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Abstract
Supervised Causal Learning (SCL) aims to learn causal

relations from observational data by accessing previously seen

datasets associated with ground truth causal relations. This

paper presents a first attempt at addressing a fundamental

question: What are the benefits from supervision and how does

it benefit? Starting from seeing that SCL is not better than

random guessing if the learning target is non-identifiable

a priori, we propose a two-phase paradigm for SCL by

explicitly considering structure identifiability. Following this

paradigm, we tackle the problem of SCL on discrete data and

propose ML4C. The core of ML4C is a binary classifier with

a novel learning target: it classifies whether an Unshielded

Triple (UT) is a v-structure or not. Specifically, starting

from an input dataset with the corresponding skeleton

provided, ML4C orients each UT once it is classified as

a v-structure. These v-structures are together used to

construct the final output. To address the fundamental

question of SCL, we propose a principled method for ML4C

featurization: we exploit the vicinity of a given UT (i.e.,

the neighbors of UT in the skeleton), and derive features

by considering the conditional dependencies and structural

entanglement within the vicinity. We further prove that

ML4C is asymptotically correct. Thorough experiments

conducted on benchmark datasets demonstrate that ML4C

remarkably outperforms other state-of-the-art algorithms in

terms of accuracy, reliability, robustness and tolerance. In

summary, ML4C shows promising results on validating the

effectiveness of supervision for causal learning. Our codes are

publicly available at https://github.com/microsoft/ML4C.

Keywords: Causal discovery, supervised causal learn-

ing, identifiability, learnability

1 Introduction
The problem of causal learning is to learn causal
relations from observational data [14]. The learned
causal relations are typically represented in the form
of a Directed Acyclic Graph (DAG), where each edge in
the DAG indicates direct cause-effect relation between
the parent node and child node.

The methods of causal learning mostly fall into four
categories: constraint-based, score-based, continuous
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optimization method and functional causal models.
Each of these methods takes a given dataset as input
and outputs a DAG but with different criteria. For
instance, the DAG should be consistent with conditional
independencies in the data (constraint-based); or it is
optimal w.r.t. a pre-defined score function under either
combinatorial constraint (score-based) or continuous
equality constraint (continuous optimization). In a
nutshell, these methods can be viewed as unsupervised

since they do not access additional datasets associated
with ground truth causal relations.

A new line of research called Supervised Causal
Learning (SCL), on the other hand, aims to learn
causal relations in the supervised fashion: the algorithm
has access to datasets associated with ground truth
causal relations, in the hope that learning causal
relations on newly unseen datasets benefits from such
supervision. Despite several existing works on this
direction (see Related Work), a fundamental question
remains unanswered: How is supervised causal learning

possible? Specifically, compared with unsupervised
causal learning methods, can we gain additional benefits
from supervision? If the answer is yes, then what are
the benefits?

We tackle the problem by first seeing crucial con-
nections between SCL and causal structure identifia-
bility. Considering the problem of causal learning on
discrete data, the theorem in [29] states that, under
standard assumptions (i.e., Markov assumption, faith-
fulness and causal sufficiency), we can only identify a
graph up to its Markov equivalence class. Markov equiv-
alence class is the set of DAGs having same skeleton
and same v-structures, which can be represented by
CPDAG (Completed Partially Directed Acyclic Graph).
Thus, the (un)directed edges in the CPDAG indicate
(non-)identifiable causal relations. Each non-identifiable
edge in CPDAG can be oriented by either direction to
equivalently fit the observational data. Given an SCL al-
gorithm with the learning target as the orientation of an
edge, we see that it is not better than random guessing
(or could be worse due to sample bias in training data)
to predict any non-identifiable edge since we can assign
either X ! Y or X  Y with the same input dataset.

Observation 1.1. Considering the learning target is

the orientation of an edge. If the edge is non-identifiable
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a priori, then supervised causal learning is no better than

random guessing.

All proofs of observations, propositions, lemmas and
theorems are available in the supplementary material.
Consequently, we propose and advocate a two-phase
paradigm for SCL, as depicted in Figure 2(a): phase one
corresponds to determining the identifiability of a specific
learning target; only if it is determined as identifiable,
we go to phase two to classify the specific orientation
of the learning target. Following this paradigm, we
tackle the problem of SCL on discrete data and propose
an algorithm ML4C. The core of ML4C is a binary
classifier with a novel learning target: it classifies
whether an Unshielded Triple (UT: a triple of variables
hX,T, Y i where X and Y are adjacent to T but are not
adjacent to each other) is a v-structure or not. Starting
from an input dataset with the corresponding skeleton
provided, ML4C orients each UT once it is classified as
a v-structure. These v-structures are further used to
construct a CPDAG as output. Such a single classifier
facilitates both learning tasks in the two phases, since
standard theory shows that an identifiable UT implies
that it is a v-structure [37], i.e., up to the partial DAG
before applying Meek rules [28].

Operationally, we propose a principled method for
ML4C featurization. We exploit the vicinity of a given
UT (i.e., the neighbors of UT in the skeleton), and
derive features by considering the conditional depen-

dencies and structural entanglement within the vicinity.
ML4C’s featurization is appealing from both theoretical
and empirical perspectives. We prove that ML4C is
asymptotically correct, and ML4C shows remarkable per-

FKLO
G���

��

LQVX
UDQ
FH�
���
�

ZDW
HU��
���

PLO
GHZ

����
�

DOD
UP�
���
�

EDU
OH\
����

�

KDL
OILQ
GHU
����

�

KHS
DU�
����

�

ZLQ
��S
WV��
���

SDW
KILQ
GHU
����

��

PX
QLQ
����

���

DQG
HV��
���
�

GLD
EHW
HV��
���
�

SLJ
V���
���

OLQN
����

��

PX
QLQ
����

���

PX
QLQ
����

���
�

PX
QLQ
����

���
�

PX
QLQ
����

���
�

-DUIR

'�&

5&&

1&&

3&

&3&

03&

*0%

*(6

*6

+&

&'6

*1,3

'*11

%/,3

*563

$O
JR
ULW
KP
V

'
DW
DV
HW
V

��
1
RG
HV
�

ಜ����

ಜ����

ಜ����

ಜ����

����

����

����

����

����

Figure 1: Comparison of ML4C and other algorithms
(difference between ML4C’s and others’ F1 scores) on
benchmark datasets. Blue indicates that ML4C is supe-
rior whereas red indicates that the competitor is better.

formance on benchmark datasets (with finite samples).

Evaluation Highlight: We compare ML4C and
other SOTA algorithms on the bnlearn benchmark [33]
thoroughly (as shown in Figure 1). Overall, ML4C
significantly outperforms all competitors, with the
highest average F1-score and consistent performance
across all datasets (i.e., most of the blocks in Figure
1 are blue-colored). Also, ML4C shows high accuracy
(F1-score> 0.9) on very large-scale datasets (> 1000
nodes) while max(others)⇠ 0.6 (last three rows of
‘munin*’ in Table 1). Our main contributions are:

1. ML4C is a supervised approach for causal learning,
and to the best of our knowledge, it is the first such
approach to tackle discrete data systematically.

2. ML4C is with the following novelties: i) Learning
Target: The core of ML4C is a binary classifier with
the orientation of a UT as its learning target to address
the two-phase tasks simultaneously. ii) Featurization:
A principled method to exploit vicinity information in
terms of dependencies and entanglement of a given UT.
iii) Learnability: We prove that ML4C is asymptot-
ically correct. iv) Empirical Performance: Exper-
iments conducted on benchmark datasets demonstrate
that ML4C remarkably outperforms other SOTAs.

2 Related Work
We divide literature on causal learning into supervised
and unsupervised approaches, depending on whether
additional datasets (associated with ground truth causal
relations) are accessed (supervised) or not (unsuper-
vised). In the literature of unsupervised causal learning,
constraint-based methods aim to identify a DAG which
is consistent with conditional independencies. The learn-
ing procedure of constraint-based methods first identifies
the corresponding skeleton and then conducts orienta-
tion based on v-structure identification [39]. The typical
algorithm is PC [36], and there are also PC-derived algo-
rithms such as Conservative-PC [31] and PC-stable [10]
which improve the robustness of v-structure identifica-
tion. Score-based methods aim to find the DAG which is
optimal w.r.t. a pre-defined score function under combi-
natorial constraints by a specific search procedure, such
as forward-backward search GES [7], hill-climbing [19],
integer programming [9], or by order search [32, 20].
Continuous optimization methods transform the discrete
search procedure into continuous equality constraint:
NOTEARS [41] formulates the acyclic constraint as a
continuous equality constraint, it is further extended
by DAG-GNN [40] and MCSL [30] to support learning
non-linear causal relations. [26] proposes to estimate the
posterior distribution of causal DAGs.
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Figure 2: (a) Two-phase paradigm for supervised causal learning. (b) ML4C’s workflow.

SCL emerges from the task of orienting edge in the
continuous, non-linear bivariate case under Functional
Causal Model (FCM) formalism. Given a collection of
cause-effect samples (dataset ⇠ binary label indicating
whether X ! Y or X  Y ), supervised approaches such
as RCC [23, 24], NCC [25], D2C [5] and Jarfo [13] achieve
better performance on predicting pairwise relations (i.e.,
the orientation of an edge) than unsupervised approaches
such as ANM [16] or IGCI [17]. Differently, [22] sets
the learning target as the whole DAG structure instead
of pairwise relation and it is applied on data which
is generated by the linear Structural Equation Model
(SEM). We summarize the differences in the problem
space between ML4C and the other SCL approaches as
follows: i) We advocate a two-phase learning paradigm
and emphasize the relationship between identifiability
and learnability. Specifically, presuming additive noise
model [16] or linear SEM with non-Gaussian noise [34]
provides license to identifiability thus the aforemen-
tioned approaches can be viewed as specific tasks in
phase two. ii) We tackle SCL’s learnability not only via
empirical evaluation but also by theoretical analysis to
shed light on the fundamental question of learnability.
iii) ML4C deals with discrete data systematically while
other approaches mainly focus on continuous data.

3 Background
3.1 Basic Notations A discrete dataset Di consists
of ni records and di categorical columns, which repre-
sents ni instances drawn i.i.d. from di discrete variables
X1, X2, · · · , Xdi by a joint probability distribution Pi,
which is entailed by an underlying data generating pro-
cess, denoted as DAG Gi.
Causal sufficiency: There are no latent common causes
of any of the variables in the graph.
Markov factorization property: Given a joint
probability distribution P and a DAG G, P is said
to satisfy Markov factorization property w.r.t. G if
P := P (X1, X2, · · · , Xd) =

Qd
i=1 P

�
Xi|paGi

�
, where

paGi is the parent set of Xi in G.
Global Markov Property (GMP): P is said to satisfy
GMP (or Markovian) w.r.t. a DAG G if X?GY |Z )
X?Y |Z. Here ?G denotes d-separation, and ? denotes
statistical independence. GMP indicates that any d-
separation in graph G implies conditional independence
in distribution P . GMP is equivalent to the Markov
factorization property [21].
Faithfulness: Distribution P is faithful w.r.t. a DAG
G if X?Y |Z ) X?GY |Z.
Canonical dataset: We say a discrete dataset D is
canonical if its underlying probability distribution P is
Markovian and faithful w.r.t. some DAG G.
3.2 Causal Structure Identifiability Below are the
established identifiability results on discrete data [29].
Definition 3.1. (Markov equivalence) Two

graphs are Markov equivalent if and only if they have

the same skeleton and same v-structures. A Markov

equivalence class can be represented by a CPDAG having

both directed and undirected edges. A CPDAG can be

derived from a DAG G, denoted as CPDAG(G). The
theorem of Markov completeness in [29] states that,
under causal sufficiency, we can only identify a causal
graph up to its Markov equivalence class on canonical
data. Therefore, the (non-)identifiable causal relations
are the (un)directed edges in the CPDAG. Formally,
Definition 3.2. (Identifiability) Assuming P is

Markovian and faithful w.r.t. a DAG G and causal

sufficiency, then each (un)directed edge in CPDAG(G)
indicates (non-)identifiable causal relation.

3.3 ML4C Related Notations

Definition 3.3. (Skeleton) A skeleton E defined

over distribution P (X1, X2, · · · , Xd) is an undirected

graph such that there is an edge between Xi and Xj

if and only if Xi and Xj are always dependent, i.e.,

@Z ✓ {X1, X2, · · · , Xd} s.t. Xi?Xj |Z. Skeleton is a
statistical concept, which can be obtained prior to facili-
tating various downstream tasks. Recently, there have
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been some novel skeleton learning algorithms such as
[11]. In particular, skeleton can be used for causal learn-
ing: the theorem in [37] states that if distribution P is
Markovian and faithful w.r.t. a DAG G, then skeleton
E is the same as the undirected graph of G.

Definition 3.4. (UT) A triple of variables hX,T, Y i
in a skeleton is an unshielded triple, or short for UT, if

X and Y are adjacent to T but are not adjacent to each

other. hX,T, Y i can be further oriented to become a v-

structure X ! T  Y , in which T is called the collider.

Definition 3.5. (PC) Denote the set of parents and

children of X in a skeleton as PCX , in other words, PCX

are the neighbors of X in the skeleton. For convenience,

if we discuss PCX in the context of a UT hX,T, Y i, we

intentionally mean the set of parents and children of X
but exclude T . Similarly, PCT excludes X,Y .

Definition 3.6. (Vicinity) We define the vicinity of

a UT hX,T, Y i as VhX,T,Y i := {X,T, Y }[PCX[PCY [
PCT . Vicinity is a generalized version of PC, i.e., the

neighbors of {X,T, Y } in the skeleton.

Definition 3.7. (Sepsets) Denoted as S :=
{S : X?Y |S, S ⇢ PCX [ T, or S ⇢ PCY [ T}. Un-
der faithfulness assumption, sepsets S is an ensemble
where each item is a subset of variables within the
vicinity that d-separates X and Y .

4 Approach
4.1 Viewing PC and MPC as Special Classifiers
The motivation of ML4C is from the observation, that
the orientation logics of both PC [37] and MPC [10]
can be interpreted as explicit featurization and static
classification mechanisms. Starting from PC, it first
learns the skeleton from data, and then conducts
orientation by taking skeleton as input. Specifically,
for each UT hX,T, Y i (queried from skeleton), it finds
a sepset S such that X?Y |S, and then simply checks
if T 2 S or T 62 S: if T 62 S, orient hX,T, Y i as a
v-structure, and otherwise undetermined. From ML
perspective, we re-formulate PC’s logic as follows:
Task: To classify if a UT hX,T, Y i is a v-structure.
Featurization: Finds a sepset S s.t. X?Y |S, and
defines a Boolean feature xPC(hX,T, Y i) := T 2 S.

Classifier: CPC(xPC) :=

(
non-v xPC = true

v-struc xPC = false
.

Majority-PC (MPC) [10] is a sample version enhance-
ment of PC’s orientation, which achieves better perfor-
mance on finite samples. Instead of finding only one
sepset S, MPC finds all the sepsets S and counts the
number of sepsets Si 2 S that contains T . We summa-
rize its logic in the ML formulae:

Featurization: Finds all sepsets S of X,Y , and defines
a real-value feature xMPC(hX,T, Y i) := |{Si|T2Si2S}|

|S| .

Classifier: CMPC(xMPC) :=

(
non-v xMPC > 0.5

v-struc xMPC  0.5
.

Observation 4.1. Both the “hand-crafted” classifiers of

PC and MPC are asymptotically correct. Furthermore,

CMPC is more “sophisticated” than CPC due to its more

complex classification mechanism, and thus CMPC achieves

better performance empirically. However, from the ML

perspective, either CPC or CMPC is simple, so we are

encouraged to provide more systematic featurization, and

to learn a better classification mechanism.

4.2 ML4C’s Overview Figure 2(b) depicts the over-
all workflow of ML4C, which is composed of ML4C-
Learner with other standard logics. Similar to [37],
ML4C-Learner classifies whether a UT is a v-structure
or not. Specifically, featurization is conducted to rep-
resent each UT as an embedded vector, which is fed
into ML4C-Learner, a binary classifier. In the inference
stage, we obtain all the v-structures which are classified
by ML4C-Learner and reconstruct a partial DAG and
then, a CPDAG is output by applying Meek rules on
the partial DAG. In the training stage, the label of each
UT is obtained by querying from ground truth DAG Gi.
We collect labeled training data from synthesis.

By Markov completeness, the set of v-structures
is invariant across all Markov equivalent DAGs for a
canonical dataset, and it can fully recover the CPDAG,
provided that the skeleton is given. Thus, besides its
dedicated role in phase 2, ML4C-Learner also facilitates
learning task in phase 1 since an identifiable UT implies
that it is a v-structure (up to the partial DAG before
applying Meek rules).

4.3 Featurization We propose a principled method
for ML4C-Learner’s featurization. We further prove that
ML4C-Learner is asymptotically correct.

Design Principles: Our key aspect of featurization
is to broaden the focus from a specific UT to its vicinity

and seeking conditional dependencies and structural
entanglement within the vicinity, to reveal reliable
asymmetry that distinguishes v-strucs and non-v-strucs.

• Dependencies within Vicinity
Conditional dependency: Denoted as X ⇠ Y |Z,
which is a non-negative scalar that measures the depen-
dence between two random variables X and Y given vari-
able set Z. Operationally, X ⇠ Y |Z is composed of two
parts, bivariable X ⇠ Y , and conditional Z. We further
extend the definition to allow a set of variables in bivari-
able, and an ensemble (i.e., a set of set) as conditional:
Extended conditional dependency: Denoted as
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A ⇠ B|Z:= {X ⇠ Y |Z :X 2 A, Y 2 B,Z 2 Z}, where
A and B are set of variables, and Z is an ensemble. Thus,
extended conditional dependency is a set of scalars.

Within the vicinity of hX,T, Y i, we start from mea-
suring dependencies between {X, PCX} and {Y, PCY }
by conditioning on {T, PCT }. Intuitively, if hX,T, Y i
is a v-structure, conditioning on T or T ’s descendants
tends to strengthen the dependency between PCX and
PCY since the paths passing X � T � Y are unblocked;
otherwise, conditioning on T tends to weaken the de-
pendency between PCX and PCY because T blocks the
paths passing X � T � Y . Therefore, such conditional
dependencies reflect potential asymmetry to distinguish
v-structure and non-v-structure. Formally,

Definition 4.1. (Domain of bivariable)

Denoted as B := {X, PCX} ⇥ {Y, PCY } ⌘
{X ⇠ Y,X ⇠ PCY , PCX ⇠ Y, PCX ⇠ PCY }, here

symbol ⇥ is Cartesian product.

Definition 4.2. (Domain of conditional)

Denoted as C := {?, T,PCT } _ {?, S} ⌘
{?, T,PCT ,S,S _ T,S _ PCT }, where PCT :=
{{I} : I 2 PCT } which is an ensemble version of

PCT , and S _ PCT := {S [ I : S 2 S, I 2 PCT }. Here

symbol _ is element-wise union.

We exploit the extended conditional dependencies from
B ⇥ C, i.e., we pick a bivariable from B and a condi-
tional from C, and calculate the extended conditional
dependency. There are in total |B|⇥ |C| = 24 extended
conditional dependencies.

Lemma 4.1. Sepsets S of a UT is non-empty.

We intend to restrict the sepsets within the vicinity
of hX,T, Y i. Lemma 4.1 shows the existence of such d-
separation sets within vicinity. Furthermore, searching
for all d-separation sets is highly time-consuming, thus
significant computational cost is also saved.

• Entanglement within Vicinity
Structural entanglement reflects complex structure

within the vicinity of hX,T, Y i. Variables X, Y and
T can mutually share common neighbors, and their
neighbors may also overlap with sepsets S. We call such
overlaps structural entanglement. Specifically, we exploit
the overlap coefficient [38] to measure the entanglement:

Definition 4.3. (Overlap coefficient)

olp (A,B) := |A \ B|/min (|A|, |B|), where A
and B are two sets of variables. We extend this formula
to support the ensemble as input:

(Extended) Overlap coefficient: olp (A,S) :=P|S|
i=1 olp (A, Si) /|S|. Naturally, we consider the en-

tanglement in terms of the overlap coefficient on each

pair of items in domain {PCX , PCY , PCT ,S}. Thus,
use 7 scalars (including olp ({T},S)) to represent the
entanglement within the vicinity of a UT.
Embedding: We aim to represent the dependencies
and entanglement by a feature vector with fixed dimen-
sionality, which can be used to train ML4C-Learner. We
adopt the standard kernel mean embedding technique
in [35]. Details are available in Appendix (section B).

4.4 Learnability We have presented ML4C’s
featurization and see that conditional dependencies
and structural entanglement have the potential to
reveal asymmetry to distinguish v-structure and non-v-
structure UTs. Now we provide rigorous analysis to show
that, for a canonical dataset with sufficient samples,
ML4C-Learner is asymptotically correct. We first pro-
pose a surrogate object called discriminative predicate:

Definition 4.4. (Discriminative predicate) A

discriminative predicate is a binary predicate function

with domain as ML4C’s feature vector. A discriminative
predicate can be viewed as a special classifier with
pre-specified form of mechanism (e.g., CPC or CMPC is a
discriminative predicate).

Definition 4.5. (Weak/Strong predicate)

Whenever a discriminative predicate takes the feature

vector of a UT as input, a weak (discriminative)

predicate satisfies one of the following two criteria; a

strong (discriminative) predicate satisfies both: i) it is

evaluated to true if the UT is a v-structure; ii) it is

evaluated to false if the UT is not a v-structure.

By definition, a weak predicate exhibits discriminative
power since its evaluation as false implies the UT is a
non-v-structure (or true implies v-structure). A strong
predicate is sound and complete (e.g., CMPC). Denote
{A ⇠ B|Z} > � := X ⇠ Y |Z > � : 8X 2 A, Y 2
B,Z 2 Z, then we have:

Lemma 4.2. (Existence of strong predicate)

For a canonical dataset with infinite samples, the

following are three strong discriminative predi-

cates: i) olp(T,S) = 0, ii) olp(T,S) < 0.5,
iii) olp(T,S) < 1 ^min {X ⇠ Y |T [ S} > 0.

For example, ii) is the orientation logic of CMPC.

Lemma 4.3. (Existence of weak predicate)

For a canonical dataset with infinite samples,

the following are three weak discriminative predi-

cates: i) {X ⇠ Y |T} > 0, ii) {X ⇠ Y |PCT } = 0 ,

iii) {PCX ⇠ PCY |S [ T} > 0.

Take i) {X ⇠ Y |T} > 0 for example, if hX,T, Y i is
a v-structure, then T is a collider that unblocks X and Y
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through path X � T � Y , so {X ⇠ Y |T} > 0. Similarly,
ii) if a UT is not a v-structure, then 8pcT 2 PCT , X and
Y must be d-connected by pcT . Weak predicates exploit
graphical implications within the vicinity. They are valid
in one direction, i.e., either sufficient or necessary but
not both. In addition to strong predicates, such one-
direction-asymmetry exhibits additional discriminative
power from the ML perspective.

Theorem 4.1. ML4C-Learner is asymptotically correct

on classifying a canonical dataset with sufficient samples.

5 Evaluation
Benchmark Datasets: We use discrete datasets of all
24 networks from bnlearn repository [33] for evaluation.
For each dataset we sample 1k, 5k, 10k, 15k, 20k records
for use.
ML4C’s Training and Inference: We generate
ML4C’s training data synthetically (which is also used
for other SCL competitors). Specifically, 400 unique
DAGs are randomly generated by two models: Erdős-
Rényi (ER) model [12] and Scale-Free (SF) model [2],
with the number of nodes ranging from 10 to 1,000.
A standard random forward data generation process
is applied to obtain 10k observational samples for
each graph. We further extract UTs from the 400
DAGs, consisting of 97,010 v-structures (label = 1) and
195,691 non-v-structures (label = 0). We use these
instances to train ML4C-Learner, which is implemented
by a XGBoost [6] binary classifier with default hyper-
parameters and we use binary cross-entropy as the
loss function. Details on our synthesis procedure,
configurations and implementation of ML4C-Learner
are available in the supplementary material.
Competitors: We categorize state-of-the-art causal
learning algorithms from two aspects, supervised vs.
unsupervised, and can or cannot take a skeleton as input.
We choose Jarfo [13], D2C [5], RCC [23], and NCC [25]
as SCL competitors. Same as ML4C, all these algorithms
require a skeleton as input. All these algorithms use
ML4C’s training set for training and with appropriate
learning target extracted. Regarding unsupervised algo-
rithms, we choose PC [36], Conservative-PC (CPC) [31],
Majority-rule PC (MPC) [10], GLL-MB (GMB) [3],
GES [7], Grow-Shrink (GS) [27], Hill-Climbing (HC) [19],
Conditional Distribution Similarity (CDS) [13] and
GOBNILP (GNIP) [9]. which can also take skeleton
as input. Lastly, we also compare with DAG-GNN
(DGNN) [40], BLIP [32], and GRaSP (GRSP) [20],
which are unsupervised algorithms but cannot take
skeletons as input. All these competitors are capable of
dealing with discrete data. All experiments are done in
a Windows Server with 2.8GHz Intel E5-2680 CPU and

256G RAM. Details are in the appendix (section B).
Design: Our evaluation mainly consists of two parts:
end-to-end comparison with competitors on benchmark
datasets, and in-depth experiments on ML4C’s learn-
ability. The latter is further divided into four aspects:
i) Towards a perfect classifier. ML4C-Learner is
asymptotically correct, and we would like to know far
it is from such a perfect classifier in real-world settings.
ii) Reliability (against weak/strong predicates). As
stated in lemma 4.3 and 4.2, there exist weak and strong
predicates, which provide prediction power of ML4C’s
feature vector. Thus, we would like to see how ML4C-
Learner takes advantage of machine learning, to learn
a more reliable classification mechanism than individual
weak/strong predicates. iii) Robustness (against var-
ied sample size). It is known that many causal learning
algorithms lack robustness w.r.t sample noise for finite
datasets [23], especially CI tests are error-prone on small
samples for constraint-based algorithms. We want to
evaluate the robustness of ML4C (i.e., the classification
mechanism) against varied sample sizes. iv) Tolerance
(to imperfect skeleton input). Besides using ground-truth
skeleton as input, it is also interesting to see how ML4C’s
performance changes when the input skeleton is misspec-
ified. This also provides a fairer comparison with the
baseline approaches which do not take skeleton as input.

Metrics: We use two standard metrics for performance
evaluation: Structural Hamming Distance (SHD) and
F1-score. For each dataset, we measure the SHD /
F1-score of the output CPDAG (learned by a specific
algorithm) against the ground truth CPDAG. Specif-
ically, SHD is calculated at CPDAG level, which is the
smallest number of edge additions, deletions, direction
reversals and type changes (directed vs. undirected) to
convert the output CPDAG to ground truth CPDAG.
F1-score is calculated over identifiable edges. Roughly,
F1-score can be viewed as a normalized version of SHD.
Now we present the experiment results:

End-to-End Comparison: Due to page limits, we
report SHD and F1-score of all algorithms on top-19
large-scale datasets (results of the other 5 smallest
datasets are omitted due to triviality), as depicted in Ta-
ble 1. ‘-’ means the algorithm fails on the dataset (either
out-of-memory/exceeds 24 hours execution time/break
caused by unknown errors). ML4C significantly
outperforms all other competitors. The average F1-score
of ML4C is the highest (0.92, first column in Table 2).
Moreover, ML4C exhibits the most stable performance
across all datasets, its average ranking is 1.5 ± 0.7,
while the second best is GLL-MB (GMB), with average
ranking 4.4± 2.4. NCC is the strongest SCL competitor.
It performs well on some datasets but overall its per-
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Table 1: Experiment results for end-to-end comparison with SOTA causal learning algorithms on benchmark
datasets. Algorithm names are abbreviated. SHD and F1-score are reported. The last two rows show statistics of
rank by SHD and F1-score for all competitors (Note: F1-score is at UT level).

Datasets

#nodes/#edges

supervised unsupervised no skeleton input

ML4C Jarfo D2C RCC NCC PC CPC MPC GMB GES GS HC CDS GNIP DGNN BLIP GRSP

child SHD 0 18 16 18 20 22 13 9 20 15 13 13 18 0 23 0 0
20/25 F1 1.0 .24 .43 .33 .12 .12 .00 .74 .12 .47 .59 .57 .34 1.0 .25 1.0 1.0

insurance SHD 5 41 30 34 28 36 34 21 29 34 28 19 36 11 53 35 14

27/52 F1 .89 .26 .44 .42 .44 .39 .00 .66 .55 .46 .56 .76 .36 .88 .05 .51 .83

water SHD 5 33 43 31 0 4 60 7 8 38 27 38 18 34 61 65 58

32/66 F1 .94 .52 .34 .56 1.0 .97 .00 .91 .87 .49 .62 .46 .76 .57 .00 .20 .21

mildew SHD 6 - 17 25 34 21 - - 7 3 9 23 18 - 52 36 37

35/46 F1 .87 - .68 .50 .33 .56 - - .85 .93 .80 .64 .65 - .19 .41 .47

alarm SHD 1 21 26 18 20 20 20 6 17 8 3 21 18 2 46 17 2

37/46 F1 .98 .57 .44 .64 .57 .57 .57 .92 .64 .86 .94 .66 .62 .98 .12 .82 .98
barley SHD 5 48 55 50 0 3 - - 8 42 - 34 50 34 87 60 70

48/84 F1 .95 .46 .38 .44 1.0 .96 - - .91 .59 - .72 .43 .74 .00 .48 .45

hailfinder SHD 11 47 41 43 0 17 - - 26 60 - 59 44 56 76 111 114

56/66 F1 .80 .37 .45 .42 1.0 .85 - - .70 .21 - .23 .42 .32 .00 .18 .15

hepar2 SHD 0 54 81 59 0 35 27 37 14 46 40 35 75 48 123 79 64

70/123 F1 1.0 .59 .34 .54 1.0 .72 .81 .70 .89 .75 .70 .81 .39 .72 .00 .54 .63

win95pts SHD 1 65 51 33 0 8 42 7 5 32 21 16 50 27 112 103 23

76/112 F1 .99 .43 .54 .73 1.0 .95 .64 .95 .97 .77 .85 .91 .57 .81 .00 .47 .88

pathfinder SHD 25 157 145 151 0 150 - - 147 158 - 168 148 119 196 241 -

109/195 F1 .77 .21 .29 .21 1.0 .29 - - .30 .29 - .28 .31 .00 .00 .07 -

munin1 SHD 10 169 154 153 72 86 117 - 84 109 - 233 151 265 - 257 -

186/273 F1 .97 .42 .47 .46 .77 .71 .58 - .72 .67 - .26 .50 .00 - .42 -

andes SHD 0 226 209 246 0 4 83 4 5 47 15 38 149 328 - 175 146

223/338 F1 1.0 .35 .41 .29 1.0 .99 .75 .99 .98 .92 .96 .92 .60 .00 - .76 .75

diabetes SHD 25 220 395 237 48 0 - - 204 146 - 592 368 - - 534 -

413/602 F1 .96 .62 .38 .62 .96 1.0 - - .68 .77 - .03 .43 - - .43 -

pigs SHD 0 350 332 263 400 400 - - 268 0 - 532 316 - - 6 -

441/592 F1 1.0 .44 .46 .59 .35 .35 - - .56 1.0 - .18 .50 - - 1.0 -

link SHD 0 731 630 638 749 737 - - 204 324 - 1047 400 - - 947 -

724/1125 F1 1.0 .38 .45 .45 .39 .40 - - .81 .80 - .14 .64 - - .49 -

munin SHD 72 967 790 816 0 156 - - 458 661 - 1397 795 - - 1599 -

1041/1397 F1 .95 .36 .48 .44 1.0 .89 - - .69 .62 - .00 .51 - - .29 -

munin2 SHD 118 554 611 646 1052 898 - - 536 632 - 1240 753 - - 1321 -

1003/1244 F1 .92 .60 .56 .55 .19 .30 - - .57 .58 - .01 .49 - - .46 -

munin3 SHD 113 616 629 688 1048 860 - - 544 566 - 1306 819 - - 1539 -

1041/1306 F1 .92 .58 .57 .54 .25 .37 - - .60 .65 - .00 .46 - - .26 -

munin4 SHD 126 696 658 776 1058 876 - - 649 618 - 1388 812 - - 1627 -

1038/1388 F1 .93 .54 .56 .50 .29 .39 - - .55 .64 - .00 .49 - - .28 -

rank(SHD)
mean 1.5 9.5 8.7 8.4 5.2 6.5 11.3 9.9 4.6 6.3 10.0 9.0 8.4 9.4 14.1 11.0 10.6
±stdd 0.7 3.7 4.0 2.6 4.4 4.0 3.0 4.2 2.7 3.3 3.6 2.7 2.8 4.4 2.2 3.8 4.0

UT-F1
mean .90 .22 .19 .27 .66 .50 .53 .87 .59 .54 .77 .47 .30 .55 .09 .36 .55
±stdd .13 .17 .13 .18 .40 .34 .33 .16 .32 .28 .24 .35 .22 .42 .07 .29 .38

Table 2: Reliability: average F1-score of ML4C vs. 8
discriminative predicates derived from ML4C features
on benchmarks.

strong predicates weak predicates

id ML4C 1 2 3 4 1 2 3 4

F1 .92±.20 .77±.31 .52±.27 .38±.25 .66±.27 .72±.25 .61±.29 .73±.30 .55±.27

formance fluctuates significantly. Overall it only ranks
5.1± 4.2. Last but not least, ML4C shows high accuracy
(F1> 0.9) on very large-scale datasets (e.g., medicine
datasets ‘munin2/3/4’ [4]) while max(others) ⇠ 0.6.
Towards a Perfect Classifier: The last row of Table 1
shows the performance of ML4C-Learner component at
UT level by UT-F1 (i.e., F1-score of classifying UTs):

such UT level accuracy is crucial for causal learning on
discrete data, since the set of v-structures is invariant
across all Markov equivalent DAGs and it can fully
recover the CPDAG. The average F1-score of ML4C-
Learner is 0.90 ± 0.13, which shows promising results
towards a perfect classifier.

Reliability: We manually identify 4 strong predicates
and 4 weak predicates and treat each one as a replace-
ment of ML4C-Learner. Table 2 shows the performance
of these predicates. Although most predicates show
value on discriminating UTs (e.g., 5/8 predicates are
with > 0.6 F1-score), ML4C-Learner has higher perfor-
mance (average F1-score = 0.92) than each individual
predicate (best average F1-score = 0.77). Thus, it is
evident that ML4C-Learner learns a more reliable clas-
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Table 3: Robustness: ML4C is trained on syn-
thetic datasets with sample size = 10k, but tested
on benchmark datasets with different sample sizes 2
{1k, 5k, 10k, 15k, 20k}.

size 1k 5k 10k15k20k size 1k 5k 10k15k20k size 1k 5k 10k15k20k

SHD
insu

11 1 5 1 0
wate

12 11 5 8 6
mild

8 5 6 6 1

F1 .81 .97 .89 .97 1.0 .86 .87 .94 .89 .93 .83 .89 .87 .87 .98

SHD
alar

5 4 1 1 5
barl

13 9 5 8 6
hail

15 15 11 15 13

F1 .93 .95 .98 .98 .93 .88 .93 .95 .92 .94 .74 .72 .80 .72 .76

SHD
hepa

8 2 0 1 2
win9

7 1 1 1 1
path

1 7 25 7 1

F1 .96 .99 1.0 .99 .99 .96 .99 .99 .99 .99 .99 .92 .77 .92 .99

SHD
mun1

32 7 10 9 15
ande

3 2 0 2 0
diab

18 28 25 26 27

F1 .89 .98 .97 .97 .95 .99 .99 1.0 .99 1.0 .97 .95 .96 .96 .96

SHD
pigs

0 0 0 0 0
link

88 13 0 0 0
mun

107 76 72 93 87

F1 1.0 1.0 1.0 1.0 1.0 .93 .99 1.0 1.0 1.0 .93 .95 .95 .94 .94

SHD
mun2

117 95 118 110 97
mun3

151119 113 99 62
mun4

165130 126 146 133

F1 .92 .93 .92 .93 .93 .90 .92 .92 .94 .96 .90 .92 .93 .91 .93

Table 4: Tolerance: Use the imperfect skeleton identified
by BLIP as ML4C’s input. ‘SA’ denotes skeleton
accuracy. ‘M’ is short for ML4C. ‘B’ is short for BLIP.

dataSA M B data SA M B data SA M B dataSA M B

SHD
asia .82

6 6
canc 1.0

0 4
eart .89

5 5
sach .97

14 1
F1 .57 .57 1.0 .00 .00 .00 .00 .00

SHD
surv .91

2 6
alar .91

13 17
barl .70

52 60
chil 1.0

0 0
F1 .73 .00 .84 .82 .57 .48 1.0 1.0

SHD
insu .78

31 35
mild .69

31 36
wate .48

63 65
hail .16

111 111
F1 .59 .51 .56 .41 .25 .20 .17 .18

SHD
hepa .71

85 79
win9 .71

83 103
ande .80

158 175
diab .66

522 534
F1 .46 .54 .63 .47 .78 .76 .44 .43

SHD
link .61

916 947
mun1 .57

249 257
path .35

259 241
pigs 1.0

12 6
F1 .53 .49 .49 .42 .12 .07 .99 1.0

SHD
mun .50

1484 1599
mun3 .49

1410 1539
mun4 .45

1565 1627
F1 .36 .29 .43 .26 .37 .28

sification mechanism, by taking advantage of machine
learning techniques.

Robustness: To evaluate robustness, ML4C is trained
on synthetic datasets with sample size = 10k, but it is
tested on benchmark datasets with different sample sizes:
1k, 5k, 10k, 15k and 20k respectively. Table 3 shows
that ML4C exhibits satisfactory robustness (decrease of
F1-score is less than 0.1) against sample size on 17 out
of 18 datasets.

Tolerance: BLIP [32] is the strongest competitor
among the three algorithms without skeleton input. To
evaluate ML4C’s tolerance to imperfect skeletons, we
use the skeleton identified by BLIP (i.e., convert its
DAG output to the corresponding skeleton) as input
for ML4C. The result is shown in Table 4. Among the
23 datasets, ML4C is better than BLIP on 16 datasets,
tied on 4 datasets and BLIP is better than ML4C only
on 3 datasets (even for these datasets, ML4C still has
very close accuracy to BLIP). Moreover, for the datasets
where BLIP produces skeletons with very low accuracy
(such as munins, skeleton accuracies⇠ 0.5), ML4C has
significantly better accuracy than BLIP, which shows
ML4C’s better ability for orientation and also tolerance
w.r.t. skeleton misspecification.

6 Conclusion and Future Work
We have proposed a supervised causal learning algorithm
ML4C, with theoretical guarantee on learnability and

remarkable empirical performance. ML4C shows
promising results on validating the effectiveness of
supervision. To make SCL practical in real-world
scenarios, one important direction for future work is to
identify the reliable and accurate skeleton from data,
considering ML4C requires the skeleton as additional
input. Another important future work is to incorporate
continuous data with the identifiability results from
various parametric assumptions.
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