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Abstract

Online forms are widely used to collect data

from human and have a multi-billion market.

Many software products provide online ser-

vices for creating semi-structured forms where

questions and descriptions are organized by pre-

defined structures. However, the design and

creation process of forms is still tedious and

requires expert knowledge. To assist form de-

signers, in this work we present FormLM to

model online forms (by enhancing pre-trained

language model with form structural informa-

tion) and recommend form creation ideas (in-

cluding question / options recommendations

and block type suggestion). For model training

and evaluation, we collect the first public online

form dataset with 62K online forms. Experi-

ment results show that FormLM significantly

outperforms general-purpose language models

on all tasks, with an improvement by 4.71 on

Question Recommendation and 10.6 on Block

Type Suggestion in terms of ROUGE-1 and

Macro-F1, respectively.

1 Introduction

Online forms are widely used to collect data in ev-

eryday scenarios such as feedback gathering (Ilieva

et al., 2002), application system (Sylva and Mol,

2009), research surveys (Yarmak, 2017), etc. With

a multi-billion market (Research and Markets,

2021), many software products – such as Survey

Monkey (Abd Halim et al., 2018), Google (Mondal

et al., 2018) and Microsoft Forms (Rhodes, 2019) –

provide services to help users create online forms

which consist of multiple blocks (e.g., Figure 1).

However, there are obstacles preventing the cre-

ation of well-designed online forms, which could

hurt response rate and quality (Krosnick, 2018).

For each form question, form designers need to
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Option 1

Choice

Add option

Team Building Questionnaire
Please fill out this form to allow us to better understand our employees‘ 

interests, strengths, and real feelings.

Suggested: Employee ID 

Your answer

Text Field

Full Name

Your answer

Question 

Recommendation

Options 

Recommendation

How happy are you with your current job?

Block Type 

Suggestion

Suggested options:   Add all | Yes   No

Do you feel you and your manager get along?

Add rating score

Rating

TODO

Figure 1: An Example Online Form with the Three

Tasks of Intelligent Form Creation Ideas.

write an informative title, specify its type, and pro-

vide other required components. This process is

tedious and time-consuming even for experienced

users. Also, non-experts may be unsure about what

question to add or which question type to choose.

To improve the experience and efficiency of form

composing, it is desirable that online form services

could recommend creation ideas to form designers.

To address the above demands, in §3 we identify

three machine learning (ML) tasks of Form Cre-

ation Ideas, including Question Recommendation,

Block Type Suggestion, and Options Recommenda-

tion. For example, in Figure 1, when one adds a

text field block as the second block, the Question

Recommendation suggests “Employee ID” for the

question based on the existing content (form title,

description, and the first question “Full Name”).

When editing the third choice question block, the

Options Recommendation suggests “Yes” and “No”

mailto:mezho@microsoft.com


as candidate options. Finally, if the user types

“How happy are you with your current job?” for the

fourth block but hasn’t selected a block type yet,

the Block Type Suggestion predicts it as a rating

type block.

The above tasks require a specifically designed

model to understand semi-structured forms, where

natural language (NL) text is organized by prede-

fined structures. A form is composed of a title, a de-

scription, and a series of blocks. For each block, its

subcomponents also follow unique structures. For

example, a Choice block contains a list of options

which serve as candidate answers to the question

displayed in the block title. Existing pre-trained

language models (PLMs) focus on general-purpose

free-form NL text (Devlin et al., 2019; Yang et al.,

2019). They may provide a good starting point

to model the rich semantic information within NL

contents of a form. However, they cannot directly

handle the extra structural information of the form.

Is it possible to infuse a PLM with structural infor-

mation of online forms?

In this paper, we propose FormLM to model

both the semantic and structural information of on-

line forms. As we will discuss in §4, there are three

key parts of FormLM. First, the form serialization

procedure, which represents a form as a tree and

converts it into a token sequence without informa-

tion loss. Second, inheriting existing PLM with a

small number of additional parameters: FormLM

inherits the parameters of BART (Lewis et al.,

2020) to leverage its language modelling capabili-

ties. Also, by adding extra biases to the attention

layers, FormLM explicitly handles the structural

information. Third, continual pre-training with col-

lected online forms: for better downstream appli-

cation: We propose two structure-aware objectives

– Span Masked Language Model and Block Title

Permutation – to continually pre-train FormLM on

top of the inherited and additional parameters.

We evaluate FormLM on Form Creation Ideas

tasks using our OOF (Open Online Forms) dataset.

This dataset (see §2.2) is created by crawling and

parsing public forms on the Web. Comparing

to PLMs such as BART, FormLM improves the

ROUGE-1 score from 32.82 to 37.53 on Question

Recommendation, and the Macro-F1 score from

73.3 to 83.9 on Block Type Suggestion.

In summary, our main contributions are:

• We put forward the problem of online form

modeling and formally define a group of tasks

on Form Creation Ideas. To the best of our

knowledge, these problems have not been sys-

tematically studied before.

• FormLM is proposed by us to model both

the semantic and structural information by en-

hancing PLM with form serialization, struc-

tural attention and continual pre-training.

• The public OOF dataset with 62k forms is con-

structed by us. To the best of our knowledge,

this is the first public online form dataset.

OOF dataset, FormLM code and models are

also open sourced at https://github.com/

microsoft/FormLM.

• Comprehensive experiments – especially base-

line comparisons, ablation studies, design

choices and empirical studies – are designed

and run by us to evaluate the effectiveness of

FormLM on the tasks of Form Creation Ideas

with the form dataset.

2 Preliminaries

In this section, we further elaborate the predefined

structure in online forms, and introduce our col-

lected dataset.

2.1 Online Form Structure

Modern online form services usually allow users

to create a form by piling up different types of

blocks. There are eight common block types: Text

Field, Choice, Time, Date, Likert, Rating, Upload,

and Description. Each block type has a predefined

structure (e.g., the options of a choice block) and

corresponds to a specific layout shown in the user

interface (e.g., bullet points or checkboxes of the

options). The order of the blocks in a form usually

matters because they are designed to organize ques-

tions in an easy-to-understand way, and to collect

data from various related aspects. For example, in

Figure 1, easier profile / fact questions are asked

before the preference / opinion questions.

As shown at the top of Figure 3, an online

form can be viewed as an ordered tree. The

root node T represents the form title, and its

children nodes Ch(T ) = (Desc, B1, ..., BN )
represent the form description and a series of

blocks. The subtree structure of Bi depends

on its type. For Choice and Rating blocks,

Ch(Bi) = (Typei,Titlei,Desci, C
(1)
i , ..., C

(ni)
i )

where C
(k)
i are the options or scores; For

https://github.com/microsoft/FormLM
https://github.com/microsoft/FormLM


Likert (Johns, 2010) blocks, Ch(Bi) =

(Typei,Titlei,Desci, R
(1)
i , ..., R

(mi)
i , C

(1)
i , ..., C

(ni)
i )

where R
(j)
i are rows and C

(k)
i are

columns; For the remaining block types,

Ch(Bi) = (Typei,Titlei,Desci). All description

parts (Desc) are optional.

Text Field

57.3%

Date

2.1%

Rating

1.9%

Upload

1.9%

Likert

0.8%

Time

0.3%

Description

7.2%

Choice

28.5%

Figure 2: Distribution of Block Types in Online Forms.

2.2 Online Form Dataset

Since there is no existing dataset for online forms,

we construct our own OOF (Open Online Forms)

dataset by crawling public online forms created

on a popular online form website. We filter out

forms with low quality and only consider English

forms in this work. In total, 62K public forms are

collected across different domains, e.g., education,

finance, medical, community activities, etc.

Due to the semi-structured nature of online

forms, we further parsed the crawled HTML pages

into JSON format by extracting valid contents and

associating each block with its type. Figure 2

shows the distribution of block types in our col-

lected dataset. More details of the dataset construc-

tion and its statistics can be found in Appendix A.

3 Form Creation Ideas

As illustrated in Figure 1, when adding a new block,

one needs to specify its type and title in the first

step. Then, other required components – such as

a list of options for a Choice block – are added

according to the block type. In this paper, we focus

on the following three tasks which provide Form

Creation Ideas to users in the first and later steps.

Question Recommendation The Question Rec-

ommendation aims at providing users with a rec-

ommended question based on the selected block

type and the previous context. Formally, the

model needs to predict Titlei based on T , Desc,

B1, ..., Bi−1 and Typei. For example, in Figure 1,

it is desirable that the model could recommend

“Employee ID” when the form designer creates a

Text Field block after the first block.

Block Type Suggestion Different from the sce-

nario of Question Recommendation, sometimes

form designers may first come up with a block ti-

tle without clearly specifying its block type. The

Block Type Suggestion helps users select a suit-

able type in this situation. For example, for the last

block of Figure 1, the model will predict it as a

Rating block and suggest adding candidate rating

scores if the form designer has not appointed the

block type himself / herself. Formally, given Titlei
and the available context (T,Desc, B1, ..., Bi−1),

the model should predict Typei in this task.

Options Recommendation As Figure 2 shows,

Choice blocks are frequently used in online forms.

When creating a Choice block, one should addition-

ally provide a set of options, and the Options Rec-

ommendation helps in this case. Given the previ-

ous context (T,Desc, B1, ..., Bi−1) and Titlei, the

model predicts C
(1)
i , ..., C

(ni)
i if Typei = Choice.

In this work, we expect the model to recommend a

set of possible options at the same time, so the de-

sired output of this task is C
(1)
i , ..., C

(ni)
i concate-

nated with a vertical bar. For example, in Figure 1,

the model may output “Yes | No” to recommend

options for the third block.

4 Methodology

As discussed in §1, we propose FormLM to model

forms for creation ideas. We select BART as the

backbone model of FormLM because it is widely

used in NL-related tasks and supports both gener-

ation and classification tasks. In the rest of this

section, we will describe the design and training

details of FormLM as demonstrated in Figure 3.

4.1 Form Serialization

As discussed in §2.1, an online form could be

viewed as an ordered tree. In FormLM we seri-

alize the tree into a token sequence which is com-

patible with the input format of common PLMs.

Figure 3(A) depicts the serialization process which

utilizes special tokens and separators. First, a spe-

cial token is introduced for each block type to ex-

plicitly encode Typei. Second, the vertical bar “|”

is used to concatenate a list of related items within

a block – options / scores C
(k)
i of a Choice / Rating

block, and rows R
(j)
i or columns C

(k)
i of a Likert

block. Finally, multiple subcomponents of Bi are

concatenated using <sep>. Note that there is no

information loss in the serialization process, i.e.,

the hierarchical tree structure of an online form can

be reconstructed from the flattened sequence.
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Team Building Questionnaire
Please fill out this form to allow us to better understand our employees‘ interests, 
strengths, and real feelings.

Encoder (Self Attention)

Decoder (Self Attention + Cross Attention)

Team Building Questionnaire <sep> … <sep> <text> Full name <text> Employee ID <choice> Do you feel … Options: Yes | No

Block Title Permutation

Span Masked Language Model

(C) Continual Pre-training Objectives

Corrupt

(A) Form Serialization

(B) Structural Attention
Learnable structural attention biases: 𝐿[type ⋅ , type(⋅)] (Token Type Bias) 

+ 𝜇𝑒−𝜆dist(⋅,⋅) (Block Distance Bias)
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Title2
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Choice

Type3

Do you feel …

Title3

Yes

𝐶3(1) 𝐶3(2)

Team Building Ques… <sep> <sep> <text> <mask> <mask>…

Figure 3: The Overview of FormLM Methodology. (A) Form Serialization (§4.1) serializes an online form by

adding block type tokens and separate tokens to preserve the tree structure. (B) Structural Attention (§4.2) encodes

the token type and block-level distance by adding structural biases to each attention layer. Different colors in the

attention bias matrix denote different items in the lookup table and the number inside each circle represents the

block-level distance of a token pair. (C) Continual Pre-training (§4.3) requires the model to recover the input

sequence corrupted by SpanMLM and BTP. We use the cross-entropy loss between the decoder’s output and the

uncorrupted sequence for model optimization.

4.2 Structural Attention

Beyond adding structural information into the in-

put sequence, in FormLM we further enhance its

backbone PLM with specially designed Structural

Attention (StructAttn). Our intuition is that the at-

tention calculation among tokens should consider

their different roles and locations in a form. E.g.,

tokens within a question title seldom correlates

with the tokens of an option from another question;

tokens in nearby blocks (or even the same block)

are usually stronger correlated with each other than

those from distant blocks.

As illustrated in Figure 3(B), StructAttn en-

codes the structural information of an online form

by adding two bias terms based on the token

type (i.e., the role that a token plays in the flat-

tened sequence) and the block-level position. For

each attention head, given the query matrix Q =
[q1, · · · ,qn]

⊤ ∈ R
n×dk , the key matrix K =

[k1, · · · ,km]⊤ ∈ R
m×dk , and the value matrix

V = [v1, · · · ,vm]⊤ ∈ R
m×dv , the original out-

put is calculated by

Â =
QK⊤

√
dk

,Attn(H) = softmax(Â)V (1)

In FormLM, we add two biases to Â and the

attention head output of StructAttn is calculated by

Aij = Âij + L[type(qi), type(kj)] + µe−λ d(qi,kj)

Attn(H) = softmax(A)V
(2)

In Equation (2), the token type bias is calculated

based on a learnable lookup table L[·, ·] in each

attention layer, and the lookup key type(·) is the

type of the corresponding token within the form

structure. Specifically, in our work, type(·) is cho-

sen from 9 token types: FormTitle, FormDesc,

BlockTitle, BlockDesc, Option, LikertRow,

LikertColumn, BlockType, SepToken. If Q or

K corresponds to the flattened sequence given by

form serialization, type(·) can be directly obtained

from the original form tree; otherwise, in genera-

tion tasks, Q or K may correspond to the target,

and we set type(·) as the expected output token

type, i.e., BlockTitle when generating the ques-

tion and Option when generating the options.

Another bias term in Equation (2) is calculated

by an exponential decay function to model the rela-

tive block-level position, where d(qi,kj) is the

block-level distance between the corresponding



tokens of qi and kj on the form tree. To make

d(qi,kj) well-defined for each token pair, we set

Desc as the 0-th block (B0) and specify d(qi,kj)
as 0 if type(qi) or type(kj) is equal to FormTitle.

Note that there are two parameters λ, µ in this term.

We make them trainable and constrain their val-

ues to be positive to ensure tokens in neighboring

blocks give more attention to each other.

We apply StructAttn to three parts of FormLM,

self attentions of FormLM encoder, self attentions

and cross attentions of FormLM decoder. Q,K,V

of encoder self attentions and K,V of decoder

cross attentions correspond to the source sequence;

while Q,K,V of decoder self attentions and Q of

decoder cross attentions correspond to the target

sequence. In classification, both the source and the

target are the flattened form; while in generation,

the target is the recommended question or options.

In §5.5, we will prove the effectiveness of Struc-

tAttn through ablation studies and comparing alter-

native design choices of StructAttn.

4.3 Continual Pre-training

Note that it is difficult to train a model for online

forms from scratch due to the limited data. To

effectively adapt FormLM to online forms, we con-

duct continual pre-training on the training set of

our collected dataset (see §2.2) with the following

two structure-aware objectives.

Span Masked Language Model (SpanMLM)

We adapt the masked language model (MLM) to

forms by randomly selecting and masking some

nodes on the form tree within the masking bud-

get. Compared to SpanBERT (Joshi et al., 2020)

which improves the MLM objective by masking a

sequence of complete words, we do the masking

in a higher level of granularity based on the form

structure. Our technique masks a block title, op-

tion, etc., instead of arbitrarily masking subword

tokens. The latter was proven suboptimal in Joshi

et al. (2020); Zhang et al. (2019). Specifically, we

use a masking budget of 15% and replacing 80% of

the masked tokens with <MASK>, 10% with random

tokens and 10% with the original tokens.

Block Title Permutation (BTP) As discussed in

§2.1, each block can be viewed as a subtree. We

introduce the block title permutation objective by

permuting block titles in a form and requiring the

model to recover the original sequence with the

intuition that the model needs to understand the

semantic relationship between Bi and Ch(Bi) to

solve this challenge. We randomly shuffle all the

block titles to construct the corrupted sequence.

Following the pre-training process of BART, we

unify these two objectives by optimizing a recon-

struction loss, i.e., we input the sequence corrupted

by SpanMLM and BTP and optimize the cross-

entropy loss between the decoder’s output and the

original intact sequence.

5 Experiments

5.1 Evaluation Data and Metrics

We evaluate FormLM and other models on the three

tasks of Form Creation Ideas (§3) with our OOF

dataset (§2.2). The 62k public forms are split into

49,904 for training, 6,238 for validation, and 6,238

for testing. For each task, random sampling is fur-

ther performed to construct an experiment dataset.

Specifically, for each task, we randomly select no

more than 5 samples from a single form to avoid

sample bias introduced by those lengthy forms. For

Question Recommendation and Block Type Sug-

gestion, each sample corresponds to a block and

its previous context (see §3). 239,544, 29,558 and

29,466 samples are selected for training, validation

and testing, respectively. For Options Recommen-

dation, each sample corresponds to a Choice block

with context. 124,994, 15,640 and 15,867 samples

are selected for training, validation, and testing.

For Question and Options Recommendations,

following the common practice in natural language

generation research, we adopt ROUGE1 (Lin,

2004) scores with the questions/options composed

by human as the ground truth. During option rec-

ommendation, because the model is expected to

recommend a list of options at once, we concate-

nate options with a vertical bar (described in §4.1)

for the comparison of generated results and ground

truths. Since it is difficult to have a thorough eval-

uation of the recommendation quality through the

automatic metric, we further include a qualitative

study in Appendix D and conduct human evalu-

ations for these two generation tasks (details in

Appendix E). For Block Type Suggestion, both ac-

curacy and Macro-F1 are reported to take account

of the class imbalance issue.

5.2 Baselines

As there was no existing system or model

specifically designed for forms, we compare

1We use the Hugging Face implementation to calculate the
ROUGE score, https://huggingface.co/metrics/rouge.

https://huggingface.co/metrics/rouge


Question Recommendation Options Recommendation Block Type Suggestion

R1 R2 RL R1 R2 RL Macro-F1 Accuracy

RoBERTa - - - - - - 73.7±0.02 85.8±0.46

GPT-2 22.82±0.22 9.71±0.04 22.37±0.20 17.84±0.10 11.38±0.05 16.94±0.10 74.2±0.16 85.6±0.06

MarkupLM - - - - - - 79.8±0.27 88.6±0.13

BARTBASE 31.48±0.16 15.89±0.18 30.91±0.16 43.53±0.32 31.81±0.21 41.5±0.29 73.4±0.31 85.6±0.17

BART 32.82±0.05 17.06±0.20 32.18±0.05 46.12±0.12 33.74±0.08 43.85±0.12 73.3±0.28 85.3±0.08

FormLMBASE 35.9±0.08 18.27±0.10 35.23±0.04 44.14±0.06 32.39±0.16 42.21±0.10 83.0±0.06 90.7±0.09

↑ BARTBASE 4.42 2.38 4.32 0.61 0.58 0.71 9.6 5.1

FormLM 37.53±0.07 19.70±0.15 36.78±0.12 47.24±0.02 34.65±0.14 44.91±0.08 83.9±0.11 91.0±0.08

↑ BART 4.71 2.64 4.6 1.12 0.91 1.06 10.6 5.7

Table 1: Results of FormLM and the Baseline Models on the Tasks of Form Creation Ideas. Note that RoBERTa and

MarkupLM are encoder-only models, thus cannot be directly applied to generation tasks. We leave their results

blank for Question and Options Recommendations where ROUGE scores (R1, R2, RL) are used to evaluate these

two generation tasks. Both the averaged metric and its standard deviation (as subscript) are reported for each result

over 3 runs. The two gray rows (with up arrow ↑) show the improvement of FormLM over its backbone model.

FormLM with three general-purposed PLMs –

RoBERTa (Liu et al., 2020), GPT-2 (Radford et al.,

2019) and BART (Lewis et al., 2020), which

represent widely-used encoder, decoder, encoder-

decoder based models, respectively. To construct

inputs for these PLMs, we concatenate NL sen-

tences in the available context (see §3).

MarkupLM (Li et al., 2022), a recent model for

web page modeling, is also chosen as a baseline

since forms can be displayed as HTML pages on

the Internet. To keep accordance with the original

inputs of MakupLM, we remove the tags without

NL text (e.g., <script>, <style>) in the HTML

file in OOF dataset.

The number of parameters of each model can be

found in Appendix B.

5.3 FormLM Implementation

We implement FormLM using the Transform-

ers library (Wolf et al., 2020). FormLM and

FormLMBASE are based on the architecture and pa-

rameters of BART2 and BARTBASE
3 respectively.

For continual pre-training, we train FormLM for

15k steps on 8 NVIDIA V100 GPUs with the total

batch size of 32 using the training set of the OOF

dataset. For all the three tasks of Forms Creation

Ideas, we fine-tune FormLM and all baseline mod-

els for 5 epochs with the total batch size of 32 and

the learning rate of 5e-5. More pre-training and

fine-tuning details are described in Appendix C.

2
https://huggingface.co/facebook/bart-large

3
https://huggingface.co/facebook/bart-base

In the rest of this paper, each experiment with

randomness is run for 3 times and reported with

averaged evaluation metrics.

5.4 Main Results

For FormLM and the baseline models (see §5.2),

Table 1 shows the results on the Form Creation

Ideas tasks. FormLM significantly outperforms the

baselines on all tasks.

Compared to its backbone BART model (well-

known for conditional generation tasks), FormLM

further improves the ROUGE-1 scores by 4.71 and

1.12 on Question and Options Recommendations.

Human evaluation results in Appendix E also con-

firm the superiority of FormLM over other base-

line models in these two generation tasks. Fig-

ure 4 shows questions recommended by BART

and FormLM on an example form from the test

set. FormLM’s recommendations (e.g., “Destina-

tion”, “Departure Date”) are more specific and

more relevant to the topic of this form, while

BART’s recommendations (e.g., “Name”, Special

Requests”) are rather general. Also, after users

create B1, B2, B3, B4 and select B5 as a Date

type block, FormLM recommends “Departure Date”

while BART recommends “Name” which is obvi-

ously not suitable to B5.

On Block Type Suggestion, FormLM improves

the Macro-F1 score by 10.6. The improvement of

FormLM over BART (↑ rows in Table 1) shows

that our method is highly effective. We will further

analyze this in §5.5.

Note that MarkupLM is a very strong baseline

https://huggingface.co/facebook/bart-large
https://huggingface.co/facebook/bart-base


Travel Purpose & Special Interests

Business School Educational Cruise Others

Departure
Please let us know your departure city or airport.

Your answer

Amount of Travelers
Please let us know how many travelers are there in your group.

1 2 More than 10…

Return Date
Please let us know your specific return date, so that we can help … 

Flight
Please let us know your preference of the flight.

I prefer non-stop flights Other…

Your answer

Destination

Departure Date

3 Stars Hotel Other…4 Stars Hotel

Accommodation, Part 1.

Beach Other…Family-friendly

Accommodation, Part 2.

Suggested question

BART: Name
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Suggested question

BART: Special Requests

FormLM: 
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FormLM:
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FormLM: Destination

Choice

Choice

Choice

Choice

B1

B2

B3

B4

B5

B6

B7

B8

B9

Date

Date

Request Form
Can’t find what you’re looking for? Please fill out the information below and we 
will be happy to assist you.

Please let us know your destination, so that we can help you plan your trip.

Please let us know your specific departure date, so that we can …

Please let us know your preference for the hotel.

Please let us know your preference of the Theme/type for the hotel.

Figure 4: Sample Outputs by FormLM and BART for

Question Recommendation. FormLM’s recommended

questions are more relevant to the topic and more suit-

able to the selected block type.

for Block Type Suggestion. This model can partly

capture the structural information by parsing the

form as a DOM (Wood et al., 1998) tree. However,

since MarkupLM is not specifically designed for

online forms, it is still 4.1 points worse in Macro-F1

than FormLM on this task.

5.5 Analysis of FormLM Designs

Question Options Type
R2 R2 F1

Full Model 19.70 34.65 83.9
− Decoder StructAttn 18.90 34.36 83.7
− Encoder StructAttn 19.58 34.41 77.9
− Form Serialization 17.43 33.83 75.5
− Previous Context 12.67 27.65 71.8

Table 2: Ablation Studies on Form Serialization and

Structural Attention. “−” means the corresponding

component is sequentially removed from FormLM. “−
Previous Context” means that the closest block title is

the only input.

To further investigate the effectiveness of the

design choices in FormLM, we conduct ablation

studies and controlled experiments (which are fine-

Question Options Type
R2 R2 F1

w/o Type Info 17.96 33.97 81.5
w/ Type Info 19.70 34.65 83.9

Table 3: Performance of FormLM “w/” and “w/o” In-

corporating the Block Type Information.

tuned under the same settings as described in §5.3)

on the following aspects.

Form Serialization For Form Creation Ideas, it

is important to model the complete form context

(defined in §3). Row “− Previous Context” of

Table 2 shows that there is a large performance

drop on all the tasks if block title is the only input.4

Therefore, we also study the effect of form seri-

alization (see §4.1) which flattens the form context

while preserving its tree structure. A naive way of

serialization is directly concatenating all available

text as NL inputs. Results in this setting (row “−
Form Serialization” of Table 2) are much worse

than the results of FormLM with form serialization

technique. On Block Type Suggestion, the gap is

as large as 8.4 on Macro-F1.

Block Type Information A unique characteris-

tic of online forms is the existence of block type

(see §2.1). To examine whether FormLM can lever-

age the important block type information, we run

a controlled experiment where block type tokens

are replaced by with a placeholder token <type>

during form serialization (while other tokens are

untouched). As shown in Table 3, removing block

type tokens hurts the model performance on all

three tasks, which suggests that FormLM can effec-

tively exploit such information.

Structural Attention FormLM enhances its

backbone PLM with StructAttn (§4.2). As the row

“− Encoder StructAttn” of Table 2 shows, when

we ablate StructAttn from FormLM, the Macro-

F1 score of Block Type Suggestion drops from

83.9 to 77.9 and the performance on the generation

tasks also drops. In FormLM, we apply StructAttn

to both encoder and decoder parts. We compare

it with the setting without modifying the decoder

(row “− Decoder StructAttn”) and find applying

StructAttn to both the encoder and decoder yields

uniformly better results, which may be due to better

alignment between the encoder and decoder.

4For ablation studies in Table 2, the components are se-
quentially removed because StructAttn depends on the tree
structure preserved in form serialization and both techniques
become meaningless if we don’t model the form context.
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Figure 5: Results of FormLM Using Different Design

Choices of StructAttn. (Averaged over 3 runs with std.)

Question Options Type
R2 R2 F1

w/o Pre-training 18.82 33.78 82.2
BTP 19.35 34.18 83.3
SpanMLM 19.42 33.94 83.3
SpanMLM + BTP 19.70 34.65 83.9

Table 4: Ablation Study of Different Continual Pre-

training Objectives. (Averaged over 3 runs.)

There are alternative design choices of Struc-

tAttn for us to experiment. As Equation (2) shows,

there are two bias terms to model the token type and

the block-level distance. We compare this design

choice (“Hybrid” in Figure 5) with adding only the

token type bias (“Type”) and only the distance bias

(“Dist”). Note that “Hybrid” encodes block-level

distance through the exponential decay function,

we also compare it with another intuitive design

(“Hybrid*”) where we use a learnable bias to indi-

cate whether two tokens are within the same block.

Besides adding biases, another common practice of

modifying attentions is masking. We experiment

this design choice (“Mask”) by restricting atten-

tions to those tokens in the same node or parent and

grandparent nodes within the tree structure. The

comparison results are demonstrated in Figure 5.

“Mask” performs uniformly worse than adding bi-

ases. Among the rest of design choices, “Hybrid”

shows slightly better performance on Options Rec-

ommendation and Block Type Suggestion.

Continual Pre-training Objectives We design

two objectives (§4.3), SpanMLM and BTP, to con-

tinually pre-train FormLM on OOF dataset for bet-

ter domain adaptation. Table 4 shows the ablation

results of different objectives. We find FormLM

trained with both SpanMLM and BTP performs the

best. This suggests SpanMLM which focuses more

on the recovery of a single node on the tree and

BTP which focuses more on the relationship be-

tween different nodes can complement each other.

6 Related Work

(Semi-)Structured Data Modeling In this paper,

we mainly focus on modelling parsed form data.

They follow well-defined structure and are usually

created by software such as online services men-

tioned in §1. Existing works (Wang et al., 2022a;

Xu et al., 2021; Li et al., 2021; Appalaraju et al.,

2021; Aggarwal et al., 2020; He et al., 2017) focus

on another type of forms, scanned forms (e.g., pho-

tos and scanned PDF files of receipts or surveys),

and process multi-modal inputs (text, image). This

type of forms requires digitization and parsing be-

fore passing to any downstream tasks, which are

very different from forms studied in this paper.

To the best of our knowledge, the modelling of

parsed forms has not been studied before. Exist-

ing (semi-)structured data modelling works mainly

focus on tables (Yin et al., 2020; Wang et al.,

2021), documents (Wan et al., 2021; Liu and La-

pata, 2019; Wang et al., 2019), web pages (Wang

et al., 2022b), etc. Some works represent the (semi-

)structured data as a graph and use graph neural net-

work (GNN) for structural encoding (Wang et al.,

2020; Cai et al., 2021). Some other works convert

(semi-)structured data into NL inputs to directly

use PLMs (Gong et al., 2020) or modify a cer-

tain part of transformer models – e.g., embedding

layers (Herzig et al., 2020), attention layers (Eisen-

schlos et al., 2021; Yang et al., 2022), the encoder

architecture (Iida et al., 2021). Although it is pos-

sible to convert online forms to HTML pages to

use models like MarkupLM (Li et al., 2022), the

results are suboptimal as shown in §5.4 because the

unique structural information of online forms are

not fully utilized.

Intermediate Pre-training In §4.3 we discussed

in FormLM how we adapt a general PLM to the

form domain through continual pre-training. Inter-

mediate pre-training of a PLM on the target data

(usually in a self-supervised way) has been shown

efficient on bridging the gap between PLMs and

target tasks (Gururangan et al., 2020; Rongali et al.,



2020). Many domain specific models (Xu et al.,

2019; Chakrabarty et al., 2019; Lee et al., 2020), in-

cluding those for (semi-)structured data (Yin et al.,

2020; Liu et al., 2022), are built with this tech-

nique. Following the previous approaches, we de-

sign form-specific structure-aware training objec-

tives for the continual pre-training process.

7 Conclusion

In this paper, we present FormLM for online form

modeling. FormLM jointly consider the semantic

and structural information by leveraging the PLM

and designing form serialization and structural at-

tention. Furthermore, we continually pre-train

FormLM on our collected data with structure-aware

objectives for better domain adaptation. An exten-

sive set of experiments show that FormLM out-

performs baselines on Form Creation Ideas tasks

which assist users in the form creation stage.

Limitations

In this work, we conduct research on online form

modeling for the first time. While effective in the

proposed tasks of Form Creation Ideas, FormLM

has some limitations. First, FormLM is designed to

assist form designers by recommending questions /

options and suggesting the block type. We believe

there are more to explore in recommending creation

ideas and we plan to design more tasks for Form

Creation Ideas, like recommending a whole block,

auto-completion, etc., to fully exploit FormLM in

the form creation stage. Also, since FormLM per-

forms exceptionally well on Block Type Sugges-

tion, it is worthwhile to consider more fine-grained

block types. Second, FormLM only models the

form content and leaves out the collected responses.

Although form content itself is very informative, it

is an important research direction to jointly model

online forms and their collected responses for they

are useful to other stages of the online form life

cycle, especially the form analyzing stage. Fur-

thermore, our collected OOF dataset is limited to

English forms and doesn’t have manual labels. We

hope to enlarge our dataset with non-English forms

and investigate the possibility of adding supervised

labels to this dataset in the future to further facili-

tate the study of online forms.

Ethics Statement

Datasets In this work, we collect the public OOF

dataset for the research community to facilitate fu-

ture study of online forms. We believe there is no

privacy issue related to this dataset. First, the data

sources are public available on the Internet, and

are anonymously accessible. We complied with

the Robots Exclusion Standard during the data col-

lection stage. Second, our dataset only contains

form contents and there are no responses or per-

sonal information involved. A checklist has been

completed at the researchers’ institution to ensure

the collected dataset does not have ethical issues.

Risks and Limitations Our work proposes

FormLM to model online forms and recommend

creation ideas to users in the form designing stage.

FormLM uses a pre-trained language model, BART,

as the backbone. PLMs have a number of ethical

concerns in general, like generating biased or dis-

criminative text (Weidinger et al., 2021) and in-

volving lots of computing power in pre-training

or fine-tuning (Strubell et al., 2019). The primary

risk of our work is that we formulated Question

Recommendation and Options Recommendation

as generation tasks, but did not include the post-

processing of the generated texts in our pipeline.

We suggest post-processing the outputs of FormLM

to sift out biased or discriminative text before rec-

ommending them to the users when applying our

technique to online form services. Designing good

post-processing technique is also an interesting av-

enue for future work.

Another limitation we see from an ethical point

of view is that we only consider online forms which

use English as the primary language. We are trying

to collect online forms in other languages and leave

it as a future work to provide a multilingual version

of FormLM to assist more users in different parts

of the world.

Computational Resources The experiments in

our paper require computational resources. How-

ever, compared with other LMs pretrained from

scratch, FormLM inherits the parameters of its

backbone and is continually pre-trained with only

50K online forms. It takes around 8 hours to com-

plete the continual pre-training with 8 NVIDIA

V100 GPUs. Despite this, we recognize that not all

researchers have access to this resource level, and

these computational resources require energy. No-

tably, all GPU clusters within our organization are

shared, and their carbon footprints are monitored

in real-time. Our organization is also consistently

upgrading our data centers in order to reduce the

energy use.
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A Details of Open Online Forms Dataset

Figure 6: Frequent Words Among Titles of Forms in

OOF Dataset.

OOF (Open Online Forms) dataset consists of

62K public forms collected on the Web, covering

a wide range of domains and purposes. Figure 6

shows some frequent words among titles of the

collected data.

A.1 Dataset Preprocessing

We crawled 232,758 forms created by a popular

online form service on the Internet and filter the

crawled data using the following constraints: (1)

have at least one question block; (2) have no du-

plicate question blocks; (3) detected as “en”5 by

Language Detection API of Azure Cognitive Ser-

vice for Language6. Finally, 62,380 forms meet all

constraints. We randomly split them into 49,904 for

training, 6,238 for validation and 6,238 for training.

As introduced in §2.2, we parsed the crawled

HTML pages into JSON format according to

the online form structure. Specifically, each

JSON file contains keys of “title”, “description”

and “body” which correspond to form title (T ),

form description (Desc), and an array of blocks

({B1, · · · , Bn}). Each block contains keys of “ti-

tle”, “description” and “type”. For Choice type

blocks and Rating type blocks, they further contain

the key of “options”; for Likert type blocks, they

further contain keys of “rows” and “columns”. For

Description block, we only keep the plain NL text

and remove possible information of other modali-

ties (i.e, image, video) because only around 0.1%

of Description blocks contain video and 2.0% con-

tain image. When parsing the HTML pages into

JSON format, we also remove non-ASCII charac-

ters within the form.

5
https://en.wikipedia.org/wiki/List_of_ISO_

639-1_codes
6
https://docs.microsoft.com/en-us/

azure/cognitive-services/language-service/

language-detection/overview

A.2 Form Length Distribution

We define the length of an online form as the num-

ber of blocks within it. Around 80% of collected

forms have a form length no greater than 20. The

detailed distribution of form length is shown in Fig-

ure 7. As we have discussed in §5.1, we further

perform random sampling to construct our experi-

ment dataset to avoid sample biases introduced by

those lengthy forms.

Figure 7: Form Length Distribution of Forms in OOF

Dataset.

B Model Configurations

We compare FormLM with four baseline mod-

els, RoBERTa, GPT-2, MarkupLM, and BART.

FormLM adds a small number of additional param-

eters to its backbone model (278K for FormLM and

208K for FormLMBASE) to encode structural infor-

mation in attention layers (§4.2). Table 5 shows

model configurations of FormLM and baselines in

our experiments.

Model #Params #Layers

RoBERTa 124M 12
GPT-2 124M 12
MarkupLM 135M 12
BARTBASE 139M 6+6
BART 406M 12+12
FormLMBASE 139M 6+6
FormLM 406M 12+12

Table 5: Model Configurations of FormLM and Base-

lines.

C More Implementation Details

Continual Pre-training Details We conduct con-

tinual pre-training on the training set of the OOF

dataset using SpanMLM and BTP objectives (§4.3).

We adopt a masking budget of 15% in SpanMLM

and do BTP on all training samples. We train

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://docs.microsoft.com/en-us/azure/cognitive-services/language-service/language-detection/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/language-service/language-detection/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/language-service/language-detection/overview


FormLM for 15K steps on 8 NVIDIA V100 GPUs

with 32G GPU memory. We set the total batch size

as 32 and the max sequence length as 512. We use

AdamW optimizer (Loshchilov and Hutter, 2019)

with β1 = 0.9, β2 = 0.999 and the learning rate

of 5e-5. It takes around 8 hours to complete the

continual pre-training on our machine.

Fine-tuning Details Among our downstream

tasks, Next Question Recommendation and Op-

tions Recommendation are formulated as condi-

tional generation tasks. We use the form serial-

ization procedure (§4.1) to convert the available

context into model inputs. We fine-tune FormLM

for 5 epochs with the total batch size of 32, the

max source sequence length of 512, and the max

target sequence length of 64. We load the best

model which has the highest ROUGE-2 score on

the validation set in the training process. During

generation, we do beam search and set the beam

size as 5. Block Type Classification is formulated

as a sequence classification task. We follow the

original implementation of BART by feeding the

same input into the encoder and decoder and pass-

ing the final hidden state of the last decoded token

into a multi-class linear classifier for classification.

We fine-tune FormLM with 5 epochs with the total

batch size as 32 and load the best model which has

the highest Macro-F1 score on the validation set

during the fine-tuning process.

D Qualitative Study

Online forms, as a special format of questionnaires,

are mainly used to collect information, i.e., demo-

graphic information, needs, preferences, etc. (Kros-

nick, 2018). As shown in Figure 6, the online forms

in the OOF dataset are more about objective top-

ics like “Application” and “Registration” because

these information collection scenarios prevail in

the daily usage. To collect information effectively,

a good questionnaire should include questions re-

lated to the topic and these questions must be log-

ically connected with each other. Also, for those

close-ended questions (the majority of them are

Choice type questions), they are expected to of-

fer all possible answers for respondents to choose

from but not include off-topic options which may

cause confusion (Reja et al., 2003). These crite-

ria of good questionnaires restrict the searching

space of online form composition, thus making

the automatic recommendation of creation ideas

conceptually possible.

In §5.4, Figure 4 shows some questions rec-

ommended by FormLM. FormLM is able to rec-

ommend questions like “Destination”, “Departure

Date”, “Type of Accommodation” which are highly

related to the topic of travelling and can help collect

meaningful information for the travel agency. For

Options Recommendation, FormLM can accurately

identify polar questions and recommend “Yes”,

“No” as candidate options. Also, since FormLM is

continually pre-trained on a large amount of online

forms, it has no difficulty recommending options

for those frequently asked questions, e.g., “Gen-

der”, “Current Educational Qualifications”, etc..

More interestingly, we notice that FormLM can pro-

vide accurate recommendation for questions which

are related to their previous contexts. Figure 8 gives

two sample outputs by FormLM for Options Rec-

ommendation. In the left sample, FormLM gives

concrete suggestions which are based on the form

title; in the right sample, the recommended loca-

tions are all related to school, and they accord well

with the domain of this form. We assume that such

good performance can be attributed to the effective

understanding of form structure and context.

E Human Evaluation

Apart from reporting automatic evaluation results

using ROUGE scores, we further conduct human

evaluations for Question Recommendation and Op-

tions Recommendation. We randomly choose 50

samples from the test sets of the two task and col-

lect the recommended question / options from 5

models (GPT-2, BARTBASE, BART, FormLMBASE,

FormLM). We use an HTML website (actually an

online form service) to collect the manual labels.

Human evaluation instructions are shown in Fig-

ure 9 and Figure 10. Eight experts familiar with

online form software products participate in the ex-

periment. For each sample of a task, we construct a

Likert question containing the 5 outputs (randomly

shuffled and anonymized) of the models. For each

sample, three experts compare the 5 outputs using

a rating scale of 1 to 5 (the higher, the better) at the

same time to achieve better comparison and anno-

tation consistency across different outputs. So in

total, we collect 150 expert ratings for each model

on each task.

The evaluation results are shown in Table 6 and

Table 7. We can see FormLM and FormLMBASE

outperform all baseline models on both Question

and Options Recommendation when manually eval-



Option 1

Add option

I am a … Choice

Suggested options:   Add all | Youth Participant   Adult Participant

RSE Youth and Adult Participant Registration
Event Basics:

Dates: June 10-13, 2018 (June 10 - 4:30pm-8:30pm, June 11-13 - 7:00am-8:00pm, Concert 

June 13, 8:00pm)

…

Last Name

Your answer

First Name

Your answer

Are you registering with a church?
If you are, please enter church name and city.  If you are coming with a friend type in the 

name of their church.  Otherwise just type "None".

Your answer

Gender

Male Female

Option 1

Add option

Where did the incident happen? Choice

Suggested options:   Add all | Classroom Hallway   Cafeteria   

Restroom   Bus   Online

Online Bully Report
Choosing to help someone in need is very brave. If you see this happening again, please report 

it. Together we can stop bullying.

Name of victim(s)

Your answer

Name of Student(s) bullying

Your answer

Select a School

Bay High School Bay - Waveland Middle School …

Date of this incident (as close as possible)

Figure 8: Sample Outputs by FormLM for Options Recommendation. The suggested options are highlighted in

blue.

Rating 5 4 3 2 1 Avg. ≥4 ≥3 ≤2

GPT-2 16 22 23 20 69 2.31 38 61 89

BARTBASE 28 21 12 23 66 2.48 49 61 89

BART 26 23 25 18 58 2.61 49 74 76

FormLMBASE 63 47 13 15 12 3.89 110 123 27

FormLM 72 41 16 9 12 4.01 113 129 21

Table 6: Summary of Human Evaluation Ratings for

Question Recommendation.

Rating 5 4 3 2 1 Avg. ≥4 ≥3 ≤2

GPT-2 16 10 6 9 109 1.77 26 32 118

BARTBASE 63 28 17 14 28 3.56 91 108 42

BART 68 30 23 9 20 3.78 98 121 29

FormLMBASE 71 35 18 9 17 3.89 106 124 26

FormLM 89 29 14 7 11 4.19 118 132 18

Table 7: Summary of Human Evaluation Ratings for

Options Recommendation.

uated by the experts, which is in accordance with

the automatic evaluation results.

We further conduct Wilcoxon signed-rank

test (Woolson, 2007) which is a non-parametric

hypothesis test for the matched-pair data to check

statistical significance of the comparison between

FormLM, FormLMBASE and their backbone mod-

els. At 95% confidence level, when comparing

FormLM with BART and comparing FormLMBASE

with BARTBASE, both p-values from Wilcoxon test

are less than 0.005. These results show that our

models have better performance on these two gen-

eration tasks than their backbone PLMs which are

well-known for conditional generation.



Background 
Online forms are widely used to collect data in everyday scenarios and many software products 
provide services to help users create online forms which consist of multiple blocks. However, for 
each form question, form designers need to write an informative title, specify its type, and 
provide other required components. Such a process is time-consuming.  Therefore, we want to 
design a model to recommend creation ideas and suggestions to online form designers. 

Question Recommendation 
Question Recommendation aims at providing users with a recommended question based on the 
selected block type and the previous context (form title, form description, previous blocks). 

In this study, you will evaluate 10 sets of questions recommended by 5 different models. (Model 
outputs have been randomly shuffled.) The evaluation interface is as follows: 

 

For each sample, you need to 

Step 1: Click the link behind “context:” to see the previous context of the form. 

Step 2: Check the block type marked in bold black.  

Step 3: Score the recommendations. Each row in the Likert table refers to a model output. You 
can score each output with the relative score ranging from 1 to 5 (higher score indicates better 
recommended question).  Note that your score should consider three parts: 

• Whether the question has clear meaning. 
• Whether the question is suitable to the form context (relevant to the form title, non-

overlap with previous questions, logically coherent with previous questions, etc.). 
• Whether the question suits the selected block type. 

Figure 9: Human Evaluation Instructions. (Page 1 / 2)



Options Recommendation 
Choice blocks are frequently used in online forms. When creating a Choice block, one should 
additionally provide a set of options. Options Recommendation aims recommending a set of 
options to users based on the current block title and all the previous context (form title, form 
description, previous blocks). 

In this study, you will evaluate 10 sets of questions recommended by 5 different models. (Model 
outputs have been randomly shuffled.) The evaluation interface is as follows: 

 

For each sample, you need to 

Step 1: Click the link behind “context:” to see the previous context of the form and the choice 
block title that models will make recommendations for. 

Step 2: Score the recommendations. Each row in the Likert table refers to a model output. Note 
that we expect models to recommend a set of options, and we concatenate the options with a 
vertical bar “|”. You can score each output with the relative score ranging from 1 to 5 (higher 
score indicates better recommended options). Note that your score should consider three parts: 

• Whether each option has clear meaning and whether it is a suitable answer to the Choice 
block title. 

• Whether this set of options are logically related to each other and non-overlapped. 
• Whether this set of options are reasonable when considering the previous form context. 

 

Figure 10: Human Evaluation Instructions. (Page 2 / 2)


