈ V ′ = V \ T , Γ(v) ∩ T is the set of in-neighbors of v that are removed.

Define f ′v(Y ) = fv((Γ(v)∩T )∪Y )−ϕ(v)
1−ϕ(v) for each subset Y of v’s in-neighbors in the new

graph G′: Y ⊆ Γ(v) ∩ V ′.

Notice that f ′v is a valid local influence function. f ′v is clearly monotone. For each v ∈ V ′,
we have ϕ(v) = fv(Γ(v) ∩ T ), as this is exactly the feedback received from the fact that v
has not yet infected. It is then easy to see that f ′v is always non-negative and f ′v(∅) = 0.

A simple coupling argument can show that

E
φ'ϕ

[∣∣∣IφG,F (S ∪X)
∣∣∣] = σG′,F ′(X \ T ) + |T |. (15)

To define the coupling, for each v ∈ V ′, the threshold of v in G, θv, is coupled with the
threshold of v in G′ as θ′v = θv−ϕ(v)

1−ϕ(v) . This is a valid coupling: by φ ' ϕ, we know that θv is

sampled uniformly at random from (ϕ(v), 1], which indicates that the marginal distribution
of θ′v is the uniform distribution on (0, 1], which makes IG′,F ′ a valid general threshold
model.

Under this coupling, on the vertices V ′, the cascade in G with seeds S ∪X and partial
realization ϕ is identical to the cascade in G′ with seeds X \ T . To see this, consider an
arbitrary vertex v ∈ V ′ and let INv and IN ′v be v’s infected neighbors in G and G′ respec-
tively. For induction hypothesis, suppose the two cascade processes before v’s infection are
identical. We have INv = IN ′v ∪ (Γ(v)∩T ) and IN ′v ∩ (Γ(v)∩T ) = ∅. It is easy to see from
our construction that v is infected in G if and only if v is infected in G′:

fv(INv) ≥ θv ⇔ f ′v(IN
′
v) =

fv(INv)− ϕ(v)

1− ϕ(v)
≥ θ′v.

This proves Equation (15).
Finally, since each fv(·) is assumed to be submodular, it is easy to see that each f ′v(·)

is submodular by our definition. Thus, IG′,F ′ is a submodular model. This, combined with
Equation (15), proves the proposition.

B.2.2 Supremum of Greedy Adaptivity Gap

All the results in Section 4 about the supremum of the greedy adaptivity gap can be ex-
tended easily to the submodular general threshold model. In particular, Lemma 4.3 and
Lemma 4.5 are under LTM, which is compatible with the submodular general threshold
model. Theorem 4.1 and Theorem 4.2 are proved by providing an example with a diffusion
model that is a combination of ICM and LTM, and the diffusion model constructed in Defi-
nition 4.6 can be easily described in the formulation of the general threshold model, since
both ICM and LTM can be described in the general threshold model.
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