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ABSTRACT
Hypergraphs provide an effective abstraction for modeling multi-

way group interactions among nodes, where each hyperedge can

connect any number of nodes. Different from most existing stud-

ies which leverage statistical dependencies, we study hypergraphs

from the perspective of causality. Specifically, in this paper, we

focus on the problem of individual treatment effect (ITE) estima-

tion on hypergraphs, aiming to estimate how much an intervention

(e.g., wearing face covering) would causally affect an outcome (e.g.,

COVID-19 infection) of each individual node. Existing works on ITE

estimation either assume that the outcome on one individual should

not be influenced by the treatment assignments on other individuals

(i.e., no interference), or assume the interference only exists between

pairs of connected individuals in an ordinary graph. We argue that

these assumptions can be unrealistic on real-world hypergraphs,

where higher-order interference can affect the ultimate ITE esti-

mations due to the presence of group interactions. In this work,

we investigate high-order interference modeling, and propose a

new causality learning framework powered by hypergraph neural

networks. Extensive experiments on real-world hypergraphs verify

the superiority of our framework over existing baselines.

CCS CONCEPTS
• Mathematics of computing → Causal networks; Hyper-
graphs; • Information systems→ Social networks.
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1 INTRODUCTION
Group interactions among individuals exist in a wide range of sce-

narios, e.g., massive gathering events, day-to-day group chats on
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Figure 1: (a) An illustrative example of group interactions
on a hypergraph, where each circle represents a hyperedge
(group); (b) An ordinary graph projected from this hyper-
graph; (c) Illustration of interferences with 𝑢1 from its neigh-
bors on the hypergraph. Note interference on (b) is pairwise
(first-order only) while higher-order interference exists on
the original hypergraph (a).

WhatsApp or WeChat, and workplace interactions on Microsoft

Teams or Slack channels. Although the conventional pairwise graph

definition covers a vast number of applications (e.g., person-to-

person physical contact networks or social networks [10]), it fails

to capture the complete information of these group interactions

(where each interaction may involve more than two individuals)

[5, 13, 44]. The notion of the hypergraph can thus be introduced to

address this limitation. Consider a hypergraph example that indi-

viduals are connected via in-person social events, each gathering

event can be represented as a hyperedge (Fig. 1a). Each hyperedge

can connect an arbitrary number of individuals, in contrast to an

ordinary edge which connects exactly two nodes (Fig. 1b).

While many studies have been devoted to utilizing such a gen-

eralized hypergraph structure to facilitate machine learning tasks

[5, 13, 44, 52], the majority were still executed at the statistical

correlation level, e.g., predicting the COVID-19 infection risk on

each individual (node) by capturing the correlations between one’s

demographic information (node features), in-person group gath-

ering history (hypergraph structure) and the infection outcomes

(node labels). A critical limitation here is the lack of causality, which

https://doi.org/10.1145/3534678.3539299
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is particularly important for understanding the impact of a policy

intervention (e.g., wearing face covering) on an outcome of interest

(e.g., COVID-19 infection). For individuals connected as in Fig. 1a,

one may ask “how would each individual’s face covering practice

(treatment) causally influence their infection risk (outcome)?” Such

a causal inference task requires constructing the counterfactual

state of the same individual by holding all other possible factors

constant except the treatment variable of interest. This is a particu-

larly hard problem on hypergraph data, since the outcome of each

individual is not only affected by their own confounding factors

(e.g., one’s health conditions and vaccine status) but also interfered

by other individuals on the hypergraph (e.g., face covering prac-

tice of other individuals who may physically contact the target

individual through a gathering event).

In this paper, we focus on learning causal effects on hypergraphs.

We are specifically interested in estimating the individual treatment

effect (ITE) under hypergraph interference from observational data.

Our study is motivated by the following gaps: (i) Empirical con-
straints of randomized experiments. One of the most reliable ap-

proaches for treatment effect estimation is randomized controlled

trials (RCTs). Nevertheless, running RCTs is often expensive, im-

practical, even unethical [15], and they are especially difficult on

graphs due to the dependencies among connected nodes [39]. (ii)

High-order interference on hypergraphs. Our work focuses on the

problem of ITE estimation, which aims to estimate the causal effect

of a certain treatment (e.g., face covering practice) on an outcome

(e.g., COVID-19 infection) for each individual. The classic ITE esti-

mation is based on the Stable Unit Treatment Value (SUTVA) as-

sumption [14, 36] that there is no interference [20, 37] (i.e., spillover

effect) among instances (also referred to as units in causal inference

literature). That means the outcomes for any instance are not influ-

enced by the treatment assignment of other instances. This assump-

tion can be impractical in the real-world, thus resulting in flawed

causal effect estimations, especially on graphs where the interfer-

ence among instances are ubiquitous [1, 47, 50]. There have been

many efforts addressing this problem [3, 6, 21, 25, 28, 37, 39, 49],

but most assume the interference only exists in a pairwise way on

ordinary graphs (as shown in Fig. 1b). This pairwise interference

notion is insufficient to characterize the high-order interference

that exists on hypergraphs. As shown in Fig. 1c, within a gather-

ing event (hyperedge) between 𝑢1, 𝑢2 and 𝑢3, an individual’s (𝑢1)

infection outcome can be affected by the first-order interference
from other individuals (𝑢2 → 𝑢1 and 𝑢3 → 𝑢1) as well as the high-
order interference from the interactions among other individuals

(the interaction between 𝑢2 and 𝑢3 may also act on influencing the

exposure of the virus to 𝑢1; consequently, 𝑢1’s infection risk can be

affected by this second-order interaction effect, i.e., 𝑢2 × 𝑢3 → 𝑢1).

Notice that the number of such high-order interference items grows

combinatorially as the size of a hyperedge increases, leading to a

significant information gap between the original hypergraph and

the projected pairwise ordinary graph (which accounts for the

first-order interference only). This demands techniques capable of

modeling high-order interference, but to the best of our knowledge,

very little work has been done in this area.

In this paper, we propose a novel framework— Causal Inference
under Spillover Effects in Hypergraphs (HyperSCI )—to model

high-order interference. At a high-level, this framework controls

for the confounders and models high-order interference based on

representation learning, then estimates the outcomes based on

the learned representations. More specifically: (i) Controlling for
Confounders.Our framework is based on the widely accepted uncon-

foundedness assumption [33], i.e., the confounders are contained in

the observed features. With this assumption, we leverage represen-

tation learning techniques to capture and control for confounders

from the features of each individual. Note as shown in previous

works [34], the discrepancy between confounder distributions in

the treatment group and the control group can lead to biases in

causal effect estimations. Therefore, we also propose to use a rep-

resentation balancing technique to mitigate the discrepancy be-

tween these two distributions. (ii) Modeling High-order Interference.
Modeling high-order relationships can be challenging due to the

complexity of enumerating multi-way interactions among nodes

within each hyperedge. Historically, one may need to simplify the

original hypergraph and approximate it through a series of pro-

jected ordinary graphs [48]. This obstacle is fortunately unblocked

by the recent advances of hypergraph neural networks [5, 44]. We

extend this line of techniques to model interference by learning

interference representations for each node. To learn the interfer-

ence representations, the learned confounder representations and

the treatment assignment are propagated via hypergraph convo-

lution and attention operations. (iii) Outcome Prediction. Based on

the learned representations of confounders and interference, we

predict the potential outcomes corresponding to different treatment

assignments for each individual. Overall, the main contributions of

this work can be summarized as follows:

• We formalize the problem of ITE estimation under high-order

interference on hypergraphs. To the best of our knowledge, it is

the first work for this problem.

• We propose a novel framework HyperSCI for the studied prob-

lem.HyperSCI models confounders and high-order interference

via representation learning and hypergraph neural networks.

• We validate the effectiveness of the proposed framework through

extensive experiments and provide in-depth analysis on how it

acts on different nodes and hyperedges.

2 PROBLEM DEFINITION AND ANALYSIS
We provide the formal problem definition and a brief theoretical

analysis of our studied problem in this section. A notation table is

provided in Appendix A.

Definition 2.1. Suppose a set of individuals V = {𝑣𝑖 }𝑛𝑖=1 are
connected via hyperedges E = {e𝑘 }𝑚𝑘=1, together these form a hy-
pergraph H = {V, E} with 𝑛 nodes and𝑚 hyperedges, where each
hyperedge can connect an arbitrary number of nodes.

The observational data on this hypergraph can be denoted as

{X,H , T,Y}, where X = {x𝑖 }𝑛𝑖=1, T = {𝑡𝑖 }𝑛𝑖=1 and Y = {𝑦𝑖 }𝑛𝑖=1 repre-
sent node features, treatment assignments, and observed outcomes,

respectively. H = {ℎ𝑖,𝑒 } ∈ R𝑛×𝑚 is an incidence matrix which

describes the hypergraph structure of H . ℎ𝑖,𝑒 = 1 if node 𝑖 is in

hyperedge 𝑒 , otherwise ℎ𝑖,𝑒 = 0. For ease of discussion, we consider

the treatment assignment for each node as a binary variable in this

study (i.e., 𝑡𝑖 ∈ {0, 1}), but our work can be extended to non-binary

categorical variables and continuous variables.
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Definition 2.2. The potential outcome [33] of the instance 𝑖
(denoted by 𝑦1

𝑖
or 𝑦0

𝑖
) is defined as the realized value of outcome

for instance 𝑖 under the treatment value 𝑡𝑖 = 1 or 𝑡𝑖 = 0. These
potential outcomes can be instantiated via a transformation 𝑌

𝑇𝑖
𝑖

=

Φ𝑌 (𝑇𝑖 , 𝑋𝑖 ,𝑇−𝑖 , 𝑋−𝑖 , 𝐻 ). Φ𝑌 can be regarded as a (non-deterministic)
function to output potential outcomes, which takes each node’s treat-
ment assignment, node features, the information (treatment assign-
ments and node features) of other nodes on the hypergraph, and the
hypergraph structure as input1, i.e., 𝑦𝑡𝑖

𝑖
= Φ𝑌 (𝑡𝑖 , x𝑖 ,T−𝑖 ,X−𝑖 ,H),

where the subscript −𝑖 denotes all other nodes on H except 𝑖 .

Given the above preliminaries, we are ready to provide the formal

definition of individual treatment effect on hypergraphs.

Definition 2.3. For each node 𝑖 on the hypergraph H , the indi-
vidual treatment effect (ITE) is defined by the difference between
potential outcomes corresponding to 𝑡𝑖 = 1 and 𝑡𝑖 = 0:

𝜏 (x𝑖 ,T−𝑖 ,X−𝑖 ,H) = E[𝑌 1

𝑖 − 𝑌 0

𝑖 |𝑋𝑖 = x𝑖 ,𝑇−𝑖 = T−𝑖 , 𝑋−𝑖 = X−𝑖 , 𝐻 = H]
= E[Φ𝑌 (1, x𝑖 ,T−𝑖 ,X−𝑖 ,H) − Φ𝑌 (0, x𝑖 ,T−𝑖 ,X−𝑖 ,H)] .

(1)

We clarify that the ITE in this paper is actually defined in the

form of conditional average treatment effect (CATE), similar as

[17, 28]. The expectation is taken over the potential outcome (out-

put of Φ𝑌 ) of the instances with same node features x𝑖 and “en-

vironmental information” (hypergraph structure H, other nodes’

features X−𝑖 and treatments T−𝑖 ). The distribution of the output

of Φ𝑌 is equivalent to the conditional distribution of the potential

outcome conditioned on the parameters in Φ𝑌 with fixed values.

For notation simplicity, we also denote 𝜏𝑖 = 𝜏 (x𝑖 ,T−𝑖 ,X−𝑖 ,H) in
this paper. Meanwhile, we introduce the notion of spillover effect

in this work to assess the level of interference on hypergraphs.

Definition 2.4. The spillover effect of node 𝑖 under its treatment
𝑡𝑖 and other nodes’ treatment assignment T−𝑖 on the hypergraph H
is defined as:

𝛿𝑖 = E[Φ𝑌 (𝑡𝑖 , x𝑖 ,T−𝑖 ,X−𝑖 ,H) − Φ𝑌 (𝑡𝑖 , x𝑖 , 0,X−𝑖 ,H)] . (2)

In this paper, given the observed data {X,H ,T,Y}, we aim to

estimate the ITE defined in Eq. 1 for each node in H with the

existence of high-order interference defined in Eq. 2.

2.1 Theoretical Analysis
With the above definitions, we show that the ITE can be identifiable

from the observational data under the following two assumptions.

Similar as the assumptions in other works of causal inference

under network interference [28], for each individual, we assume

there exists a summary function capable of characterizing all the

“environmental” information related to this node on the hypergraph.

Suppose there is a summary function SMR(·): for each node 𝑖 , SMR(·)
takes the hypergraph structureH, the treatment assignment of other

nodes T−𝑖 and the features of these nodes X−𝑖 as input, then maps

them into a vector o𝑖 :

o𝑖 = SMR(H,T−𝑖 ,X−𝑖 ). (3)

1
In this paper, we use non-bold, italicized, and capitalized letters (e.g., 𝑋𝑖 ) to denote

random variables; non-bold lowercase letters (e.g., 𝑡𝑖 ) to denote observed values of

a scalar; bold lowercase letters (e.g., x𝑖 ) to denote observed values of a vector; bold

capitalized letters (e.g., X) to denote observed values of a matrix or a set.

We use 𝐻,𝑋,𝑇 to denote the random variables for the hypergraph

structure, features, and treatment assignment for any node. Then

our first assumption can be formalized as below.

Assumption 1. (Expressiveness of summary function) For any node
𝑖 , any values of 𝐻,𝑋−𝑖 , and 𝑇−𝑖 , if the output of summary function
o𝑖 is determined, then the value of the potential outcomes 𝑦1

𝑖
and 𝑦0

𝑖
with feature x𝑖 are also determined.

Our second assumption extends the unconfoundedness assump-

tion [33] to the hypergraph interference setting. That is we assume

conditioned on the above summary function, the observed features

can capture all possible confounders.

Assumption 2. (Unconfoundedness) For any node 𝑖 , given the node
features, the potential outcomes are independent with the treatment
assignment and summary of neighbors, i.e., 𝑌 1

𝑖
, 𝑌 0

𝑖
⊥⊥ 𝑇𝑖 ,𝑂𝑖 |𝑋𝑖 .

Based on the above assumptions, the identification of the expec-

tation of potential outcomes 𝑌 1

𝑖
and 𝑌 0

𝑖
can be proved (here we take

𝑌 1

𝑖
as an example):

E[𝑌 1

𝑖 |𝑇𝑖 = 1, 𝑋𝑖 = x𝑖 ,𝑇−𝑖 = T−𝑖 , 𝑋−𝑖 = X−𝑖 , 𝐻 = H] (4)

(𝑎)
=E[Φ𝑌 (𝑇𝑖 = 1, 𝑋𝑖 = x𝑖 ,𝑇−𝑖 = T−𝑖 , 𝑋−𝑖 = X−𝑖 , 𝐻 = H)] (5)

(𝑏)
=E[Φ𝑌 (𝑇𝑖 = 1, 𝑋𝑖 = x𝑖 ,𝑂𝑖 = o𝑖 )] (6)

(𝑐)
=E[Φ𝑌 (𝑇𝑖 = 1, 𝑋𝑖 = x𝑖 ,𝑂𝑖 = o𝑖 ) |𝑋𝑖 = x𝑖 ] (7)

(𝑑)
=E[Φ𝑌 (𝑇𝑖 = 1, 𝑋𝑖 = x𝑖 ,𝑂𝑖 = o𝑖 ) |𝑋𝑖 = x𝑖 ,𝑇𝑖 = 1,𝑂𝑖 = o𝑖 ] (8)

(𝑒)
=E[𝑌𝑖 |𝑋𝑖 = x𝑖 ,𝑇𝑖 = 1,𝑂𝑖 = o𝑖 ] . (9)

Here, the equation (𝑎) is based on the definition of potential

outcome in this setting; (𝑏) is inferred from Assumption (1); (𝑐) is
a straightforward derivation; (𝑑) is based on Assumption (2); and

(𝑒) is based on the widely used consistency assumption [33]. Based

on the above proof for the identification of potential outcomes, the

identification of ITE can be straightforwardly derived.

3 THE PROPOSED FRAMEWORK
Inspired by the previous theoretical analysis, we propose a novel

framework HyperSCI to address the studied problem. This frame-

work contains three components: confounder representation learn-

ing, interference modeling, and outcome prediction. Holistically, we

aim to learn an expressive transformation to summarize high-order

interferences (Assumption 1), then take the interference representa-

tion, the confounder representation as well as the treatment assign-

ment to estimate the expected potential outcome (Assumption 2).

The illustration of HyperSCI is shown in Fig. 2.

3.1 Confounder Representation Learning
We first encode the node features x𝑖 into a latent space via a multi-

layer perceptron (MLP) module, i.e., z𝑖 = MLP(x𝑖 ). This results in a

set of representations Z = {z𝑖 }𝑛𝑖=1, which is expected to capture all

potential confounders, so the model can mitigate the confounding

biases by controlling for the learned representation z𝑖 .

Representation Balancing. Note a discrepancy may exist between

the distributions of confounder representation Z in the treatment
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Figure 2: An illustration of the proposed frameworkHyperSCI,which includes three key components: confounder representation
learning, interference modeling, and outcome prediction.
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Figure 3: A detailed illustration of the hypergraph module
in the interference modeling component of HyperSCI. Here
we use the node 𝑣1 (highlighted in yellow) as an example.
group and the control group, incurring biases in causal effect estima-

tion, as shown in [34, 46]. Tominimize this discrepancy, we leverage

the representation balancing technique by adding a discrepancy

penalty to the loss function, where this discrepancy penalty can

be calculated with any distribution distance metrics. In our imple-

mentation, we use the Wasserstein-1 distance [34] between the

representation distributions of treatment group and control group.

3.2 Interference Modeling
In this interference modeling component, we take the confounder

representation (Z), the treatment assignment (T), and the relational
information on the hypergraph (H = {ℎ𝑖,𝑒 }) as input, to capture

the high-order interference for each individual. More specifically,

we learn a transformation function Ψ(·) through a hypergraph

module to generate the interference representations (p𝑖 ) for each
node 𝑖 , i.e., p𝑖 = Ψ(Z,H,T−𝑖 , 𝑡𝑖 ). As shown in Fig. 3, this module is

implemented with a hypergraph convolutional network [5, 44] and

a hypergraph attention mechanism [5, 11, 52], where the convolu-

tional operator forms the skeleton of interference from hyperedges,

and the attention operator enhances this mechanism by allowing

flexible node contributions to each hyperedge.

Learning interference representations. To learn the representa-

tions which encode the interference in the hypergraph for each

node, we propagate the treatment assignment and confounder rep-

resentations with a hypergraph convoluntional layer. We first in-

troduce a vanilla Laplacian matrix for the hypergraphH :

L = D−1/2HB−1H⊤D−1/2 . (10)

Here D ∈ R𝑛×𝑛 is a diagonal matrix where each element represents

the node degree (i.e.,

∑𝑚
𝑒=1 ℎ𝑖,𝑒 ). B ∈ R𝑚×𝑚

is another diagonal

matrix, where each element is the size of each hyperedge (

∑𝑛
𝑖=1 ℎ𝑖,𝑒 ).

Then we can define the hypergraph convolution operator as:

P(𝑙+1) = LeakyReLU

(
LP(𝑙)W(𝑙+1)

)
, (11)

where P(𝑙)
represents the representations from the 𝑙-th layer in

the hypergraph module. We feed the first layer with the previous

confounder representation masked by the treatment assignment,

i.e., p(0)
𝑖

= 𝑡𝑖 ∗ z𝑖 , where ∗ denotes element-wise multiplication.

W(𝑙+1) ∈ R𝑑 (𝑙 )×𝑑 (𝑙+1)
is the parameter matrix in the (𝑙+1)-th layer,

where 𝑑 (𝑙) and 𝑑 (𝑙+1) refer to the dimensionality of the interference

representations in the 𝑙-th and (𝑙+1)-th layers, respectively.

Modeling interference with different significance. Although the

above convolution layer can pass interferences through hyperedges,

it does not provide much flexibility to account for the significance of

interference for different nodes through different hyperedges. In the

aforementioned COVID-19 example, intuitively, those individuals

who are active in certain group gathering events are more likely

to influence or be influenced by others in these groups. To better

capture this intrinsic relationship between nodes and hyperedges on

a hypergraph, we leverage a hypergraph attentionmechanism [5, 11,

52] to learn attention weights for each node and the corresponding

hyperedges that contain this node.

More specifically, we compute a representation for each hy-

peredge (𝑒) by aggregating across its associated nodes (N𝑒 ): z𝑒 =

Agg({z𝑖 | 𝑖 ∈ N𝑒 }). Here, Agg(·) can be any aggregation functions

(e.g., the mean aggregation). For each node 𝑖 and its associated

hyperedge 𝑒 , the attention score between a node 𝑖 and a hyperedge

𝑒 can be calculated as:

𝛼𝑖,𝑒 =
exp(𝜎 (sim(z𝑖W𝑎, z𝑒W𝑎)))∑

𝑘∈E𝑖
exp(𝜎 (sim(z𝑖W𝑎, z𝑘W𝑎)))

, (12)

where 𝜎 (·) is a non-linear activation function, E𝑖 denotes the set of
hyperedges associated with the node 𝑖 . Here we use W𝑎 to denote a

parameter matrix to compute the node-hyperedge attention. sim(·)
is a similarity function, which can be implemented as:

sim(x𝑖 , x𝑗 ) = a⊤ [x𝑖 ∥x𝑗 ], (13)

where a is a weight vector, [·∥·] is a concatenation operation.

Then we use the attention scores to model the interference with

different significance. Specifically, we replace the original incidence

matrixH in Eq. 10 with an enhancedmatrix H̃ = {ℎ̃𝑖,𝑒 }, where ℎ̃𝑖,𝑒 =

𝛼𝑖,𝑒ℎ𝑖,𝑒 . In this way, the interference from different nodes on the

same hyperedge can be assigned with different importance weights,

indicating different levels of contribution for interference modeling.

We denote the final representations from the last convolution layer

as P = {p𝑖 }𝑛𝑖=1 and expect it to capture the high-order interference

for each node.
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Representation Balancing. Similar to the coufounder representa-

tion learning module, we calculate a discrepancy penalty to reflect

the difference between the distributions of interference represen-

tations in treatment and control groups. We sum up these two

discrepancy penalties together to compute a representation balanc-

ing loss, denoted by L𝑏 .

3.3 Outcome Prediction
With the confounder representation z𝑖 and the interference repre-

sentation p𝑖 , we model the potential outcomes as:

𝑦1𝑖 = 𝑓1 ( [z𝑖 ∥p𝑖 ]), 𝑦0𝑖 = 𝑓0 ( [z𝑖 ∥p𝑖 ]), (14)

where 𝑓1 (·) and 𝑓0 (·) are learnable functions to predict the potential
outcome w.r.t. 𝑡 = 1 and 𝑡 = 0. We implement 𝑓1 (·) and 𝑓0 (·) with
two MLP modules. Then the prediction for the observed outcome

is obtained by 𝑦𝑖 = 𝑦
𝑡𝑖
𝑖
. We optimize the model to minimize the

following loss function:

L =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 + 𝛼L𝑏 + 𝜆∥Θ∥2, (15)

where the first term is the standard mean squared error, L𝑏 is the

representation balancing loss, Θ represents the parameters in this

neural network model. 𝛼 and 𝜆 are two hyperparameters which

control the weights for the representation balancing loss and the

parameter regularization term. The ITE for each instance 𝑖 can be

estimated as: 𝜏𝑖 = 𝑦1
𝑖
− 𝑦0

𝑖
.

3.4 Discussion
Here we revisit some implicit assumptions in the proposed frame-

work. First, we assume that the interference for each node 𝑖 comes

from its neighbors through the hypergraph structure. Here, the

interference from neighbors that are multiple hops away can also

be captured by stacking more hypergraph convoluntional layers.

Second, for simplicity, we assume that the interference for each

node only comes from other nodes with non-zero treatment assign-

ment. Third, we assume that the representations of nodes in the

same hyperedge are similar in the latent space. Besides, following

[5], we assume that the representations of hyperedges are homo-

geneous with node representations. Nevertheless, we should still

mention that this proposed framework is general and extendable,

where the above assumptions can be further relaxed by enriching

the hypergraph processing module.

4 EXPERIMENTS
It is typically very hard to obtain the ground-truth counterfactual

data as only one of the two potential outcomes can be obtained in

the observational data. Hence, in this section, we follow a standard

practice to evaluate the proposed framework and the alternative

approaches on three semi-synthetic datasets. We aim to leverage

as much real-world information as possible in the simulated envi-

ronment. Our datasets are all based on real-world hypergraph data

and we retain the treatment allocations as well as node features

(covariates) if they are available. We simulate the outcome gener-

ation process to assess the true individual treatment effect (ITE),

which eventually allows us to evaluate the performance of the ITE

estimation from different causal inference approaches.

4.1 Dataset and Simulation
We obtain the semi-synthetic data based on two publicly available

hypergraph datasets (Contact [7, 29], Goodreads [40, 41]) and
one large-scale proprietary web application dataset (Microsoft
Teams). We do not account for the temporal information of each

hyperedge in our experiments and leave this as a future research

direction instead. In all three datasets, we discard extremely large

hyperedges and keep those with no more than 50 nodes only.
2

4.1.1 Outcome Simulation. Given the treatment allocations T, node
features X, and the hypergraph structure H, the potential outcome

of an individual 𝑖 can be simulated via

𝑦𝑖 = 𝑓𝑦,0 (x𝑖 ) +

individual treatment effect (ITE)︷     ︸︸     ︷
𝛾 𝑓𝑡 (𝑡𝑖 , x𝑖 ) + 𝛽 𝑓𝑠 (T,X,H)︸         ︷︷         ︸

hypergraph spillover effect

+ 𝜖𝑦𝑖 , (16)

where 𝑓𝑦,0 (x𝑖 ) describes the outcome of instance 𝑖 when 𝑡𝑖 = 0

and without network interference, 𝑓𝑡 (·) calculates the ITE of each

instance, 𝑓𝑠 (·) calculates the spillover effect, and 𝜖𝑦𝑖 denotes the

random noise from a Gaussian distribution N(0, 1). We specify

𝑓𝑦,0 (x𝑖 ) as a linear transformation of x𝑖 :

𝑓𝑦,0 = w0x𝑖 , (17)

where w0 ∼ N(0, I),w0 ∈ R𝑑 . Then we control the individual

treatment effect (𝑓𝑡 (𝑡𝑖 , x𝑖 )) and the hypergraph spillover effect

(𝑓𝑠 (T,X,H)) under two different settings:

(1) Linear.

𝑓𝑡 (𝑡𝑖 , x𝑖 ) =
{w1x𝑖 + 𝜖 if 𝑡𝑖 = 1

0 if 𝑡𝑖 = 0

(18)

Here w1 ∈ R𝑑 , and each element in w1 follows a Gaussian

distribution. We generate 𝑓𝑠 as:

𝑓𝑠 (T,X,H) = 1

|E𝑖 |
∑︁
𝑒∈E𝑖

𝜎 ′( 1

|N𝑒 |
∑︁
𝑗 ∈N𝑒

𝑡 𝑗 × 𝑓𝑡 (𝑡 𝑗 , x𝑗 )). (19)

Here, 𝜎 ′(·) is a function on the aggregation over each hyper-

edge. We implement it with an identity function by default.

(2) Quadratic.

𝑓𝑡 (𝑡𝑖 , x𝑖 ) =
{

x⊤𝑖 W𝑡x𝑖 + 𝜖 if 𝑡𝑖 = 1

0 if 𝑡𝑖 = 0

(20)

HereW𝑡 ∈ R𝑑×𝑑 , and each element inW𝑡 follows a Gaussian

distribution. We generate 𝑓𝑠 as:

𝑓𝑠 (T,X,H) = 1

|E𝑖 |
∑︁
𝑒∈E𝑖

𝜎 ′( 1

|N𝑒 |2
(T𝑒 ∗ X𝑒 )W𝑡 (T𝑒 ∗ X𝑒 )⊤) . (21)

Here X𝑒 and T𝑒 are the feature matrix and treatment assign-

ment of nodes contained in hyperedge 𝑒 , respectively. Here

∗ denotes element-wise multiplication.

2
Note hyperedges with large size of nodes are usually less meaningful [7].
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4.1.2 Dataset Details. We follow the above process to generate

potential outcomes on all three datasets. Additional details about

each dataset are provided as the follows.

Contact. This dataset collects interactions recorded by wearable

sensors among students at a high school [7, 29], and includes 327

nodes and 7,818 hyperedges. Each node represents a person, and

each hyperedge stands for a group of individuals are in close physi-

cal proximity to each other. This contact hypergraph data allows us

to simulate a hypothetical question: “how does one’s face covering

practice (treatment) causally affect their infection risk of an infec-

tious disease (outcome)?”. In each group contact, one may bring the

virus to the surrounding environment, and thus affect other peo-

ple’s infection risk. Due to the lack of detailed information about

each individual, apart from the potential outcome, we also generate

the treatment (𝑡𝑖 ) and the covariates (x𝑖 ) as the follows:

x𝑖 ∼ N(0, I), 𝑡𝑖 ∼ 𝐵𝑒𝑟 (sigmoid(x𝑖v𝑡 )), (22)

where I is an 𝑑 × 𝑑 identity matrix, here we set 𝑑 = 50. v𝑡 is a 𝑑-
dimensional vector where each element inside follows a Gaussian

distribution. Eventually about 50% ∼ 60% of the nodes are treated

(𝑡𝑖 = 1) in our experiments.

GoodReads. This dataset collects book information from the book

review website GoodReads
3
, including the book title, authors, de-

scriptions, reviews, and ratings [40, 41]. We take each book in the

Children category as an instance. The bag-of-words of the book

descriptions are used as the covariates of each book. Each hyper-

edge corresponds to each author and all books sharing the same

author are in the same hyperedge. The real-world book ratings are

considered as treatment assignments: for each node 𝑖 , we define

𝑡𝑖 = 1 if the rating score is larger than 3 and 𝑡𝑖 = 0 otherwise. We

aim to study the causal effect of the rating score on the sales of

each book. The ratings of each author’s books can establish this

author’s overall reputation, and thus influence the sales of other

books from the same author. The final processed dataset includes

57,031 nodes (where 40% are treated) and 12,709 hyperedges. Note

each book may have more than one author, and each author may

have published multiple books.

Microsoft Teams.We sampled 91,391 anonymized employees of a

multinational technology company and collected their aggregated

telemetry data on Microsoft Teams
4
. Microsoft Teams is a work-

place communication platform where users are allowed to create a

group space (i.e., “team” or “channel”) to enable public communica-

tion within each group. We are interested in how a user’s usage of

these group spaces causally affects their productivity. We process

the treatment assignment into binary values by taking it as 1 if

the employee has sent out at least one message in any of these

group spaces during the first week of March, 2021; otherwise the

treatment is assigned as 0. Each group space can be regarded as a

hyperedge, where information can be shared via group discussions

thus one’s activeness on this platform may affect other individuals’

outcomes in the same group. Employee demographics (e.g., office

location, job description, work experience) were leveraged as the

covariates.

3
https://www.goodreads.com/

4
https://www.microsoft.com/en-us/microsoft-teams

Table 1: ITE estimation performance (mean ± standard er-
ror). “CT", “GR" and “MS" stand for Contact, GoodReads and
Microsoft Teams datasets, respectively.

Linear Quadratic

Data Method √
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

√
𝜖𝑃𝐸𝐻𝐸 𝜖𝐴𝑇𝐸

CT LR 25.41 ±0.04 9.11 ±0.09 38.22 ±0.77 20.28 ±0.38
CEVAE 22.88 ±1.07 8.29 ±0.69 35.28 ±0.75 18.22 ±0.76
CFR 24.04 ±0.75 7.17 ±0.43 32.24 ±1.01 17.28 ±0.75
Netdeconf 10.22 ±0.47 4.29 ±0.13 21.23 ±0.72 11.39 ±0.74
GNN-HSIC 7.42 ±0.39 2.06 ±0.03 16.28 ±0.24 7.28 ±0.39
GCN-HSIC 7.28 ±0.44 2.08 ±0.04 14.23 ±0.20 6.27 ±0.15
HyperSCI 3.45 ±0.27 1.39 ±0.03 9.20 ±0.09 2.24 ±0.07

GR LR 23.01 ±0.04 13.42 ±0.12 48.56 ±1.02 31.19 ±0.47
CEVAE 22.69 ±0.03 12.49 ±0.06 45.21 ±3.10 29.22 ±0.44
CFR 20.30 ±0.03 13.21 ±0.09 41.72 ±0.72 26.28 ±0.43
Netdeconf 18.39 ±0.19 12.20 ±0.03 35.18 ±0.78 21.20 ±0.76
GNN-HSIC 17.20 ±0.23 12.18 ±0.13 27.22 ±0.78 16.87 ±0.47
GCN-HSIC 16.01 ±0.20 12.06 ±0.15 25.42 ±0.76 16.28 ±0.76
HyperSCI 15.68 ±0.21 11.81 ±0.15 19.23 ±0.44 13.33 ±0.27

MS LR 22.80 ±0.64 21.41± 0.74 414.17 ±3.94 192.80 ±2.97
CEVAE 19.36 ±0.80 8.63 ±0.78 315.01 ±2.53 188.47 ±4.27
CFR 25.23 ±0.01 18.28 ±0.02 392.56 ±4.33 189.75 ±4.80
Netdeconf 11.11 ±0.01 9.22 ±0.03 241.02 ±2.32 147.29 ±1.04
GNN-HSIC 9.38 ±0.44 6.91 ±0.38 114.28 ±3.62 81.21 ±2.53
GCN-HSIC 8.27 ±0.41 6.60 ±0.48 109.57 ±3.85 77.75 ±3.93
HyperSCI 5.13 ±0.56 4.46 ±0.61 81.08 ±0.37 74.41 ±0.42

4.2 Experiment Settings
4.2.1 Metrics. We evaluate the performance of causal effect esti-

mation through two standard metrics, including Rooted Precision

in Estimation of Heterogeneous Effect (

√
𝜖𝑃𝐸𝐻𝐸 ) [18] and Mean

Absolute Error (𝜖𝐴𝑇𝐸 ) [42]. These metrics can be defined as follows:

√
𝜖𝑃𝐸𝐻𝐸 =

√√
1

𝑛

∑︁
𝑖∈[𝑛]

(𝜏𝑖 − 𝜏𝑖 )2, 𝜖𝐴𝑇𝐸 = | 1
𝑛

∑︁
𝑖∈[𝑛]

𝜏𝑖 −
1

𝑛

∑︁
𝑖∈[𝑛]

𝜏𝑖 |.

(23)

Lower

√
𝜖𝑃𝐸𝐻𝐸 or 𝜖𝐴𝑇𝐸 indicates better causal effect estimations.

4.2.2 Baselines. To investigate the effectiveness of our framework,

we compare it with multiple state-of-the-art ITE estimation base-

lines. These baselines can be divided into the following categories:

• No graph.We compare the estimation results with traditional

methods which do not consider graph data and spillover effects.

Thesemethods include outcome regression which is implemented

by linear regression (LR), counterfactual regression (CFR [34]),

causal effect variational autoencoder (CEVAE [27]). By compar-

ing the proposed framework to these methods, we evaluate the

effectiveness of modeling interference for ITE estimation.

• No spillover effect in ordinary graphs. Although assuming

no spillover effect exists, the network deconfounder (Netdeconf)
[17] captures latent confounders for ITE estimation by utilizing

the network structure among instances.

• Spillover effect in ordinary graphs.We compare our frame-

work with other ITE estimation baselines which can handle the

pairwise spillover effect on ordinary graphs: a node representa-

tion learning based method [28] estimates ITE under network

interference, including two variants: (a) GNN + HSIC, which is

https://www.microsoft.com/en-us/microsoft-teams
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Figure 4: Comparison of the performance of ITE estimation
under different values of 𝛽 in linear setting on GoodReads.

based on graph neural network [30] and Hilbert Schmidt inde-

pendence criterion (HSIC) [16], and (b) GCN + HSIC, which is

based on GCN [24].

To utilize the baselines which handle ordinary graphs, we

project the original hypergraph H to an ordinary graph G =

{V, E𝑝 } by setting (𝑣𝑖 , 𝑣 𝑗 ) ∈ E𝑝
if 𝑣𝑖 and 𝑣 𝑗 are contained in

at least one common hyperedge in H . By comparing Hyper-
SCI to the above baselines, we are able to evaluate the benefits of
modeling high-order interferences on the original hypergraph.

4.2.3 Setup. We randomly partition all datasets into 60%-20%-20%

training/validation/test splits. All the results are averaged over ten

repeated executions. Unless otherwise specified, we set the hyper-

parameters as 𝛼 = 0.001, 𝛽 = 1.0, 𝛾 = 1.0, 𝜆 = 0.01, the dimension

for confounder representation and interference representation both

as 64. We use ReLU as the activation function, and use an Adam op-

timizer. By default, the interference modeling component contains

one hypergraph convolutional layer.

4.3 ITE Estimation Performance
We include the results for the ITE estimation task in Table 1. From

this table we observe that the proposed framework outperforms all

the baselines under both linear and quadratic outcome simulation

settings. We attribute these results to the fact that HyperSCI uti-
lizes the relational information in hypergraph to model the high-

order interference, and thus mitigates the influence of the spillover

effect on ITE estimation performance. Compared with other base-

lines, the methods which incorporate the pairwise network interfer-

ence (GCN-HSIC and GNN-HSIC), as well as Netdeconf which
utilizes the network structure for ITE estimation, perform better

than those baselines which do not take advantage of the relational

information (LR, CEVAE, CFR).
We also vary the hyperparameter (𝛽) which controls the signif-

icance of hypergraph spillover effect in the outcome simulation

and report the ITE estimation results in Fig. 4. As 𝛽 increases, i.e.,

the outcome is more heavily influenced by interference, larger per-

formance gains can be observed from the proposed framework

(HyperSCI) against baselines. This observation further validates

the effectiveness of our framework in modeling the interference

for enhancing the performance of ITE estimation.

4.4 Ablation Study
To investigate the effectiveness of different components in the pro-

posed framework, we conduct ablation studies by considering the

following variants: 1) we apply the proposed model HyperSCI on
the projected graph (in a hypergraph structure) (denoted asHyper-
SCI-P); 2) we replace the hypergraph neural networkmodule with a
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Figure 5: Ablation studies of different variants of our frame-
work HyperSCI. Results (mean and standard error) are re-
ported under the linear setting but similar patterns can be
found under the quadratic setting and on all datasets.
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Figure 6: ITE estimation performance of HyperSCI / Hyper-
SCI-G on hypergraphs with hyperedge size no more than 𝑘 .
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Figure 7: ITE estimation performance (mean and standard
error) of the proposed framework HyperSCI under different
parameters or model structures on GoodReads dataset.

graph neural network module with the same number of layers, and

then apply it on the projected graph (in an original graph structure)

(HyperSCI-G). Notice that although both evaluated on the pro-

jected graph, HyperSCI-G handles ordinary graphs with its graph

neural network module, while HyperSCI-P handles hypergraphs

with its hypergraph neural network module; 3) we remove the

balancing techniques in the framework (HyperSCI-NB). The ITE
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estimation results are reported in Fig. 5, where we notice significant

performance gaps between HyperSCI-P/HyperSCI-G and Hy-
perSCI, which imply the effectiveness of modeling the high-order

relationships on hypergraphs. We also observe the ITE estimation

performance degrades after removing the representation balancing

modules, which indicates the effectiveness of the representation

balancing techniques on mitigating the biases of ITE estimations.

4.5 A Closer Look at High-Order Interference
In addition to the overall ITE estimation performance, we take

a closer look at high-order interference. We investigate how the

proposed framework responds to hyperedges with difference sizes.

More specifically, we remove the hyperedges with size larger than

𝑘 , denote the modified hypergraph as H (𝑘)
, and vary the value

of 𝑘 . In Fig 6, we compare the ITE estimation performance of the

proposed framework HyperSCI with its variant on the projected

ordinary graph HyperSCI-G. We observe that: 1) When 𝑘 = 2

(hyperedge size ≤ 2), the performance of HyperSCI-G is close to

HyperSCI. Because when 𝑘 = 2, graph convolution can be regarded

as a special case of hypergraph convolution with small differences

in the graph Laplacian matrix (as illustrated in [5]). Empirically

this leads to a minor performance difference between HyperSCI-

G and HyperSCI; 2) When 𝑘 increases, the performance of ITE

estimation from both methods are gradually improved, but such an

improvement becomes less significant when 𝑘 is larger. Besides, we

noticeHyperSCI consistently outperformsHyperSCI-G and such

a difference becomes larger as 𝑘 increases, indicating its efficacy on

modeling high-order interference especially on large hyperedges.

4.6 Sensitivity Analysis
To evaluate the robustness of the proposed framework, we present

the ITE estimation performance of HyperSCI under different set-
tings of model hyper-parameters in Fig. 7. More specifically, we vary

the value of the balancing weight from {0.0001, 0.001, 0.01, 0.1}, and
vary the representation dimension from {16, 32, 64, 128}. We also

vary the number of attention head from {1, 2, 3, 4}, then change the

parameter of regularization weight from {0.0001, 0.001, 0.01, 0.1}.
As can be observed, our framework is generally robust to different

hyper-parameter settings, but proper fine-tuning of these hyper-

parameters is still beneficial for the ITE estimation performance.

5 RELATEDWORK
Causal studies under network interference. There have been
many causal studies [3, 6, 9, 21, 25, 28, 37, 39, 49] which address the

existence of network interference. These works mainly include the

following categories: (i) Random assignment strategy under interfer-
ence [3, 6, 12, 21, 39]. These works focus on experimental studies

under interference (without SUTVA assumption). In some studies

[23], strong interference is assumed to exist within each groupwhile

there is no interference across different groups; (ii) Causal effect
estimation on observational data with interference [2, 28, 32, 38]. Dif-
ferent from the experimental studies which can design assignment

strategy, another line of works (and also our work) assume inter-

ferences exist across individuals in the observational data. They

relax the SUTVA assumption and define the potential outcome

with a function that takes the instance covariates and treatment

assignment of each individual and other interacted individuals as

input. Among them, Rakesh et al. [32] propose a Linked Causal

Variational Autoencoder (LCVA) framework to estimate the causal

effect of a treatment on an outcome with the existence of inter-

ference between pairs of instances. Different from these works

that focus on pairwise spillover effects, Ma et al. [28] consider the

spillover effect in network structure, and propose a graph neural

network (GNN) [24] based framework for causal effect estimation

under network interference. However, these works are still limited

in pairs of individuals or ordinary graphs and lack consideration of

high-order interference. Another line of studies is bipartite causal

inference [31, 53]. Traditionally, bipartite causal inference involves

two types of units: interventional/outcome units. Interventional

units are assigned with treatments, and outcomes are observed

from outcome units. Although this setup is different from ours,

considering that there is a node-hyperedge bipartite corresponding

to each hypergraph (and ordinary graph), thus the two modeling

approaches (bipartite and hypergraph) are conceptually similar.

Nevertheless, we argue hypergraph is a more appropriate framing

in many scenarios since: i) hypergraph does not require instantiat-

ing edges as additional nodes, or treating these two kinds of nodes

differently, thus more computationally efficient; ii) hypergraph has

the potential to be more convenient and efficient when generaliz-

ing to new hyperedges, while bipartite needs to generate both new

nodes for the new hyperedges and their associated new edges.

Hypergraph algorithms and neural networks. To process hy-

pergraph structures for downstream tasks, a line of works simplify

the hypergraph structure by taking abstract representations of

complicated multi-way interactions [7, 26, 43, 45, 51]. Other works

directly tackle the original hypergraph structure [4, 8, 13, 19, 35, 44].

Recently, numerous works have studied on hypergraph neural net-

works [5, 44]. Feng el al. [13] propose hypergraph neural networks

(HGNN) framework to encode high-order data correlation in a hy-

pergraph structure. A hyperedge convolution operation is designed

for representation learning. Bai et al. [5] introduce two end-to-end

trainable operators hypergraph convolution and hypergraph at-

tention to learn node representations in hypergraphs. Yadati et

al. [44] develop a self-attention based hypergraph neural network

Hyper-SAGNN, which is applicable to homogeneous or heteroge-

neous hypergraphs with variable hyperedge sizes. Jiang et al. [22]

propose a dynamic hypergraph neural network (DHGNN) which

can dynamically update hypergraph structure on each layer.

6 CONCLUSION
In this paper, we study an important research problem of individual

treatment effect estimation with the existence of high-order inter-

ference on hypergraphs. We identify and analyze the influence of

high-order interference in causal effect estimation. To address this

problem, we propose a novel framework HyperSCI, which esti-

mates the ITEs based on representation learning. More specifically,

HyperSCI learns the representation of confounders, models the

high-order interference with a hypergraph neural network mod-

ule, then predicts the potential outcomes for each instance with

the learned representations. We conduct extensive experiments to

evaluate the proposed framework, where the results consistently

validate the effectiveness of HyperSCI in ITE estimation under

different interference scenarios.
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A NOTATION TABLE
We use Table 2 to list the most important notations used in this

paper.

Table 2: Notation.

Notation Definition

H hypergraph

V, E the set of nodes/hyperedges

H hypergraph structure matrix

𝑛 the number of nodes

𝑚 the number of hyperedges

N𝑖 the set of neighboring nodes for the 𝑖-th node

N𝑒 the set of nodes on the hyperedge 𝑒

E𝑖 the set of hyperedges which contains the 𝑖-th node

X, x𝑖 features of all nodes/the 𝑖-th node

T, 𝑡𝑖 treatment assignment of all nodes/the 𝑖-th node

Y, 𝑦𝑖 observed outcome of all nodes/the 𝑖-th node

𝑦1
𝑖
, 𝑦0

𝑖
potential outcomes of the 𝑖-th node

Φ𝑌 (·) potential outcome function

𝜏𝑖 , 𝜏𝑖 true/predicted ITE for the 𝑖-th node

𝑦𝑖 , 𝑦𝑖 true/predicted outcome for the 𝑖-th node

(·)−𝑖 variables for all the nodes except the 𝑖-th node

𝛿𝑖 the spillover effect of the 𝑖-th node

SMR(·) summary function

O, o𝑖 the environment information of the 𝑖-th node

Z, z𝑖 confounder representations of all nodes/the 𝑖-th node

Ψ(·) interference representation learner

𝑓1 (·), 𝑓0 (·) potential outcome prediction functions

P, p𝑖 interference representations of all nodes/the 𝑖-th node

𝑟 (𝑖) the ratio of the treatment assignment of the 𝑖-node

in its neighborhood

B MORE EXPERIMENTAL RESULTS
B.1 ITE Estimation Performance under

Different Settings on All the Datasets
In this section, we show the ITE estimation performance under

different settings (including the linear and quadratic settings with

𝛽 among {1.0, 3.0, 5.0}) on all the datasets in Fig. 9. We can observe

that the proposedHyperSCI consistently outperforms the baselines

under different settings on all the datasets. The superiority of our

framework against baselines becomes more obvious when 𝛽 is

larger (i.e., the interference is stronger), because our framework

can better handle the interference in the hypergraph.

B.2 Case Studies
We further conduct case studies to investigate how the proposed

method acts on individuals in responding to their neighboring nodes

(i.e., the size of one’s neighborhood and the homophily of treatment

assignments within one’s neighborhood). The neighborhood of 𝑖

is defined as the set of nodes which are connected with 𝑖 via any

hyperedges, i.e.,N𝑖 =
⋃

𝑒∈E𝑖
{ 𝑗 ∈ N𝑒 }. The homophily of treatment

assignment is defined as the ratio of neighboring nodes which share

the same treatment assignment as oneself, i.e., 𝑟 (𝑖) =
∑

𝑗∈N𝑖 1(𝑡 𝑗=𝑡𝑖 )
|N𝑖 | .

In Fig. 8a, we show the difference between the ITE estimation

results made with the original hypergraph and with the projected

graph, w.r.t. N𝑖 and 𝑟 (𝑖). Overall, we see larger divergences on

individuals with a larger neighborhood size but less agreement with

their neighbors in terms of treatment assignments. In Fig. 8b, we

further showcase the insights by presenting several representative

children books on the GoodReads dataset. For example, the author

of “Peter Pan” had not published many works but these books all

received good rating scores, leading to a “consistent" reputation of

the author. Therefore, the outcome of the book “Peter Pan” is less

impacted by the high-order interference among its neighbors. On

the other hand, the high rating score of the book “Oddhopper Opera”

differs from most of its neighbors, leading to a mixed reputation of

the author. In this case, the potential outcome is more likely to be

affected by the high-order interference on the hypergraph.
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Figure 8: (a) Heatmap: the difference between ITE estima-
tions with hypergraph and with projected ordinary graph
on GoodReads. Nodes are divided into 6 × 6 grids w.r.t. their
number of neighbors |N𝑖 | and the homophily of treatment
assignment 𝑟 (𝑖). (b) Case studies of representative books.

C DETAILS OF EXPERIMENTAL SETTINGS
All the experiments are conducted under the following environ-

ment:

• Operating system: Ubuntu 18.04

• GPU memory: 16GB

• Pytorch 1.9.0, Cuda ToolKit 11.1, cuDNN 8.0.5

Baseline parameter settings. For the baselines CEVAE, CFR, Net-
deconf, GNN-HSIC, and GCN-HSIC, we set the representation di-

mension as 32, 32, 100, 64, respectively. The numbers of training

epochs for these baselines are set as 500. The number of samples in

CEVAE in training is set as 5 by default.
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(a) Linear,
√
𝜖𝑃𝐸𝐻𝐸 , CT (b) Linear, 𝜖𝐴𝑇𝐸 , CT (c) Quadratic,

√
𝜖𝑃𝐸𝐻𝐸 , CT (d) Quadratic, 𝜖𝐴𝑇𝐸 , CT

(e) Linear,
√
𝜖𝑃𝐸𝐻𝐸 , GR (f) Linear, 𝜖𝐴𝑇𝐸 , GR (g) Quadratic,

√
𝜖𝑃𝐸𝐻𝐸 ,GR (h) Quadratic, 𝜖𝐴𝑇𝐸 , GR

(i) Linear,
√
𝜖𝑃𝐸𝐻𝐸 , MS (j) Linear, 𝜖𝐴𝑇𝐸 , MS (k) Quadratic,

√
𝜖𝑃𝐸𝐻𝐸 , MS (l) Quadratic, 𝜖𝐴𝑇𝐸 , MS

Figure 9: Comparison of the performance of ITE estimation under different settings. “CT", “GR" and “MS" stand for Contact,
GoodReads and Microsoft Teams datasets, respectively.


	Abstract
	1 Introduction
	2 Problem Definition and Analysis
	2.1 Theoretical Analysis

	3 The Proposed Framework
	3.1 Confounder Representation Learning
	3.2 Interference Modeling
	3.3 Outcome Prediction
	3.4 Discussion

	4 Experiments
	4.1 Dataset and Simulation
	4.2 Experiment Settings
	4.3 ITE Estimation Performance
	4.4 Ablation Study
	4.5 A Closer Look at High-Order Interference
	4.6 Sensitivity Analysis

	5 Related Work
	6 Conclusion
	References
	A Notation Table
	B More Experimental Results
	B.1 ITE Estimation Performance under Different Settings on All the Datasets
	B.2 Case Studies

	C Details of Experimental Settings

