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Abstract. Recent advances in state-of-the-art machine learning models
like deep neural networks heavily rely on large amounts of labeled train-
ing data which is difficult to obtain for many applications. To address
label scarcity, recent work has focused on data augmentation techniques
to create synthetic training data. In this work, we propose a novel ap-
proach of data augmentation leveraging tensor decomposition to gen-
erate synthetic samples by exploiting local and global information in
text and reducing concept drift. We develop Vec2Node that leverages
self-training from in-domain unlabeled data augmented with tensorized
word embeddings that significantly improves over state-of-the-art mod-
els, particularly in low-resource settings. For instance, with only 1% of
labeled training data, Vec2Node improves the accuracy of a base model
by 16.7%. Furthermore, Vec2Node generates explicable augmented data
leveraging tensor embeddings.

Keywords: Text Augmentation · Tensor Decomposition · Self-training

1 Introduction

In recent years, neural network models have obtained state-of-the-art perfor-
mance in several language understanding tasks employing non-contextualized
FastText [4] as well as contextualized BERT [5] word embeddings. Even though
these models have been greatly successful, they rely on large amounts of labeled
training data for their state-of-the-art performance. However, labeled data is not
only difficult to obtain for many applications, especially for tasks dealing with
sensitive information, but also requires time consuming and costly human anno-
tation efforts. To mitigate label scarcity, recent techniques such as self-training [6,
11] and few shot learning [24, 28] methods have been developed to learn from
large amounts of in-domain unlabeled or augmented data. The core idea of self-
training is to augment the original labeled dataset with pseudo-labeled data
? This research work was conducted while the first author was a Ph.D. student at the
University of California, Riverside (sabda005@ucr.edu)
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Fig. 1: Overview of the proposed approach.

[11] in an iterative teacher-student learning paradigm. Traditional self-training
techniques are subject to gradual concept drift and error propagation [29, 24].
In general, data augmentation techniques aim to generate synthetic data with
similar characteristics as the original ones. While data augmentation has been
widely used for image classification tasks [18] leveraging techniques like image
perturbation (e.g., cropping, flipping) and adding stochastic noise, there has
been limited exploration of such techniques for text classifiers. Recent work on
data augmentation for text classification like [28] rely on auxiliary resources like
an externally trained Neural Machine Translation (NMT) system to generate
back-translations4 for consistency learning.

In contrast to the above works, we solely rely on the available in-domain
unlabeled data for augmentation without relying on external resources like an
NMT system. To this end, we develop Vec2Node that employs tensor embeddings
to consider both the global context and local word-level information. In order
to do so, we leverage the association of words and their tensor embeddings with
a graph-based representation to capture local and global interactions. Addition-
ally, we learn this augmentation and the underlying classification task jointly
to bridge the gap between self-training and augmentation techniques that are
learned in separate stages in prior works.

Our contributions can be summarized as follows:

– A novel tensor embedding based data augmentation technique for text clas-
sification with few labels.

4 Process of translating a text to another language and translating it back to the
original language.
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– A dynamic augmentation technique for detecting concept drift learned jointly
with the downstream task in a self-training framework.

– Extensive evaluation on benchmark text classification datasets demonstrate
the effectiveness of our approach, particular in low-resource settings with
limited training labels along with interpretable explanations.

2 Background

In this section, first, we present mathematical background; then we discuss the
problem formulation followed by the details of the proposed method.

2.1 Tensor

A data tensor D ∈ IRI1×I2×···×IM is a multi-way array i.e., an array with three
or more than three dimensions where the dimensions are usually referred to as
modes [13].

2.2 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a decomposition technique which fac-
torizes a matrix X into the following three matrices [13]:

X = UΣVT (1)

where the columns of U and V are orthonormal and Σ is a diagonal matrix
with positive real entries. A matrix can be estimated by a rank-R SVD as a sum
of R rank-1 matrices:

X ≈ ΣR
r=1σrur ◦ vr (2)

2.3 Canonical Polyadic (CP) Decomposition

Canonical Polyadic (CP) or PARAFAC is an extension of SVD for higher mode
arrays i.e., tensors [10]. CP/PARAFAC factorizes a tensor into a sum of rank-
1 tensors. For instance, a 3-mode tensor is decomposed into a sum of outer
products of three vectors:

X ≈ ΣR
r=1ar ◦ br ◦ cr (3)

where ar ∈ RI , br ∈ RJ , cr ∈ RK and the outer product is given by [19, 20]:

(ar,br, cr)(i, j, k) = ar(i) br(j) cr(k) ∀i, j, k (4)

Factor matrices are defined as A = [a1 a2 . . .aR], B = [b1 b2 . . .bR], and

C = [c1 c2 . . . cR] where R is the rank of the decomposition, which is also the
number of columns in the factor matrices. PARAFAC optimization problem is
formulated as [13]:
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min
A,B,C

= ‖X −ΣR
r=1ar ◦ br ◦ cr‖

2

F (5)

One effective way to optimize the above problem is to use Alternating Least
Squares (ALS) which solves for each one of the factor matrices by fixing the
others and cycles over all matrices iteratively until convergence[13].

2.4 KNN Tensor Graph

A k-nearest-neighbor (KNN) graph is a model for representing the nodes in a
given feature space such that the k most similar nodes are connected with edges,
weighted by a similarity measure [9]. In this work, we use a co-occurrence tensor
to map words into an embedding space such that each word (represented by a
vector) is a node in the embedding space and then we measure the similarity of
the nodes using the Euclidean distance between the corresponding vectors.

2.5 Hypergraph

Hypergraphs [7, 31] are an extension of graphs where an edge may connect more
than two nodes to indicate higher-order relationships between the nodes. In
contrast to a single weighted connection in traditional graphs, an edge in a
hypergraph is a subset of nodes that are similar in terms of features or distance.

3 Vec2Node Framework

3.1 Problem Formulation

Given a corpus D of labeled data, we aim to generate D′ that augments D
and improves the performance of a classification model M on the downstream
task i.e. f(M(D)) > f(M(D + D′)), where f is an evaluation measure (e.g.,
accuracy).

To address the above problem, we propose a novel tensor-based approach
for generating synthetic texts from the corpus D. The details of the proposed
method, henceforth referred to as Vec2Node, are described in the following sec-
tion.

3.2 Data Augmentation

Vec2Node leverages tensor decomposition to find word and text embeddings.
These are further used for graph-based representations of the word vectors in
order to find similar ones as replacement candidates to generate synthetic sam-
ples while minimizing the concept drift. Vec2Node consists of the following steps:
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Fig. 2: Graph and hypergraph modeling for representing words’ homophily.

Tensor-based Corpus Representation Textual content of documents can be
represented by a co-occurrence tensor [8, 1] which embeds the patterns shared
between different topics or classes. These patterns are formed by words that
are more likely to co-occur in documents of the same class. We leverage similar
principles to capture existing similarities within a given text. To this end, given
a set of samples, we first slide a window of size w across the text of each sample
and capture the co-occurring words to represent them in a co-occurrence matrix.
Furthermore, we stack the co-occurrence matrices of all samples to form a 3-mode
tensor of dimension T × T × S where T is the number of terms or words in the
entire corpus and S is the number of samples. This process is demonstrated in
Figure. 1. The rationale behind this approach is to capture the context (words)
for a given target word. In the experimental section, we demonstrate how this
approach captures contextually related words.

Decomposing Tensors into Word and Text Embeddings The objective
of this step is to embed the words and the texts of the corpus into rank-R rep-
resentations which are later used for calculating word similarities. As explained
in Section 2, we use CP/PARAFAC to decompose our 3-mode tensor as:

X ≈ ΣR
r=1ar ◦ br ◦ cr (6)

Where A = [a1 a2 . . .aR], B = [b1 b2 . . .bR], and C = [c1 c2 . . . cR] are embed-
ding representations of word, word and text respectively. The word co-occurrence
A and B are symmetric. Thus, they capture the same information.

Tensor Embeddings for KNN and Hypergraph Homophily Represen-
tation In this step, we exploit tensor embedded representations A and C to
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estimate words and texts homophilies (similarities) to find the best candidates
for replacement in a given text and generate new synthetic samples. We leverage
the following two graph based modelings:

K Nearest Neighbor Graph Modeling. Consider the factor matrix A
(or B, as they are symmetric and capture the same information) of dimension
N ×R where each row is a tensor word embedding in R-dimensional space RR.
We represent the ith row of this matrix which corresponds to word i as a node in
R dimensional space. This allows for calculating the Euclidean distance between
the nodes and represent the similarity between the nodes (words) as a weighted
undirected edge. The Euclidean distance between rows i and j measures the
similarity of these two vectors in R-dimensional space.

Hypergraph Modeling. Spitz et al.[23] propose a hypergraph modeling of
the documents where hyperedges are defined by consecutive sentences and words
within the text. In that work, the similarity is considered based on spatial close-
ness. However, in this work, we first leverage the factor matrix C corresponding
to text embedding to find K closest texts and then we use factor matrix A to
find K

′
closest words within these K samples. Thus, a hyperedge in this hyper-

graph is the set of K
′
closest words. The details of this process are shown in

Fig. 2. It is worth mentioning that our proposed model uses KNN tensor graph
for modeling word similarities. However, for comparison purposes we implement
Vec2Node framework with hypergraph modeling as well.

3.3 Learning with Data Augmentation and Limited Labels

Contextualized Word Replacement Modeling the corpus using graph or
hypergraph representations allows for finding similar words by sorting the edge
weights i.e., the Euclidean distances between the nodes, and picking the ones
with the smallest distance (i.e., closest words) as the best candidates for re-
placement and generation of synthetic samples. This process is fully unsuper-
vised given that the tensor decomposition method does not require any labels.
Also, it considers local and global contextual information given the graph and
tensorial representation of words and texts.

Self-training with Consistency Learning In order to eliminate noisy sam-
ples, we check for concept drift between the original samples and the synthetic
ones using consistency learning in a self-training framework. Given a few labeled
samples {xl, yl} ∈ Dl for the downstream task, we first fine-tune a base model
with parameter θ.

Consider xu to be the target augmented pair for a source instance xl gener-
ated using the augmentation technique described before. We can use the current
parameters θ of the model to predict the pseudo-label for the target xu as:

yu = argmaxy p(y|xu; θ) (7)

Since the objective of data augmentation is to generate semantically simi-
lar instances for the model, we expect the output labels for the source-target
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Fig. 3: Few-shot self-training with data augmentation and consistency learning
to prevent concept drift.

augmented pair {xl, xu} to be similar as well; otherwise, we designate this as a
concept drift and discard augmented pairs where yl 6= yu.

We add the remaining target pseudo-labeled data with consistent model pre-
dictions with the source data as our augmented training set {xu, yu} ∈ Du

and re-train the base model to update θ. The above steps are repeated with
iterative training of the base model with pseudo-labeled augmented data until
convergence. The optimization objective for the above self-training process can
be formulated as:

minθ Exl,yl∈Dl
[−log p(yl|xl; θ)]+

λ Exu∈Du
Eyu∼p(y|xu;θ∗)[−log p(yu|xu; θ)] (8)

where p(y|x; θ) is the conditional distribution under model parameters θ. θ∗
is given by the model parameters from the last iteration and fixed in the current
iteration. Similar optimization functions have been used recently in variants of
self-training for neural sequence generation [11], data augmentation [28] and
knowledge distillation. The details of this process are shown in Figure 3 with the
pseudo-code in Algorithm 1.

3.4 Complexity Analysis

In the proposed Vec2Node pipeline, the main computation bottleneck is CP
decomposition (CPD). In general, CPD is shown to be in the order of the number
of non-zero elements [2] of a tensor. In fact, CPD is very fast and efficient for
sparse tensors which is the case in this work due to sparsity of the word co-
occurrences. Meanwhile, some methods have been proposed for CPD which are
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Algorithm 1 Self-train Vec2Node
Input : Base model M , small labeled set Dl.
Return : Self-trained M .

1. Slide a window of size w across the text of each sample in Dl, capture co-
occurring words to create a co-occurrence matrix for each sample.

2. Stack all co-occurrence matrices to create a 3-mode tensorX of size T×T×S.
3. Decompose X into A,B,C
4. Use A,C to model the corpus using graph / hypergraph representations.
5. Calculate Euclidean distances between the nodes to find the closest words.
6. Train M using Dl = {xl, yl}. Set D = Dl.
7. While not converged

– For {xl, yl} ∈ D, generate augmented samples D′u by replacing closest
words.

– Assign pseudo-label yu to each sample xu ∈ D′u using Equation 7.
– If yl = yu then D = D

⋃
{xu, yu}.

– Retrain M using augmented data D using Equation 8.
8. Return model M

amenable to hundreds of concurrent threads while maintaining load balance and
low synchronization costs [21]. Moreover, CPD is an offline step in the Vec2Node
framework i.e., we only execute it once to obtain the embeddings and there is
no need to repeat it while training the model.

4 Experimental Evaluation

In this section, we assess performance of Vec2Node against baselines we further
introduce and then we conduct an ablation study to evaluate components of
Vec2Node.

4.1 Baselines

– Base classifiers to asses the effectiveness of augmentation We com-
pare against the following base classifiers:

• FastText-Softmax FastText is an efficient word embedding which is an
extension of Word2Vec. It represents each word as an n-gram of charac-
ters. Thus, in contrast to other non-contextualized embeddings such as
GloVe and Word2Vec, provides representations for unseen words [4, 12].
Considering this advantage of FastText over mentioned embeddings, we
choose FastText with a softmax layer (FastText-Softmax), as one of
our base classifiers.
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• BERT leverages contextualized representations using deep bidirectional
transformers. We experiment with the pre-trained checkpoints of Hug-
gingFace5 [26].

– Neural Machine Translation (NMT) to assess the effectiveness of
Vec2Node augmentation An Encoder-Decoder architecture with recurrent
neural networks (RNN) has become an effective and standard approach for
Neural Machine Translation (NMT), sequence-to-sequence prediction and data
augmentation. NMT is the core of the Google translation service [27]. We use
NMT to translate original sentences into French and then translate them back
into English. This process results in synthetic sentences which will be added
to the original dataset.

– GPT-3 to assess the effectiveness of Vec2Node augmentation Genera-
tive Pre-trained Transformer 3 (GPT-3) is an autoregressive language model
that generates human-like text. In this work, for each training sample, we
generate multiple sentences using GPT-3 and train a base classifier on the
training set, leveraging classic self-training to assign pseudo labels to the
generated samples.

– NLPWord embeddings to assess the effectiveness of tensor embed-
ding We experiment with the following word embeddings to investigate the
efficacy of the tensor embedding in our proposed Vec2Node framework. For
a fair comparison, for all of the following baselines, we retain KNN graph,
self-training and concept drift check components of the proposed Vec2Node
and only substitute tensor embedding with the following :
• FastText embedding. Not only do we use FastText for classification,

but also we replace the tensor embedding by FastText embedding to
find the most similar words. we retain other components as mentioned
above.

• Word2Vec embedding. A shallow 2-layers neural network proposed in
[14]. We use Word2Vec instead of tensor embedding to find the most sim-
ilar words using cosine similarity. Similarly, we retain other components
in Vec2Node.

• Random replacement. We replace tensor-based similarity strategy by
random word replacement while retaining self-training and consistency
learning.

– Matrix modeling (tf-idf) to compare the effectiveness of tensor
modeling against matrix modeling: First, we create a tf-idf matrix
and decompose it into word embeddings using SVD decomposition. Similar
to the previous setup, we retain other components in Vec2Node and only
replace tensor embedding by tf-idf embedding. Both random replacement
and tf-idf, with strong data augmentation and self-training techniques have
been shown to obtain very competitive results for text classification [25, 28].

– Hypergraph similarity representation to assess the effectiveness of
KNN graph modeling We investigate the efficacy of KNN graph modeling
against hypergraph modeling proposed in [23]. Similar to the above setup,

5 https://github.com/huggingface/transformers
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Table 1: Dataset statistics.
Dataset Class Train Test Avg. Words/Doc

SST2 2 67340 872 17
IMDB 2 25000 25000 235

AG News 4 12000 7600 40
DBpedia 14 560000 70000 51

we only replace KNN tensor graph by hypergraph while keeping other com-
ponents of Vec2Node.

– Vec2Node with and without self-training and consistency learning
We remove the self-training and consistency learning from the Vec2Node
pipeline to assess the effectiveness of aforementioned mechanisms.

4.2 Evaluation

We experiment on SST2 [22], IMDB [16], AG News [30] and DBpedia [3] with
statistics in Table 1, to assess the efficacy of Vec2Node on short, long and multi-
label datasets respectively. We report results on the corresponding test splits as
available from the mentioned works. To facilitate easy comparison, we report rel-
ative accuracy improvement (↑) for all the methods over the base model without
augmentation.

Base classifiers From Table 3, we observe that Vec2Node with tensor data aug-
mentation obtains on average 16.75% and 10.5% improvement over FastText-Softmax
with no augmentation, using only 1% and 5% of labeled training data respec-
tively. In this experiment, Vec2Node is built on top of FastText-Softmax to
demonstrate the strength of augmentation. We also observe the relative improve-
ment with augmentation to significantly increase with longer text. For example,
the improvement in accuracy for IMDB is 16% more than that on SST2 dataset
using 5% of labels. This could be attributed to the shorter context samples not
being able to generate diverse variety of synthetic samples that are significantly
different from the original ones. However, we still demonstrate significant ac-
curacy improvement with augmentation on SST2 as well. In case of DBpedia
classification, which is relatively a hard task, Vec2Node improves the accuracy
of base FastText-Softmax by 3 − 4% using only 1 − 5% of training labels. As
illustrated, when we use 100% of the training data, we still observe improve-
ment in classification accuracy which demonstrates the effectiveness of tensor
augmentation in both low and high-resource settings.

In contrast to FastText-Softmax which is trained from the scratch, the BERT
model we use here is pre-trained over massive amounts of unlabeled data thereby,
works well even in the low-data regime. Thus, to demonstrate the strength of
our tensor augmentation i.e., Vec2Node, we choose the few-shot setting with only
0.5% of labeled training data. From Table ??, we observe that Vec2Node using
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Table 2: Performance of FastText-Softmax classifier with and without
Vec2Node augmentation.

Dataset %Train #Train w/o Vec2Node w/ Vec2Node Average ↑

1 673 0.509±0.000 0.638±0.0007
SST2 5 3367 0.710±0.100 0.740±0.004 (5.46↑)

100 67340 0.818±0.0018 0.823±0.0006

1 250 0.499±0.000 0.605±0.004
IMDB 5 1250 0.522±0.012 0.718±0.001 (10.26↑)

100 25000 0.857±0.0007 0.863±0.002

1 1200 0.295±0.003 0.687±0.023
AG News 5 6000 0.663±0.001 0.825±0.002 (18.56 ↑)

100 12000 0.900±0.0003 0.903±0.0008

1 5600 0.566±0.000 0.603±0.000
DBpedia 5 28000 0.589±0.015 0.619±0.000 (3.06 ↑)

100 56000 0.602±0.013 0.627±0.000

Table 3: Performance of FastText-Softmax classifier with and without
Vec2Node augmentation.

Dataset %Train #Train w/o Vec2Node w/ Vec2Node

SST2 0.5 336 0.754 0.826(7.2↑)

IMDB 0.5 125 0.776 0.783(0.7↑)

AG News 0.5 600 0.869 0.880(1.1↑)

BERT as an encoder along with tensor augmentation to obtain 3% improvement
on average over the base BERT model using very few training labels. Meanwhile,
augmenting SST2, using BERT as a classifier, improves the overall performance
of Vec2Node, where we observe 7.2% improvement of accuracy after augmen-
tation. In case of DBpedia, since it is a very large dataset, even with 0.5% of
the labels a pretrained BERT achieves its maximum accuracy. Thus we skip it for
this experiment. It is worth emphasizing that the pre-trained BERT outperforms
FastText-Softmax which is trained from the scratch. However, in both base
model settings, Vec2Node improves the performance.

Neural Machine Translation (NMT): As reported in Table 4, Vec2Node
outperforms NMT augmentation strategy as well. We observed that in contrast to
synthetic samples of Vec2Node, the majority of the synthetic samples created by
NMT are quite identical with the original ones and as a result, they do not add
diversity to the datasets.

GPT-3 Text Generation: Table 4 also illustrates performance of Vec2Node
against GPT-3 on FastText-Softmax classifier. while GPT-3 outperforms Vec2Node
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Table 4: Performance of FastText-Softmax classifier with augmentations from
NMT, GPT-3 and Vec2Node.
Dataset %Train #Train w/o Aug. w/ NMT w/ GPT3 w/ Vec2Node

SST2 5 3367 0.710±0.100 0.715±0.008(0.50↑) 0.700±0.005(0.01↓) 0.740±0.004(3.00↑)

IMDB 5 1250 0.522±0.012 0.692±0.016(17.00↑) 0.795±0.001(27.3↑) 0.718±0.001(19.06↑)

AG News 5 6000 0.663±0.001 0.786±0.021(12.30 ↑) 0.801±0.001(13.8↑) 0.825±0.002(16.20 ↑)

DBpedia 5 28000 0.589±0.015 0.610±0.005(2.10 ↑) 0.667±0.060(7.8↑) 0.619±0.000(3.00 ↑)

by only 1.53% on average (all four datasets), it is also significantly larger with
175 billion parameters compared to Vec2Node with only few hyper-parameters
(i.e., R, w and K) as well as pre-trained over massive amount of web corpora.

Ablation Study In this part, we conduct an ablation study to evaluate different
components of Vec2Node namely, tensor embedding, KNN tensor graph, and
self-training mechanism for few label classification.

NLP Word Embeddings vs. Tensor Embeddings Table 5 demonstrates per-
formance of Vec2Node with different replacement strategies including FastText
and Word2Vec. As illustrated, with longer texts as in IMDB and AG News,
Vec2Node with tensor embedding, outperforms other word embeddings due to
more tangible word co-occurrences in the texts. In case of SST2, where samples
are short phrases with fewer co-occurring non-stop words, we observe less diverse
synthetic samples. However, we may conclude that tensor embedding outperform
other embeddings in general.

Tensor Modeling vs. Matrix Modeling and tf-idf Embedding In ad-
dition, Table 5 illustrates the performance of Vec2Node against Random and
tf-idf word replacement strategies. Random and tf-idf do not consider the
local and global contextual information of the target word during replacement,
and, consequently, generate noisy samples. Vec2Node captures both local and
global context to outperform these strategies. In case of large datasets such as
DBpedia, we observe that matrix modeling results in a very large and memory
inefficient representation and suffers from compute bottleneck for SVD decom-
position, whereas tensor modeling is memory efficient due to the fact that it
breaks down a large co-occurrence matrix into multiple, yet smaller ones.

KNN Graph vs. Hypergraph for Word Similarities From Table 6, we
observe that Vec2Node with KNN graph representation to capture word simi-
larities, outperform hypergraph representation on all four datasets. The KNN
graph captures globally similar words, whether or not they co-occur in similar
sentences, whereas the hypergraph representation confines the similarity search
to words that co-occur in similar texts. This may lead to situations in which all
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Table 5: Vec2Node with different word strategies on FastText-Softmax classifier
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Table 6: Vec2Node with KNN vs. hypergraph on FastText-Softmax classifier.
Dataset %Train FastText Hypergraph KNN

SST2 5 0.710±0.100 0.722±0.003(1.2↑) 0.740±0.004(3.0↑)

IMDB 5 0.522±0.012 0.664±0.004(14.2↑) 0.718±0.001(19.6↑)

AG News 5 0.663±0.001 0.811±0.002(14.8↑) 0.825±0.001(16.2↑)

DBpedia 5 0.589±0.015 0.615±0.000(2.6↑) 0.619±0.000(3.0↑)

Table 7: Vec2Node with and without self-training & consistency learning (ST &
CL) on FastText-Softmax classifier.

Dataset %Train FastText w/o ST & CL w/ ST & CL

SST2 5 0.710±0.100 0.720±0.006(1.0↑) 0.740±0.006(3.0↑)

IMDB 5 0.522±0.012 0.686±0.005(16.4↑) 0.718±0.001(19.6↑)

AG News 5 0.663±0.001 0.791±0.001(12.8↑) 0.825±0.001(16.2↑)

DBpedia 5 0.589±0.015 0.614±0.000(2.5↑) 0.619±0.000(3.0↑)

words in a given sentence are replaced by the same word due to lack of candi-
dates in the pool. Moreover, similar words may occur in different contexts and
in such cases hypergraph does not capture them.

Vec2Node with and without Self-training and Consistency Learning In
this experiment, we ablate the self-training and consistency learning compo-
nents in Vec2Node to analyze their contribution to the results in Table 7. We
observe the self-training component where the model leverages augmented data
and pseudo-labels for consistency learning to further improve the performance
of Vec2Node by 8.2% on all datasets. Also, this component along with aug-
mentation jointly contributes to 10.45% improvement of Vec2Node over that of
FastText-Softmax.

4.3 Interpretability and Examples

Table 8 in Appendix 7, demonstrates synthetic examples from the AG news
and SST2 datasets, generated by Vec2Node using different word replacement
strategies i.e., random, tf-idf and tensor embedding. We observe Vec2Node to
generate better samples with the following features.

Preserving context for word replacement. In contrast to random se-
lection which blindly substitutes words, the co-occurrence based structure of
the tensor embedding preserves the context, and selects candidate words that
are contextually similar to the original ones. For instance, in example #1 the
entity “Jermain Defoe" is replaced by “Owen Michael" as they are more likely
to co-occur in a Sport text related to “Real Madrid". As illustrated, the other
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approaches replace words quite randomly. This feature helps to minimize the
concept drift that might happen in the replacement process.

Paraphrasing context. Vec2Node leverages a sliding window to capture
co-occurring concepts in a sentence, such that non-adjacent words that occur
within the same context can be substituted with each other. This contributes to
paraphrased sentences generated during augmentation as illustrated in example
#2 with re-ordered proper nouns “Samsung" and “SCH-S250".

Tensor embedding preserves word-level similarities. Tensor embed-
ding not only preserves the context-level similarity, but also retains the semantics
of the replaced concept. More precisely, it is more likely that a number gets re-
placed by another number (# 3) or an adverb by another adverb (# 5), and so
on and so forth. We observe that not only numbers and verbs, but also prepo-
sitions like “a”, “an”, and “the” are replaced by similar concepts in the synthetic
samples while preserving the context.

4.4 Related work

Self-training and Consistency Learning Self-training is one of the well-
known semi-supervised approaches which has been widely used to minimize the
need for annotation leveraging large-scale unlabeled data [15, 11, 17, 24]. For in-
stance, Wang et al. leverage self-training and meta-learning for few-shot training
of neural sequence taggers [24]. Moreover, a recent work, a.k.a UDA [28] exploits
consistency learning with paraphrasing and back-translation from Neural Ma-
chine Translation systems for few-shot learning. In this work, we do not use
any external resources such as an NMT system. In fact, we aim to bridge the
gap between self-training and augmentation techniques, while solely relying on
in-domain unlabeled data for tensor-based augmentation.

5 Conclusion

In this work, we propose a novel tensor-based technique i.e., Vec2Node, to aug-
ment textual datasets leveraging local and global information in corpus. Vec2Node
leverages tensor data augmentation with self-training and consistency learning
for text classification with few labels. Our experiments demonstrate that syn-
thetic data generated by Vec2Node are interpretable and improve the classifica-
tion accuracy over different datasets significantly in low-resource settings. For
instance, Vec2Node improves the accuracy of FastText by 16.75% while using
only 1% of labeled data. Overall, we demonstrate Vec2Node to work well both
in low and high-data regime with improved performance when built on top of
different encoders (e.g., FastText, BERT).
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