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Abstract—In recent years, the development of cloud systems
(e.g., Microsoft Azure) has grown explosively, and a variety of
software services have been deployed on cloud systems. As cloud
systems are required to serve customers on a 24/7 basis, high
service reliability is essential to them. To reduce the number
of the faults in cloud systems, many machine learning based
fault forecasting methods have been proposed. Those forecasting
methods aim to predict faults in advance so that proactive
actions can be taken to avoid negative impact, and they mainly
focus on a specific hardware (e.g., disk, memory and node).
In cloud systems, many fault forecasting tasks have similar
characteristics: 1) they are based on the temporal monitoring
data and 2) they usually suffer from similar challenges (e.g., the
extreme data imbalance problem). In this work, we present a
unified fault forecasting framework for cloud systems, dubbed
F3. In particular, F3 introduces an end-to-end pipeline for a
variety of fault forecasting tasks in cloud systems, and the
pipeline underlying F3 consists of several critical parts (i.e., data
processing, fault forecasting, prediction result interpretation and
action decision). In this way, when a new fault forecasting task
arrives, F3 can be easily and effectively utilized to handle the
new task with adaption. Besides, F3 is able to overcome other
challenges, including the extreme data imbalance problem, data
inconsistency between online and offline environments, as well as
model overfitting. More encouragingly, F3 has been successfully
applied to Microsoft Azure and has helped significantly reduce
the number of virtual machine interruptions.

I. INTRODUCTION

Faults are common in cloud systems, and they are the main
cause of service downtime. In practice, service interruption
can adversely affect customer experience and even cause
huge financial loss. For example, it is recognized that every
minute of downtime costs about $9,000 [1]. Since high ser-
vice reliability is critically important for cloud systems, fault
prediction have been well studied, e.g., disk failure prediction
[2], memory failure prediction [3] and node failure prediction
[4]. Each of them aims to deal with the fault of one specific
hardware in cloud systems. Actually, the fault prediction tasks
in cloud systems have similar characteristics. For instance, the
monitoring status data of each task is recorded every minute
or every hour; in another words, those fault prediction tasks
are based on temporal data, so each of them can be formulated
as a temporal information based binary classification problem,
which aims to predict whether the hardware will fail within
a given time. Besides, those fault forecasting tasks mainly
suffer from similar challenges, including the extreme data
imbalance problem, data inconsistency between online and
offline environments, as well as model overfitting.

Fig. 1. The overview of F3.

In this work, we present a fault forecasting framework for
cloud systems, dubbed F3. In particular, F3 is an unified, end-
to-end framework to handle faults in cloud systems, and we
will introduce it in the following sections.

II. F3: FAULT FORECASTING FRAMEWORK

A. Overview

The entire fault handling pipeline underlying our F3 frame-
work consists of four critical parts, including data processing,
fault forecasting, prediction result interpretation and action
decision. First, F3 collects the necessary data, including the
hardware’s own signal and its contextual signals. Then, F3
applies pre-processes the collected data. In particular, F3
utilizes feature engineering to select useful features, processes
the missing feature values, and transforms the processed
data into the format required by the fault forecasting model.
After that, the fault forecasting model underlying F3 takes
the processed features as its input, and outputs the fault
probability to indicate whether current hardware will occur
fault within a given period. The forecasting model underlying
F3 is a contextual-temporal attention based deep learning
model, which is able to fit various fault forecasting scenarios
in cloud systems. Finally, we identify those hardwares with
high fault probabilities and take mitigation actions (e.g., live
migrate and soft reboot) through reinforcement learning based
action decider.

B. Data Processing

In practice, the data processing part underlying F3 contains
data extraction, transformation and loading (ETL), as well
as an effective method to deal with the data imbalance
problem. For data ETL, we mainly focus on the data quality.
In the online environment, due to data delay and unstable



data transmission, data missing is common in production.
However, when we train a model using historical data in an
offline environment, those missing data may have been filled,
which means that the data quality in the offline environment
would be better than that in the online environment. The
difference of data quality between the online and offline
environments would result in the forecasting performance
degradation in online environment. To address this problem,
we have made efforts in several ways. For example, we equip
the data processing part with a data quality monitor, which
can compute the KL divergence between current online data
and historical offline data. Also, we employ data masking
mechanism to make the missing rate of offline data align with
online environment.

Besides, in the context of fault prediction for cloud systems,
since the number of healthy hardwares is much greater than
that of the failed ones, both traditional machine learning
approaches and deep learning approaches suffer from the
extreme data imbalance problem. In order to address this
problem, we employ an effective method called Temporal Pro-
gressive Sampling (TPS) [5] to generate more failed samples
to complement the data distribution of failed disks. Through
generating more failed samples by TPS, the ratio between the
number of healthy samples and that of failed samples would
achieve a better balance.

C. Fault Forecasting

F3 aims to predict the faults as early as possible. In practice,
if a system only takes mitigation actions after a fault is de-
tected, users may have already experienced unstable service as
the system runs in a degraded mode (although not completely
failed). However, predicting faults ahead would cause lower
precision than fault detection. To improve the prediction per-
formance, when identifying whether one hardware will fail, F3
not only uses that hardware’s own status information, but also
utilizes the contextual information, e.g., the status information
of neighboring hardwares and OS status information, which
have shown effectiveness in enhancing prediction [6].

We propose a novel deep learning based approach, named
Contextual-Temporal Attention Model (CTAM), including a
contextual information encoder, a temporal information en-
coder and a fully connected network. The contextual infor-
mation encoder employs positional-attention to calculate the
weight of each neighbor and the weighted sum of all neigh-
bors’ features, and then concatenate the OS status information
to represent contextual information. The temporal information
encoder consists of positional encoding, self-attention, and
location-based attention layers, which can better capture the
temporal information. The fully connected network is treated
as fusion layer to do binary classification. We use the binary
cross entropy as the loss function to train CTAM.

D. Prediction Result Interpretation

In production, prediction result interpretation is necessary,
which can help us find the root cause of the fault. Therefore,
in F3 we employ the Shapley additive explanation, which is

a game theoretic approach, to explain the outputs of the fore-
casting model. It would help us quantify the the contribution
of each feature to the output score. Besides, since the core
forecasting model CTAM is based on the attention mechanism,
we can easily identify the key time point that caused fault
through the weight score calculated by location-based attention
in the temporal information encoder underlying F3.

E. Action Decision

In order to mitigate a potential fault, the common practice
is ad-hoc, which means that developers use static policies that
prescribe actions based on the symptoms and domain knowl-
edge. Although this approach works for simple systems, it
does not work well for large-scale cloud systems. With multi-
tenancy, heterogeneous infrastructures and diverse customer
workloads, it is difficult to comprehensively categorize differ-
ent fault scenarios in cloud systems and determine effective
mitigation actions (or their hyper-parameters). Moreover, as
the cloud system is constantly evolving (e.g., software up-
dating, hardware updating and customer workload changing),
a number of mitigation action that worked well in the past
might no longer be optimal. As a result, developers keep
reactively adjusting the actions based on hind sights from
service incidents. Therefore, cloud systems urgently call for
smart and adaptive fault mitigation actions. In practice, for
a mitigation action, it is infeasible to know whether or not
the mitigation action is effective without trying it. Based on
this insight, inspired by the success of the Narya system [6],
F3 provides a reinforcement learning based decision engine to
explore the best mitigation action through A/B testing, which
would measure the benefits of each action and iteratively
optimize the decision engine through policy gradient.

III. APPLICATION IN PRACTICE

We have successfully applied F3 to Microsoft Azure and
Microsoft 365, in order to help improve the service reliability.
In our industrial practice, the prediction task runs as an hourly
job. After the deployment of F3, the number of virtual machine
interruptions has been significantly reduced.
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