
Argus: A Fully Transparent Incentive System for Anti-Piracy Campaigns

Xian Zhang∗, Xiaobing Guo†, Zixuan Zeng‡, Wenyan Liu§, Zhongxin Guo∗, Yang Chen∗, Shuo Chen∗,
Qiufeng Yin∗, Mao Yang∗

∗Microsoft Research Asia †Alibaba Group ‡Carnegie Mellon University
§Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

{zhxian, zhogu, yachen, shuochen, qfyin, maoyang}@microsoft.com
xiaobing.gxb@alibaba-inc.com zixuanze@andrew.cmu.edu wyliu@stu.ecnu.edu.cn

Abstract—Anti-piracy is fundamentally a procedure that
relies on collecting data from the open anonymous population,
so how to incentivize credible reporting is a question at the
center of the problem. Industrial alliances and companies are
running anti-piracy incentive campaigns, but their effectiveness
is publicly questioned due to the lack of transparency. We
believe that full transparency of a campaign is necessary to
truly incentivize people. It means that every role, e.g., content
owner, licensee of the content, or every person in the open
population, can understand the mechanism and be assured
about its execution without trusting any single role.

We see this as a distributed system problem. In this paper,
we present Argus, a fully transparent incentive system for anti-
piracy campaigns. The groundwork of Argus is to formulate
the objectives for fully transparent incentive mechanisms,
which securely and comprehensively consolidate the different
interests of all roles. These objectives form the core of the
Argus design, highlighted by our innovations about a Sybil-
proof incentive function, a commit-and-reveal scheme, and an
oblivious transfer scheme. In the implementation, we overcome
a set of unavoidable obstacles to ensure security despite full
transparency. Moreover, we effectively optimize several cryp-
tographic operations so that the cost for a piracy reporting is
reduced to an equivalent cost of sending about 14 ETH-transfer
transactions to run on the public Ethereum network, which
would otherwise correspond to thousands of transactions. With
the security and practicality of Argus, we hope real-world anti-
piracy campaigns will be truly effective by shifting to a fully
transparent incentive mechanism.

I. INTRODUCTION

Intellectual property is one of the most valuable assets for
present-day companies, especially in the software, movie,
gaming and digital publishing industries. Anti-piracy is
a long-lasting and heavily invested effort, because piracy
impacts the fundamental business models of these indus-
tries. Anti-piracy has the legal aspect and the technological
aspect. The former crucially depends on the latter to collect
credible and undeniable evidences, so that appropriate legal
actions can be taken against the infringers. For example, if
evidences prove that the number or the retail value of the
pirated copies exceeds a certain threshold during any 180-
day period, according to the Title 17 of the United States
Code, infringers shall be imprisoned for a maximum of 5

†‡§Work done during employment (Xiaobing Guo) and internship (Zix-
uan Zeng and Wenyan Liu) at Microsoft Research Asia.

years, or fined a maximum $250,000, or both [1].
Since piracy is fundamentally about disseminating copy-

righted contents outside legitimate distribution channels, a
central question about anti-piracy is how to incentivize peo-
ple in the open population to report pirated copies. Industrial
alliances (e.g., BSA [2], FACT [3], SIIA [4]) and companies
(e.g., Custos [5], Veredictum [6]) have offered big amounts
of bounties for piracy reporting. For example, the Business
Software Alliance (i.e., BSA [2]), whose members include
Apple, IBM, Microsoft, Symantec and many others, posted
a $1-million bounty for reporting. However, the approach is
not yet effective and is questioned/criticized by the public,
mainly due to the lack of transparency [7]. For example,
it is unclear whether the $1-million total bounty is simply
a marketing gimmick, as BSA had only rewarded a small
fraction of it in a long period of time. Also, BSA’s neutrality
is really problematic, as its members are copyright holders,
who may not represent the best interest of the informers
in the public. Moreover, it is unclear how BSA evaluates
the credibility of the piracy reports or whether they are
strong enough against an infringer’s repudiation. Obviously,
opaqueness about incentive, fairness, and credibility-criteria
seriously limit the effectiveness of these anti-piracy cam-
paigns.

We envision that a methodological progress for anti-piracy
campaigns can be made once they are formulated as a
decentralized computing problem. It is promising to advance
the status quo by distributed-system technologies, especially
those about incentive model (NF-Crowd [8], Arbitrum [9],
Hydra [10]), consensus mechanism (PBFT-Hyperledger [11],
Algorand [12]), secure messaging (Decentralized release
[13], Hyperpubsub [14], Zerocash [15], [16]) and Sybil
resistance (Arbitrum [9], TrueBit [17]). Toward the vision,
we have built a concrete system named Argus. The design
is based on a clear problem statement and a set of properties
as objectives, which are explained next.

Problem statement. We describe the anti-piracy problem
using the following terminology. An owner is the one who
owns the copyrighted content (e.g., a film maker). The
content is distributed through a controlled channel to a set
of licensees (e.g., cinemas and film critics). Some licensees

may leak their copies of the content, which leads to many
pirated copies in the open population. These licensees are
called the infringers. The anti-piracy system’s goal is to
incentivize people in the open population to report the
pirated copies to the system. We refer to these people as
the informers.

The challenge in the anti-piracy problem is that the
interests of these roles are different or even conflicting.
Specifically, the owner’s goal is to identify infringers and
assess the severity of the infringement. The owner wishes
that, by giving a financial incentive (e.g., a bounty) to the
open population, as many good-faith reports as possible
can be received. However, the motivation of informers is
not always aligned with the owner. It is only reasonable
to assume that informers are financially motivated [8], [9],
like black-hat security researchers motivated by bug bounties
[10]. Not surprisingly, an infringer’s best interest is to refute
the credibility of an evidence by arguing that it could be
fabricated by an informer or the owner.

Because of the conflict of interests, an unbiased solution
would require a contract that was agreed upon by all these
roles. But who should be the executor of the contract?
One possibility is to introduce an “executor” role into the
problem, as in the BSA situation described earlier, but
the role is really undesirable because its neutrality is hard
to be assured in reality (e.g., even big companies like
Facebook and Google had controversial practices that put
their neutrality in doubt [18]). Our work is to explore the
feasibility of an open contract of which the execution is fully
transparent to the public, without an additional role as the
trust basis.

The Argus system. In this paper, we present the design,
implementation and evaluation of the Argus system. To
the best of our knowledge, it is the first public anti-piracy
system which (1) does not hinge on any “trusted” role; (2)
treats every participant fairly (in particular, it is resilient to
greed and abuse, and resolves conclusively every foreseeable
conflict); and (3) is efficient and economically practical to
run on a public blockchain (e.g. it achieves an impressive
off-chain throughput of 82.6 data-trades per second per ma-
chine, and incurs only a negligible on-chain cost equivalent
to sending 14 ETH-transfer transactions per report on the
public Ethereum blockchain).

The four pillars in the Argus design are full transparency,
incentive, information hiding and optimization. These are
the main focuses to be elaborated on in this paper. It is
worth noting that they are not four problems to be solved
individually, but integral aspects in one coherent design. We
highlight some properties of Argus, which represent some
of our core innovations:

Incentivizing good-faith informers. A fundamental chal-
lenge is about the interest of informers, who are anonymous
people in the open population. The owner’s interest is to

collect good-faith reports so that the severity of the infringe-
ment can be accurately estimated. However, each individual
informer’s interest is to maximize his own reward. What pre-
vents an informer from creating multiple identities to make
multiple reports, so that he gets multiple rewards but causes
the owner’s estimation to be inflated? Note that an attack
using multiple forged identities is often referred to as the
Sybil attack [9], [17]. In Argus, the incentive model ensures
that the total reward of the informer and all his Sybils is less
than the reward he would get without forging the Sybils. In
other words, our model disincentivizes Sybil attacks, so the
informers’ interest is aligned with the owner’s. In addition,
our model is superior to previous models because of several
other properties for better incentives (Section III).

Information hiding for report submission. Because Argus
runs on a public ledger, its execution is fully transparent to
everybody [15], [16]. It is crucial that an informer is unable
to resubmit any report previously submitted by somebody
else. For this reason, Argus’ report submission protocol is
based on Multi-period Commitment Scheme, which gives
a “zero-knowledge” style guarantee, i.e., a submission only
proves that the informer has a copy of the content without
disclosing other information. Compared to traditional com-
mitment schemes, our scheme leaks no useful information
even in the reveal phase while avoiding the heavy cost of
zero-knowledge proof (Section IV).

Strong accusation against infringer. An owner’s accu-
sation against a licensee is always subject to an inherent
paradox – since both have the leaked copy, why can’t the
licensee refute the accusation by arguing that the infringer
may be the owner himself? We believe that the only solution
to circumvent this paradox is to resort to a probabilistic
argument. Argus uses Oblivious Transfer (OT) to ensure that
the false accusation is bounded by a probability φ, which can
be arbitrarily small. Hence, the accusation is very hard to
refute. Moreover, we improve the efficiency of leveraging
OT, which carefully considers the scalability limitation of
distributed ledgers [11], [12] (Section V).

Contributions. Our contributions are as follows:

• We formulate anti-piracy as a problem about consolidating
different interests of multiple roles, including informers
in the open population. We also clearly state the design
objectives of anti-piracy solutions, which give a foundation
for this work and future research.
• The Argus contract is fully transparent — no role is consid-

ered as the trust base. This is a significant advancement.
In addition, our approach is systematic. Because of the
clarity on the design objectives, we are able to deduce the
general form of the incentive model and identify all the
unavoidable technical challenges. Because these challenges
are general, solving them in Argus will have a far-reaching
impact in the broad problem space.
• To achieve full transparency and a number of novel ob-

jectives, Argus needs to implement sophisticated crypto-
graphic operations as contract code, rather than native
code. Optimizations are a vital effort in the design of
Argus. We show that, if existing cryptographic opera-
tions were adopted without optimization, the cost would
equal sending thousands of transactions (as opposed to
11 transactions in Argus), which would make the solution
economically unreasonable.

Roadmap. The rest of the paper is organized as follows.
Section II gives an overview of Argus to address how
we leverage a transparent contract to achieve the mutual
trust and fairness between owner, licensees and informers,
along with related primitives. In Section III, Section IV and
Section V, we further figure out that those primitives should
be optimized to achieve four pillars with better practicality.
Then, we brief our implementation with optimizations in
Section VI. In Section VII, the security analysis and perfor-
mance evaluation of Argus are provided, followed by related
work in Section VIII and a conclusion. Due to the page
limit, we move details of mathematical deduction, protocol
implementations and security analysis to an extended version
of this paper [19].

II. OVERVIEW OF ARGUS

In this section, we give an overview of the anti-piracy
solution and Argus contract. We assume familiarity with
contract [20] and cryptographic primitives such as oblivious
transfer [21], zero-knowledge proof [22] and commitment
scheme [23].
A. The Argus Contract

Figure 1 illustrates the important elements in the Argus
contract and how different roles interact with it. An instance
of the Argus contract is created by the owner of a copy-
righted content. We denote M as the number of licensees
and list the data fields used in the Argus system in Table I.

When the owner distributes the content to the licensees,
she generates a large number of watermarked copies, e.g.,
10000 ∗M copies. In other words, each copy is embedded
with a unique secret string. In this work, we assume that no-
body can remove the watermark from a copy without badly
deteriorating the content quality. Despite this assumption, we
will describe in Section II-B our insights about improving
the robustness of watermark.

A licensee retrieves a copy from the owner through
oblivious transfer (OT), which ensures: (1) the owner does

Table I: Data fields used in the Argus system

Data fields Description

LicenseeStatus[M]
To store the status of every licensee. Each
status belongs to set {NORMAL, ACCUSED,
GUILTY, EXONERATED}

OTEList[M]
To store the OTEvidence of every OT between
owner and licensee

ReportNumber[M]
To indicate the number of leaked copies from
every licensee by counting informers’ reports

Report()

Appeal()CommitEvidence()

Reward()

SetGuilty()

Ledger’s

Clock

Owner

Licensee1

LicenseeM

…

OT

InformerX

InformerY

InformerZ
…

Argus

Contract

Piracy Leaks

OTEvidence1

ProofOfLeakage

OT

OT

OTEvidenceM

….

Reward

OTRecord

Data

“Open Population”

1 2

3
4

5 6

Figure 1: Overview of the Argus system.

not know which of the watermarked copies is retrieved; (2)
the licensee knows nothing about other copies except the
retrieved one. The OT procedure is performed by private
computations on the owner side and the licensee side.
One of our important features added to the existing OT
protocol is to produce a data record called OTRecord on
the licensee side, which is needed in case the licensee
appeals against an accusation. In addition, the OT scheme
produces another piece of data called OTEvidence, which
opaquely represents the existence of the current OT pro-
cedure. Every OTEvidence is submitted to the contract
via function CommitEvidence(OTEvidence). The set
OTEList[M] defined in the contract stores all OTEvi-
dences.

Suppose a copy of the content is leaked out into the
open population. In Figure 1, we assume that informerX
gets the copy and wants to report. The informer should
first extract the secret string from the watermarked copy.
The reporting is to fulfill an information-hiding procedure
to show informer’s acquaintance of the secret string, which is
via function Report(ProofOfLeakage) of the contract
and increases an element of ReportNumber[M]. Function
Report() can be either implemented via commitment
scheme or zero knowledge proof. Because Report() is
an information-hiding procedure, other people in the pop-
ulation cannot learn anything about the watermarked copy
reported by informerX , thus cannot report the same copy
unless they actually have it. Nevertheless, the information-
hiding submission does not prevent informerX from creating
multiple Sybil identities to submit multiple reports about
one watermarked copy. Function Reward() of the Argus
contract implements an incentive model that causes the total
reward obtained through the Sybil attack to be less than
what the informer would normally receive. We will explain
the incentive model in Section III. Function Reward() is
periodically invoked according to the ledger’s clock so that
informers can get timely rewards.

Once a report is received by the contract, the re-
ported copy will reveal which licensee is accused and
update LicenseeStatus[M]. The status of the licensee

is changed from NORMAL to ACCUSED. The licensee
has a time period for appeal. If he does not call func-
tion Appeal(OTRecord) within the period, function
SetGuilty(), also invoked by the owner according to
the ledger’s clock, changes the licensee’s status to GUILTY.
If he calls appeal(OTRecord) within the period, the
OTRecord will reveal which watermarked copy the licensee
received via OT. If it is the same copy revealed by the report,
the licensee’s status is changed to GUILTY. Otherwise,
it is changed to EXONERATED. Once exonerated, this
licensee is exonerated for this copyrighted content, because
the identity of his copy has been disclosed.

There are different ways to implement the Argus contract,
but every solution should include three elements: (1) an
incentive model, (2) an information-hiding submission
scheme, and (3) an OT scheme. Before presenting these
elements in the following sections, we introduce the trust
assumptions of Argus below.

B. Trust Assumptions

We make three trust assumptions for the design and
evaluation of Argus.

• Robust watermarking. We assume watermarking can-
not be compromised without considerable degradation of
the content’s value. Existing work has shown success of
watermark robustness in certain domains. For example,
the image watermark can protect against attacks such
as splitting, sampling, filtering, image compression [24].
Although novel attacks such as oracle attack [25] and
collusion attack [26] emerge, watermark techniques keep
evolving with new countermeasures [27], [28]. We see this
as a separate research concern.
• Financially motivated informers. We assume that a fi-

nancial reward is the only motivation for every informer
[9], [17]. This implies that, if an action results in a loss of
reward, no informer will take action.
• Trusted blockchain. We assume the trustworthiness of the

blockchain. There are technologies to enhance security at
the ledger layer [29] and the smart contract layer [10],
[30]. We also see this as a topic complementary to Argus.

III. INCENTIVE MODEL

As mentioned in the introduction, an incentive-compatible
mechanism is required in Argus. It is a challenge because of
the open population — the owner does not know the real-
life identities of informers. The interests of the owner and
the informers are different: the owner wants to receive good-
faith reports, and the informers (both honest ones and greedy
ones) want to get financial rewards. The goal of the incentive
model is to consolidate these different interests. The design
of our incentive model is inspired by some models in the
literature [9], [17]. However, because we have the target
problem clearly formulated (as in the introduction), we are
able to deduce a general form of the incentive model. Our

approach is superior for three reasons: (1) it is unclear how
the incentive models in the literature were obtained. They
seem more of a “creative art” than a result of a disciplined
design; (2) our general form encompasses all models that
satisfy the incentive objectives of all roles. The existing mod-
els in the literature are simplified special cases of our general
form; (3) our model ensures extra desirable properties, such
as timely payout and guaranteed amount, which we see as
very important aspects of informers’ incentive.

A. The Objectives of Incentive Models

Before introducing our general-form model, it is worth
making explicit the objectives of a desirable incentive
model.

• First, the model must disincentivize Sybil attacks. It is
easy to understand that, due to the open population, any
informer can create multiple identities (i.e., Sybils), so it is
not possible for the owner to detect Sybil attacks. Hence,
an objective of the incentive model is to disincentivize
them, so that the total reward of all Sybils of a duplicate
report is lower than the reward of a single unique report.
With this property, an informer (who is assumed to be
financially motivated) will not inflate the owner’s counts
in ReportNumber[].
• Second, it is the owner’s interest to incentivize timely re-

ports, so an informer reporting earlier should be rewarded
more than another one reporting later. Essentially, under
the incentive model, informers are competitors racing
against time. Nothing can be gained by delaying a report.
• Third, it is the informers’ interest to get timely payouts and

guaranteed amounts. In all existing models, informers need
to wait until the end of the campaign to know the amounts
and get the rewards. We believe that a good incentive
should reward an informer shortly after the report is
confirmed valid. The time to reward should be independent
of the campaign’s duration.

B. Deducing the Reward Function from the Objectives

We formulate the incentive model as a reward function
B(Ii, n), which denotes the bounty value for the i-th suc-
cessful informer Ii (informers are chronologically ordered)
when the total number of informers is n. Previous proposals
have given a special form of B(Ii, n) as c ∗ 2−n+1 (c is
a constant denoting the total bounty value) under certain
constraints [9], but they have not formalized the properties
of B(Ii, n) in a general form. For example, the work
[9] only gives the special form with the assumption that
B(Ii, n) = B(Ij , n)(i 6= j), i.e., every informer’s reward is
equal.

In this paper, we go through the process of deducing the
reward function from the objectives. The mathematical def-
initions of the properties corresponding to aforementioned
objectives are as follows:

• Sybil-proofness. Arbitrary subset of informers get a re-

duced total reward if the total number of submissions in-
creases:

∑
i∈Sm

B(Ii,m) ≥
∑

i∈Sk
B(Ii, k), where m ≤

k are two positive integers and Sm ⊆ Sk are two arbitrary
subsets of {1, . . . ,m} and {1, . . . , k}, respectively.
• Order-awareness. The earlier the informer reports, the

more bounty he/she obtains: B(Ii, n) ≥ B(Ii+1, n).
• Timely payout. Each informer is rewarded in an amortized

style: B(Ii, n) = B1(i) + B2(n), where B1(i) is only
related to i, so the reward can be paid immediately.
• Guaranteed amount. An informer, upon a confirmed

reporting, is guaranteed a minimal reward amount ci > 0,
i.e., his/her total reward will not be under ci as the number
of informers increases: limn→∞B(Ii, n) ≥ ci.
Note that except for the first property, the others are not

achieved by reward function B(Ii, n) = c∗2−n+1 from pre-
vious work. We ascribe the limitations of previous incentive
models to the lack of a general-form deduction, which is
addressed in our work. Due to the page limit, we omit the
mathematical deduction for the general form and the process
of enriching properties (details in the Appendix A of [19]).
We only highlight the final expression of B(Ii, n), which
can be formalized as Theorem III.1:

Theorem III.1 (The expression of B(Ii, n)). To satisfy
Sybil-proofness, Order-awareness, Timely Payout and Guar-
anteed Amount, B(Ii, n) should satisfy the equation:

B(Ii, n) = −ξi +

n∑
j=i+1

ξj + c ∗ 2−n+1 (1)

where ξi+1 =

i∑
j=1

2j−i ∗∆j ,

∞∑
j=1

2j ∗∆j ≤ c, {∆i} ∈ R∗≥0

C. Plugging in real-world numbers

In the introduction, we describe the $1-million campaign
opaquely run by the BSA [7]. After a long period of
time, only a small percentage of the total amount was
paid out to informers. This is obviously a low incentive to
the public. We now analyze the outcome if Argus is used
for the $1-million campaign. We instantiate the parameters
∆i = 2−i ∗ c/l (for i = 1, . . . , l) or 0 (for i > l) in
Theorem III.1 where l can be an arbitrary positive integer.
For simplicity, we set l = 20 in this work, which is a typical
boundary to classify copyright infringement [1]. With this
setting, we compare Argus with previous work [9], [17],
which are also Sybil-proof models.

Figure 2 shows the reward amount (in the log scale) that
each of the n informers will get in our incentive model
(the upper diagram) and the previous model (the lower
diagram). Every line in the lower diagram is horizontal,
because the previous model does not have order-awareness.
As a result, all informers get the same reward, and the reward
is exponentially decreased with n, in order to ensure Sybil-
proofness. There is no guaranteed amount when a report is
confirmed. When the campaign ends, even an early informer

may find the reward almost zero if there are many later
informers. It is a problematic model to incentivize people.

The upper diagram shows our model. The line of n =∞
corresponds to the guaranteed amounts for the informers.
Our lines are also affected by n, but not as drastically as in
the previous work. As n increases, the lines become closer
to the n = ∞ line (note that the n=100 line is visually
overlapped with it), suggesting that every existing informer
loses some reward when a new informer joins. The design
of our reward function ensures that the loss of reward is big
enough so that no informer wants to fake a Sybil identity to
get another reward.

Compared to the (problematic) incentive shown in the
lower diagram of Figure 2, the reward function of Argus
is superior in all objectives we set at the beginning of this
section.

1 2 3 4 5

Total Reward 1st Informer 2nd Informer3rd Informer4th Informer5th InformerPrevious Work

5 0.89453125 0.66796875 0.16796875 0.04296875 0.01171875 0.00390625 0.0625

10 0.888027191 0.666667938 0.16666794 0.04166794 0.01041794 0.00260544 0.001953125

100 0.888020833 0.666666667 0.16666667 0.04166667 0.01041667 0.00260417 1.57772E-30

1000 0.888020833 0.666666667 0.16666667 0.04166667 0.01041667 0.00260417 1.8665E-301

10000 0.888020833 0.666666667 0.16666667 0.04166667 0.01041667 0.00260417 0

3009.998927

1.00247455

Total Reward 1st Informer 2nd Informer3rd Informer4th Informer5th InformerPrevious Work

n = 10 888.0271912 666.6679382 166.667938 41.6679382 10.4179382 2.60543823 1.953125

n = 100 888.0208333 666.6666667 166.666667 41.6666667 10.4166667 2.60416667 1.57772E-27

n = 1000 888.0208333 666.6666667 166.666667 41.6666667 10.4166667 2.60416667 1.8665E-298

n = 10000 888.0208333 666.6666667 166.666667 41.6666667 10.4166667 2.60416667 1.8665E-298

Total Reward 1st Informer 2nd Informer3rd Informer4th Informer5th InformerPrevious Work

n = 5 894.53125 667.96875 167.96875 42.96875 11.71875 3.90625 62.5

n = 10 888.0271912 666.6679382 166.667938 41.6679382 10.4179382 2.60543823 1.953125

n = 100 888.0208333 666.6666667 166.666667 41.6666667 10.4166667 2.60416667 1.57772E-27

n = 1000 888.0208333 666.6666667 166.666667 41.6666667 10.4166667 2.60416667 1.8665E-298

n = 10000 888.0208333 666.6666667 166.666667 41.6666667 10.4166667 2.60416667 1.8665E-298

Our work Previous Work
5

10
20 n = 5 n = 10 n = 20 n = 100

100 Our work 412500.596 208593.787 200007.634 199998.8409

Previous Work 312500 19531.25 38.1469727 3.15544E-23

n=100 50000 25000 12500 6250 3125 1562.5 781.25 390.625 195.3125 97.65625 48.828125 24.4140625 12.2070313

n=20 50000.47684 25000.47684 12500.4768 6250.47684 3125.47684 1562.97684 781.7268372 391.101837 195.789337 98.1330872 49.3049622 24.8908997 12.6838684

1 2 3 4 5 6 7 8 9 10 11 12 13

n = 5 143750.1192 93750.11921 68750.1192 56250.1192 50000.1192

n = 10 100878.91 50878.90998 25878.91 13378.91 7128.90998 4003.90998 2441.409975 1660.15998 1269.53498 1074.22248

n = 20 100000.4292 50000.42915 25000.4291 12500.4291 6250.42913 3125.42911 1562.929065 781.678977 391.053802 195.740951 98.084001 49.2544857 24.8376782

n = 50 99999.90463 49999.90463 24999.9046 12499.9046 6249.90463 3124.90463 1562.404633 781.154633 390.529633 195.217133 97.5608826 48.7327576 24.3186951

n = 100(≈∞)99999.95232 49999.95232 24999.9523 12499.9523 6249.95232 3124.95232 1562.452316 781.202315 390.577313 195.26481 97.6085546 48.780418 24.3663321

n = 5 62500 62500 62500 62500 62500

n = 10 1953.125 1953.125 1953.125 1953.125 1953.125 1953.125 1953.125 1953.125 1953.125 1953.125

n = 20 1.907348633 1.907348633 1.90734863 1.90734863 1.90734863 1.90734863 1.907348633 1.90734863 1.90734863 1.90734863 1.90734863 1.90734863 1.90734863

n = 50 1.77636E-09 1.77636E-09 1.7764E-09 1.7764E-09 1.7764E-09 1.7764E-09 1.77636E-09 1.7764E-09 1.7764E-09 1.7764E-09 1.7764E-09 1.7764E-09 1.7764E-09

n = 100 1.57772E-24 1.57772E-24 1.5777E-24 1.5777E-24 1.5777E-24 1.5777E-24 1.57772E-24 1.5777E-24 1.5777E-24 1.5777E-24 1.5777E-24 1.5777E-24 1.5777E-24

n = 5

n = 10

n = 20

n = 50

n = 100

82.5

0.008

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

R
ew

ar
d

Fu
nc

tio
n

B
(I

i ,
n)

1st Informer 2nd Informer 3rd Informer

£0.10
£0.20
£0.40
£0.80
£1.60
£3.20
£6.40

£12.80
£25.60
£51.20

£102.40
£204.80
£409.60
£819.20

R
ew

ar
d

Fu
nc

tio
n

B
(I

i ,
n)

1st Informer 2nd Informer 3rd Informer

1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+06

1 3 5 7 9 11 13 15 17 19
The Index of Informers (i)

n = 5
n = 10
n = 20
n = 100(≈∞)

1.0E-24
1.0E-21
1.0E-18
1.0E-15
1.0E-12
1.0E-09
1.0E-06
1.0E-03
1.0E+00
1.0E+03
1.0E+06

n = 5
n = 10
n = 20
n = 100

(b)

(a)

R
ew

ar
d

Fu
nc

tio
n

B
(i

, n
) (

c
=

$1
,0

00
,0

00
)

Figure 2: The reward of first twenty informers in (a)
our incentive model and (b) previous incentive model [9],
[17], respectively (when total number of informers n =
5, 10, 20, 100).

IV. INFORMATION HIDING FOR REPORT SUBMISSION

As mentioned in the introduction, full transparency is
a major advancement of Argus. To achieve it, our design
requires an effective strategy for information hiding. Specif-
ically for the procedure of report submission, Argus needs
to ensure that, although everybody in the open population
can see the interactions between an informer and the Argus
contract, nobody other than the informer can replay the
interactions effectively. (Note that the informer himself will
not replay due to the Sybil-proof property of the incentive
model discussed in Section III.)

A. The objectives of the information-hiding submission

Before designing the information-hiding submission pro-
cedure, we first consider the interests of different roles, and
specify the objectives to be achieved:

• First, the owner’s interest is to get an accurate count of the
number of piracy copies. The count should not be inflated,
meaning that no replay attack as described above should
be possible.
• Second, the owner wants to run a bounty campaign for a

long duration, e.g., 3-6 months, so that the magnitude of
the piracy infringement can be evaluated more thoroughly.
However, an informer’s interest is to get a timely payout
after a report is submitted successfully.
• Third, both the owner and the informers want the sub-

mission to be concluded in a short period of time. Also,
the submission should be efficient. Since Argus runs on a
public blockchain, the gas consumption of the procedure
is required to be very low.

B. Previous proposals and their limitations

Previous work have proposed commitment scheme [10],
[23] and zero-knowledge proof [9], [31] to eliminate the
replay attack. However, in Argus’s scenarios, they may either
conflict with the interests of owner/informer or encounter
serious performance problems:

• In a traditional commitment scheme, the informer submits
a commitment of the report (e.g., Hash) in the first period
(“commitment phase”) and reveals the report during a
following period (“reveal phase”). Informers’ reports are
not accepted in the second phase unless a corresponding
commitment exists in the first phase. Therefore, the replay
attack cannot succeed since the attacker cannot generate
valid commitments in the first phase. However, setting the
length of the commitment phase has a dilemma because
of the different interests of the owner and the informers
(definitions in Section IV-A): (1) if the phase is too long,
it is not timely for the owner to validate infringers and
take subsequent actions, and the informer needs to wait
for a long time to get the bounty; (2) if it is too short, the
number of the reported pirated copies cannot accurately
reflect the severity of the infringement.
• In a Zero-Knowledge Proof (ZKP) scheme, the informer

can generate a proof to show the possession of a pirated
copy. In the ZKP scheme, the bounty can be paid as
soon as the contract verifies the proof, which is what we
desire. However, the ZKP scheme has a prohibitively high
performance overhead and gas cost (see Section VII).

C. Multi-period Commitment Scheme

To achieve the objectives with good performance, we pro-
pose a novel technique called multi-period commitment. The
scheme can be considered as an extension of the traditional
commitment scheme, but has a good performance. Mean-
while, it has the advantage similar to the zero-knowledge
proof — the owner can still set a long bounty campaign
period, but confirm every report almost in real time.

Our scheme allows multiple commit-and-reveal phases so
that there are sufficient time windows for the informers to

submit piracy reports. For a desired length of collection
period T , the owner can divide T into K sub-periods
{T1, . . . , TK}. Each sub-period Ti (1 < i < K) is the
i-th commitment phase and also the (i− 1)-th reveal phase.
In other words, an informer can claim a bounty in Ti+1 (i-th
reveal phase) by revealing if the corresponding commitment
is submitted in Ti (i-th commitment phase).

However, dividing into periods introduces a problem:
informers can replay the process of commit-reveal in sub-
periods Ti and Ti+1 to later sub-periods Tj and Tj+1 (j >
i). To defend again this kind of replay attack, we introduce
a time stamp into the formula of commitment and process
of verification: if we denote the piracy report as X and
hash function as H, and there is a predefined list L[·] =
{H(H(X||1)), . . . ,H(H(X||K))} in the contract. Then, the
commitment cm submitted in Ti can be H(H(X||i)||n)
where “||” denotes concatenation and “n” denotes a ran-
domized nonce. In corresponding reveal phase Ti+1, rv =
H(X||i) and n should be submitted to the contract for
verification that H(rv||n) = cm and H(rv) = L[i]. By
this reinforcement, the aforementioned replay attack cannot
pass the verification “H(rv) = L[j]” in later sub-periods
Tj+1 (j > i).

The multi-period commitment scheme achieves the objec-
tives given in Section IV-A:

• The multi-period commitment scheme foils the replay
attack, thus meets the first objective.
• The multi-period commitment scheme supports an arbi-

trary length of collection period T , thus meets the second
objective.
• With a sufficiently large K, each sub-period can be short

enough. Thus, informers can reveal reports and get their
rewards within a short interval after commitments. The
owner gets quick confirmations of the infringers. This
achieves the third objective.

V. GUARDING AGAINST INFRINGER’S REPUDIATION

No role in Argus, even the owner, is assumed trusted. This
presents a challenge: when the owner accuses a licensee
of leaking a copy, the licensee can refute the accusation
by arguing that the copy could have been leaked out by
the owner himself. To resolve the dispute, Argus must
make the evidence of the accusation so convincing that
the probability of the accused infringer being an innocent
licensee is extremely small. Hence, a true infringer’s attempt
to repudiate will be unsubstantiated.

To approach the objective, we use a 1-out-of-N Oblivious
Transfer (OT) [21] protocol to achieve this goal. The 1-
out-of-N OT protocols were used for data sharing [32],
[33]: the owner generates N different copies of data (e.g.
via watermarking) and plays OT protocol with the licensee.
Then, the licensee can obtain only one copy without owner’s
knowing which one. Thus, owner can infer the chosen
version with a pirated copy. When there is a dispute between

a licensee and the owner, they can submit messages occurred
in OT to a trusted judge for resolving disputes. There is
only a 1

N probability that the successfully accused licensee
is innocent.

A goal of Argus is not to have any trusted role, so the
Argus contract has to implement the functionalities of the
“judge” on a public blockchain. However, this may introduce
a big bandwidth overhead: messages incurred in OT are
proportional to O(N). To achieve a desirable security level
with a large N (e.g. 10, 000), existing solutions introduce
enormous on-chain overhead (e.g. bandwidth, execution,
storage).

To greatly reduce the overhead, we introduce O(1)-Appeal
which only incurs O(1) on-chain messages and operations.
O(1)-Appeal has two properties:

• Obliviousness. It is the property of 1-out-of-N OT [21]:
(1) the licensee can arbitrarily choose and obtain 1 data
from N candidate data but cannot know the unchosen data;
(2) the owner does not know which data are chosen by the
licensee. This property guarantees that the probability to
successfully incriminate an innocent licensee is 1

N and thus
an infringer is hard to deny accusation with a large N (e.g.
10000).
• Non-repudiation. When the licensee is accused, the li-

censee can appeal by showing committed records. When
there is a dispute, neither the owner nor licensees can deny
which copy the licensee had chosen in the previous OT
protocol. The contract is able to give a conclusive answer.

A. Constant-Size-OTRecord Appeal (O(1)-Appeal)

The protocol of O(1)-Appeal is shown in Figure 3, which
includes four sub-protocols: Initialize, GenerateEvidence,
TransferData, Appeal. The first three sub-protocols are very
similar1 to those in [21], while the fourth sub-protocol is
our new invention that incurs only an O(1) on-chain cost.
Unlike in Section II, the owner does not have to commit
OTEvidence (i.e. R) to the contract. Instead, R can be signed
and kept locally. For simplicity, we assume that the owner
and the licensee do not abort during the procedure (e.g. this
can be ensured by using the state channel technology [34]
or the fair exchange protocol [35]).

Different from previous work that utilizes transferred
vectors (e.g. {E1, . . . , EN}) in TransferData for dispute
resolving, we find that utilizing one transferred variable R
in GenerateEvidence can be of the same effect. Our key
discovery is that R has a one-to-one correspondence to
the licensee’s chosen index l (see Theorem A.6 in [19]).
Therefore, R can be used as the evidence to indicate the
licensee’s chosen index in the dispute-resolving stage (i.e.
the appeal stage).

As shown in Appeal in Figure 3, if R is signed by
owner/licensee and indicates that the corresponding index

1The only difference is that we add a step (step 2) in GenerateEvidence.

OT with O(1)-Appeal
• Public parameters: field Zq , generator G ∈ G
• Owner input: N versions of data {Di}(i = 1, . . . , N), Owner’s

private key skO

• Licensee input: Licensee’s private key skL

• sub-protocols:
− OT.Initialize:
1) Owner randomly generates and signs N elements
{P1, . . . , PN} ∈ GN and samples a random number s ∈ Zq .

2) Owner publishes as = s · G, {Pi} and keeps {P ′i} ← {s ·
Pi}(i = 1, . . . , N) locally.

3) Licensee samples and keeps two secrets r ∈ Zq , l ∈ [N].
− OT.GenerateEvidence:
1) Licensee signs and sends R = Pl − r ·G to Owner.
2) Owner signs and sends SigskO (SigskL (R)) to Licensee.
− OT.TransferData:
1) Owner computes R′ ← s ·R, Qi ← P ′i −R′ and sends {Ei} ←
{H(Qi, as, i)⊕Di}(i = 1, . . . , N) to Licensee.

2) Licensee gets Dl = El ⊕H(r · as, as, l).
− Appeal:
1) Licensee being accused of leaking Dlx can send a tuple (Sig∗(R),

r, l) to contract C (i.e., judge), where Sig∗(R) is signed by both
Owner and Licensee.

2) C verifies if Pl−r ·G = R and l 6= lx. If yes, Licensee is falsely
accused. Otherwise, the appeal fails.

Figure 3: Licensee gets one data Dl from N data
{D1, . . . , DN} from Owner via O(1)-Appeal with
OTEvidence = R and OTRecord = (r, l).

l differs from accused index lx, we can conclude that the
licensee is wrongly accused. We prove the Obliviousness
and Non-repudiation of OT with O(1)-Appeal in Appendix
B of [19].

Though O(1)-Appeal has greatly reduced the on-chain
overhead of the appeal stage, there is still a considerable
cost of the off-chain bandwidth in TransferData. To reduce
the off-chain bandwidth overhead, in Section VI, we will
further leverage a PIR protocol [36] and slightly adapt O(1)-
Appeal, which guarantees that the size of the data transferred
is about the size of data Dl. In addition, we will show how
to integrate O(1)-Appeal with the information-hiding report
scheme in Appendix C of [19].

VI. IMPLEMENTING THE ARGUS SYSTEM

The previous three sections explain the main objectives
and the core ideas of Argus. It is important to recognize that
the objectives are not separate problems to solve individu-
ally. The Argus contract needs to achieve the objectives al-
together in a coherent design. Due to the page limit, we only
provide a sketch of our construction and implementation
here. The holistic view and the implementation details of the
Argus system are provided in Appendix C and Appendix D
of [19], respectively.

With corresponding watermark algorithms, current Argus
system supports three data types: image [24], audio [37]
and software [38]. A Merkle tree structure is leveraged to
reduce the on-chain storage: for any list of data, only the
Merkle root of the list is uploaded to the blockchain. We
also leverage Private Information Retrieval (PIR) [36] to

Table II: Interests/threats of participants in Argus

Participants Interest if honest Threat if malicious

Owner
To discover infringers and
tally the number of copies

To falsely accuse
innocent licensees

Licensee
To win in an appeal
because of innocence

To appeal despite
the guilt

Informer
To submit a honest

report once

To submit a fake report,
steal a report or submit a

valid report multiple times.

reduce the bandwidth overhead of downloading data for the
licensees.

VII. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION

In this section, we first analyze the security of Argus
then describe the experimental setup for the performance
evaluation. The evaluation results include the performance
measurements and the cost of Argus transactions.

A. Security Analysis

The detailed security analysis is given in Appendix
E of [19]. Without loss of generality, we only present
an analysis which considers a game of five participants
GameArgus

O,L1,L2,I1,I2
, where O,L1, L2, I1, I2, representing the

Owner, one Licensee, another Licensee, one Informer and
another Informer, respectively. Their interests if honest and
their threats if malicious are summarized in Table II. Based
on GameArgus

O,L1,L2,I1,I2
, we can easily extend our security

analysis to scenarios with multiple owners, informers and
licensees. Since L1 and I1 are identical to L2 and I2 respec-
tively, to demonstrate the security of Argus, we enumerate
all cases that O,L1, I1 are individually honest (i.e. following
the protocol) while other four participants may collude. For
each case, we find that the interest of the honest participant
will not be affected. In other words, we conclude that if a
participant (i.e. owner, licensee or informer) has no fault,
the interest of this participant will not be hurt even when
others collude.

B. Performance Evaluation

Experimental Setup. Our testbed consists of relatively
low-end Azure Virtual Machines (D2s v3, 2 vCPUs, 8GB
RAM, Linux) for the nodes of owner, licensees, informers
and blockchain nodes. For blockchain nodes, we adopt the
default PoW algorithm (i.e., Ethash [39]) and parameters
(block interval, block Gaslimit, etc.) of current Ethereum
(date: 2021-04-05) to simulate the public blockchain. The
average block interval of Ethereum is set as 12 seconds.
The bandwidth of uploading and downloading is tested as
around 50 MB/s. To guarantee a sufficient OT security and
a short confirmation of reports, we by default set the OT
versions (i.e., N) in Section V as 10,000 while the number
of periods (i.e., K) in Section IV as 1000. In other words, the
probability of accusing an innocent licensee is 1

10000 while
the report confirmation time during a 180-day period is 4.3

Experiment	data:	db/costResult/result-different-ot-number.txt	in	"xiaogu/tfdemo"	branch

PriceGwei 4000000000
Ether 1E+18
PriceDollar 200
Dolar/Wei 0.0000008

OT-10000
Gas Dollar/Wei Dollar

commit 80280 0.0000008 0.064224
reveal 247406 0.0000008 0.1979248

appealUp 268150 0.0000008 0.21452

OT-10000(istanbul)
Gas Dollar/Wei Dollar

commit 72188 0.0000008 0.0577504
reveal 255629 0.0000008 0.2045032

appealUp 256359 0.0000008 0.2050872
141(if remove network waiting time)

Server Client
Latency 141 254

256 344 20480
Server 4.3 5.8 336
Client 9.9 13.3 775

32 64 96
Server 4.3 5.8 336
Client 9.9 13.3 775

Server Client
256 4.3 9.9
344 5.8 13.3

20480 336 775

O(N)-Appeal O(1)-Appeal
Latency 442 0.62

Reveal() Commit()
O(1)-Appeal O(N)-Appeal

0.624 0.156

ZKP Commit Reveal
Latency 1 2 3

O(N)-Appeal O(1)-AppealReveal Commit Reveal
Latency 85000 278 295 79 295

VerifyProof() Reveal() Commit()
ZKP 1.28 0
Multi-period 0.624 0.156

11520
11776
12032
12288
12544
12800
13056
13312

775 s13.3 s9.9 s

Soft
ware

AudioImage

336 s5.8 s4.3 s

OT-100	 OT-1000	

on-chain	latency	

whistleblowingReveal	 appealUp	

OT-100	 OT-1000	

gas	cost	

whistleblowingReveal	 appealUp	

85000

278
0.0E+00
2.0E+04
4.0E+04
6.0E+04
8.0E+04
1.0E+05

L
at

en
cy

 (m
s)

O(N)-Appeal

O(1)-Appeal

(a) 442

0.62
0.0E+00
1.0E+02
2.0E+02
3.0E+02
4.0E+02
5.0E+02

G
as

 C
os

t (
D

ol
la

rs
)

O(N)-Appeal

O(1)-Appeal

(b)

141

254

0
50

100
150
200
250
300

O
T

L
at

en
cy

 (m
s)

Server Client

(a)

0
200
400
600
800

1000

0
51

20

10
24

0
15

36
0

20
48

0 PI
R

 L
at

en
cy

 (s
)

Data
Size (KB)

Server
Client

(b) (c)

Figure 4: The performance of OT and PIR: (a) OT Latency
(b) PIR Latency (c) PIR Latency for different data

hours.

Evaluation Results. We evaluate Argus system from various
perspectives of practicality, such as the throughput of sys-
tem, client latency, gas cost on Ethereum, etc. All protocols
of Argus are tested end-to-end. We also give the comparison
between Argus and previous work from aforementioned per-
spectives. Due to the page limit, we only present evaluation
results of Initiate, ShareData, ReportPiracy and Appeal,
which are the most resource-consuming protocols. In other
words, these four protocols can introduce considerable over-
head in throughput, latency, storage and cost to impede the
Argus’s adoption in practice. For an intuitive understanding
of the gas cost in Ethereum, we represent the gas cost in the
number of sending simplest transactions2.

We first evaluate Initiate, which is the setup phase of
Argus. The main element of Initiate is to generate an Merkle
tree and to deploy the contract. For every licensee, there is a
time complexity of O(N ∗K) for the owner to generate the
Merkle tree, which needs about 10 minutes. This process
is totally offline and can be parallelized and accelerated
with high-end machines. Deploying the contract costs about
5.2 × 106 gas, which equals to the cost of sending ∼248
simplest Ethereum transactions. In addition, we also evaluate
the off-chain storage cost for Argus, which is about 960 KB
per licensee, which has a space complexity of O(N).

We evaluate the latency/bandwidth in data sharing.
ShareData includes two phases, OT (Section V) and PIR
(Section VI). While the PIR phase can be done offline, the
OT phase can directly affect the throughput of the Argus sys-
tem especially when there are a number of clients (licensees)
concurrently communicating with the server (owner):
• For the OT phase, the evaluation result is shown in Figure

4 (a). It takes about 141 ms for the server to complete
the phase. Therefore, a throughput of 7.1 OT requests per
second per machine can be served. With a stronger server
(Azure D32s v3, 32 cores, 128GB RAM), the throughput
can be further improved to 82.6 per second. Note that,
the throughput can be linearly scaled up by increasing the
number of machines.
• For the PIR phase, we list the latency of client/server in

Figure 4 (b) and Figure 4 (c). As shown in Figure 4 (b),

2Ethereum’s simplest transaction only transfers ether and costs 21,000
gas.

Table III: High-level comparison between state-of-the-art work and Argus
Desired properties Details BSA [2] Custos [5] AWM [33] ZKP [15] Hydra [10] Arbitrum [9] This work

Trusted payments Full transparency ×* √
N/A** √ √ √ √

Better payments Timely/guaranteed payout ×
√

N/A
√

× ×
√

Identifying infringers Strong accusation
√

×
√

N/A N/A N/A
√

Assessing severity Sybil-proofness
√

× N/A N/A N/A
√ √

Information-hiding
√

× N/A
√ √ √ √

Scalability High throughput
√

× × ×
√ √ √

* Symbols of “
√

” and “×” denote corresponding property is “achievable” and “hard to achieve”, respectively.
** Properties are marked as “not applicable (N/A)” if corresponding work is not designed for these properties.

Experiment	data:	db/costResult/result-different-ot-number.txt	in	"xiaogu/tfdemo"	branch

PriceGwei 4000000000
Ether 1E+18
PriceDollar 200
Dolar/Wei 0.0000008

OT-10000
Gas Dollar/Wei Dollar

commit 80280 0.0000008 0.064224
reveal 247406 0.0000008 0.1979248

appealUp 268150 0.0000008 0.21452

OT-10000(istanbul)
Gas Dollar/Wei Dollar

commit 72188 0.0000008 0.0577504
reveal 255629 0.0000008 0.2045032

appealUp 256359 0.0000008 0.2050872
141(if remove network waiting time)

Reveal() Commit()
O(1)-Appeal O(N)-Appeal

0.624 0.156

ZKP Commit Reveal
Latency 1 2 3

GenerateProof Commit Reveal Commit Reveal
Latency 45000 79 295 79 295

VerifyProof() Reveal Commit
ZKP 22 0
Multi-period 11 3

OT-100	 OT-1000	

on-chain	latency	

whistleblowingReveal	 appealUp	

OT-100	 OT-1000	

gas	cost	

whistleblowingReveal	 appealUp	

45000

79
295

1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05

L
at

en
cy

 (m
s)

Commit
Reveal

(a)

ZKP Multi-period

22

11

3

0
5

10
15
20
25

G
as

 C
os

t
(t

ra
ns

ac
tio

ns
)

Commit
Reveal

(b)

Multi-period ZKP
Figure 5: Comparison of previous work (e.g., ZKP [31]) and
multi-period commitment scheme: (a) Latency (b) Gas Cost

Experiment	data:	db/costResult/result-different-ot-number.txt	in	"xiaogu/tfdemo"	branch

PriceGwei 4000000000
Ether 1E+18
PriceDollar 200
Dolar/Wei 0.0000008

OT-10000
Gas Dollar/Wei Dollar

commit 80280 0.0000008 0.064224
reveal 247406 0.0000008 0.1979248

appealUp 268150 0.0000008 0.21452

OT-10000(istanbul)
Gas Dollar/Wei Dollar

commit 72188 0.0000008 0.0577504
reveal 255629 0.0000008 0.2045032

appealUp 256359 0.0000008 0.2050872
141(if remove network waiting time)

Server Client
Latency 141 254

256 344 20480
Server 4.3 5.8 336
Client 9.9 13.3 775

32 64 96
Server 4.3 5.8 336
Client 9.9 13.3 775

Server Client
256 4.3 9.9
344 5.8 13.3

20480 336 775

O(N)-Appeal O(1)-Appeal
Latency 7626 11

Reveal() Commit()
O(1)-Appeal O(N)-Appeal

0.624 0.156

ZKP Commit Reveal
Latency 1 2 3

O(N)-Appeal O(1)-AppealReveal Commit Reveal
Latency 85000 278 295 79 295

VerifyProof() Reveal() Commit()
ZKP 1.28 0
Multi-period 0.624 0.156

11520
11776
12032
12288
12544
12800

PIR Latency

4.3 s 5.8 s 336s

Image Audio
Soft
ware

9.9 s 13.3 s 775s

OT-100	 OT-1000	

on-chain	latency	

whistleblowingReveal	 appealUp	

OT-100	 OT-1000	

gas	cost	

whistleblowingReveal	 appealUp	

85000

278
0.0E+00
2.0E+04
4.0E+04
6.0E+04
8.0E+04
1.0E+05

L
at

en
cy

 (m
s)

O(N)-Appeal

O(1)-Appeal

(a)
7626

11
0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

G
as

 C
os

t
(t

ra
ns

ac
tio

ns
)

O(N)-Appeal

O(1)-Appeal

(b)

141

254

0
50

100
150
200
250
300

O
T

L
at

en
cy

 (m
s)

Server Client

(a)

0
200
400
600
800

1000

0
51

20

10
24

0
15

36
0

20
48

0

PI
R

 L
at

en
cy

 (s
)

Data Size (KB)

Server Client (b) (c)

Figure 6: Comparison of previous work (i.e., O(N)-Appeal
[32], [33]) and O(1)-Appeal: (a) Latency (b) Gas Cost

the PIR latency is proportional to the data size, which
corresponds to a bandwidth of 206 Kbps and 476 Kbps
for the client and server, respectively. And in Figure 4
(b), we have the PIR latency for data types in Section VI,
which is shown in Figure 4 (c). Without PIR, the direct
downloading time of the 10,000 copies for the licensee
would be 51 s, 67 s and 3800 s, respectively. Similar to
the OT phase, the latency and bandwidth of PIR phase
can also be linearly and considerably improved with more
and higher-performance (i.e., faster core and larger RAM)
machines. Since PIR can be offline after the OT phase,
the bandwidth of Argus system is determined by the OT
phase.

ReportPiracy includes the commit phase and the reveal
phase (Section IV). The evaluation results of ReportPiracy
are shown in Figure 5. The latency in Figure 5 (a) denotes
the time which is spent by Informer’s machine to submit a
transaction to Argus contract until the transaction is executed
by blockchain nodes. In other words, the consensus time
is excluded in the latency result. The latencies of commit
and reveal are negligible compared to the block time of
Ethereum, respectively.

The on-chain cost of our multi-period scheme is also
negligible. As shown in Figure 5 (b), the gas costs for
commit and reveal are about 8∗104 and 2∗105, which equal
to ∼3 and ∼11 simplest Ethereum transactions, respectively.
In other words, a total cost equivalent to sending 14 simplest

latency&gas machine for OT-10000 experiments: 2Cpu, 2Gmem
commitReveal, geth, deep=1, periodNumber=1000 OT-10000(MS)

puzzleAnswerDataGeneration 605345.33
offchainLatency(MS)

OT-10 OT-100 OT-1000 OT-10000
whistleblowingReveal 216 202 240 295

appealUp 170 184 194 278

onchainLatency(MS)
OT-10 OT-100 OT-1000 OT-10000

whistleblowingReveal 1.80363985 1.92449854 2.66213169 2.2664165
appealUp 2.31908975 2.92120809 3.86904592 3.0600002

gas cost
OT-10 OT-100 OT-1000 OT-10000

whistleblowingReveal 205547.69 219222.92 232830.23 247406
appealUp 221473.67 248466.82 261908.33 268150

OT latency(MS)
OT-10 OT-100 OT-1000 OT-10000

server 9.5594 16.384 29.6394 141 141(if remove network waiting time)
client 29.103 29.589 32.9308 254.142

10 100 1000 10000
Owner.OT 9.5594 16.384 29.6394 141

Reveal 216 222.2 240 295
Appeal 170 184 194 278

10 100 1000 10000
Informer.Report 247223.2967 259396.1487 271508.5425 284483
Licensee.Appeal 185849.9833 208501.3281 219780.7927 225018.5

10 100 1000 10000
Reveal 11.77253794 12.35219756 12.92897821 13.54680952
Appeal 8.849999203 9.928634673 10.46575203 10.71516667

O(1)-Appeal

Latency

Latency

ZKP
Multi-period

0	
50	
100	
150	
200	
250	
300	

OT-10	 OT-100	 OT-1000	

Ti
m
e	
(m

s)
	

off-chain	latency	

whistleblowingReveal	 appealUp	

0	

1	

2	

3	

4	

5	

OT-10	

Ti
m
e(
m
s)
	

0	
50000	

100000	
150000	
200000	
250000	
300000	

OT-10	
0	

10	

20	

30	

40	

OT-10	 OT-100	 OT-1000	

Ti
m
e(
m
s)
	

OT	latency	

server	 client	

0
50

100
150
200
250
300
350

L
at

en
cy

 (m
s)

 Owner.OT Reveal Appeal

0.0
4.0
8.0

12.0
16.0

10 100 1000 10000

G
as

 C
os

t
(t

ra
ns

ac
tio

ns
)

The Number of OT Versions (i.e. N)

Reveal Appeal

(a)

(b)

Figure 7: Sensitivity analysis of #OT versions: (a) Latency
(b) Gas Cost
transactions is required for an informer to report piracy
in our system. From the gas consumption, given that the
maximum gas limit of every Ethereum block is around
12, 000, 000, we can conclude that the Transactions Per Sec-
ond (tps) for ReportPiracy is about 12∗106/(2.0∗105∗12) ≈
5.0, which is 11% of the theoretically maximum Ethereum
throughput3 (commit and reveal occur in different blocks and
thus only the more expensive reveal is considered). We also
compare our multi-period scheme with ZKP scheme [16],
[31]. Compared to ZKP scheme, our scheme can reduce the
informer client latency by 99.3% and the gas cost by 39%.

As in Figure 6, we also evaluate Appeal (Section V) and
get similar results as ReportPiracy: a tps of 4.3 is achieved
given the gas consumption of Appeal (∼ 2∗105, i.e., the cost
of ∼11 simplest Ethereum transactions). The appeal protocol
proposed by previous work [32], [33] (denoted as “O(N)-
Appeal”) introduces unacceptable on-chain operations and
exceeds the maximum gas limit of an Ethereum block.
Thus, we cannot evaluate corresponding latency and gas
consumption in an end-to-end style. Instead, we estimate
them using the number of on-chain operations. Results show
that O(1)-appeal can significantly reduce the client latency
and the gas cost: compared to previous appeal scheme, the
informer client latency can be reduced by 99.7% and the
gas cost by a factor of 960X, respectively.

As shown in Figure 7, we also investigate the impact of
choosing different numbers of OT versions (i.e., N), from 10
to 10, 000. On the one hand, as addressed in Section V, the
value of 1

N determines the probability φ of false accusation;

3The maximum tps of Ethereum is about 47.6 when the block only
contains the simplest Ethereum transactions. By contrast, the average tps
of Ethereum is 15.0 currently (2021-04-05).

On the other hand, the increase of N has a negative impact
on the performance, gas cost and storage overhead of Argus
system. We can see that the increase of OT affects the OT
latency of owner significantly (Figure 7 (a)) while the gas
cost increases logarithmically (Figure 7 (b)) since we use
Merkle tree structure in our design 4.

To summarize the performance of Argus system: in the
normal case, which does not involve piracy-reporting or ap-
peal, only ShareData is involved. In this case, the throughput
of Argus system is equal to the throughput of ShareData
(82.6 off-chain transactions per second per machine). In the
uncommon case of piracy reporting, the throughput of the
reporting transactions is 5.0 tps. In the rare case in which the
appeal procedure is performed (i.e., the owner is malicious),
the throughput of the appeal transactions is 4.3 tps.

VIII. RELATED WORK

We summarize the comparison of Argus with previous
work in Table III. The third and the fourth Columns
(i.e., BSA and Custos) are two competitive solutions of
Argus while the fifth to the eighth (AWM, ZKP, Hydra
and Arbitrum) are primitives corresponding to O(1)-appeal,
multi-period commitment and incentive model, respectively.
Details are listed below:

• Comparison with previous solutions. Centralized schemes
such as BSA [2] can considerably disincentivize informers
due to the opacity of payments. To increase the trust
of payments, Custos [5] leverages blockchain. However,
Custos does not consider strong accusations and cannot
assess the severity of piracy, which is important in law
enforcement. By contrast, Argus achieves full transparency
along with all other properties.
• Comparison with state-of-the-art primitives:
− Previous work of Asymmetric Watermarking (AWM)

[32], [33] all rely on the existence of a “trusted judge”.
In addition, their appeal protocols introduce O(N) band-
width cost, which is unacceptable in blockchain scheme.
− Current Zero-Knowledge Proof (ZKP) [15], [16] can

eliminate replay attack by enabling informers to prove
their acquaintance of idij without revealing the answer.
However, current ZKP can introduce considerable perfor-
mance overhead and gas consumption which limits system
scalability.
− Commitment scheme (or so-called “commit-reveal”) [10]

can address replay attack by dividing the single submis-
sion into phases of commitment and revealing, which
is much more efficient than ZKP schemes. However, to
fully evaluate piracy, the commitment phase should be
relatively long, which delays owner’s confirmation of
piracy and informers’ payments.
− Sybil-proofness [9], [17] is introduced to disincentivize

4We omit the commit operation of informer in Figure 7 since the latency
and gas cost of commit is unrelated to the value of N .

informers to report repeatedly: the more times an informer
reports, the less bounty the informer can claim. However,
existing sybil-proof incentive models merely depend on
the total number of informers, which is known only when
the collection period ends.
− By contrast, Argus overcomes the limitations of the

above primitives. In addition, further integration and op-
timization are introduced in this work.

IX. CONCLUSIONS

Anti-piracy is fundamentally a procedure that relies on
collecting data from the open anonymous population, so
how to incentivize credible reports is a question at the
center of the problem. Academic researchers and real-world
companies have come up with various incentive mecha-
nisms. However, without explicitly prescribing the interests
of different roles and the objectives of an anti-piracy system,
designing such a mechanism has been more of a “creative
art” than a systematic and disciplined exploration. Currently,
there is no good framework to evaluate these designs and
actual systems.

The most essential value of our work is not the Argus
system itself, but the approach leading to its design and im-
plementation. We first state clearly the interests of different
roles and the goal of full transparency without trusting any
role. Once these are stated, all the design requirements nat-
urally surface, such as Sybil-proofness, information-hiding
submission, resistance to infringer’s repudiation, etc; once
these design requirements are clear, we are able to deduce,
rather than invent, the general form of valid solutions;
the deduced general form then boils down to a set of
unavoidable technical obstacles, which we overcome by
adapting cryptographic schemes, building contract code and
optimizing performance.

Argus exemplifies the outcome of this disciplined ap-
proach. It is superior to existing solutions in terms of the
trust assumption and the assured properties. In particular, we
draw the following conclusions: (1) it is feasible to build
a fully transparent solution without introducing a trusted
role. This could enable a paradigm shift for anti-piracy
incentive solutions. Also, it is a compelling application
scenario for public blockchains; (2) such a solution indeed
consolidates all roles’ interests fairly, i.e., as long as a role
is not at fault, his/her interest will not be impaired by other
malicious or at-fault roles; (3) besides logic soundness, the
solution is economically practical, as a result of our effective
optimizations.

ACKNOWLEDGMENT

The authors would like to thank Lidong Zhou and anony-
mous reviewers for their valuable comments. Wenyan Liu
was supported by NSFC grants (No. 61972155), the Sci-
ence and Technology Commission of Shanghai Municipality
(20DZ1100300) and the Open Project Fund from Shenzhen
Institute of Artificial Intelligence and Robotics for Society.

REFERENCES

[1] “Copyright law of the united states,” https://www.copyright.gov/
title17/title17.pdf.

[2] “Piracy bounty from business software alliance (bsa),” https://
reporting.bsa.org/.

[3] “The federation against copyright theft,” https://www.fact-uk.org.uk/.

[4] “Siia’s corporate anti-piracy reward program,” https://www.siia.net/
piracy/report/siia reward program.pdf.

[5] “Custos,” https://custostech.com/.

[6] “Veredictum,” https://www.veredictum.io/.

[7] “The public doubt about bsa bounty,” https://www.pcworld.com/
article/147448/article.html.

[8] C. Li, B. Palanisamy, R. Xu, J. Wang, and J. Liu, “Nf-crowd:
Nearly-free blockchain-based crowdsourcing,” in 2020 International
Symposium on Reliable Distributed Systems (SRDS). IEEE, 2020,
pp. 41–50.

[9] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in Proceedings
of the 27th USENIX Conference on Security Symposium. USENIX
Association, 2018, pp. 1353–1370.

[10] L. Breidenbach, I. Cornell Tech, P. Daian, F. Tramer, and A. Juels,
“Enter the hydra: Towards principled bug bounties and exploit-
resistant smart contracts,” in 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018.

[11] H. Sukhwani, J. M. Martı́nez, X. Chang, K. S. Trivedi, and A. Rindos,
“Performance modeling of pbft consensus process for permissioned
blockchain network (hyperledger fabric),” in 2017 IEEE 36th Sym-
posium on Reliable Distributed Systems (SRDS). IEEE, 2017, pp.
253–255.

[12] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 51–68.

[13] C. Li and B. Palanisamy, “Decentralized release of self-emerging data
using smart contracts,” in 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS). IEEE, 2018, pp. 213–220.

[14] G. Bu, T. S. L. Nguyen, M. P. Butucaru, and K. L. Thai, “Hyperpub-
sub: Blockchain based publish/subscribe,” in 2019 38th Symposium
on Reliable Distributed Systems (SRDS). IEEE, 2019, pp. 366–3662.

[15] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE Symposium on Security and Privacy. IEEE,
2014, pp. 459–474.

[16] “Counteracting front-running with zero-knowledge proof,” https:
//medium.com/@schor/on-zero-knowledge-proofs-in-blockchains\
-14c48cfd1dd1.

[17] J. Koch and C. Reitwiessner, “A predictable incentive mechanism for
truebit,” arXiv preprint arXiv:1806.11476, 2018.

[18] “Pallone: Google, facebook, twitter content treat-
ment not ’neutral’,” https://www.nexttv.com/news/
pallone-google-facebook-twitter-content-treatment-not-neutral-169576.

[19] X. Zhang, X. Guo, Z. Zeng, W. Liu, Z. Guo, Y. Chen, S. Chen,
Q. Yin, M. Yang, and L. Zhou, “Argus: A fully transparent incentive
system for anti-piracy campaigns (extended version),” 2021, https:
//arxiv.org/abs/2107.06049.

[20] “The solidity contract-oriented programming language,” https://
github.com/ethereum/solidity.

[21] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2001,
pp. 448–457.

[22] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
{USENIX} Security Symposium ({USENIX} Security 14), 2014, pp.
781–796.

[23] G. Brassard, D. Chaum, and C. Crépeau, “Minimum disclosure proofs
of knowledge,” Journal of computer and system sciences, vol. 37,
no. 2, pp. 156–189, 1988.

[24] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for multimedia,” IEEE transactions on image
processing, vol. 6, no. 12, pp. 1673–1687, 1997.

[25] J.-P. M. Linnartz and M. Van Dijk, “Analysis of the sensitivity attack
against electronic watermarks in images,” in International Workshop
on Information Hiding. Springer, 1998, pp. 258–272.

[26] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital
data,” IEEE Transactions on Information Theory, vol. 44, no. 5, pp.
1897–1905, 1998.

[27] T. Y. Kim, H. Choi, K. Lee, and T. Kim, “An asymmetric watermark-
ing system with many embedding watermarks corresponding to one
detection watermark,” IEEE signal processing letters, vol. 11, no. 3,
pp. 375–377, 2004.

[28] G. Tardos, “Optimal probabilistic fingerprint codes,” Journal of the
ACM (JACM), vol. 55, no. 2, p. 10, 2008.

[29] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 3–16.

[30] Y. Li, H. Liu, Z. Yang, B. Wang, Q. Ren, L. Wang, and B. Chen,
“Protect your smart contract against unfair payment,” in 2020 Inter-
national Symposium on Reliable Distributed Systems (SRDS). IEEE,
2020, pp. 61–70.

[31] R. Khalil, A. Gervais, and G. Felley, “Tex-a securely scalable trustless
exchange.” IACR Cryptology ePrint Archive, vol. 2019, p. 265, 2019.

[32] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and Q. Tang,
“Communication optimal tardos-based asymmetric fingerprinting,” in
Cryptographers’ Track at the RSA Conference. Springer, 2015, pp.
469–486.

[33] L. Xu, F. Zhang, W. Susilo, and Y. Wen, “Solutions to the anti-piracy
problem in oblivious transfer,” Journal of Computer and System
Sciences, vol. 82, no. 3, pp. 466–476, 2016.

[34] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart con-
tracts,” White paper, pp. 1–47, 2017.

[35] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2018, pp. 967–984.

[36] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian, “Xpir:
Private information retrieval for everyone,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 2, pp. 155–174, 2016.

[37] D. Kirovski and H. S. Malvar, “Spread-spectrum watermarking of
audio signals,” IEEE transactions on signal processing, vol. 51, no. 4,
pp. 1020–1033, 2003.

[38] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu,
C. Linn, and M. Stepp, “Dynamic path-based software watermark-
ing,” in ACM Sigplan Notices, vol. 39, no. 6. ACM, 2004, pp.
107–118.

[39] “Ethereum,” https://www.ethereum.org/.

https://www.copyright.gov/title17/title17.pdf
https://www.copyright.gov/title17/title17.pdf
https://reporting.bsa.org/
https://reporting.bsa.org/
https://www.fact-uk.org.uk/
https://www.siia.net/piracy/report/siia_reward_program.pdf
https://www.siia.net/piracy/report/siia_reward_program.pdf
https://custostech.com/
https://www.veredictum.io/
https://www.pcworld.com/article/147448/article.html
https://www.pcworld.com/article/147448/article.html
https://medium.com/@schor/on-zero-knowledge-proofs-in-blockchains\-14c48cfd1dd1
https://medium.com/@schor/on-zero-knowledge-proofs-in-blockchains\-14c48cfd1dd1
https://medium.com/@schor/on-zero-knowledge-proofs-in-blockchains\-14c48cfd1dd1
https://www.nexttv.com/news/pallone-google-facebook-twitter-content-treatment-not-neutral-169576
https://www.nexttv.com/news/pallone-google-facebook-twitter-content-treatment-not-neutral-169576
https://arxiv.org/abs/2107.06049
https://arxiv.org/abs/2107.06049
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://www.ethereum.org/

	Introduction
	Overview of Argus
	The Argus Contract
	Trust Assumptions

	Incentive Model
	The Objectives of Incentive Models
	Deducing the Reward Function from the Objectives
	Plugging in real-world numbers

	Information Hiding for Report Submission
	The objectives of the information-hiding submission
	Previous proposals and their limitations
	Multi-period Commitment Scheme

	Guarding against infringer's repudiation
	Constant-Size-OTRecord Appeal (O(1)-Appeal)

	Implementing the Argus System
	Security Analysis and Performance Evaluation
	Security Analysis
	Performance Evaluation

	Related Work
	Conclusions
	References

