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Figure 1: The Eclipse platform includes a modular environmental sensing device (left panel) that can augment existing urban

infrastructure such as bus shelters (middle panel). The real-time web interface shows air quality data at over 100 locations in

Chicago, Illinois, USA on July 20, 2021, during a smoke event from western wildfires (right panel).

ABSTRACT

This paper presents Eclipse, a platform for low-cost urban environ-

mental sensing using solar-powered and cellular-connected devices.

Dense sensor networks promise to monitor pollution at fine spatial

and temporal resolutions, yet few cities have actually implemented

such networks due to high costs and limited accuracy. We address

these barriers by developing an end-to-end framework for urban

air quality sensing with minimal infrastructure requirements. We

designed an unobtrusive device that collects data on fine particulate

matter (PM2.5), temperature, relative humidity, and barometric pres-

sure. A modular design further includes four low-cost gas sensors

— Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), and

Carbon Monoxide (CO) — selected based on local priorities. We

deployed 115 devices across Chicago, reliably collecting data for

over 90% of expected sensor-hours from July 2 - September 30, 2021.

We further developed a calibration strategy that reduced errors by

41.2 - 98.8%, improving accuracy to levels recommended for hotspot

detection (PM2.5 and O3) or education (NO2 and SO2). Through

this work, we offer insights on the real-world deployment of a

replicable, large-scale, end-to-end platform for hyperlocal urban

environmental sensing.
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1 INTRODUCTION

Over 4 billion people – more than 55% of the world’s population –

live in cities, and this number is expected to grow to nearly 70% by

the year 2050 [58]. Although rapid urbanization has economic and
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other social benefits, it has also exposed more people to environ-

mental hazards including air pollution – the largest environmental

contributor to mortality [60]. Poor air quality is linked to a number

of adverse health effects, including heart and lung disease, as well

as asthma [19, 36, 61]. To monitor environmental pollutants, regu-

lators and policymakers rely on data from regulatory equipment

managed by government agencies and research institutes. How-

ever, highly accurate regulatory monitors are expensive, large, and

require special expertise for maintenance. As a result, regulatory

networks are geographically sparse and thus unable to capture

known variability that occurs at finer spatial resolution [30, 48].

For urban public health and planning applications – which require

an understanding of intra-urban spatial inequities and evaluations

of policies over time – there is a strong need to collect real-time

data at finer spatial resolutions.

To address this need, we present Eclipse: an end-to-end plat-

form for low-cost, hyperlocal environmental sensing in cities. Key

components of the Eclipse platform include: a low-power, cloud-

connected, solar-powered, multi-pollutant sensing device; a deploy-

ment and maintenance strategy; and a site selection process. An

Azure cloud back-end includes a complete data processing pipeline

and application programming interface (API). Our calibration strat-

egy takes noisy raw, low-cost sensor data and makes it usable for

analytic applications. Finally, we also create a public-facing website

to give users real-time data from an ongoing 115-node deployment

in Chicago, USA. Because our physical device and network connec-

tivity are built with off-the-shelf solutions, the core contribution of

this work is showing how these elements can be used to design a

scalable environmental sensing solution for long-term, real-world

deployments that address the needs of cities. We thus present find-

ings and lessons learned from a months-long deployment in a major

city that incorporates physical sensors, cloud analytics, and a real-

time interface for the public.

Designing a citywide environmental sensing system system re-

quires addressing numerous challenges. Despite a proliferation of

demonstration projects promising an “internet of environmental

things”, few cities have successfully deployed dense sensing net-

works due to four key barriers:

(1) Deploying a large network poses substantial costs both for

hardware and for ongoing maintenance [11].

(2) Many existing devices require dedicated infrastructure –

hard-wiring for power and connectivity – that severely con-

strains the set of possible deployment locations and dramat-

ically increases installation and maintenance costs [1].

(3) There is a trade-off between affordability and accuracy: low-

cost sensors are subject to errors due to interference and

drift, among other factors [40].

(4) Deployments occur in shared public spaces, raising a critical

need for buy-in from city and community leaders [24], includ-

ing mechanisms for participation and accessible data [18].

The Eclipse platform is designed to address these barriers by

leveraging recent advances in low-power sensing and calibration to

support the deployment of a dense, real-time urban environmental

sensing network designed in collaboration with local stakeholders.

We report on six important components of the work. First, we de-

veloped and optimized the Eclipse hardware for ultra-low power

operation including the use of harvested solar power. Second, nodes

communicate directly to the cloud via existing cellular networks,

which eliminates the need for network setup and allows for remote

monitoring and software updates. As a result, the Eclipse devices

can be deployed at a multitude of locations in a city by augmenting

existing street furniture, light poles, or other physical infrastructure.

This approach increases the number of possible sites and signif-

icantly reduces maintenance costs, allowing devices to be easily

moved and replaced as part of existing upkeep procedures. Third,

we created a complete Azure cloud backend and data processing

pipeline. Data is taken into a SQL database and Stream Analytics

and exposed to a high-level API that enables users to access data

as well as Power BI analytics. Fourth, we developed a calibration

strategy that reduces errors by 41.2 - 98.8% through adjustments

for relative humidity, temperature, and the complete array of pol-

lutants measured. Fifth, we developed a user-friendly website to

visualize data from Eclipse devices in real time. The site is accessi-

ble via a direct URL or QR codes posted at augmented bus shelters

and shows the recently recorded values from Eclipse devices. Fi-

nally, our work was the product of multi-sectoral collaboration: we

worked with JCDecaux Chicago, the local affiliate of JCDecaux SA

– the world’s largest outdoor advertising company, which installs

and operates bus shelters and other streetscape structures in cities

globally – to install and monitor Eclipse devices on bus shelters

throughout the city. We also collaborated with the City of Chicago,

the academic Array of Things initiative, and a network of local en-

vironmental justice organizations supported via the Environmental

Law and Policy Center. These partners’ needs informed key design

decisions including the focus on low-cost hardware with minimal

infrastructure needs and the development of easily accessible data

visualization tools, ensuring that the Eclipse approach reflects the

real-world priorities and constraints of diverse stakeholders.

We deployed Eclipse in three overlapping phases: a pilot deploy-

ment of 6 devices beginning in April 2021, a regulatory co-location

deployment of 9 devices beginning in May 2021, and a full deploy-

ment of 100 additional sensors beginning in July 2021; this paper

shares findings from the first three months of the network’s oper-

ation (July 1 until September 30, 2021). From these deployments,

we report results on platform reliability, data quality, and website

engagement. Notably, we collected readings for >90% of expected

sensor hours, minimizing data loss despite initial start-up issues

that led to the relocation of ≈10% of devices. Moreover, calibration

improved the accuracy of the raw data to levels consistent with

U. S. Environmental Protection Agency (EPA) guidelines for hotspot

characterization (PM2.5) or monitoring for education and aware-

ness (O3 and NO2) [62]. We saw limited traffic to the website via QR

codes, suggesting a need to reduce barriers between residents and

sensor data; nevertheless, interviews and ongoing engagements

with city and community partners offer evidence of strong local

interest in and support for the monitoring network.

The key contribution of our work lies in identifying challenges

associated with long-term real-world deployments in cities and in

developing a deployment template to address those challenges. Al-

though the focus of this paper is on air quality sensing, the Eclipse

approach offers a replicable framework for the deployment of urban

environmental sensing networks more generally. We describe the

development of low-cost hardware with minimal infrastructure
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Network No. of Sensors Timeline Data Transmission Power Source Public-Facing,
Real-Time Data

RAMP [54] 40+ 1 year Cellular Rechargeable battery No

AirU [34] 80+ 2016 – WiFi 5V battery pack No

BEACO2N [52] 50 2016 – Ethernet, WiFi, Cellular 120V Outlet Yes

Array of Things [11] 150 2015-2020 Cellular 120V Outlet Yes

AirBox [13] 1000+ 2016 – WiFi 12V Outlet Yes

Breathe London [7] 100+ 2018 – Cellular Solar Power Yes

Eclipse 115 July 2021 – Cellular Solar Power Yes

Table 1: A comparison of Eclipse to prior and existing large-scale (40+ sensors), long-term (several months of data), “full-stack”

stationary networks including hardware, network design, and data access for urban air quality. Although Breathe London uses

commercially available sensors (every other project developed their own), it is included as it is the most similar to Eclipse.

needs and show how our approach can easily be incorporated into

existing urban upkeep processes, enabling rapid deployment and

reducing maintenance costs. Over the course of three months, we

find that our framework addressed known problems around power

and connectivity; however, new barriers emerged regarding city-

wide network availability, communicating findings to the public,

and harvesting solar energy in built-up areas. Nevertheless, our

experience shows that low-cost, citywide sensing networks are fea-

sible and uncovers key lessons and opportunities for environmental

sensing at the urban scale.

2 RELATEDWORK

We review prior work on low-cost sensor networks in urban areas

that are comparable to our deployment in Chicago. These networks

comprise mobile sensors, stationary sensors, or a combination of

the two. We evaluate these networks based on the needs of cities,

which include scalability, minimal infrastructure requirements, and

relevance for core planning and public health applications.

Mobile sensor networks. Mobile sensor networks involve the

deployment of low- or medium-cost sensors on existing city transit

and vehicle fleets [2, 41], vehicles and pedestrians who volunteer

via crowdsourcing [14, 32], or purposefully outfitted monitoring

vehicles [3, 27, 41]. These approaches are promising and have pro-

duced interesting early findings [12], but they are also subject to

important limitations. First, because many mobile monitoring net-

works rely on vehicles [2, 3, 20, 27], sensors are deployed in the

middle of streets. Although this is an important site for characteriz-

ing near-source emissions, it is not where pedestrians breathe and

thus are exposed to emissions. As a result, such mobile data is less

useful for public health applications such as cumulative exposure

studies or health impact assessments. Mid-street measurements also

cannot capture the effect of planning interventions that disrupt the

flow of emissions from streets to surrounding areas (e.g. barriers or

vegetative buffers), limiting the extent to which they can be used

to evaluate or guide new city policies. Finally, because they lack

extended and continuous temporal measurements, mobile fleets can

miss important short-term events andmay not allow the assessment

of spatial inequities in emission patterns during pollution events.

Mobile networks, although promising for research applications,

are thus limited in their utility for the routine monitoring appli-

cations needed to inform urban public health and planning practice.

Quasi-Regulatory Networks. Cities seeking to monitor routine

environmental exposures and inequities have tended to turn to-

wards dense, stationary networks [7, 44]. The New York City Com-

munity Air Survey, for example, deploys temporary (2-week) net-

works of expensive research-grade sensors 4 times per year [44],

a strategy that has been highly effective in supporting the imple-

mentation and evaluation of new pollution mitigation policies [35].

However, data are stored locally and analyzed manually, so the

network does not offer insight on real-time events and events that

occur outside of the limited seasonal deployment.

Crowd-sourced Networks. Other projects rely on crowd-sourced

Internet of Things (IoT) networks: Taiwan and 29 countries saw a

proliferation of over 2500 sensors via a participatory framework

using various devices connected to one common platform [13], and

there has been a proliferation of research using data from increas-

ingly common PurpleAir nodes [6, 42, 47]. Because these sensor net-

works require hardwired power and WiFi – adding significant cost

for city governments to deploy them at scale – they rely on sensors

installed by private citizens who volunteer their resources. How-

ever, this approach introduces systematic bias: PurpleAir nodes,

for example, are more likely to be located in socioeconomically

advantaged versus in disadvantaged neighborhoods [21]. Crowd-

sourced networks such as these have thus been poorly suited for

evaluations of economic or racial inequities in exposures, which is

problematic because health equity is becoming a key monitoring

priority for many urban public health departments [37].

Academic Networks. Academic initiatives tend to be smaller or

short in duration [45, 46], offering limited insight into the chal-

lenges of deploying at scale for an extended period across an entire

city. However, recent advances include a 40-node network in Pitts-

burgh [54], an 80-node network in and around Salt Lake City [5, 34],

and the 50-node BEACO2N network in San Francisco Bay [52, 57],

all of which required hardwiring for power or depended on WiFi

connectivity, features that significantly increase maintenance costs

or limit deployment locations. Moreover, these networks gener-

ally rely on private volunteers or researchers to address routine

maintenance needs.

The 150-node Array of Things initiative in Chicago did incor-

porate collaborations with city and community stakeholders for

network design and maintenance [24, 55]. However, air quality

was just one of many measurements [10] that the Array of Things
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evaluated and the particulate matter sensors were susceptible to

hardware failure (optics misalignment) during transport and in-

stallation. These problems were confirmed after many nodes had

been deployed, when replacing the node would have interfered

with data collection by the many working sensors for other param-

eters. The Array of Things was also constrained by the need to

hardwire devices for power: the most ubiquitous source of power

in Chicago is at intersections where signaling and control equip-

ment are located–but these are also locations where air pollution

levels can be skewed by road traffic. By contrast, energy-harvesting

devices can be deployed in diverse locations including within green

spaces, on waterfronts, or in residential areas without major streets.

The challenges encountered by the Array of Things thus highlighted

a need for modular, low-cost devices that would be both easy to

install and inexpensive to replace when necessary – a constraint

that became a driving design consideration for Eclipse.

The most similar initiative to Eclipse is Imperial College Lon-

don’s Breathe London initiative [49]. A network of 100 sensor nodes

in London, Breathe London has been running since 2018. The net-

work uses commercially-produced Clarity nodes to report calibrated

PM2.5 and O3 data via an interactive interface (though the network

was originally deployed with commercial AQMesh Nodes, replaced

after 2020). Similar to the Eclipse device, the Clarity nodes are solar-

powered and LTE-connected; however, the Clarity node is larger

and heavier than the Eclipse device – limiting the set of possible

installation locations – and collects data on only two pollutants

(PM2.5 and NO2). Moreover, although Breathe London has bene-

fited epidemiological research as well as city policy [7], the need

for maintenance and monitoring has limited replication in other

cities, highlighting the need for a simple end-to-end deployment

framework.

Eclipse aims to fill several important gaps relative to prior work.

First, the Eclipse devices are designed using a combination of tech-

nologies that requires no wiring for power and that can use cellular

networks rather than requiring the setup of new local area net-

works. These characteristics address city stakeholders’ needs for

flexible deployments with minimal infrastructure requirements.

Second, we address the need for equitable coverage through both

the reduced setup complexity and through a network design with

both citywide coverage and additional sites in environmental jus-

tice neighborhoods. Finally, the low-cost platform, inclusion in

existing urban maintenance routines, collaborative network design,

and accessible data dashboard constitute a deployment framework

that could easily be replicated in other cities.

3 THE ECLIPSE SENSING ARCHITECTURE

This section presents the key design considerations and implemen-

tation details involved in developing the low-cost and low-overhead

Eclipse device (Fig. 2). Based on many of the lessons learned from

the Array of Things project and other prior work, we prioritized

four requirements for the sensor module design:

• Low power operation & energy harvesting

• City-wide wireless communication

• Modular environmental sensing

• Air-flow design & weather-proofing

This section also describes the cloud-based analytics and visualiza-

tion used to enable public access to real-time data streams.

3.1 Low-Power Operation & Energy Harvesting

Historically, one of the key constraints on urban sensor networks

has been the limitation of deployment sites to wired mains [1].

Although cities have power available at streetlamps, traffic signals,

and other similar locations, past experiences by members of our

team [11] as well as in other, similar initiatives [44] have shown

that relying on these access points increases costs – due to the

specialized labor required both for installation and maintenance –

and limits the locations at which samples can be taken. The Eclipse

sensor device eliminates this key, wired-power infrastructure de-

pendency by leveraging solar energy harvesting. We used a small

(10×13 cm) high-efficiency solar panel (Voltaic Systems P126) with

a UV and waterproof PTFE coating. The cell provides 6 Watts peak

power and charges a Lithium polymer (LiPO) battery with a capac-

ity of 2000 mAh as shown in the power module of Fig. 2. A BQ25570

energy-harvesting IC along with a dedicated LiPo battery charger

IC make up the main energy-harvesting and power monitoring

unit. We designed our hardware, communication, and sensors to

optimize for low-power operation. The NRF9160 microcontroller

is operated in a duty cycled mode to leverage its deep sleep mode

which consumes as little as 40 µA between measurements. The

device samples its four electrochemical gas sensors, which also

consume microwatts of power, every 60 seconds. In contrast, the

particulate matter (PM) sensor (Sensirion SPS30) consumes up to

80 mA of current while sensing as it uses an internal fan to cir-

culate air. To optimize overall system power we sampled the PM

and transmitted data off the device every 5 minutes. The average

current draw of the device over a 24-hour period is 4 mA; without

the solar harvesting the 2000 mAh battery can sustain the Eclipse

device at this sampling rate for approximately 15 days, allowing

the device to operate robustly even through prolonged periods of

low light.

3.2 City-Wide Wireless Communication

Many existing low-cost environmental sensing networks use Low

Power Wide Area Networks (LPWAN) such as LoRa, Sigfox, and

Zigbee. These approaches introduce four main challenges associ-

ated with the need to set up a large scale network of dedicated

wireless access points (with IoT radios to forward data to the In-

ternet from sensor devices) across a metropolitan area. First, each

access point requires a dedicated power and backhaul solution. Al-

though the access point itself is relatively inexpensive, installing

the wired power and Internet connectivity can incur additional

setup and maintenance costs as described above. Second, setting up

access points requires negotiating access to physical infrastructure

such as rooftops and other locations. Third, each of these com-

ponents requires regular maintenance from a dedicated team of

trained professionals, increasing labor and training costs. Lastly,

IoT networks are primarily designed for low-bandwidth, one-way

communication, which cannot support access to the devices for

remote software updates or diagnostics. We thus designed Eclipse

devices to instead utilize existing commercial 4G LTE-M cellular

networks. This approach eliminates the need for maintenance of
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Figure 2: The Eclipse device architecture (left) and data pipeline (right). The block diagram on the left presents the three

important modules in the device design: 1) the power module that supports energy harvesting, 2) the central processor and

communication module that enables low-power operation with LTE communication and 3) the sensor suite to measure air

quality and environmental parameters. The figure also describes data communication via 4G LTE ISPs and cloud data analytics

(right). The sampled data is communicated every 5minutes, over LTE connection, directly toAzure cloud. Real-timeprocessing,

analysis and visualization are performed using Azure services and the air quality data is made accessible via an interactive

website. Finally, the table details the specifications of all sensors used in the Chicago deployment. *(Note that noise for the

SPS30 is ± 10 µg/m3 for readings ≤ 100 µg/m3 and ± 10% for readings >100 µg/m3.)

the wireless network itself and gives nodes the ability to upload

data directly to the cloud.

We designed our devices using the NRF9160 “microcontroller

plus modem” which can operate at sufficiently low power to run on

energy harvested from a small solar panel. We also implemented

over-the-air (OTA) programming, eliminating the need for addi-

tional infrastructure for software upgrades and maintenance. The

device also has on-board flash memory to buffer data during times

of connectivity failure. The central processor and communication

block of Fig. 2 provides a high level summary of the processing and

communication elements in the Eclipse sensor.

3.3 Modular Environmental Sensing

Our device includes a modular, adjustable set of environmental sen-

sors (detailed in Fig. 2). Given our focus on air quality, we selected

sensors to measure five of the six criteria air pollutants identified

by the U.S. National Ambient Air Quality Standards (NAAQS) [59].

The Eclipse devices evaluate 𝜇g/m3 of fine particulate matter (PM1,

PM2.5, and PM10) using a Sensirion SPS30 sensor, which outper-

forms other low-cost sensors in laboratory [56] and field tests [51],

performing similarly to more expensive devices in field validation

studies in detecting PM1 and PM2.5 albeit with poorer results for

the detection of PM10 [53]. For gases, we included electrochem-

ical sensors from Alphasense (CO-B4, NO2-B43F, and OX-B431)

given evidence of their pre-calibrated accuracy and stability across

a range of environmental conditions and ambient gas concentra-

tion mixes [17]. We also included the Alphasense SO2-B4 sensors,

despite prior reports of poor field performance [25, 26], because

of local concerns regarding emissions in Southeast Chicago. Fi-

nally, the Eclipse device also monitored relative humidity (RH),

barometric pressure, and ambient temperature.

3.4 Air-Flow &Weather-Proofing

The Eclipse device was designed with an unobtrusive leaf-shaped

exterior as a reference to its environmental applications. To ensure

that the shape did not compromise consistent air flow across the

sensors, we designed the enclosure of the Eclipse device to opti-

mize the airflow path across the gas sensors. We performed com-

putational fluid dynamics (CFD) simulations of airflow to evaluate

non-homogeneity, stagnation, or recirculation. We then introduced

the following specific modifications, shown in Fig. 3:
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Figure 3: The top enclosure half with the left and right air-

flow channels. The channels are designed to to optimize

steady non-stagnant airflow, over the gas sensors, from the

bottom inlets to the top outlets.

• Overall channel volumewas reduced to aminimumby adding

curb to fill lateral spaces and modifying the profile of inlets

and outlets to avoid dead volumes.

• A curved conduit was introduced to guide air flow from

the inlet over the sensor array to the vent. This increased

uniformity of the flow over the sensors and minimized the

width of potential recirculating zones.

• Sensors were oriented vertically to promote upward airflow.

To ensure weather and pest resistance, we shielded the inlet and

outlet vents with a fine mesh and weather-proofed the device, fully

sealing the enclosure except around the sheltered airflow inlets.

Separate left and right airflow channels, inside the top half of the

enclosure, connect these inlets to the sheltered vents at the top

on either side. A magnetic reset enabled maintenance crews to

reset the device in the field without opening the enclosure. We 3D

printed the device enclosure with Nylon and apply a hydrophobic

and inert surface coating (Microcure DTO, Cytonix) to prevent the

target gases from reacting with the enclosure material.

3.5 Cloud Data Analytics

We leverage cellular LTE communication to transmit sensor data

from each device. As illustrated in Fig. 2, the raw data gets ingested

by an Azure cloud pipeline, where it is first stored in a SQL database

and can be managed using Stream Analytics and Azure IoT services.

We further process the data for analysis using Power BI and Azure

ML; the data is then presented for public access through an API

and a custom website (discussed in detail in Section 5).

4 DEPLOYMENT AND CALIBRATION

This section describes the steps taken to deploy, maintain, and cal-

ibrate our network of 115 sensors across the city of Chicago. We

discuss our phased deployment and tools for device monitoring.

Figure 4: Three Eclipse devices were co-located with air pol-

lution monitoring equipment at each of three EPA sites in

the city of Chicago throughout the deployment to enable the

evaluation of accuracy and the development of data calibra-

tion models.

We then detail the approach used to evaluate and improve accu-

racy through sensor calibration. Finally, we describe our integral

partnership with local agencies and organizations.

4.1 Deployment Strategy

Our deployment was carried out in three phases. First, we launched

a small pilot program in April, 2021, to ensure the feasibility of the

entire deployment. The pilot consisted of 6 devices deployed at 4

bus shelters selected by local partners and 2 bus shelters across

the street from other sites to evaluate sensor precision. JCDecaux

employees installed the devices on April 12th and 13th, 2021.

Second, to evaluate the accuracy of the Eclipse devices compared

to research grade monitors, we co-located 3 devices at each of 3

EPA regulatory stations (N = 9 Eclipse devices total). We installed

3 devices on April 14th and 6 devices on May 10th, attaching the

devices to monitoring stands (Fig. 4).

Third, we designed the main deployment using a sampling and

community engagement process based on the methods of the NYC-

CAS [44]. We deployed 80 devices across the city using a stratified

random sampling approach based on traffic and population den-

sity. We then allocated 20 additional devices to locations selected

by local environmental justice organizations (Section 4.4). Devices

were installed by three teams of workers over a two-week period

between June 29th and July 7th. Teams successfully installed 93

devices during this period; an additional 7 devices were installed in

July and August due to delays in community groups selecting loca-

tions. The final network included 115 devices at locations shown

in Fig. 5. The number of devices deployed was limited by cost and

manufacturing constraints; nevertheless the final coverage (M =

115, 0.2 sensors/km2) is at the upper end of the sample sizes com-

monly used in studies of intraurban air quality [31] and in citywide

networks (Table 1).
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Figure 5: Site selection. We allocated 80 devices to sites via a

stratified random sampling approach. An additional 20 sites

were chosen by community organizations in environmental

justice neighborhoods (shaded) and local partners requested

6 additional sites. Finally, black points indicate the 9 devices

co-located at each of 3 regulatory monitoring stations.

4.2 Maintenance Toolkit

We created several network monitoring tools: a website showing

each device’s most recent received signal strength indicator (RSSI),

battery voltage, and PM2.5; a PowerBI with scripts to visualize

battery issues; and automated daily emails indicating any devices

that stopped reporting in the previous 48 hours. We reached out to

the local maintenance team whenever these tools identified issues.

4.3 Sensor Evaluation and Calibration

Strategies for evaluating and improving accuracy are a necessary

component of any environmental sensing framework because con-

cerns about data quality have played a major role in impeding the

widespread use of low-cost air quality sensors [39, 43]. In partic-

ular, field validation studies show large errors due to interference

from meteorological parameters or other pollutants and to drift in

sensor readings over time [9, 26, 43, 53].This section describes our

approach to evaluate and improve sensor accuracy as part of the

Eclipse framework; results are discussed in Section 6.2 and Fig. 9.

4.3.1 Regulatory Co-Locations. The Eclipse network includes 3

devices co-located at each of 3 EPA regulatory stations (N = 9 de-

vices total). All three stations collect hourly data on PM2.5 from a

Beta Attenuation Monitor (BAM); two stations additionally collect

hourly O3 data from Teledyne monitors (method 087); and one

station reports hourly NO2 and SO2 data, collected from a Thermo-

Scientific Monitor (method 074) and a Teledyne Monitor (method

100), respectively [33]. Although PM2.5 and O3 data are available

in real time to EPA Air Now,1 NO2 and SO2 data are only avail-

able via the EPA Air Quality System (AQS) with an approximate

three-month lag for Quality Assurance/Quality Control (QA/QC)

processes.2 There is no regulatory monitor for CO in Chicago, so

this study did not evaluate the accuracy of the CO sensor.

4.3.2 Evaluation of Raw Data. We evaluated the precision and

accuracy of the raw data by calculating the Coefficient of Variation

(CV) and Normalized Root Mean Squared Error (NRMSE) following

EPA guidelines [62]. We assessed linearity with 𝑅2 as well as via
the intercept and slope from a simple linear regression [22, 23, 62].

4.3.3 Development of Calibration Models. We developed calibra-

tion models to adjust hourly sensor readings for potential sources of

interference and, for gas sensors, drift. We accounted for temporal

dependencies in the data, grouping data by day before allocating

the dataset into training (70%) and test sets (30 %). We used 5-fold

cross-validation, with data grouped by day, to implement and eval-

uate three models that have been shown to perform well for the

calibration of low-cost sensors: multivariate linear regression, ran-

dom forests, and gradient boosting [15, 43]. Following previous

research [8, 38, 63, 64], we evaluated models controlling for relative

humidity (RH) and temperature (T); we further assessed whether

using exponential transformations, b-splines, or interactions with

other variables improved the models’ fit. To address concerns re-

lated to interference by other pollutants, for each outcome, we

included raw measures of the other four pollutants measured as

model inputs. Finally, to account for bias and sensor drift, the cal-

ibration models for the gases also included a zero value offset: a

variable equal to the raw eclipse reading at the most recent time

for which EPA stations reported levels at or close to zero. These

offsets were updated over time as new readings were collected. Our

PM2.5 models were additionally fitted using the mass concentration

of particles in each size bin (PM0:1, PM1:2.5, PM2.5:10) or the count

of particles measured in each size bin (PM𝐶0:1, PM𝐶1:2.5, PM2.5:10).

Including T, gases other than CO, or alternative PM particulate size

bins or counts had no noticeable effect on model performance, so

these variables were ultimately omitted.

4.3.4 Evaluation of Generalizeability and Drift. The Eclipse deploy-

ment framework uses results from the EPA co-location to remotely

calibrate all other devices in the network. This approach assumes

that calibration functions developed for co-located devices will

generalize to other devices in other locations. To evaluate this as-

sumption, we conducted “Leave-One-Device-Out” Cross-Validation

(LODO CV), iteratively fitting models for all but one device and

evaluating predictions for the excluded device. We also conducted

“Leave-One-Station-Out” Cross-Validation (LOSO CV), iteratively

excluding all devices at a given EPA station, for both PM2.5 and

O3. This approach enables an evaluation the generalizability of our

calibration function to other devices at locations other than those

at which the function was parameterized, as is the case when the

model is used to calibrate data across the entire network of devices.

We further note that the association between sensor readings

and true values may drift over time. Although we did not consider

drift to be a major concern given the relatively short observation

1https://gispub.epa.gov/airnow/
2https://www.epa.gov/aqs
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period reported here, annual drift may be significant: the manu-

facturers’ stated estimates are ± 1.25 𝜇𝑔/𝑚3 per year for PM2 .5,
± 100 ppb per year for CO, ± 20 ppb per year for O3, NO2, and

SO2. We evaluated calibrated readings over periods when all three

EPA stations report values close to zero, effectively providing a

natural baseline for measurement. We also examined whether our

calibration models introduce outliers by regressing the daily aver-

age calibrated and uncalibrated values from each sensor on those

of all neighbors within 5km to evaluate whether any sensor pro-

duced notably different readings from its neighbors. We describe

the results of these analyses in Section 6.3.

4.4 Participatory Network Design.

Local stakeholders hold expertise that can and should inform moni-

toring initiatives in their environments [16].We shared our network

design with local environmental justice organizations to identify

areas missing coverage, and allocated a subset of devices (N = 20)

to additional locations they selected. After the deployment, we

facilitated recorded meetings, approved by our Institutional Re-

view Board, to share data and to obtain feedback and analytics

recommendations from each group. We also met regularly with

city stakeholders to share network design, data access, and website

details.

5 WEBSITE CREATION AND EVALUATION

To ensure that the data would be easily accessible to Chicago res-

idents, city officials, and community partners, we created a web-

site that visualizes air quality data in real time. (Data are also

available via an API3). Two access points to the website each

provide a different user view. First, the publicly accessible URL

(https://urban.microsoft.com/air/city/chicago) brings the user to a

website showing all of the Eclipse devices in Chicago with their

most recent PM2 .5 readings (Fig. 6, left panel). Second, scanning a
QR code posted at each bus station in the Eclipse network (Right

panel of Fig. 6) brings users to an index page that explains the net-

work and then to a website view that shows the prior week’s data

for that sensor. Both views allow users to select different locations

and to examine a week of historical data.

We collected two distinct measures of the interactive experi-

ence. First, users who accessed the site via a QR code received the

optional survey question “how does your air quality feel?”. We

included three possible responses (poor, fair, or good) to evaluate

differences between perceived and measured air quality. Second,

we collected anonymous telemetry data on website usage. We also

conducted interviews with 11 city and community stakeholders to

observe website usage and learn about additional or unmet analytic

needs. This work was reviewed and approved by our organization’s

Institutional Review Board.

6 RESULTS

6.1 Spatio-temporal Variation and Reliability

Fig. 7 shows that the network detected citywide events such as

wildfire plumes as well as hyperlocal pollution events. Over three

months, we collected 221,737 sensor-hours of complete data. The

3Details are available at https://urban.microsoft.com/air/api/chicago/0?l=null.

readings cover over 90% of expected sensor-hours of readings dur-

ing this period, excluding data from the week of installations.

6.1.1 Device Maintenance. Of the 115 total devices deployed across

the pilot, calibration, and main deployment stages, 44 devices re-

quired maintenance between the device’s initial deployment date

and September 30th. Key issues could be generally classified as

follows and as shown in Fig. 8:

• Installation issues (5 devices). The device was not properly

connected to the solar panel during the initial installation.

• Shelter issues (3 devices). Several problems stemmed from

the structure of the bus shelter: one shelter was destroyed in a

car accident, one shelter had routine maintenance scheduled,

and the third shelter stopped getting enough sunlight in

its downtown location after the end of the summer. These

devices were all moved to new shelters.

• Signal issues (12 devices). We identified signal issues when

devices disconnected from the LTE network, generally indi-

cating insufficient signal strength for communication.

• Device issues (24 devices). This category encompassed the

remaining hardware/software problems, such as overheated

batteries or defective SIM cards.

Installation and shelter issues were easily remedied by reconnect-

ing solar panels or moving devices to the closest shelter. For signal

and device issues, we used a “reset, relocate, replace" strategy. In

this strategy, the first debugging step was to reset the device using

a magnetic reset, avoiding the need for device removal. Of the 24

device issues, 14 were fixed with a reset, indicating a software issue.

If resetting did not fix the issue, the device was relocated to a new

bus shelter – a solution that resolved problems related to signal

strength. Finally, if the issue persisted, the device was replaced.

Most issues (29 devices, 66%) surfacedwithin the first threeweeks

following installation. The vast majority of issues were also easily

resolved by either resetting or relocating devices, highlighting the

critical importance of monitoring and maintenance. The low per-

device cost further enabled us to quickly replace faulty devices. As

a measure of longevity, we note that through the full deployment

as well as three months thereafter (July 2021 through December

2021), less than 10% of the total devices needed to be replaced.

6.1.2 Key Barriers for Urban IoT. Signal issues were common. Mov-

ing devices short distances (i.e. across the street) did not improve

connectivity, but relocating to more distant locations fixed the is-

sue in most cases. The distance to the closest cell tower was not

associated with the likelihood of disconnecting, nor was there spa-

tial clustering in the locations of the disconnected devices. These

findings suggest that cellular dead zones, rather than a lack of

coverage, may be impeding device connectivity. Urban form also

impeded solar harvesting: at one location, tall buildings blocked

incoming sunlight as the sun’s angle decreased in September. Sea-

sonal adapting of sampling and communitcation rates based on

harvested-energy availability may be necessary to accommodate

the unique limitations of urban settings. Finally, two devices were

replaced due to destruction: one device was destroyed in a car acci-

dent; the other device was stolen from a community-selected site

opposite a facility that the community had identified as a potential
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Figure 6: The air quality data is presented through a custom website (left). This website provides an interactive map view for

the PM2.5 data from every device as well as a line graph showing PM2.5 levels over the previous week. Users can access the

website by scanning the QR codes provided at augmented bus shelters with a mobile device (right).

source of air pollution. The community organization contacted the

research team, and the stolen device was rapidly replaced.

6.2 Sensor Evaluation and Calibration

This section reports on the evaluation of the raw and calibrated

Eclipse data in comparison with data from EPA monitoring stations.

Calibration data were available from May 12 to September 30, 2021.

During this period, regulatory monitors reported hourly PM2.5

concentrations from 0 to 243.5 𝜇g/m3, and hourly O3 concentrations
from 0 to 101 parts per billion (ppb). Hourly NO2 concentrations

over the reporting period ranged from 0.3 to 43.3 ppb and SO2

concentrations ranged from 0 to 11.9 ppb. Eclipse devices reported

hourly average relative humidity ranging from 12.2% to 95.7%.

6.2.1 Calibration Data Completeness. We cleaned the Eclipse data

using a three-step QA/QC process. First, to mitigate the effects

of outliers, gas data were winsorized (the top and bottom 0.1% of

readings were trimmed to improve robustness to outliers) [28] and

PM2.5 data were dropped if they were outside manufacturer spec-

ifications (PM2.5 = 0 or PM2.5 ≥ 1000, N = 0). Second, to exclude

malfunctioning sensors, hourly data were excluded from sensor-

hours with fewer than 9 readings (N = 509, 1.7%). Third, daily data

were excluded from sensor-days with fewer than 18 readings (N =

186,0.6%). One device malfunctioned and reported only intermit-

tently; it was excluded from the analysis and replaced with a new

device on July 15, resulting in the loss of 1,560 expected sensor-

hours of data (5.1%). After QA/QC, the co-located devices captured

92.6% of expected hourly observations (N = 28,417).

6.2.2 Calibration Model Selection. The final calibration models

were selected based on performance (evaluated with R2). Hourly

PM2.5 was modeled as a function of hourly Eclipse PM2.5 and CO

readings, with relative humidity adjusted for by including both

B-splines with four knots and allowing an interaction of a dummy

variable equal to 1 when RH > 88% with Eclipse PM2.5 – an adjust-

ment that is similar to the approaches used by Zusman et al. [64].

For gases, random forest models performed significantly better than

other models, consistent with prior research [15, 63]; final models

adjusted for temperature, relative humidity, zero offsets, and the

full array of other pollutant readings from the Eclipse device.

6.2.3 Accuracy and Precision. Fig. 9 shows the precision and accu-

racy of each sensor evaluated with raw data, cross-validated with

training data, or evaluated on the test set. Notably, the raw PM2.5

data are precise (CV = 11.8%) but inaccurate (NRMSE = 49.3%).

This level of error is similar to levels attained by other low-cost

sensors, such as PurpleAir sensors [4], and EPA notes that even

these relatively inaccurate data can be useful for education and

information [62]. However, calibration reduces NRMSE by approx-

imately 41.2% and reduces CV by 44.1%. The calibrated data thus

achieve levels of accuracy recommended for personal exposure

or hotspot identification and characterization (NRMSE < 0.3) [62].

Moreover, the test set RMSE (3.1) is comparable to the results of

EPA calibration models for PurpleAir sensors (RMSE = 3) [4].

The gas sensors perform more poorly in the field. Raw O3 is

imprecise (CV = 219%) and inaccurate (NRMSE = 113%). Raw NO2
and SO2 data are moderately precise (CV = 18.5% and CV = 33.5%,

respectively) but include errors larger than the average EPA read-

ings by a factor of 6 for NO2 and a factor of 43 for SO2. Calibration

contributes large reductions in error – NRMSE is reduced by 73.6%

for O3, 88.6% for NO2, and 98.8% for SO2 – improving precision to
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Figure 7: Fine Particulate Matter (PM2.5) during the three

month deployment. Green lines show raw hourly average

PM2.5 at each Eclipse Device; the red line indicates average

hourly values at EPA regulatory monitors. The top panel

highlights two major pollution events that were detected

by both EPA and the Eclipse sensors (July 4 and wildfires)

as well as hyperlocal events (gas torches [29]). The bottom

panel shows periodic spikes from 08/09 and 09/09 that were

only observed in Eclipse nodes closest to the source.

Figure 8: Breakdown of the 44 different device issue types

that arose fromdevice deployment until September 30, 2021.

levels consistent with guidelines for supplementary monitoring;

error remains relatively high, however, and the final NRMSE for

calibrated NO2 (0.71) exceeds that of recent results from the Breathe

London campaign (0.35) [49].

Both the calibrated PM2.5 and the calibrated O3 data exhibit

linear relationships, in the test set, with gold standard EPA data

Figure 9: Precision (top) and error (bottom) of Eclipse de-

vices in comparison with EPA data. Dashed lines indicate

the thresholds recommended by EPA for A) Education and

Information (0.5); B) Hotspot Identification and Characteri-

zation or Personal ExposureMonitoring (0.3); C) Supplemen-

tal Monitoring (0.2); and D) Regulatory Monitoring (0.1).

(slope = 0.75 and intercept = 2.57 for PM2.5; slope = 0.97 and in-

tercept = 0.23 for O3). Calibrated PM2.5 approaches the EPA’s rec-

ommended threshold for R2 (0.7) [22, 62] although calibrated O3

remains slightly lower (R2 = 0.66 in comparison with EPA recom-

mendation of 0.8). Measures are poorer for NO2 (R
2 = 0.29) and SO2

(R2 = 0.42), a result likely attributable to low signal-to-noise ratios

due to the generally low levels of ambient NO2 and SO2 at EPA

sites [43]. These results represent small but notable improvements

over early results from Array of Things (O3 R
2=0.59 and NO2 R

2 =

0.14) [50].

6.2.4 Model Generalizeability and Evidence of Drift. Three findings

suggest that the calibration models should generalize from the

co-located sensors to the network as a whole. First, the moderate

precision of raw data and high precision of calibrated data suggest

that calibration conducted with one sensor should generalize to

another device. Second, the consistency of LODO CV with 5-Fold

CV for NRMSE on the test set further supports the assumption

of generalizeability of calibration models to an excluded device.

Finally, LOSO CV shows that calibration models for PM2.5 and O3
perform as expected at excluded stations.
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Figure 10: There were over 800 unique website sessions over

the course of the three-month deployment, but less than 15%

of sessions accessed the website by scanning a QR code.

We do see evidence of drift for PM2.5, O3, and NO2 when compar-

ing night-time readings from our sensors and regulatory monitors

in September versus July (mean 1.6 𝜇g/m3, 13.2 ppb, and -12.4 ppb,

respectively); after calibration, these differences are attenuated but

still significant (PM2.5: 0.7 95% CI 0.4 - 1.0; O3: 2.3 95% CI 0.4 - 4.1;

NO2: 1.1 95% CI 1.0-1.2). Sensors generally produce similar daily

average readings to neighbors within 5km when using uncalibrated

and calibrated readings: we observe 𝑅2 > 0.5 for all but two sensors
for calibrated PM2.5 and for all sensors using calibrated O3. The

explanatory power of neighboring sensors was lower for calibrated

versus uncalibrated NO2 (𝑅
2 IQR 0.35 - 0.57 versus 0.68 - 0.93) and

SO2 (𝑅
2 IQR 0.42 - 0.60 versus 0.47 - 0.84) but, given the tighter

range of the calibrated data, these changes likely do not reflect the

introduction of outliers but rather support the ability of calibrated

models to capture true hyperlocal variation, which is known to be

larger for NO2 versus for PM2.5 or O3 [12].

6.3 Website Usage

The website offered a convenient and accessible platform for shar-

ing results. Over the first three months of the full deployment (July

through September, 2021), there were over 800 unique sessions.

However, Fig. 10 shows that access via QR codes was limited. Indi-

vidual QR codes were scanned a total of 113 times between July 1

and September 30th, representing less than 15% of unique sessions.

(To protect anonymity, this project did not use cookies; we thus

used the number of unique device-day combinations as a lower

bound for the number of sessions.) This result suggests that a QR

code is a barrier impeding data access; a solution may be to fur-

ther augment the sensors or bus shelters with visual or auditory

experiences – that is, removing the barrier between users and data

entirely. Local partners noted that awareness of the data (and the

sticker with the QR code) might also be limiting access, illustrating

the need for ongoing partnerships and communication with com-

munity groups. Nevertheless, for those people who did scan the

QR code and answer the user survey (N = 68), perceived and actual

air quality were correlated: we recorded significantly higher PM2.5

levels for locations and times where users reported “poor” or “fair”

air versus “good” air (p < 0.01).

7 DISCUSSION

This paper describes the development and implementation of a

large-scale, multi-pollutant IoT monitoring network across a major

North American city. We provide an end-to-end deployment frame-

work, including: (1) the design of a low-cost device that improves

upon previous research via its compact, aesthetic structure and its

modular sensing capability, making it easy to tailor to and deploy

in different cities; (2) a deployment strategy that piggybacks on

existing infrastructure to minimize installation and maintenance

effort and costs; (3) a concurrent co-location with EPA regulatory

monitors to improve accuracy via ongoing calibration; and (4) cloud

analytics including a website that provides data to the public in real

time. Although this application focused on air quality sensing, our

approach provides a replicable and scalable template that could be

adapted to other urban sensing networks to measure environmental

exposures such as noise or heat sensing.

To support similar initiatives, we reflect on key lessons learned

from our experience with a large-scale, real-world deployment and

share the ongoing needs gleaned from our network of community

and city stakeholders.

(1) Urban environments pose unique challenges. Tall buildings can

obstruct communications signals. To overcome cellular dead

zones, networks may need to incorporate repeaters or other

solutions to amplify device signals. Building shadows also

limit the locations where solar-powered devices can harvest

adequate energy without requiring trade-offs in sampling

frequency.

(2) Low-cost sensors are a complement, not a substitute, to regula-

tory networks. Ongoing co-locations are needed for calibra-

tion, and network designers should consider budgeting for a

regulatory-grade sensor when constructing similar networks

in Global South cities or other places that lack established

regulatory networks.

(3) Maintenance and monitoring are key.Minimizing hardware

costs, so that faulty or stolen devices could easily be replaced,

and ensuring that resetting and relocating were part of city

or partner employees’ existing daily procedures, was critical

to minimize data loss.

(4) Involve local stakeholders early and often. City and commu-

nity leaders have expertise such as knowledge of potential

polluters and insights on policy priorities; these stakeholders’

insights informed our selection of gas sensors and enabled

us to identify gaps in the network in advance of deploy-

ment in ways that made the resulting network more relevant

and usable for local priorities such as the development of a

cumulative hazards ordinance.

These lessons highlight opportunities for future work in low-

cost urban sensing networks. Research is needed that evaluates the

use of repeaters or to further develop new types of networks (e.g.

LoRaWan) for improving connectivity in built-up areas, but also

finds methods to minimize the additional installation and mainte-

nance costs. Further work should identify power-aware sampling

approaches that minimize data loss and maintain accuracy in places

where buildings or other elements of the urban form limit sunlight.

Further study is also needed to improve calibration models, both to

boost signal-to-noise ratios for electrochemical gas sensors and to

develop field calibration solutions that do not rely on regulatory

co-locations for implementation in resource-constrained settings.
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Finally, our work relied on random sampling and participatory net-

work design to ensure that our deployment could provide insights

both on differences between neighborhoods and on particular loca-

tions of local concern; however, there remains a need for studies to

evaluate the optimal number and density of sensors needed for a

given network. Because the solution to such a problem likely varies

based on city size and morphology, pollutant examined, and the

purpose of the monitoring network, such research requires ongoing

exploratory network deployments across global cities.
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