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ABSTRACT
Including pairwise or higher-order interactions among predictors of

a Generalized AdditiveModel (GAM) is gaining increasing attention

in the literature. However, existing models face an identifiability
challenge. In this paper, we propose pureGAM, an inherently pure

additive model of both main effects and higher-order interactions.

By imposing the pureness condition to constrain each component

function, pureGAM is proved to be identifiable without compromis-

ing accuracy. Furthermore, the pureness condition introduces addi-

tional interpretability in terms of simplicity. Practically, pureGAM is

a unified model to support both numerical and categorical features

with a novel learning procedure to achieve optimal performance.

Evaluations show that pureGAM outperforms other GAMs and has

very competitive performance even compared with opaque mod-

els, and its interpretability remarkably outperforms competitors in

terms of pureness. We also share a successful adoption of pureGAM

in one real-world application.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression.
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Table 1: Intuitive illustration of GAM, GA𝑘M and pureGAM

Model Formula

GAM 𝑔 (𝑦) = ∑𝑝
𝑖=1

𝑓𝑖 (𝑥𝑖 )

GA
𝑘
M 𝑔 (𝑦) = ∑

𝑢∈D𝑘 𝑓𝑢 (𝑥𝑢 )

pureGAM

𝑔 (𝑦) = ∑
𝑢∈D𝑘 𝑓𝑢 (𝑥𝑢 )

s.t. ∀𝑢 ∈ D𝑘 , 𝑓𝑢 (𝑥𝑢 ) is pure

(1) 𝑔 (𝑦) = 𝑔
(
E[𝑌 |𝑥

1
, · · · , 𝑥𝑝 ]

)
.

(2) 𝑝 : The total number of features.

(3) D𝑘 : The set of all non-empty subsets of {1, · · · , 𝑝} with cardinality ≤ 𝑘 .
(4) The pureness (hierarchical orthogonality) condition of 𝑓𝑢 :∫
𝑓𝑢 (𝑥𝑢 )ℎ𝑣 (𝑥𝑣 )𝑤 (𝑥 )𝑑𝑥 = 0,∀𝑣 ⊂ 𝑢,∀ℎ ∈ L2 (R𝑣 ) .

1 INTRODUCTION
Including pairwise or higher-order interactions among the predic-

tors (or features) of a Generalized Additive Model (GAM) is gaining

increasing attention in the literature [5, 18, 21, 33]. For instance,

GA
2
M [18] extends GAM by modeling pairwise interactions, as

shown in the 2
nd

row of Table 1 by setting 𝑘 = 2. Here 𝑔 is the link

function and each 𝑓𝑢 is called a component function or component,

which is used to model interactions for |𝑢 | ≤ 2.

However, existing models face an identifiability challenge. For

additive models, the concept of identifiability boils down to the

uniqueness of decomposing a model prediction into the sum of spe-

cific component functions. For example, given one model learned

by GA
2
M: 𝑔(𝑦) = 𝑓1 (𝑥1) + 𝑓12 (𝑥1, 𝑥2), the interaction 𝑓12 can freely

absorb its nested main effect (i.e., the univariate component) 𝑓1
to yield another decomposition with the same prediction: 𝑔(𝑦) =
0+ℎ12 (𝑥1, 𝑥2) where ℎ12 (𝑥1, 𝑥2) := 𝑓1 (𝑥1) + 𝑓12 (𝑥1, 𝑥2), thus GA2

M

is non-identifiable. Identifiability is a vital requirement for inter-

pretability since non-uniqueness permits “contradictory” decompo-

sitions for representing the same prediction [16].

To achieve identifiability, a desirable approach is to impose cer-

tain constraints among the components. A recent work GAMI-Net

[33] extends GA
2
M by introducing a constraint called “marginal

clarity”. However, our analysis (Section 3.5.1) shows that GAMI-Net

still cannot guarantee unique decomposition in the general setting,

and thus is non-identifiable. Consequently, the interpretability of

all the exiting models is compromised.

Motivated by this, we propose pureGAM, an inherently pure ad-
ditive model of both main effects and higher-order interactions. The

overall modeling of pureGAM is shown in the 3
rd
row of Table 1,

https://doi.org/10.1145/3534678.3539256
https://doi.org/10.1145/3534678.3539256
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where interactions are modeled up to order 𝑘 (𝑘 < 𝑝), and each

component is constrained by the pureness condition (the bottom

row in Table 1). Theoretically, pureGAM is proved to be identifi-
able. Furthermore, the pureness condition introduces additional

interpretability in terms of simplicity. Practically, pureGAM is a

unified model to support both numerical and categorical features

with a novel learning procedure to achieve optimal performance.

Specifically:

Identifiability. pureGAM adopts the pureness condition to con-

strain each component function. The pureness conditionwas termed

the “hierarchical orthogonality condition” [14] in the domain of

functional ANOVA
1
. We prove that under the pureness condition,

the optimal solution of pureGAM is unique and does not compro-

mise accuracy (w.r.t. standardL2
loss). In otherwords, decomposing

a 𝑝-variateL2
function (i.e.,𝑔(𝐸 (𝑌 |𝑥))) into the sum of all 𝑘-variate

subfunctions is unique (up to a minimum L2
loss), thus pureGAM

is identifiable.

Simplicity. The pureness condition entails that one component

𝑓𝑢 must NOT “absorb” any of its nested lower-order component 𝑓𝑣 :

∀𝑣 ⊂ 𝑢. Otherwise, the integral is strictly greater than zero which

violates the pureness condition. Thus, we say such a component 𝑓𝑢
is “pure” w.r.t. all its nested lower-order components. Considering

a nested lower-order component 𝑓𝑣 is always simpler to interpret

than 𝑓𝑢 : 𝑣 ⊂ 𝑢, the pureness condition follows Occam’s razor: a

lower-order component (i.e., a simpler interpretation) is preferred if

it has the same prediction performance. It is known that simplicity

is beneficial to interpretability since it increases the likelihood that

the user both understands and accepts the model [20].

Unification. To tackle categorical features, most GAMs imple-

mentations adopt label encoding or one-hot encoding such as EBM

[21], GAMI-Net [33], pyGAM [25], or FXAM [8]. These encodings

do not satisfy the pureness condition which further leads to non-

identifiability. We propose pure coding, a novel algorithm for encod-

ing categorical features and representing categorical component

functions to satisfy the pureness condition. As a result, pureGAM

can be applied to general datasets including both numerical and

categorical features.

Optimality. Regarding pureGAM’s training procedure, we ex-

ploit a joint learning strategy instead of sequential learning. Se-

quential learning is adopted in GA
2
M and GAMI-Net, which learns

components sequentially from lower orders to higher orders. Our

analysis (Section 3.5.1) shows that, under the pureness condition, se-

quential learning would lead to a sub-optimal solution but learning

all the components jointly (joint learning) ensures optimum. Our ef-

ficient training algorithm makes such joint learning affordable. For

instance, we propose a novel adaptive kernel method for estimating

the probability density 𝑤𝑢 (𝑥𝑢 ) (i.e., the marginal distribution of

𝑤 on variables 𝑥𝑢 ) and for kernel smoothing. The computation

for estimating pureness, where 𝑤𝑢 is a key part, and estimating

component functions 𝑓𝑢 can largely be shared. In summary, we

make the following contributions
2
:

1
We choose to use pureness instead of "hierachical othogonality condition" because it

is more concise and intuitive, and a similar term "purify" is also used in [16]

2
pureGAM’s code is available at https://github.com/microsoft/reliableAI.

(1) We propose pureGAM, an inherently pure additive model. To

the best of our knowledge, among the GAMs that model interac-

tions, pureGAM is the first to be identifiable, interpretable (in terms

of simplicity), unified (to support both categorical and numerical

features), and has optimal performance.

(2) We propose a novel training procedure to train pureGAM effec-

tively and efficiently. Evaluations show that pureGAM outperforms

other GAMs and has very competitive performance even compared

with opaque models, and its interpretability remarkably outper-

forms competitors in terms of pureness.

(3) We present a successful adoption of pureGAM in one real-

world application, which utilizes pureGAM’s identifiability and

interpretability for data analysis and decision-making.

2 RELATEDWORK
GAMs in general. Generalized Additive Models (GAM) are gain-

ing great attentions in the literature of interpretable machine learn-

ing [1, 6, 17, 24], mainly due to its standard for interpretability

[3, 30] and its broad adoptions in real-world settings [4, 22, 27].

The original modeling of GAM [13] is shown in 1
st
row of Table 1,

where we want to predict 𝑦 with given features (𝑥1, · · · , 𝑥𝑝 ). GAM
untangles the overall prediction by summing up contributions from

each component.

GAMs with interactions. In addition to GA
2
M [18] and its fast

implementation EBM [21], some more recent work extends GAMs

by adopting neural networks instead of traditional nonparamet-

ric methods (such as smoothing splines or kernels) to estimate

each component function. NODE-GA
2
M [5] adopts a novel neural

network architecture NODE [23] and modifies it to mimic GA
2
M.

GAMI-Net [33] extends GA
2
M by using MLP (Multi-Layer Percep-

tron) to estimate each component function, and it further introduces

a constraint called “marginal clarity”, which attempts to make the

model more identifiable by imposing orthogonality between any

interaction component and its nested main effects. However, our

analysis in section 3.5.1 shows that GAMI-Net still cannot guar-

antee unique decomposition, thus all these existing GAMs have

limitations in terms of identifiability.

Pureness condition. The pureness condition adopted in pureGAM

is identical to hierarchical orthogonality condition [14], which is

used for weighted functional ANOVA to guarantee the uniqueness

of perfectly decomposing a 𝑝-variateL2
function into the sum of all

𝑝-variate subfunctions (weighted by data distribution). pureGAM’s

modeling is different in that 𝑘 (see 3rd row in Table 1) is typically set

with 𝑘 ≪ 𝑝 to avoid overfitting. Thus, instead of perfect decompo-

sition, we prove that up to a global minimum L2
loss, decomposing

a 𝑝-variate L2
function into the sum of all 𝑘-variate subfunctions

is unique (weighted by data distribution).

Another related work is “purification” [16], an efficient algorithm

that purifies an existing ML model, such that an interaction compo-

nent does not contain any of its nested lower-order components. It

is a post-hoc method that is applied to an existing MLmodel. In con-

trast, pureGAM learns an inherently pure additive model. Learning

puremodel inherently takes advantage that it can directly access the

data distribution𝑤 from training data but post-hoc methods need

https://github.com/microsoft/reliableAI
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to make assumptions on data distribution. Moreover, “purification”

is only applicable to purify tree-based models.

The simplicity entailed by the pureness condition is also a gen-

eralization of the reluctance principle [34]: that a main effect (i.e.,

univariate component) should be preferred over a pairwise interac-

tion if both have similar prediction performance.

3 APPROACH
For the sake of simplicity, we focus on the case where the link func-

tion 𝑔(𝑦) is an identity function, i.e., the regression task. pureGAM

follows the standard to support other link functions.

3.1 Modeling
Given a dataset D consisting of 𝑁 realizations of random variable 𝑌

at design values (𝑥1, · · · , 𝑥𝑝 ) or shortly 𝑥 , where 𝑥 is sampled from

an underlying probability density𝑤 (𝑥), we model pureGAM as:

E(𝑌 |𝑥) =
∑︁
𝑢∈D𝑘

𝑓𝑢 (𝑥𝑢 ) s.t. ∀𝑢 ∈ D𝑘 , 𝑓𝑢 (𝑥𝑢 ) is pure. (1)

Throughout this paper, all the functions discussed are inweighted-

L2
space L2

𝑤 , or simply, L2
space

3
, since they are essentially iden-

tical. Equation (1) is an additive model, with interactions up to order

𝑘 , satisfying the pureness condition. D𝑘 := {𝑢 |𝑢 ⊂ {1, · · · , 𝑝}, 0 <

|𝑢 | ≤ 𝑘}, is a collection of all non-empty subsets of {1, · · · , 𝑝} with
cardinality ≤ 𝑘 . If not further specified, we omit the bias term

( |𝑢 | = 0) for simplicity. The following definitions 1, 2, 4 are from

[14, 16].

Definition 1. We define “𝑓𝑢 (𝑥𝑢 ) is pure”, if

∀𝑣 ⊂ 𝑢, ∀ℎ𝑣 ∈ L2 (R𝑣),
∫

𝑓𝑢 (𝑥𝑢 )ℎ𝑣 (𝑥𝑣)𝑤 (𝑥)𝑑𝑥 = 0. (2)

In other words, 𝑓𝑢 is orthogonal to any subfunction ℎ𝑣 (i.e. 𝑣 ⊂ 𝑢)
w.r.t. inner product ⟨𝑓 , 𝑔⟩𝑤 :=

∫
𝑓 (𝑥)𝑔(𝑥)𝑤 (𝑥)𝑑𝑥.

Operationally, we use an equivalent definition of the pureness

condition (or the so-called “integrate-to-zero” constraint [14] which

turns out to be more computable.

Definition 2. We say 𝑓𝑢 (𝑥𝑢 ) is pure if and only if:

∀𝑖 ∈ 𝑢,
∫

𝑓𝑢 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 )𝑑𝑥𝑖 = 0. (3)

Here𝑤𝑢 is the marginal distribution of𝑤 on variables 𝑥𝑢 . The

integral is a function on 𝑥𝑢\𝑖 and it is required to be zero for any

value 𝑥𝑢\𝑖 takes.
Setting these up, we propose pureGAM’s constrained optimiza-

tion as follows:

{𝑓𝑢 (𝑥𝑢 ) |𝑢 ∈ D𝑘 }

= argmin{𝑔𝑢∈L2}𝑢∈D𝑘

∫ ©­«
∑︁
𝑢∈D𝑘

𝑔𝑢 (𝑥𝑢 ) − E(𝑌 |𝑥)ª®¬
2

𝑤 (𝑥)𝑑𝑥

𝑠.𝑡 .∀𝑢 ∈ D𝑘 , ∀𝑖 ∈ 𝑢,
∫

𝑓𝑢 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 )𝑑𝑥𝑖 = 0 (4)

Theorem 3.1. For arbitrary 𝑘 , solution of (4) is unique when den-
sity𝑤 is non-degenerate, or more precisely,𝑤 is “grid-closed”.

3L2

𝑤 :=

{
𝑓 :

(∫
𝑓 2 (𝑥)𝑤 (𝑥)𝑑𝑥

)
1/2

< ∞
}
, i.e., L2

𝑤 is the space of functions with

finite L2
norm w.r.t. measure 𝑤.

Theorem 3.1 establishes the identifiability of pureGAM’s model-

ing. The requirement that𝑤 is “grid-closed” was proposed at [14],

which is a mild assumption. The proof is available in Appendix A.1.

Remark 1. The pureness condition does not compromise the opti-
mality of objective function in (4) but only ensures uniqueness, i.e.,
without the pureness condition, the minimum loss remains the same.

Remark 2. It is known that the optimal solution of the original
GAM (i.e., only modeling main effects) is unique, which can be viewed
as a special case of pureGAM: when 𝑘 = 1, the integrate-to-zero
constraint reduces to restricting each main effect 𝑓𝑖 to have zero mean,
i.e., the ordinary mean-centering constraint.

Next, we illustrate the details of pureGAM’s training, which

consists of two parts: pure learning on numerical features and

pure coding on categorical features. For numerical features, we

derive a more computable version of integrate-to-zero constraint;

for categorical features, we choose coding beforehand to strictly

achieve the pureness condition on categorical features.

3.2 Pure Learning on Numerical Features
Learning on numerical features requires estimating each compo-

nent function 𝑓𝑢 and validating its pureness condition, which essen-

tially needs estimation of density𝑤𝑢 . We exploit kernel methods,

which are naturally suitable for smoothing and density estimation.

3.2.1 Adaptive KernelMethod. Given a sample {𝑥𝑢,1 ∼ 𝑦1, · · · , 𝑥𝑢,𝑁 ∼
𝑦𝑁 }, kernel smoothing for representing component 𝑓𝑢 (𝑥𝑢 ) is de-
fined as follows:

𝑓𝑢 (𝑥𝑢 ) =

∑𝑁
𝑠=1

𝐾

(
𝑥𝑢−𝑥𝑢,𝑠

ℎ

)
�̃�𝑠∑𝑁

𝑠=1
𝐾

(
𝑥𝑢−𝑥𝑢,𝑠

ℎ

) =

𝑁∑︁
𝑠=1

𝑊𝑠 (𝑥𝑢 , ℎ) �̃�𝑠 , (5)

where 𝐾 is the kernel and ℎ is the bandwidth. Kernel smoothing

can be viewed as a weighted average based on observations, where

the weight𝑊𝑠 (𝑥𝑢 , ℎ) = 𝐾
(
𝑥𝑢−𝑥𝑢,𝑠

ℎ

)
/∑𝑁𝑠=1

𝐾

(
𝑥𝑢−𝑥𝑢,𝑠

ℎ

)
.

In our problem, {𝑥𝑢,1, · · · , 𝑥𝑢,𝑁 } are available in training data,

but �̃� = {𝑦1, · · · , 𝑦𝑁 } and bandwidth ℎ are undetermined, which

need to be trained together with other components. Therefore, we

set {𝑦1, · · · , 𝑦𝑁 } andℎ as parameters, which lead to the parametrized

form of kernel smoother:

𝑓𝑢 (𝑥𝑢 |𝜼𝑢 , ℎ𝑢 ) =
𝑁∑︁
𝑠=1

𝑊𝑠 (𝑥𝑢 , ℎ𝑢 )𝜂𝑢,𝑠 , (6)

where terms are updated by �̃� → 𝜼𝑢 , ℎ → ℎ𝑢 , thus each component

is modeled by a specific bandwidth ℎ𝑢 .

3.2.2 Empirical Pureness Condition. To make the integrate-to-zero

constraint computable from training data, we adopt the parametrized

kernel density estimation method to estimate the integration,

setting the bandwidth ℎ𝑢 as a parameter.

Lemma 3.1. For 𝑖 ∈ 𝑢, ∫
𝑓𝑢 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 )𝑑𝑥𝑖 ∼

1

𝑁ℎ𝑢\𝑖

𝑁∑︁
𝑠=1

𝐾𝑢\𝑖

(
𝑥𝑢\𝑖 − 𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
𝑓𝑢 (𝑥𝑢,𝑠 |𝜼𝑢 , ℎ𝑢 ) . (7)
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Here ∼ denotes asymptotic approximation. In other words,
1

𝑁ℎ𝑢\𝑖

∑𝑁
𝑠=1

𝐾𝑢\𝑖
(
𝑥𝑢\𝑖−𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
𝑓𝑢 (𝑥𝑢,𝑠 |𝜼𝑢 , ℎ𝑢 ) is an empirical version

of
∫
𝑓𝑢 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 )𝑑𝑥𝑖 .

Lemma 3.1 provides a computable version to validate the pure-

ness condition from training data. See Appendix A.2 for proof.

Definition 3. (Empirical pureness condition)

∀𝑢 ∈ D𝑘 , ∀𝑖 ∈ 𝑢,

1

𝑁ℎ𝑢\𝑖

𝑁∑︁
𝑠=1

𝐾𝑢\𝑖

(
𝑥𝑢\𝑖 − 𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
𝑓𝑢 (𝑥𝑢,𝑠 |𝜼𝑢 , ℎ𝑢 ) = 0 (8)

3.3 Pure Coding on Categorical Features

Index 𝒙𝟏 𝒙𝟐
1 A D
2 A D
3 A E
4 B D
5 B E
6 B E
7 B E
8 C D
9 C E

𝒙𝟏 Freq

A 1/3

B 4/9

C 2/9

𝒙𝟐 Freq

D 4/9

E 5/9

Freq(𝒙𝟏, 𝒙𝟐) A B C

D 2/9 1/9 1/9

E 1/9 1/3 1/9

𝒆𝟏𝟏 𝒆𝟐𝟏 𝒆𝟏𝟐 𝒆𝟏 𝟏,𝟐 𝒆𝟐 𝟏,𝟐
1 0 1 1 0
1 0 1 1 0
1 0 -4/5 -2 0
0 1 1 0 1
0 1 -4/5 0 -1/3
0 1 -4/5 0 -1/3
0 1 -4/5 0 -1/3
-3/2 -2 1 -2 -1
-3/2 -2 -4/5 2 1

Coding for 𝑥! Coding for	 𝑥!, 𝑥"Coding for 𝑥"

Training data Counting Tables Pure Coding

Index

1
2
3
4
5
6
7
8
9

Figure 1: An example of pure coding.

Different from learning on numerical features, we propose an

encoding mechanism called pure coding to make the learned com-

ponents on categorical features strictly satisfy the pureness condi-

tion. After pure coding, the learning task on categorical features is

reduced to solving a set of linear equations, where accelerating gra-

dient descent could be adopted to improve the training efficiency.

First, we present the discrete version of integrate-to-zero con-

straint on categorical features as:

∀𝑖 ∈ 𝑢,
∑︁
𝑥𝑖 ∈𝐿𝑖

𝑓𝑢 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 ) = 0 (9)

where 𝐿𝑖 is the domain of categorical feature 𝑥𝑖 , (i.e., the distinct

values that 𝑥𝑖 takes). By using empirical frequency 𝑞𝑢 (𝑥𝑢 ) from
training data to approximate𝑤𝑢 (𝑥𝑢 ), we have the empirical pure-

ness condition on categorical features as:

Definition 4. (Discrete empirical pureness condition)

∀𝑖 ∈ 𝑢,
∑︁
𝑥𝑖 ∈𝐿𝑖

𝑓𝑢 (𝑥𝑢 )𝑞𝑢 (𝑥𝑢 ) = 0 (10)

To avoid overwhelming notations, we next illustrate pure coding

for main effects and pairwise interactions. Details for 𝑘 > 2 are

available in Appendix B.

We first illustrate pure coding for main effects. Supposing 𝑥1 is a

categorical feature with domain 𝐿𝑖 , we denote 𝑙 = |𝐿𝑖 |. Pure coding
transforms each value of 𝐿𝑖 to a vector with dimensionality equals

to 𝑙 − 1 (note that dimensionality for one-hot encoding is 𝑙 ); and the

components of the vector are real-values which are calculated based

on the frequencies, 𝑞𝑖 (𝑥𝑖 ) (one-hot encoding only takes 0 or 1), to

ensure the pureness condition. The specific coding mechanism is:

Definition 5. (Pure coding for main effects) Suppose 𝑥𝑖 is a cat-
egorical feature taking value in {1, · · · , 𝑙}, denote 𝑞𝑡 := 𝑞 {𝑖 } (𝑡), 𝑡 ∈
{1, · · · , 𝑙} as the frequency of {𝑥𝑖 = 𝑡}, and define the pure coding as

the (𝑙 − 1)-dimensional vector 𝒆 {𝑖 } = (𝑒 {𝑖 },1, · · · , 𝑒 {𝑖 },𝑙−1
)𝑇 , where

for 𝑡 = 1, 2, · · · , 𝑙 − 1,

𝑒{𝑖},𝑡 :=


1 𝑥𝑖 = 𝑡,

−𝑞𝑡
𝑞𝑙

𝑥𝑖 = 𝑙,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(11)

In Definition 5, 𝑒 {𝑖 },𝑡 is indexed by the second subscript 𝑡 , and

the first subscript indicates which component (note: here the com-

ponent is the variable set, not the vector component) it works on.

Figure 1 shows some examples. The training data contains two

categorical features 𝑥1 and 𝑥2 with 9 records. To calculate the pure

coding for feature 𝑥1, we first calculate the frequencies of its values

A, B, and C, which are shown in the top-left of “Frequency Tables”.

We assign indices 1, 2 and 3 to A, B, and C accordingly. According

to Definition 5, the pure coding of 𝑥1 is a (3 − 1) = 2-dimensional

vector (𝑒 {1},1, 𝑒 {1},2)𝑇 . The vector components are then calculated

based on (11). We thus have nine 2-dimensional encoded vectors to

represent the component 𝑥1 in training data (the two blue columns

in the “Pure Coding” Table). Similarly, we can conduct pure coding

for feature 𝑥2 and the encoded vector is shown in the orange column

(the dimensionality is 1 since 𝑥2 has only two distinct values).

To illustrate pure coding for interactions, we first define the

effective dimensionality:

Definition 6. (Effective dimensionality)

𝑜𝑢 :=
∏
𝑖∈𝑢

|𝐿𝑖 − 1 | (12)

𝑜𝑢 is the dimensionality of the encoded (by pure coding) vector for
component 𝑢.

Definition 7. (pure coding for pairwise interactions) suppose 𝑥𝑖 is
a categorical feature taking value in {1, · · · , 𝑙}, and 𝑥 𝑗 is a categorical
feature taking value in {1, · · · ,𝑚}, denote 𝑞𝑟𝑠 := 𝑞 {𝑖, 𝑗 } (𝑟, 𝑠) as the
frequency of {𝑥𝑖 = 𝑟, 𝑥 𝑗 = 𝑠}, and define the pure coding as the
(𝑙−1) (𝑚−1)-dimensional vector 𝒆 {𝑖, 𝑗 } = (𝑒 {𝑖, 𝑗 },𝑟𝑠 )𝑇

1≤𝑟 ≤𝑙−1,1≤𝑠≤𝑚−1

, where for each combination of 𝑟 and 𝑠 ,

𝑒{𝑖,𝑗 },𝑟𝑠 :=



1 (𝑥𝑖 , 𝑥 𝑗 ) = (𝑟, 𝑠),
− 𝑞𝑟𝑠
𝑞𝑟𝑚

(𝑥𝑖 , 𝑥 𝑗 ) = (𝑟,𝑚) ,
−𝑞𝑟𝑠
𝑞𝑙𝑠

(𝑥𝑖 , 𝑥 𝑗 ) = (𝑙, 𝑠) ,
𝑞𝑟𝑠
𝑞𝑙𝑚

(𝑥𝑖 , 𝑥 𝑗 ) = (𝑙,𝑚) ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

, (13)

Figure 1 shows an example of pure coding on {𝑥1, 𝑥2}. We first

calculate the frequencies of (𝑥1, 𝑥2), which are shown at the bottom

of “Frequency Tables”. The effective dimensionality is (3 − 1) (2 −
1) = 2, thus we use a 2-dimensional vector (𝑒 {1,2},1, 𝑒 {1,2},2)𝑇 for

encoding (follow a convention that index 1 corresponds to {𝑥1 =

𝐴, 𝑥2 = 𝐷} and 2 corresponds to {𝑥1 = 𝐵, 𝑥2 = 𝐷}). The vector

components are then calculated based on (13), and we have nine

2-dimensional encoded vectors to represent the component {𝑥1, 𝑥2}
in training data (the green columns in the “Pure Coding” table).

Similar to Definitions 5 and 7, pure coding for interactions with

𝑘 > 2 can be pre-determined. See Appendix B for details. In sum-

mary, for each realization 𝑥𝑢 of component 𝑢, we obtain the 𝑜𝑢 -

dimensional vector 𝒆𝑢 := (𝑒𝑢,1, · · · , 𝑒𝑢,𝑜𝑢 )𝑇 by pure coding. We

model each component function of categorical features as
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Definition 8. (Discrete component function)

𝑓𝑢 (𝑥𝑢 |𝜼𝑢 ) = 𝒆𝑢 (𝑥𝑢 )𝑇𝜼𝑢 , (14)

where 𝜼𝑢 := (𝜂𝑢,1, · · · , 𝜂𝑢,𝑜𝑢 )𝑇 is an 𝑜𝑢 -dimensional vector of pa-
rameters.

Lemma 3.2. The function (14) satisfies the discrete empirical pure-
ness condition for any parameter 𝜼𝑢 ∈ R𝑜𝑢 . Moreover, the space of
such functions is equal to the entire space of functions on 𝑥𝑢 satisfying
the discrete empirical pureness condition (10).

Lemma 3.2 guarantees that we can use Definition 8 to model

component functions on categorical features and that the pureness

condition holds automatically. Take 𝑥1 in Figure 1 as an example

component, let’s set 𝜂 {1} := (1, 0)𝑇 , thus the component function

takes 𝑥1 as input, and the corresponding output is shown in the

left column of blue part in “Pure Coding” Table in Figure 1. The

discrete empirical pureness condition (10) requires that the values

in this column should sum to 0, which is true.

By using pure coding, the learning task on categorical features

is reduced to solving linear equations without further constraints,

which is much simplified and many accelerating gradient descent

algorithms can be exploited to boost training efficiency.

3.4 Training
We have established the theoretical foundation of pureGAM. In this

section, we present details on training and a set of optimization

techniques to further improve efficiency.

pureGAM’s data version of constrained optimization is shown

as follows:

argmin

𝜼num𝑢 ,𝜼cat𝑣 ,ℎ𝑢

𝑁∑︁
𝑠=1

©­­­«
∑︁

𝑢∈Dnum

𝑘

𝑓𝑢 (𝑥𝑢,𝑠 |𝜼num𝑢 ,ℎ𝑢 ) +
∑︁

𝑣∈Dcat

𝑘

𝒆𝑣 (𝑥𝑣,𝑠 )𝑇 𝜼cat𝑣 − 𝑦𝑠
ª®®®¬
2

(15)

s.t.

𝑁∑︁
𝑠=1

𝑓𝑢 (𝑥𝑢,𝑠 |𝜂num𝑢 ,ℎ𝑢 )𝐾𝑢,𝑖,𝑡,𝑠 = 0

∀𝑢 ∈ Dnum

𝑘
∀𝑖 ∈ 𝑢,∀𝑡 ∈ {1 · · · , 𝑁 } (16)

(15) is the empirical squared loss. (16) is the data version of the

pureness condition. 𝑥𝑢,𝑠 denotes the 𝑠
th
instance of 𝑥𝑢 in training

data. Dnum

𝑘
and Dcat

𝑘
denote the components within numerical

features and categorical features respectively. To simplify the no-

tation, let 𝐾𝑢,𝑖,𝑡,𝑠 := 1

𝑁ℎ𝑢\𝑖
𝐾𝑢\𝑖

(
𝑥𝑢\𝑖,𝑡−𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
, so (16) is just the

empirical pureness condition (7) applied to all training instances

{𝑥𝑡 : 𝑡 ∈ {1, · · · , 𝑁 }}. Operationally, we use an equivalent con-

straint 𝑙𝑢,𝑖 :

𝑙𝑢,𝑖 :=
1

𝑁

𝑁∑︁
𝑡=1

©­«
𝑁∑︁
𝑠=1

𝑓𝑢 (𝑥𝑢,𝑠 |𝜂num,ℎ𝑢 )𝐾𝑢,𝑖,𝑡,𝑠
ª®¬
2

∀𝑢 ∈ D𝑘 ,∀𝑖 ∈ 𝑢. (17)

Adding a regularization term for 𝑙𝑢,𝑖 , we have the final version

of loss function for training, where 𝜆 denotes the regularization

hyperparameter:

L =

𝑁∑︁
𝑠=1

©­­­«
∑︁

𝑢∈Dnum

𝑘

𝑓𝑢 (𝑥𝑢,𝑠 |𝜼num𝑢 ,ℎ𝑢 ) +
∑︁

𝑣∈Dcat

𝑘

𝒆𝑣 (𝑥𝑣,𝑠 )𝑇 𝜼cat𝑣 − 𝑦𝑠
ª®®®¬
2

+ 𝜆
∑︁

𝑢∈Dnum

𝑘

∑︁
𝑖∈𝑢

𝑙𝑢,𝑖

(18)

In addition to the adoption of state-of-the-art training and opti-

mization techniques, below we highlight two key ideas particularly

tailored for improving pureGAM’s training efficiency.

Parameter sharing. We set each kernel bandwidth ℎ𝑢 as a train-

able parameter, which corresponds to a specific component func-

tion 𝑓𝑢 . Such a strategy leads to better performance than exploiting

universal bandwidth ℎ. Furthermore, since the kernel method is

naturally suitable for both smoothing (i.e., component function

representation) and density estimation (i.e., via kernel density esti-

mation), thus we also use bandwidth ℎ𝑢 for estimating density𝑤𝑢 ,

as shown in Equations (7) and (17).

Sampling and batching. Parametrizing each component function

by an 𝑁 -dimensional 𝜂num𝑢 is expensive especially when 𝑁 is large.

In our problem, the task of kernel smoothing is conducted in a low-

dimensional setting since 𝑘 ≪ 𝑝 (e.g., 𝑘 is typically set to 2 or 3 in

practice). It is known that for the kernelmethod, sampling is suitable

for such a low-dimensional setting to yield almost the same result

when 𝑁 is large [11]. Therefore, we reduce the dimensionality of

each 𝜂num𝑢 from 𝑁 to a fixed number 𝑆 . Moreover, since the training

of pureGAM is conducted by SGD (Stochastic Gradient Descent [2]),

we set batch size as 𝐵, and we let 𝑡 ∈ {1, · · · , 𝑆} and 𝑠 ∈ {1, · · · , 𝐵},
respectively. As a result, the time complexity of (16) is reduced from

𝑂 (𝑁 2) to 𝑂 (𝐵𝑆). Such a strategy is simple but effective, and it is

highly efficient according to our experiments.

3.5 Analysis and Discussion
3.5.1 Implications of Pureness. Marginal clarity is an alternative

constraint that was introduced in GAMI-Net [33]:

Definition 9. (Marginal Clarity)

∀𝑖, 𝑗 ∈ {1, · · · , 𝑝 }
∫

𝑓𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) 𝑓𝑖 (𝑥𝑖 )𝑤𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 )𝑑𝑥𝑖𝑑𝑥 𝑗 = 0

In other words, marginal clarity requires each pairwise interac-

tion 𝑓𝑖 𝑗 to be orthogonal to its nested main effects 𝑓𝑖 and 𝑓𝑗 . It is

easy to see marginal clarity is entailed by the pureness condition

but not vice versa: the pureness condition requires 𝑓𝑖 𝑗 to be orthog-

onal to any univariate functions, but 𝑓𝑖 and 𝑓𝑗 are not sufficient to

represent all the univariate functions.

Here is an example where non-unique decompositions exist

and both of them satisfy the marginal clarity constraint. We also

show that the decompositions violate the pureness condition. Let

probability density 𝜔 over (𝑋1, 𝑋2) be the uniform distribution on

the region {(𝑥1, 𝑥2) ∈ R2
: 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 + 𝑥2 ≤ 1}. Let the

ground truth function be

𝑓 (𝑥1, 𝑥2) = 𝑥1𝑥2 .

There exist two representations of

𝑓 (𝑥) = 𝑓0 + 𝑓1 (𝑥1) + 𝑓2 (𝑥2) + 𝑓12 (𝑥1, 𝑥2):
𝑓0 = 1

12

𝑓1 (𝑥1) = 0

𝑓2 (𝑥2) = 1

10

(
𝑥2 − 1

3

)
𝑓12 (𝑥1, 𝑥2) = 𝑥1𝑥2 − 1

10

(
𝑥2 − 1

3

)
− 1

12

(19)


𝑓0 = 1

12

𝑓1 (𝑥1) = 1

10

(
𝑥1 − 1

3

)
𝑓2 (𝑥2) = 0

𝑓12 (𝑥1, 𝑥2) = 𝑥1𝑥2 − 1

10

(
𝑥1 − 1

3

)
− 1

12

(20)

Using the fact that∫
𝑥𝑎

1
𝑥𝑏

2
𝜔 (𝑥

1
, 𝑥

2
)𝑑𝑥

1
𝑑𝑥

2
=

2𝑎!𝑏!

(𝑎 +𝑏 + 2) ! ,∀𝑎,𝑏 ∈ N, (21)
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it can be checked that both (19) and (20) satisfy marginal clarity,

while neither of them satisfies pureness. Hence the marginal clarity

does not imply pureness and allows non-unique decompositions of

the same function.

ℋ!

ℋ"

𝐹 𝑥

𝛼!∗

𝛼"∗

𝛼!

𝛼"𝛿!

𝛿"

• 𝛼!∗, 𝛼#∗ : optimal components for fitting 𝐹 𝑥
• 𝛼!, 𝛼# : sub-optimal components from sequential learning

• Stage1. 𝛼!: learned main effect components
• Stage2. 𝛼#: learned pairwise interaction components
• 𝛿# > 0: sub-optimal solution

Figure 2: Sequential learning leads to a sub-optimal solution.

3.5.2 Sequential Learning vs. Joint Learning. As illustrated in Sec-

tion 3.4, we exploit joint learning to train pureGAM. DenoteH1
:=

{𝑓 : 𝑓 =
∑
𝑢∈D1

𝑓𝑢 |𝑓𝑢 is pure},
H2

:= {𝑓 : 𝑓 =
∑
𝑢∈D2\D1

𝑓𝑢 |𝑓𝑢 is pure}. Sequential learning first
learns the optimal solution in H1

(standard training of GAM), and

then uses the residuals to learn the optimal solution in H2
(fixing

main effects and training for pairwise interactions). We now show

that under the pureness condition, sequential learning would lead to

sub-optimal solutions. It is shown thatH2
is not necessarily orthog-

onal toH1
w.r.t. inner product ⟨𝑓 , 𝑔⟩𝑤 . For instance, a pure interac-

tion 𝑓12 ∈ H2
could be non-orthogonal with a main effect 𝑓3 ∈ H1

,

i.e., ⟨𝑓12, 𝑓3⟩𝑤 ≠ 0, when𝑤123 (𝑥1, 𝑥2, 𝑥3) ≠ 𝑤12 (𝑥1, 𝑥2)𝑤3 (𝑥3) (note
that the pureness condition only ensures hierarchical orthogonality

such that ⟨𝑓12, 𝑓1⟩𝑤 = 0 and ⟨𝑓12, 𝑓2⟩𝑤 = 0). Now we use Figure 2

for an intuitive illustration: in the abstract functional space, accord-

ing to the projection theorem [19], when sequential learning first

fits 𝐹 (𝑥) on H1
, we come to the components 𝛼1 with minimum

residual 𝛿1 (the head of the orange arrow). Sequential learning then

fits the residual 𝛿1 with interactions onH2
, and we get components

𝛼2 with non-zero residual 𝛿2 (the head of red arrow). The optimal

solution has components 𝛼∗
1
and 𝛼∗

2
, which is not equal to 𝛼1 and

𝛼2 learned by sequential learning. In contrast, joint learning keeps

iterating between H1
and H2

, and eventually converges to the

optimal solution. It is worth noting that when input features are

independent, sequential learning could find the optimal solution,

since nowH1 ⊥ H2
, it is easy to verify that 𝛿2 = 0 thus no further

iterations are needed.

4 EVALUATION
We comprehensively evaluate pureGAM’s performance

4
on syn-

thetic datasets generated with various scales, distributions, and

ground-truth functions. Furthermore, we evaluate pureGAM’s per-

formance on 23 representative real-world datasets.

Comparison Algorithms. We choose 3 representative algorithms

for comparison: GAMI-Net [33], EBM [21], and XGBoost [7]. GAMI-

Net is the most related competitor. It is the SOTA among GAMs by

modeling pairwise interactions and introducing a constraint called

4
In the following sections, we use “accuracy” and “performance” interchangeably.

“marginal clarity”, which attempts to make the model more identifi-

able. EBM is a highly optimized version of GA
2
M, which we use as

a baseline to represent the GAMs with modeling on interactions.

To concisely convey key points from the evaluation, we omit the

comparison with NODE-GA
2
M and other implementation of stan-

dard GAMs. NODE-GA
2
M has a very close performance to EBM

but EBM’s training efficiency is better [5]. The implementations

of the standard GAM, such as pyGAM [25] in python, mgcv [32]

in R, show considerably lower performance than the GAMs which

model interactions, on both synthetic and real-world datasets. We

choose XGBoost as a reference for accuracy. XGBoost is an opaque

ML model which is adopted by many winning teams of ML compe-

titions.

Design and Metric. For each dataset, we conduct a 5-fold cross-

validation and use average RMSE tomeasure accuracy. For pureGAM

and GAMI-Net, we further measure “how pure the model is” using

log(pure) :=

∑
𝑢∈Dnum

𝑘

∑
𝑖∈𝑢 log(𝑙𝑢,𝑖 )∑

𝑢∈Dnum

𝑘

∑
𝑖∈𝑢 1

, which is the average of the loga-

rithm of 𝑙𝑢,𝑖 (17) over all the components. According to Lemma 3.1,

𝑙𝑢,𝑖 is an adequate metric to measure the pureness of a specific

component and we choose the logarithm of 𝑙𝑢,𝑖 since the pureness

for GAMI-Net and pureGAM often differ largely. Moreover, for

synthetic datasets, we use a more accurate version to calculate 𝑙𝑢,𝑖 ,

using the ground-truth distribution density instead of kernel den-

sity estimated by pureGAM. At last, we also measure the average

training time of pureGAM and GAMI-Net (EBM is not included

since EBM is trained using a different setting).

4.1 Evaluation on Synthetic Datasets.
Setting. The synthetic datasets are generated following the con-

figurations shown in Table 2. Given these configurations, each

dataset is generated using a randomly created ground-truth func-

tion with a randomly created density. The ground-truth function

is restricted to having interactions up to order 𝑘 = 2. This setting

is beneficial to GAMI-Net and EBM since they can only model

pairwise interactions. At last, we generate a synthetic dataset such

that the ground-truth function is with order 𝑘 = 3 interaction, to

show pureGAM’s advantage in modeling higher-order interactions.

Details of the setting are available in Appendix C.

Table 2: Configurations for generating synthetic datasets

Configuration Value Range

#records {20000, 40000, 60000, 80000}

#features (Numerical) {10, 20, 30, 40}

#features (Categorical) {10, 15, 20, 25}

Performance. The performance (in terms of RMSE) results are

shown in Figure 3 with varied data scale or data types. It is shown

that pureGAM’s and GAMI-Net’s performances are consistently

better than EBM’s, except for one dataset where GAMI-Net has

a worse performance. Furthermore, pureGAM’s performance is

consistently better than GAMI-Net’s. This is mainly due to GAMI-

Net adopting an additional heuristic called “heredity constraint”:

not all the pairwise interactions are learned, but only a small subset
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which is derived from top-𝑛 important main effects (EBM also uses

this heuristic).
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pureGAM
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(a)(c): Varying #records with #features=10; (b)(d): Varying #features with #records=20,000;
(a)(b): features are all numerical; (c)(d): features are all categorical.

Figure 3: Performance of pureGAM/GAMI-Net/EBM on syn-
thetic datasets.

Pureness. Figure 4 shows the pureness results of pureGAM and

GAMI-Net on synthetic data. Since pureness ismeasured by log(pure),
the smaller the log(pure) the better the model satisfies the pureness

condition. The results show that pureGAM are orders of magni-

tude better than GAMI-Net in terms of pureness. The contrast

between pureGAM and GAMI-Net on numerical datasets shows the

limitation of using marginal clarity to approximate the pureness

condition. Regarding categorical datasets, the contrast is signifi-

cantly larger than that on numerical datasets, because for categor-

ical features, pureGAM adopts pure coding to strictly satisfy the

pureness condition, but GAMI-Net adopts one-hot encoding and

uses a regularization term.
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Figure 4: Pureness results on synthetic data. log(pure) mea-
sures pureness in logarithm scale, the smaller the better.

Training Efficiency. We also compare the training efficiency of

pureGAM against GAMI-Net. GAMI-Net has an advantage on train-

ing efficiency, at the cost of accuracy, since it benefits from the

“heredity” heuristic. The result shows that in most (14/16) cases,
pureGAM has a smaller training time mainly due to the optimiza-

tion techniques (i.e., parameter sharing and sampling) adopted in

pureGAM. For example, the training time of pureGAMgrows slowly

when the number of records increases on numerical datasets. The

two cases where GAMI-Net has lower training time reflect the fact

that, when the number of features is large, the “heredity” heuris-

tic starts to eliminate more interaction components to maintain a

stable computational cost.
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Figure 5: Results of training time on synthetic data.

pureGAM’s capability tomodel higher-order interactions. pureGAM
not only supports modeling pairwise interactions but also supports

modeling higher-order interactions. Table 3 shows the results of

pureGAM under two settings (hyperparameter 𝑘 set to 2 and 3

respectively) trained on a dataset where the ground-truth func-

tion has interactions up to order 𝑘 = 3. As expected, pureGAM

(𝑘 = 3) achieves the best performance which indicates pureGAM’s

capability to model higher-order interactions.

Table 3: Performance results on synthetic datasets with
higher-order interactions

Models pureGAM(𝑘 = 3) pureGAM(𝑘 = 2) GAMI-Net EBM XGBoost

RMSE 0.0128 ± 0.0019 0.0415 ± 0.0012 0.0417 ± 0.0005 0.0447 ± 0.0018 0.0227 ± 0.0015

4.2 Evaluation on Real Datasets.
Data. We conduct experiments on 23 real-world datasets from

the UCI machine learning repository[9], the OpenML platform[29],

and the Regression DataSets website[28]. These datasets are col-

lected from diverse domains and are commonly used in literature.

We set 𝑘 = 2 for training pureGAM.

Results. Table 5 shows the performance of pureGAM and its com-

petitors
5
. The last two columns show the pureness of pureGAM

and GAMI-Net respectively. Regarding accuracy, pureGAM out-

performs GAMI-Net on 17/23 datasets and outperforms EBM on

18/23 datasets. Moreover, pureGAM achieves significantly higher

accuracy on datasets “air quality” , “electrical grid” , “elevators” and

“kinematics” compared with GAMI-Net and EBM. For the datasets

where pureGAM does not achieve the highest accuracy, its accuracy

is comparable to that of GAMI-Net and EBM. Regarding pureness,

it is shown that pureGAM outperforms GAMI-Net on all datasets

(23/23).

5
For better readability, the RMSE values for each dataset have been scaled with a

scaling factor of the range of the response values of that dataset, 1/(𝑦max − 𝑦min) .



KDD ’22, August 14–18, 2022, Washington, DC, USA Xingzhi Sun et al.

5 SURVEY COMPLETION TIME PREDICTION
Post-COVID-19 technologies for education and corporate commu-

nication have opened-up great opportunities for online surveys

[12]. A survey designer (or designer for short) designs a question-

naire and collects feedback from a set of targeted respondents. The

response rate and response quality are primarily important to the

success of a survey. Therefore, the Completion Time Prediction

(CTP) of a questionnaire becomes an important ML task, since it

is often the case that response rate negatively correlates with the

completion time, which also indirectly impacts the response quality.

Below we show a real-world adoption of pureGAM (by setting

𝑘 = 2) for CTP task, and how pureGAM’s identifiability and in-

terpretability help for 1) identifying top-influential factors and 2)

revealing a hidden factor “patience” which is further confirmed

highly valuable.

Table 4: Results of performance on CTP dataset

Model pureGAM GAMI-Net XGBoost

RMSE 0.1614 0.1645 0.1706

The CTP dataset
6
contains 13080 records with 44 features. Each

record represents a specific questionnaire with the response vari-

able to be the median of completion time (since a questionnaire is

answered by a set of respondents), and the features are extracted

from the content of the questionnaire, such as #ChoiceQuestions,
#TextQuestions, #RequiredQuestions, and so on (the meaning of each

feature is as intuitive as the feature name). The overall perfor-

mance
7
of pureGAM is shown in Table 4. pureGAM achieves the

highest accuracy compared with GAMI-Net and the opaque model

XGBoost. Analysts are satisfied with pureGAM’s performance.

Identifying top-influential factors. The learned pureGAM model

can naturally be used for presenting component-level importances

(a.k.a., global sensitivity analysis [15]). Using pureGAM, the re-

sponse 𝑦 can be modeled by 𝑦 =
∑
𝑢∈D𝑘 𝑓𝑢 (𝑥𝑢 ) + 𝜖 where 𝑓𝑢 ’s are

the component functions learned by pureGAM and 𝜖 ∼ 𝑁 (0, 𝜎2).
By deduction from the weighted functional ANOVA, we have

Var(𝑌 ) =
∑︁
𝑢∈D𝑘

©­«Var(𝑓𝑢 ) + Cov
©­«𝑓𝑢 ,

∑︁
𝑣∈D𝑘 ,𝑣≠𝑢

𝑓𝑣
ª®¬ª®¬ + 𝜖2

= Var(𝑌 )
∑︁
𝑢∈D𝑘

imp𝑢 +𝜖2, (22)

where we denote component importance imp𝑢 :=
Var(𝑓𝑢 )+Cov(𝑓𝑢 ,

∑
𝑣∈D𝑘 ,𝑣≠𝑢 𝑓𝑣 )

Var(𝑌 ) to reflect the normalized importance of

a specific component 𝑢. The closer imp𝑢 to 1 indicates that the

component “explains” more fraction of variance (thus it is a higher

influential factor) and the closer imp𝑢 to 0 indicates that it is a

trivial component with almost no contribution to prediction (thus

it is not an influential factor).

Figure 6 shows a snapshot of the component importances com-

posed of 6 out of 44 features. Each block indicates the importance

of a specific component, where a diagonal block indicates a main

6
The dataset is extracted following legal compliance, but we omit the details due to

confidentiality.

7
For better readability, the RMSE values have been scaled with a scaling factor of the

range of the response values of the dataset, 1/(𝑦max − 𝑦min) .
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Figure 6: Heatmap of component importances on CTP.

effect and a non-diagonal block indicates a pairwise interaction.

Based on this, the top-influential factor analysis can be conducted

at two levels: component-level and feature-level (i.e., an influen-

tial factor can either be an important component or an important

feature). One benefit of pureGAM is that we can directly remove

the trivial components and the remaining model is still valid with-

out re-training (because of the pureness condition, which imposes

orthogonality constraints among the components, removing one

component does not impact the other components).

Perhaps for analysts, it is more intuitive to conduct feature-level

analysis. It is easy to see that a trivial feature is one with negli-

gible importance on all the components that contain this feature.

For example, in Figure 6, we find that feature LengthSections is
trivial (all the components that contain LengthSections have small

importances of < 0.01). On the other hand, the top-influential fea-

tures are more intuitively conveyed by the heatmap. For example,

#RequiredQuestions is the most important feature.

Following the aforementioned analysis procedure, analysts have

eliminated 30+ low-influential features, and the resulting model

is much simpler to interpret. Analysts are satisfied with this new

model: the importance of top-influential factors (both components

and features) are mostly aligned with domain expert knowledge.
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Figure 7: Binarized heatmap of interaction {#TextQuestions ,
#ChoiceQuestions}.

Revealing a hidden factor. Analysts further inspect the inter-

action components that pureGAM has learned. One of the most

important interaction is the pair {#TextQuestions, #ChoiceQuestions},
and a simplified visualization of the learned component function is

shown in Figure 7 (the original component function represents a

two dimensional smooth surface), where we binarize each feature

thus the smooth surface reduces to a heatmap with 2×2 blocks. The

interaction function shows that when the numbers of both types of

questions are small (i.e., #TextQuestions ≤ 10 and #ChoiceQuestions
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≤ 35), a respondent needs 1.7 minutes less to complete (i.e., the

contribution from this interaction is −1.7, bottom left block); as the

number of either type of questions get larger, a respondent needs

an additional 2 (#ChoiceQuestions > 35 and #TextQuestions ≤ 10)

or 3.1 (#ChoiceQuestions ≤ 35 and #TextQuestions > 10) minutes

to finish respectively. However, a counter-intuitive observation is

that when the numbers of both questions are large (the top-right

block), the time used to complete a questionnaire is reduced by 3.7

minutes, which is even more than the time-reduction when the

numbers of both questions are small.

Considering that pureGAM’s model is unique with the best per-

formance, analysts are inclined to trust such an interaction compo-

nent and they further conclude that it reveals an important hidden

factor: a respondent’s “patience”. As the length of a questionnaire

grows larger (e.g., #ChoiceQuestions and #TextQuestions are two

typical question types to reflect the length of a questionnaire), the

respondent is becoming impatient, and the consequence is that they

do not fill the questionnaire carefully thus the time becomes shorter.

Apparently, the impatience of the respondent directly impacts the

response quality, which is a serious issue. The insight revealed by

pureGAM is further confirmed with domain experts. Therefore, the

analysts discuss with engineers and they decide to add a feature to

the survey service to “alert” designers: when a designer is creating

or editing a questionnaire, and if the length of the questionnaire

exceeds a certain threshold (determined based on the pureGAM

model), the designer will see a notification that suggests that he

should control the length of the survey.

CONCLUSION
We propose pureGAM, an inherently pure additive model of both

main effects and higher-order interactions. By imposing the pure-

ness condition to constrain each component function, pureGAM is

proved to be identifiable. pureGAM is a unified model to support

both numerical and categorical features with a novel learning proce-

dure to achieve optimal performance. Evaluations have shown that

pureGAM has very competitive performance even compared with

opaque models, and its interpretability remarkably outperforms

competitors in terms of pureness.
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A PROOFS OF THEOREMS AND LEMMAS
A.1 Proof of Theorem 3.1
as defined in the beginning of this paper, let there be 𝑝 features,

and D𝑑 := {𝑢 : 𝑢 ⊂ {1, · · · , 𝑝}, |𝑢 | ≤ 𝑑,𝑢 ≠ ∅}. |𝑢 | denotes the
cardinality of set 𝑢.

To prove Theorem 3.1, we need to first prove the following

lemmas. Below we assume each function 𝑓𝑢 ∈ L2
, and the inner

product is defined by ⟨𝑓 , 𝑔⟩𝑤 :=
∫
𝑓 (𝑥)𝑔(𝑥)𝑤 (𝑥)𝑑𝑥 .

Lemma A.1. If 𝑓𝑢 is pure and 𝑔𝑢 is pure, then 𝛼 𝑓𝑢 + 𝛽𝑔𝑢 is pure
∀𝛼, 𝛽 ∈ R.

The proof is straightforward based on the definition of pureness

(2).

Lemma A.2. ∀𝑢, 𝑣 ⊂ {1, · · · , 𝑝}, ∀𝑓𝑢 , 𝑓𝑣 , if 𝑓𝑢 , 𝑓𝑣 are both pure,
then 𝑓𝑢 + 𝑓𝑣 is pure.

Proof. This follows from the definition: 𝑓𝑢 is pure

iff
∫
𝑓𝑢 (𝑥)𝑤 (𝑥)𝑑𝑥𝑖 = 0∀𝑖 ∈ 𝑢. □

Denote F𝑑 := {𝑓 |𝑓 =
∑
𝑢∈D𝑑 𝑓𝑢 s.t. 𝑓𝑢 is pure},

G𝑑 := {𝑓 : 𝑓 =
∑
𝑢∈D𝑑 𝑓𝑢 }.

Definition 10. (pure representation). A function ℎ is said to
have a pure representation 𝑓 if 𝑓 ∈ F𝑑 and ℎ = 𝑓 .

Lemma A.3. F𝑑 = G𝑑 .

Proof. ∀𝑣 ⊂ {1, · · · , 𝑝}, define G𝑣 = {𝑓 : 𝑓 =
∑
𝑢⊆𝑣 𝑓𝑢 }, and

define F 𝑣 = {𝑓 ∈ G𝑣 : 𝑓 is pure}. We first show that G𝑣 = F 𝑣

by induction over the cardinality of 𝑣 . ∀|𝑣 | = 1, F 𝑣 = G𝑣 because
For each 𝑔(𝑥) ∈ G𝑣 , denote 𝑔 =

∫
𝑔(𝑥)𝑤 (𝑥)𝑑𝑥 , then we have

𝑔(𝑥) = 𝑔+ (𝑔(𝑥) −𝑔). It is easy to check that 𝑔 is pure and 𝑔(𝑥) −𝑔 is
pure, thus any univariate function has pure representation. Suppose

F𝑢 = G𝑢 for |𝑢 | < 𝑑 . For any |𝑣 | = 𝑑 , let E𝑣 = {𝑔|𝑔 =
∑
𝑢⊂𝑣 𝑔𝑢 }.

It is easy to see E𝑣 is closed and convex. Furthermore, ∀𝑔 ∈ E𝑣, 𝑔
has a pure representation, because of the induction hypothesis and

lemma A.2. ∀𝑓 ∈ G𝑣 , By the projection theorem [19], there is a

unique element 𝑒 ∈ E𝑣 minimizing | |𝑓 − 𝑒 | |. Denote 𝛿 = 𝑓 − 𝑒 . We

have 𝛿 ∈ G𝑣 , and 𝛿 is orthogonal to G𝑢 ,∀𝑢 ⊂ 𝑣 . Hence, 𝛿 ∈ F 𝑣
by

definition. Since 𝑒 ∈ E𝑣 ⊂ F 𝑣
and 𝛿 ∈ F 𝑣

, 𝑓 = 𝛿 + 𝑒 ∈ F 𝑣
.

Then we show F𝑑 = G𝑑 .∀𝑓 ∈ G𝑑 , 𝑓 =
∑
𝑢∈D𝑑 𝑓𝑢 . As shown

above, 𝑓𝑢 ∈ F𝑢 for each 𝑢. By lemma A.2, there sum has a pure

representation. Hence, 𝑓 ∈ F𝑑 .
□

We further need to define a “grid-closed” density𝑤 , which is a

mild assumption for ruling out degenerate densities. Degenerate

densities would produce collinearity or concurvity among features,

which leads to non-unique optimal solutions.

Definition 11. A density𝑤 is said to be grid closed if its support
Ω ⊆ R𝑝 satisfies that, for any 𝑥 ∈ Ω and any 𝑢 ⊂ {1, · · · , 𝑝}, there
exists at least another point 𝑦 ∈ Ω, 𝑦 ≠ 𝑥 such that 𝑦𝑢 = 𝑥𝑢 .

Lemma A.4. Let 𝑤 be grid closed. {𝑓𝑢 |𝑢 ∈ D𝑘 , 𝑓𝑢 is pure} are
linearly independent under the inner product ⟨·, ·⟩𝑤 , if at least one
𝑓𝑢 ≠ 0.

The proof of lemma A.4 is a reminder of lemma B.2 in [14].

Lemma A.5. If a function 𝑔 has pure representation
𝑔 =

∑
𝑢∈D𝑘 ℎ𝑢 s.t. ℎ𝑢 is pure, with a grid closed density𝑤 , then such

representation is unique.

Proof. Otherwise, suppose 𝑔 has two pure representations: 𝑔 =∑
𝑢∈D𝑘 ℎ𝑢 s.t. ℎ𝑢 is pure, 𝑔 =

∑
𝑢∈D𝑘 𝑓𝑢 s.t. ℎ𝑢 is pure, which

implies that 0 =
∑
𝑢∈D𝑘 (ℎ𝑢 − 𝑓𝑢 ) s.t. (ℎ𝑢 − 𝑓𝑢 ) is pure (lemma A.1),

and by considering pure components are linearly independent if𝑤

is grid closed (lemma A.4), we get ℎ𝑢 − 𝑓𝑢 = 0,∀𝑢 ∈ D𝑘 , thus the

representation is unique. □

Theorem 3.1. For arbitrary 𝑘 , solution of (4) is unique when den-
sity𝑤 is non-degenerate, or more precisely,𝑤 is grid closed.

Proof. Following standard deduction, it is shown that G𝑘 :=

{𝑓 |𝑓 =
∑
𝑢∈D𝑘 𝑓𝑢 } is a closed subspace in L2

(this is a direct conse-

quence of lemma 3.1 in [26]. Denote 𝐹 (𝑥) := E [𝑌 |𝑥], according to

the projection theorem, there exists a unique minimizing element 𝑓

in G𝑘 such that ⟨𝐹 − 𝑓 , 𝐹 − 𝑓 ⟩𝑤 < ⟨𝐹 − ℎ, 𝐹 − ℎ⟩𝑤 ,∀ℎ ∈ G𝑘 which

exactly minimizes the objective of (4). We further know that the

representation of 𝑓 into pure components is also unique (lemma A.3

and A.5), we thus have completed the proof. □

A.2 Proof of Lemma 3.1
Lemma 3.1. For 𝑖 ∈ 𝑢,

1

𝑁ℎ𝑢\𝑖

𝑁∑︁
𝑠=1

𝐾𝑢\𝑖

(
𝑥𝑢\𝑖 − 𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
𝑓𝑢 (𝑥𝑢,𝑠 |𝜼𝑢 , ℎ𝑢 )

∼
∫

𝑓𝑢 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 )𝑑𝑥𝑖 . (23)

Here ∼ denotes asymptotic approximation. In other words,
1

𝑁ℎ𝑢\𝑖

∑𝑁
𝑠=1

𝐾𝑢\𝑖
(
𝑥𝑢\𝑖−𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
𝑓𝑢 (𝑥𝑢,𝑠 |𝜼𝑢 , ℎ𝑢 ) is an empirical version

of
∫
𝑓𝑢 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 )𝑑𝑥𝑖 .

Proof. By Theorem 6.27 of [31], the estimation

1

𝑁ℎ𝑢\𝑖

𝑁∑︁
𝑠=1

𝐾𝑢\𝑖

(
𝑥𝑢\𝑖 − 𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
→ 𝑤𝑢\𝑖 (𝑥𝑢\𝑖 ) (24)

if ℎ𝑢\𝑖 → 0 as 𝑛 → ∞ and 𝑛ℎ → ∞, and by Theorem 2 of [10] the

estimation

1

𝑁ℎ𝑢\𝑖

∑𝑁
𝑠=1

𝐾𝑢\𝑖
(
𝑥𝑢\𝑖−𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
𝑓 (𝑥𝑢,𝑠 )

1

𝑁ℎ𝑢\𝑖

∑𝑁
𝑠=1

𝐾𝑢\𝑖
(
𝑥𝑢\𝑖−𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
→ E(𝑓 (𝑋𝑢 ) |𝑋𝑢\𝑖 = 𝑥𝑢\𝑖 ) =

∫
𝑓 (𝑥𝑢 )𝑤𝑖 |𝑢\𝑖 (𝑥𝑖 |𝑥𝑢\𝑖 )𝑑𝑥𝑖 (25)

𝑤𝑢\𝑖 -a.e. under moderate conditions (these conditions are satisfied

by common kernels such as the Gaussian kernel). Multiplying (24)

and (25), we obtain that

1

𝑁ℎ𝑢\𝑖

𝑁∑︁
𝑠=1

𝐾𝑢\𝑖

(
𝑥𝑢\𝑖 − 𝑥𝑢\𝑖,𝑠

ℎ𝑢\𝑖

)
𝑓 (𝑥𝑢,𝑠 )

→ 𝑤𝑢\𝑖 (𝑥𝑢\𝑖 )
∫

𝑓 (𝑥𝑢 )𝑤𝑖 |𝑢\𝑖 (𝑥𝑖 |𝑥𝑢\𝑖 )𝑑𝑥𝑖 =
∫

𝑓 (𝑥𝑢 )𝑤𝑢 (𝑥𝑢 )𝑑𝑥𝑖
(26)

𝑤𝑢\𝑖 -a.e. □
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Table 5: Results of performance and pureness on real-world datasets

𝑅𝑀𝑆𝐸 log(pure)
Model pureGAM GAMI-Net EBM XGB (ref) pureGAM GAMI-Net

air quality 0.0172 ± 0.0004 0.0203 ± 0.0020 0.0221 ± 0.0008 0.0152 ± 0.0002 -1.0953 ± 0.0484 -1.0491 ± 0.0222

electrical grid 0.0475 ± 0.0007 0.0545 ± 0.0012 0.0528 ± 0.0010 0.0419 ± 0.0006 -2.2100 ± 0.1108 -1.8016 ± 0.0731

elevators 0.0336 ± 0.0003 0.0370 ± 0.0010 0.0378 ± 0.0011 0.0328 ± 0.0004 -1.3436 ± 0.0500 -1.0745 ± 0.0646

kinematics 0.1159 ± 0.0007 0.1219 ± 0.0016 0.1195 ± 0.0012 0.0817 ± 0.0009 -2.6466 ± 0.1915 -1.7422 ± 0.2427

abalone 0.0761 ± 0.0036 0.0758 ± 0.0041 0.0787 ± 0.0031 0.0825 ± 0.0023 -1.2712 ± 0.0755 -1.1903 ± 0.4487

ailerons 0.0182 ± 0.0223 0.0186 ± 0.0228 0.0454 ± 0.0011 0.0443 ± 0.0008 -0.3983 ± 0.4887 -0.3159 ± 0.3870

airfoil 0.0593 ± 0.0030 0.0575 ± 0.0039 0.0641 ± 0.0029 0.0376 ± 0.0032 -2.5233 ± 0.0425 -1.5154 ± 0.1410

airplane 0.0263 ± 0.0014 0.0299 ± 0.0027 0.0348 ± 0.0015 0.0274 ± 0.0020 -1.2363 ± 0.0665 -0.9708 ± 0.1115

bank 0.0400 ± 0.0010 0.0406 ± 0.0012 0.0422 ± 0.0008 0.0404 ± 0.0015 -2.0890 ± 0.0477 -1.0506 ± 0.1543

california house 0.0850 ± 0.0018 0.0875 ± 0.0042 0.0872 ± 0.0014 0.0757 ± 0.0011 -1.2847 ± 0.0339 -0.6651 ± 0.5452

CCCP 0.0514 ± 0.0014 0.0520 ± 0.0010 0.0543 ± 0.0008 0.0397 ± 0.0015 -1.7065 ± 0.1367 -1.2723 ± 0.1305

delta elevators 0.0527 ± 0.0010 0.0527 ± 0.0011 0.0529 ± 0.0011 0.0572 ± 0.0009 -1.2604 ± 0.1079 -0.7851 ± 0.2458

disclosure z 0.1169 ± 0.0100 0.1196 ± 0.0121 0.1179 ± 0.0097 0.1381 ± 0.0087 -0.6953 ± 0.1672 -0.1634 ± 0.3267

era 0.2000 ± 0.0084 0.1987 ± 0.0074 0.1978 ± 0.0060 0.1998 ± 0.0057 -1.0922 ± 0.2008 -0.0953 ± 0.1907

parkinsons tele 0.0481 ± 0.0019 0.0499 ± 0.0027 0.0493 ± 0.0022 0.0486 ± 0.0028 -1.5337 ± 0.0940 -1.0180 ± 0.3416

seoul bike 0.1191 ± 0.0030 0.1195 ± 0.0026 0.1183 ± 0.0021 0.1185 ± 0.0028 -1.5933 ± 0.0318 -1.1291 ± 0.1506

steel industry 0.0236 ± 0.0040 0.0263 ± 0.0037 0.0277 ± 0.0033 0.0255 ± 0.0049 -1.6094 ± 0.1374 -1.0310 ± 0.1637

skill craft 0.0687 ± 0.0066 0.0673 ± 0.0068 0.0678 ± 0.0071 0.0716 ± 0.0075 -1.2495 ± 0.0729 -0.5005 ± 0.2740

treasury 0.0118 ± 0.0023 0.0112 ± 0.0023 0.0135 ± 0.0015 0.0117 ± 0.0017 -1.0223 ± 0.0470 -0.7126 ± 0.1518

weather wizmir 0.0219 ± 0.0004 0.0189 ± 0.0012 0.0246 ± 0.0014 0.0205 ± 0.0015 -1.1576 ± 0.0416 -0.5930 ± 0.0804

wind 0.0738 ± 0.0021 0.0738 ± 0.0016 0.0744 ± 0.0013 0.0737 ± 0.0017 -1.3443 ± 0.2990 -1.2849 ± 0.1054

wine red 0.1275 ± 0.0065 0.1303 ± 0.0058 0.1253 ± 0.0063 0.1193 ± 0.0059 -1.0192 ± 0.1350 -0.4908 ± 0.6060

wine white 0.1161 ± 0.0034 0.1190 ± 0.0034 0.1122 ± 0.0026 0.0998 ± 0.0027 -1.3334 ± 0.1812 -0.8494 ± 0.3533

B PURE CODING FOR GENERAL
ORDER-𝑘 INTERACTIONS

Let (𝑥1, · · · , 𝑥𝑘 ) be 𝑘 categorical features. Suppose 𝑥𝑖 takes values

in 𝐿𝑖 = {1, · · · , 𝑙𝑖 }, 𝑖 = 1, · · · , 𝑘 . Let 𝑞𝑟1 · · ·𝑟𝑘 := 𝑞(𝑟1, · · · , 𝑟𝑘 ) be the
frequency of {𝑥1 = 𝑟1, · · · , 𝑥𝑘 = 𝑟𝑘 }.

Lemma B.1. Assume 𝑞𝑟1 · · ·𝑟𝑘 ≠ 0,∀𝑟𝑖 ∈ {1, · · · , 𝑙𝑖 }, 𝑖 = 1, · · · , 𝑘 .
∀𝑟𝑖 ∈ {1, · · · , 𝑙𝑖 − 1}, 𝑖 = 1, · · · , 𝑘, define 𝑒 {1,· · · ,𝑘 }𝑟1 · · ·𝑟𝑘 (𝑥1, · · · , 𝑥𝑘 )

𝑒{1,··· ,𝑘}𝑟
1
···𝑟𝑘 =



1

𝑞𝑟
1
···𝑟𝑘

(𝑥
1
, · · · , 𝑥𝑘 ) = (𝑟

1
, · · · , 𝑟𝑘 ),

− 1

𝑞𝑙
1
𝑟

2
···𝑟𝑘

(𝑥
1
, · · · , 𝑥𝑘 ) =

(
𝑙
1
, 𝑟

2
, · · · , 𝑟𝑘

)
,

.

.

.

.

.

.

− 1

𝑞𝑟
1
···𝑟𝑘−1

𝑙𝑘
(𝑥

1
, · · · , 𝑥𝑘 ) =

(
𝑟

1
, · · · , 𝑟𝑘−1

, 𝑙𝑘

)
,

1

𝑞𝑙
1
···𝑙𝑘

(𝑥
1
, · · · , 𝑥𝑘 ) =

(
𝑙
1
, · · · , 𝑙𝑘

)
,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(27)

Then {𝑒 {1,· · · ,𝑘 }𝑟1 · · ·𝑟𝑘 : 𝑟𝑖 ∈ {1, · · · , 𝑙𝑖 − 1}, 𝑖 = 1, · · · , 𝑘} forms a
basis of the solution to the pureness condition.

Proof. Consider the isomorphism from the space functions on

𝑥1, · · · , 𝑥𝑘 to the space of 𝑙1 × · · · × 𝑙𝑘 -tensor of values taken on

each category combination

𝑓 → (𝑓 (𝑠1, · · · , 𝑠𝑘 ))𝑠𝑖 ∈{1,··· ,𝑙𝑖 },
If 𝑓 satisfies the pureness condition

∀𝑖 ∈ {1, · · · , 𝑘 },
∑︁
𝑥𝑖 ∈𝐿𝑖

𝑓 (𝑥1, · · · , 𝑥𝑘 )𝑞 (𝑥1, · · · , 𝑥𝑘 ) = 0, (28)

then there is an isomorphism

(𝑓 (𝑠1, · · · , 𝑠𝑘 ))𝑠𝑖 ∈{1,··· ,𝑙𝑖 } → (𝑓 (𝑠1, · · · , 𝑠𝑘 ))𝑠𝑖 ∈{1,··· ,(𝑙𝑖−1) },

because given (𝑓 (𝑠1, · · · , 𝑠𝑘 ))𝑠𝑖 ∈{1,· · · ,(𝑙𝑖−1) } , there exists a unique
preimage (𝑓 (𝑠1, · · · , 𝑠𝑘 ))𝑠𝑖 ∈{1,· · · ,𝑙𝑖 } , where

𝑓 (𝑙
1
, 𝑟

2
, · · · , 𝑟𝑘 )

= − 1

𝑞 (𝑙
1
, 𝑟

2
· · · , 𝑟𝑘 )

𝑙
1∑︁

𝑟
1
=1

𝑓 ( (𝑟
1
, 𝑟

2
, · · · , 𝑟𝑘 ) )𝑞 (𝑟1

, 𝑟
2
, · · · , 𝑟𝑘 )

.

.

.

𝑓 (𝑟
1
, 𝑟

2
, · · · , 𝑙𝑘 )

= − 1

𝑞 (𝑟
1
, 𝑟

2
· · · , 𝑙𝑘 )

𝑙
1∑︁

𝑟𝑘=1

𝑓 ( (𝑟
1
, 𝑟

2
, · · · , 𝑟𝑘 ) )𝑞 (𝑟1

, 𝑟
2
, · · · , 𝑟𝑘 ) (29)

is uniquely determined following from the pureness condition.

Thus the space of functions satisfying pureness has dimension

(𝑙1 −1) · · · (𝑙𝑘 −1). On the other hand, {𝑒 {1,· · · ,𝑘 }𝑟1 · · ·𝑟𝑘 {1,· · · ,𝑘 } : 𝑟𝑖 ∈
{1, · · · , 𝑙𝑖 }, 𝑖 = 1, · · · , 𝑘} satisfy the pureness condition, and are

linearly independent. Thus, they form a basis of a (𝑙1−1) · · · (𝑙𝑘 −1)-
dimensional subspace of the pure functions, and this is the entire

space because the dimensions coincide. □

Lemma 3.2 below is a direct corollary of Lemma B.1.

Lemma 3.2. with 𝒆𝑢 (𝑥𝑢 ) = (𝑒 {1,· · · ,𝑘 }𝑟1,· · · ,𝑟𝑘 )
𝑇
𝑟𝑖 ∈{1,· · · ,𝑙𝑖−1},𝑖=1,· · · ,𝑘

defined in (27),
let

𝑓𝑢 (𝑥𝑢 |𝜼𝑢 ) = 𝒆𝑢 (𝑥𝑢 )𝑇𝜼𝑢 . (30)

This function (30) satisfies the discrete empirical pureness condition
for any parameter 𝜼𝑢 ∈ R𝑜𝑢 . Moreover, the space of such functions
is equal to the entire space of functions on 𝑥𝑢 satisfying the discrete
empirical pureness condition (10)

C SYNTHETIC DATASETS
Numerical Data. Wegenerate data at different scales from amulti-

variate normal distribution, with random covariance matrices. The

ground truth is a sum of main effects and interactions randomly

selected from the following functions

𝑥, 𝑥2, 2𝑥 , sin(𝑥), 𝑥𝑦, 2𝑥+𝑦, sin(𝑥 +𝑦), and each term is multiplied by

a random coefficient.

For synthetic data with interaction up to order 𝑘 = 3, terms of

functions randomly selected from 𝑥𝑦𝑧, 2𝑥+𝑦+𝑧 , sin(𝑥 + 𝑦 + 𝑧), in
addition to the ones above, are added to the ground truth function.

Categorical Data. We first generate numerical data and then

categorize them by cutting at quantiles. Data points are added to

make sure there each categorical value combination is populated

by at least one point. The ground truth function is the sum of

univariate component functions on every feature and bivariate

component functions on a randomly selected subset of feature

pairs. Each component function takes a randomly selected number

for each categorical value (or pair of values).
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