
Multi-layered Network Exploration via Random Walks:
From Offline Optimization to Online Learning

Xutong Liu 1 Jinhang Zuo 2 Xiaowei Chen 3 Wei Chen 4 John C.S. Lui 1

Abstract
Multi-layered network exploration (MuLaNE)
problem is an important problem abstracted from
many applications. In MuLaNE, there are multi-
ple network layers where each node has an impor-
tance weight and each layer is explored by a ran-
dom walk. The MuLaNE task is to allocate total
random walk budgetB into each network layer so
that the total weights of the unique nodes visited
by random walks are maximized. We systemati-
cally study this problem from offline optimization
to online learning. For the offline optimization set-
ting where the network structure and node weights
are known, we provide greedy based constant-
ratio approximation algorithms for overlapping
networks, and greedy or dynamic-programming
based optimal solutions for non-overlapping net-
works. For the online learning setting, neither the
network structure nor the node weights are known
initially. We adapt the combinatorial multi-armed
bandit framework and design algorithms to learn
random walk related parameters and node weights
while optimizing the budget allocation in multiple
rounds, and prove that they achieve logarithmic
regret bounds. Finally, we conduct experiments
on a real-world social network dataset to validate
our theoretical results.

1. Introduction
Network exploration is a fundamental paradigm of search-
ing/exploring in order to discover information and resources
available at nodes in a network, and random walk is often

1Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong SAR,
China 2Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University, Pittsburgh, PA, USA
3Bytedance, Mountain View, CA, USA 4Microsoft Research,
Beijing, China. Correspondence to: Xutong Liu <li-
uxt@cse.cuhk.edu.hk>, Wei Chen <weic@microsoft.com>, John
C.S. Lui <cslui@cse.cuhk.edu.hk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

used as an effective tool for network exploration (Lv et al.,
2002; Gleich, 2015; Wilder et al., 2018). In this paper, we
study the multi-layered network exploration via random
walks problem, which can model many real-world appli-
cations, including resource searching in peer-to-peer (P2P)
networks and web surfing in online social networks (OSNs).

In P2P networks, a user wants to find resources that are
scattered on nodes (i.e. peers) in different P2P networks
via some platform-specified strategies. A commonly used
search strategy is based on multiple random walks (Lv et al.,
2002). Since different resources have different importance,
the search quality of different random walkers varies. More-
over, the resource-search process typically has a life span,
i.e., a total time-limit or hop-limit for random walks. So the
user’s goal is to decide how to allocate limited budgets to dif-
ferent random walkers to find as many important resources
as possible. Another application is the web surfing, where
users want to find information in different OSNs, by looking
at posts via others’ home-pages (Lerman & Jones, 2006).
Once the user arrives at one of his friends’ home-pages
in a particular OSN, he could find some information and
continues to browse the home-pages of his friends’ friends,
which can be regarded as a random walk process. Since the
user only has a finite duration in web surfing, the similar
question is how to allocate his time in exploring different
OSNs so to get the maximum amount of useful information.

We abstract the above application scenarios as the Multi-
Layered Network Exploration (MuLaNE) problem. In Mu-
LaNE, we model the overall network to be explored (e.g.,
combining different OSNs) as a multi-layered network G
that consists of m layers L1, ..., Lm. Each layer Li (e.g., a
single OSN) is represented by a weighted directed graph
Gi(Vi, Ei, wi), where Vi is the set of nodes to be explored
(e.g., users’ home-pages with importance weight σu for
u ∈ Vi), Ei ⊆ Vi × Vi is the set of directed edges (e.g.,
social links), and wi is the edge weight function on edges
Ei. Each layer Li is associated with an explorer (or random
walker) Wi and a fixed starting distribution αi on nodes Vi.
ExplorerWi starts on a node in Gi following the distribution
αi, and then walks on network Gi following outgoing edges
with probability proportional to edge weights. We assume
that each random walk step will cost one unit of the bud-

Multi-layered Network Exploration via Random Walks

get1. Given a total budget constraint B and individual layer
budget constraint ci, the MuLaNE task is to find the opti-
mal budget allocation k=(k1, ..., km) with

∑m
i=1 ki ≤ B,

0≤ki≤ci such that the expected total weights of unique
nodes visited are maximized.

In real applications, the network structure G, the node
weights σ and the starting distributions αi’s may not be
known in advance, so we consider both the offline optimiza-
tion cases when G, σ and αi’s are known and the online
learning case when G, σ and αi’s are unknown. Moreover,
different layers may have overlapping vertices (e.g., home-
page of the same user may appear in different OSNs), and
the starting distributions αi’s may or may not be stationary
distributions. In this paper, we provide a systematic study
of all these case combinations.

For the offline optimization, we first consider the general
overlapping setting and provide constant approximation al-
gorithms based on the lattice submodularity property for
non-stationary αi’s and the diminishing-return (DR) sub-
modularity property for stationary αi’s. For the special
non-overlapping setting, we design a dynamic programming
algorithm that finds the exact optimal solution for MuLaNE.

In the online learning, we conduct multiple rounds of ex-
ploration, each of which has the same budget constraints B
and ci’s. After each round of exploration, the total weights
of unique nodes visited in this round are the reward for this
round, and the trajectory of every explorer in every layer
and the importance weights of visited nodes are observed
as the feedback, which could be used to learn information
about the network for the benefit of future explorations.

We adapt the combinatorial multi-armed bandit (CMAB)
framework and the CUCB algorithm (Chen et al., 2016)
to our setting, and design online learning algorithms to
minimize the regret, which is the difference between the
cumulative reward achieved by the exact or approximate of-
fline algorithm and that achieved by our learning algorithm,
over T rounds. We show that directly learning the graph
structure G is inefficient. Instead, we define intermediate
random variables in MuLaNE as the base arms in CMAB
and learn these intermediate parameters, which can suffi-
ciently determine the rewards to guide our budget allocation.
Moreover, the node weight is not revealed until this node is
first visited, which further complicates the design of online
exploration algorithms. For the overlapping case, we adapt
the CUCB algorithm to address the unrevealed node weights
and the extra constraint of monotonicity for the intermediate
parameters. We further improve the analysis by leveraging
on special properties in our setting and show logarithmic
regret bounds in this case. For the non-overlapping case,

1Our model can be extended to move multiple steps with one
unit of budget.

we define more efficient intermediate parameters and use
the exact offline algorithm, and thus achieve a better regret
bound. Finally, we conduct experiments on a real-world
multi-layered social network dataset to validate the effec-
tiveness of both our offline and online algorithms.

Our contributions can be summarized as follows: (1) We
are the first to model the multi-layered network exploration
via random walks problem (MuLaNE) as an abstraction
for many real-world applications (2) We provide a system-
atic study of the MuLaNE problem via theoretical analysis
and empirical validation by considering offline and online
settings for both overlapping and non-overlapping multi-
layered networks. Due to the space limit, proofs are in-
cluded in the supplementary material.

1.1. Related Work
Network exploration via random walks has been studied
in various application contexts such as community detec-
tion (Pons & Latapy, 2005), centrality measuring (Gleich,
2015), large-scale network sampling (Li et al., 2019), and
influence maximization (Wilder et al., 2018). Multiple ran-
dom walks has also been used, e.g. in (Lv et al., 2002)
for query resolution in peer-to-peer networks. However,
none of these studies address the budgeted MuLaNE prob-
lem. MuLaNE is also related to the influence maximization
(IM) problem (Kempe et al., 2003; Chen et al., 2009) and
can be viewed as a special variant of IM. Different from
the standard Independent Cascade (IC) model (Wang et al.,
2012) in IM, which randomly broadcasts to all its neighbors,
the propagation process of MuLaNE is a random walk that
selects one neighbor. Moreover, each unit of budget in Mu-
LaNE is used to propagate one random-walk step, not to
select one seed node as in IC.

The offline budget allocation problem has been studied by
Alon et al. (2012); Soma et al. (2014), the latter of which pro-
pose the lattice submodularity and a constant approximation
algorithm based on this property. Our offline overlapping
MuLaNE setting is based on a similar approach, but we pro-
vide a better approximation ratio compared to the original
analysis in (Alon et al., 2012). Moreover, we further show
that the stationary setting enjoys DR-submodularity, leading
to an efficient algorithm with a better approximation ratio.

The multi-armed bandit (MAB) problem is first studied
by Robbins (1952) and then extended by many studies (cf.
(Bubeck & Cesa-Bianchi, 2012)). Our online MuLaNE
setting fits into the general Combinatorial MAB (CMAB)
framework of (Gai et al., 2012; Chen et al., 2016). CUCB
is proposed as a general algorithm for CMAB (Chen et al.,
2016). Our study includes several adaptations, such as han-
dling unknown node weights, defining intermediate random
variables as base arms and so on.

Chen et al. (2018) study the community exploration problem,

Multi-layered Network Exploration via Random Walks

which is essentially a special case of MuLaNE with non-
overlapping complete graphs. As a result, their technique is
different and much simpler than ours.

The rest of the paper is organized as follows. Section 2 states
the settings of MuLaNE; Section 3 states the equivalent
bipartite coverage model to derive the explicit form for our
reward function; Section 4 states offline algorithms for four
offline settings with provable approximation guarantee and
running time analysis; Section 5 states two online learning
algorithms with regret analysis; Empirical results are shown
in Section 6; and Section 7 concludes the paper.

2. Problem Settings
Basic Notations. In this paper, we use R and Z to denote
the sets of real numbers and integers, respectively, and the
associated subscript ≥ 0 and > 0 denote their non-negative
and positive subsets, respectively. Suppose we want to
explore a multi-layered network G(V, E ,σ), consisting of
m layers L1, ..., Lm and N unique nodes V with fixed node
weights σ ∈ [0, 1]V . Let [m] denote the set {1, 2, ...,m}.
Each layer Li, i ∈ [m], represents a subgraph of G we could
explore and is modeled as a weighted digraph Gi(Vi, Ei;wi),
where Vi ⊆ V is the set of vertices in layer Li, Ei ⊆ Vi ×
Vi is the set of edges in Gi, and wi : Ei → R>0 is the
edge weight function associating each edge of Gi. For any
two layers Li and Lj , we say they are non-overlapping if
Vi ∩ Vj = ∅. G is called a non-overlapping multi-layered
network if any two layers are non-overlapping; otherwise
G is an overlapping multi-layered network. Let ni = |Vi|
denote the size of layer Li, and the adjacency matrix of Gi
is defined asAi ∈ Rni×ni

≥0 , whereAi[u, v] = wi((u, v)) if
(u, v) ∈ Ei and 0 otherwise.

Exploration Rule. Each layer Li is associated with an
explorer Wi, a budget ki ∈ Z≥0 and an initial starting
distribution αi = (αi,u)u∈Vi ∈ Rni

≥0 with
∑
u∈Vi αi,u =

1. The exploration process of Wi is identical to applying
weighted random walks within layer Li. Specifically, the
explorer Wi starts the exploration from a random node v1 ∈
Vi with probability αi,v1 ; it consumes one unit of budget
and continues the exploration by walking from v1 to one
of its out-neighbors, say v2, with probability Pi[v1, v2],
where Pi ∈ Rni×ni

≥0 is the transition probability matrix,
and Pi[u, v]:=Ai[u, v]/(

∑
w:(u,w)∈Ei Ai[u,w]). Consider

visiting the initial node v1 as the first step, the process is
repeated until the explorer Wi walks ki steps and visits ki
nodes (with possibly duplicated nodes). Note that one can
easily generalize our results by moving λi ∈ Z>0 steps with
one unit of budget for Wi, and for simplicity, we set λi = 1.

Reward Function. We define the exploration trajectory for
explorer Wi after exploring ki nodes as Φ(i, ki):=(Xi,1,
. . . , Xi,ki), where Xi,j ∈ Vi denotes the node visited

at j-th step, and Pr(Xi,1=u) = αi,u, u ∈ Vi. The re-
ward for Φ(i, ki) is defined as the total weights of unique
nodes visited by Wi, i.e.,

∑
v∈

⋃ki
j=1{Xi,j}

σv. Consider-

ing trajectories of all Wi’s, the total reward is the to-
tal weights of unique nodes visited by all random walk-
ers, i.e.,

∑
v∈

⋃m
i=1

⋃ki
j=1{Xi,j}

σv. For notational simplic-

ity, let G:=(G1, . . . ,Gm), α:=(α1, . . . ,αm) and σ =
(σ1, ..., σ|V|) be the parameters of a problem instance and
k:=(k1, . . . , km) be the allocation vector. For overlapping
multi-layered network G, the total expected reward is

rG,α,σ(k):=EΦ(1,k1),...,Φ(m,km)

[∑
v∈

⋃m
i=1

⋃ki
j=1{Xi,j}

σv

]
,

(1)
where its explicit formula will be discussed later in Sec. 3.
For non-overlapping G, the reward function can be simpli-
fied and written as the summation over separated layers,

rG,α,σ(k) :=
∑m
i=1EΦ(i,ki)

[∑
v∈

⋃ki
j=1{Xi,j}

σv

]
. (2)

Problem Formulation. We are interested in the budget
allocation problem: how to allocate the total budget B ∈
Z≥0 to the m explorers so as to maximize the total weights
of unique nodes visited. Also, we assume there is a budget
constraint c := (c1, ..., cm) such that the allocated budget
ki should not exceed ci, i.e., ki ≤ ci, for i ∈ [m].

Definition 1. Given graph structures G := (G1, . . . ,Gm),
starting distributions α := (α1, . . . ,αm), total budget B
and budget constraints c := (c1, ..., cm), the Multi-Layered
Network Exploration problem, denoted as MuLaNE, is for-
mulated as the following optimization problem,

maxk rG,α,σ(k) s.t. k ∈ Zm≥0 ≤ c,
∑m
i=1ki ≤ B, (3)

where rG,α,σ(k) is given by Eq. (1) or Eq. (2). We also
need to consider the following settings:

Offline Setting. For the offline setting, all problem instance
parameters (G,α,σ, c, B) are given, and we aim to find the
optimal budget allocation k∗ determined by Eq. (3).

Online Setting. For the online setting, we consider T -round
explorations. Before the exploration, we only know an
upper bound of the total number of nodes in G and the num-
ber of layers m,2 but we do not know about the network
structure G , the starting distributions α or node weights
σ. In round t ∈ [T], we choose the budget allocation
kt:=(kt,1, . . . , kt,m) only based on observations from pre-
vious rounds, where kt,i ∈ Z≥0 is the budget allocated to
the i-th layer and

∑m
i=1 kt,i ≤ B,kt ≤ c. Define kt as

the action taken in round t. By taking the action kt we
mean that we interact with the environment and the ran-
dom explorer Wi, which is part of the environment, would

2More precisely we only need to know the number of indepen-
dent explorers. If two explorers explore on the same layer, it is
equivalent as two layers with identical graph structures.

Multi-layered Network Exploration via Random Walks

explore kt,i steps and generate the exploration trajectory
Φ(i, kt,i)=(Xi,1, ..., Xi,kt,i). After we take the action kt,
the exploration trajectory Φ(i, kt,i) for each layer Li as
well as the fixed importance weight σu of u ∈ Φ(i, kt,i) is
revealed as the feedback3, which we leverage on to learn
parameters related to the graph structures G, the starting
distribution α and the node weights σ, so that we can se-
lect better actions in future rounds. The reward we gain
in round t is the total weights of unique nodes visited by
all random explorers in round t. Our goal is to design an
efficient online learning algorithm A to give us guidance
on taking actions and gain as much cumulative reward as
possible in T rounds.

In general, the online algorithm has to deal with the
exploration-exploitation tradeoff. The cumulative regret
is a commonly used metric to evaluate the performance of
an online learning algorithm A. Formally, the T -round
((ξ, β)-approximation) regret of A is:

RegG,α,σ(T)=ξβT · rG,α,σ(k∗)−E
[∑T

t=1 rG,α,σ(kAt)
]
,

(4)
where rG,α,σ(k∗) is the reward value for the optimal bud-
get allocation k∗, kAt is budget allocation selected by the
learning algorithm A in round t, the expectation is taken
over the randomness of the algorithm and the exploration
trajectories in all T rounds, and (ξ, β) is the approximation
guarantee of the offline oracle as explained below. Simi-
lar to other online learning frameworks (Chen et al., 2016;
Wang & Chen, 2017), we assume that the online learning
algorithm has access to an offline (ξ, β)-approximation ora-
cle, which for problem instance (G,α,σ, c, B) outputs an
action k such that Pr (rG,α,σ(k) ≥ ξ · rG,α,σ(k∗)) ≥ β.
We also remark that the actual oracle we use takes certain
intermediate parameters as inputs instead of G and α.

Submodularity and DR-Submodularity Over Integer
lattices. To solve the MuLaNE problem, we leverage on the
submodular and DR-submodular properties of the reward
function. For any x,y ∈ Zm≥0, we denote x ∨ y,x ∧ y ∈
Zm≥0 as the coordinate-wise maximum and minimum of
these two vectors, i.e., (x∨y)i = max{xi, yi}, (x∧y)i =
min{xi, yi}. We define a function f : Zm≥0 → R over the
integer lattice Zm≥0 as a submodular function if the following
inequality holds for any x,y ∈ Zm≥0:

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y). (5)

Let supp+(x − y) denote the set I = {i ∈ [m] : xi >
yi}, χi = (0, ..., 1, ..., 0) be the one-hot vector whose i-th
element is 1 and 0 otherwise, and x ≥ y means xi ≥ yi
for all i ∈ [m]. We define a function f : Zm≥0 → R as a
DR-submodular (diminishing return submodular) function

3We further consider random node weights with unknown mean
vector σ, see the Appendix F.3 for details.

if the following inequality holds for any x ≤ y and i ∈ [m],

f(y + χi)− f(y) ≤ f(x+ χi)− f(x). (6)

We say a function f is monotone if for any x ≤ y, f(x) ≤
f(y). Note that for a function f : Zm≥0 → R, submodularity
does not imply DR-submodularity over integer lattices. In
fact, the former is weaker than the latter, that is, a DR-
submodular function is always a submodular function, but
not vice versa. However, for a typical submodular function
f : {0, 1}m → R defined on a set, they are equivalent.

3. Equivalent Bipartite Coverage Model
In order to derive the explicit formulation of the re-
ward function rG,α,σ(k) in Eq. (1), we construct an
undirected bipartite coverage graph B(W,V, E ′), where
W = {W1, ...,Wm} denotes m random explorers, V =⋃
i∈[m] Vi denotes all possible distinct nodes to be explored

in G, and the edge set E ′={(Wi, u)|u ∈ Vi, i ∈ [m]}
indicating whether node u could be visited by Wi. For
each edge (Wi, u) ∈ E ′, we associate it with ci + 1 visit-
ing probabilities denoted as Pi,u(ki) for ki ∈ {0} ∪ [ci].
Pi,u(ki) represents the probability that the node u is vis-
ited by the random walker Wi given the budget ki, i.e.,
Pi,u(ki) = Pr(u ∈ Φ(i, ki)). Since Wi can never visit the
node outside the i-th layer (i.e., u /∈ Gi), we setPi,u(ki) = 0
if (Wi, u) 6∈ E ′. Then, given budget allocation k, the proba-
bility of a node u visited by at least one random explorer is
Pr(u,k)=1−

∏
i∈[m](1− Pi,u(ki)) because each Wi has

the independent probability Pi,u(ki) to visit u.

By summing over all possible nodes, the reward function is

rG,α,σ(k) =
∑
u∈V σu

(
1−

∏
i∈[m] (1− Pi,u(ki))

)
(7)

According to Eq. (2), for non-overlapping multi-layered
network, we can rewrite the reward function as:

rG,α,σ(k) =
∑
i∈[m]

∑
u∈Vi σuPi,u(ki). (8)

Remark. The bipartite coverage model is needed to inte-
grate the graph structure and the random walk exploration
mechanisms into Pi,u(ki) to determine the reward function.
It also handles the scenario where each layer is explored by
multiple random walkers (see Appendix A).

3.1. Properties of the visiting probability Pi,u(ki)

The quantities Pi,u(ki)’s in Eq. (7) and (8) are crucial for
both our offline and online algorithms, and thus we provide
their analytical formulas and properties here. In order to
analyze the property of the reward function, we apply the
absorbing Markov Chain technique to calculate Pi,u(ki).
For u /∈ Gi, Pi,u(ki) = 0; For u ∈ Gi, we create an absorb-
ing Markov Chain Pi(u) ∈ Rni×ni by setting the target

Multi-layered Network Exploration via Random Walks

node u as the absorbing node. We derive the correspond-
ing transition matrix Pi(u) as Pi(u)[v, ·] = χ>u if v =
u and Pi(u)[v, ·] = Pi[v, ·] otherwise, where Pi[v, ·] de-
notes the row vector corresponding to the node v of Pi,
and χu = (0, ..., 0, 1, 0, ..., 0)> denotes the one-hot vector
with 1 at the u-th entry and 0 elsewhere.4 Intuitively, Pi(u)
corresponds to the transition probability matrix of Gi after
removing all out-edges of u and adding a self loop to itself
in the original graph Gi. The random walker Wi will be
trapped in u if it ever visits u. We observe that Pi,u(ki)
equals to the probability the random walker stays in the
absorbing node u at step ki ∈ Z>0 (trivially, Pi,u(0) = 0),

Pi,u(ki) = α>i Pi(u)ki−1χu. (9)

Then define the marginal gain of Pi,u(·) at step ki ≥ 1 as,

gi,u(ki) = Pi,u(ki)− Pi,u(ki − 1). (10)

The physical meaning of gi,u(ki) is the probability that node
u is visited exactly at the ki-th step and not visited before
ki. Now, we can show gi,u(ki) is non-negative,

Lemma 1. gi,u(ki) ≥ 0 for any i ∈ [m], u ∈ Vi, ki ∈ Z>0.

This means Pi,u(ki) is non-decreasing with respect to step
ki. In other words, the more budgets we allocate to Wi, the
higher probability Wi can visit u in ki steps.

Starting from arbitrary distributions: Although Pi,u(ki)
is monotone (non-decreasing) w.r.t ki, gi,u(ki) may not be
monotonic non-increasing under arbitrary staring distribu-
tions. Intuitively, there may exist one critical step ki such
that Pi,u(ki) suddenly increases by a large value (see Ap-
pendix B.1). This means that Pi,u(ki) lacks the diminishing
return (or “discretely concave”) property, which many prob-
lems rely on to provide good optimization (Kapralov et al.,
2013; Soma & Yoshida, 2015). In other words, we are
dealing with a more challenging non-concave optimization
problem for the discrete budget allocation.

Starting from the stationary distribution: If our walkers
start with the stationary distributions, the following property
holds: gi,u(ki) is non-increasing w.r.t ki.

Lemma 2. gi,u(ki + 1) − gi,u(ki) ≤ 0 for any i ∈ [m],
u ∈ Vi, ki ∈ Z>0, if αi = πi, where π>i Pi = π>i .

4. Offline Optimization for MuLaNE
In this section, we first consider the general case, where
layers are overlapping and starting distributions are arbitrary.
Next, we consider the starting distribution is the stationary
distribution, and give solutions with better solution quality
and time complexity. Then we analyze special cases where
layers are non-overlapping and give optimal solutions for

4When related to matrix operations, we treat all vectors as
column vectors by default.

arbitrary distributions. The summary for offline models and
algorithmic results are presented in Table 1.

4.1. Overlapping MuLaNE

Starting from arbitrary distributions. Based on the
equivalent bipartite coverage model, one can observe that
our problem formulation is a generalization of the Prob-
abilistic Maximum Coverage (PMC) (Chen et al., 2016)
problem, which is NP-hard and has a (1 − 1/e) approx-
imation based on submodular set function maximization.
However, our problem is more general in that we want to
select multi-sets fromW with budget constraints, and the re-
ward function in general does not have the DR-submodular
property for an arbitrary starting distribution. Nevertheless,
we have the following lemma to solve our problem.

Lemma 3. For any network G, distribution α and weights
σ, rG,α,σ(·) : Zm≥0 → R is monotone and submodular.

Leveraging on the monotone submodular property, we de-
sign a Budget Effective Greedy algorithm (Alg. 1). The
core of Alg. 1 is the BEG procedure. Let δ(i, b,k) be the
per-unit marginal gain (rG,α,σ(k + bχi) − rG,α,σ(k))/b
for allocating b more budgets to layer i, which equals to∑

u∈V σu
∏
j 6=i(1−Pj,u(kj))(Pi,u(ki+ b)−Pi,u(ki))/b.

(11)
BEG procedure consists of two parts and maintains a queue
Q, where any pair (i, b) ∈ Q represents a tentative plan
of allocating b more budgets to layer i. The first part is
built around the while loop (line 6-10), where each iteration
greedily selects the (i, b) pair in Q such that the per-unit
marginal gain δ(i, b,k) is maximized. The second part is a
for loop (line 12-13), where in the i-th round we attempt to
allocate all ci budgets to layer i and replace the current best
budget allocation if we have a larger reward.

Theorem 1. Algorithm 1 obtains a (1 − e−η) ≈ 0.357-
approximate solution, where η is the solution of equation
eη = 2− η, to the overlapping MuLaNE problem.

Line 1 uses O(m ‖c‖∞ n3
max) time to pre-calculate visiting

probabilities based on Eq. (9), where nmax = maxi |Vi|. In
the BEG procedure, the while loop containsB iterations, the
size of queue Q is O(m ‖c‖∞), and line 7 uses O(nmax)
to calculate δ(i, b,k) by proper pre-computation and update
(see Appendix C.3), thus the time complexity of Algorithm 1
is O(B ‖c‖∞mnmax +m ‖c‖∞ n3

max).

Remark 1. The idea of combining the greedy algorithm
with enumerating solutions on one layer is also adopted
in previous works (Khuller et al., 1999; Alon et al., 2012),
but they only give a 1

2 (1 − e−1) ≈ 0.316-approximation
analysis. In this paper, we provide a novel analysis with a
better (1− e−η) ≈ 0.357-approximation, see Appendix C.1
for details.

Multi-layered Network Exploration via Random Walks

Table 1. Summary of the offline models and algorithms.

Overlapping? Starting distribution Algorithm Apprx ratio Time complexity

X Arbitrary Budget Effective Greedy (1− e−η)5 O(B ‖c‖∞mnmax + ‖c‖∞mn3
max)

X Stationary Myopic Greedy (1− 1/e) O(Bmnmax + ‖c‖∞mn3
max)

× Arbitrary Dynamic Programming 1 O(B ‖c‖∞m+ ‖c‖∞mn3
max)

× Stationary Myopic Greedy 1 O(B logm+ ‖c‖∞mn3
max)

Algorithm 1 Budget Effective Greedy (BEG) Algorithm
for the Overlapping MuLaNE
Input: Network G, starting distributions α, node weights

σ, budget B, constraints c.
Output: Budget allocation k.

1: Compute visiting probabilities (Pi,u(b))i∈[m],u∈V,b∈[ci]

according to Eq. (9).
2: k← BEG((Pi,u(b))i∈[m],u∈V,b∈[ci],σ, B, c).

3: Procedure BEG((Pi,u(b))i∈[m],u∈V,b∈[ci], σ, B, c)
4: Let k := (k1, ..., km)← 0, K ← B.
5: Let Q ← {(i, bi) | i ∈ [m], 1 ≤ bi ≤ ci}.
6: while K > 0 and Q 6= ∅ do
7: (i∗, b∗)← arg max(i,b)∈Q δ(i, b,k)/b .Eq. (11)
8: ki∗ ← ki∗ + b∗, K ← K − b∗.
9: Modify all pairs (i, b) ∈ Q to (i, b− b∗).

10: Remove all paris (i, b) ∈ Q such that b ≤ 0.
11: end while
12: for i ∈ [m] do
13: if rG,α,σ(ciχi) > rG,α,σ(k), then k← ciχi.
14: end for
15: return k := (k1, ..., km).
16: end Procedure

Remark 2. Another algorithm (Alon et al., 2012) with a
better approximation ratio is to use partial enumeration tech-
niques (i.e., BEGE), which can achieve (1− 1/e) approxi-
mation ratio. This is the best possible solution in polynomial
time unless P=NP. But the time complexity is prohibitively
high in O(B4m4 ‖c‖∞ nmax +m ‖c‖∞ n3

max). The algo-
rithm and the analysis are provided in the Appendix D.2.

Starting from the stationary distribution. We also con-
sider the special case where each random explorer Wi starts
from the stationary distribution πi with π>i P = π>i . In
this case, we have the following stronger DR-submodularity.

Lemma 4. For any network G, stationary distributions π
and node weights σ, function rG,π,σ,(·) : Zm≥0 → R is
monotone and DR-submodular.

Since the reward function is DR-submodular, the BEG pro-
cedure can be replaced by the simple MG procedure in
Alg. 2 with a better approximation ratio. The time com-
plexity is also improved to O(Bmnmax +m ‖c‖∞ n3

max).

Theorem 2. Algorithm 2 obtains a (1− 1/e)-approximate

Algorithm 2 Myopic Greedy (MG) Algorithm for MuLaNE
1: Same input, output and line 1-2 as in Alg. 1, except

replacing BEG with MG procedure below.
2: Procedure MG((Pi,u(b))i∈[m],u∈V,b∈[ci], σ, B, c)
3: Let k := (k1, ..., km)← 0, K ← B.
4: while K > 0 do
5: i∗ ← arg maxi∈[m],ki+1≤ci δ(i, 1,k). .Eq. (11)
6: ki∗ ← ki∗ + 1, K ← K − 1.
7: end while
8: return k = (k1, ..., km).
9: end Procedure

solution to the overlapping MulaNE with the stationary
starting distributions.

4.2. Non-overlapping MuLaNE

For non-overlapping MuLaNE, we are able to achieve the
exact optimal solution: for the stationary starting distribu-
tion, a slight modification of the greedy algorithm Alg. 2
gives the optimal solution, while for an arbitrary starting dis-
tribution, we design a dynamic programming algorithm to
compute the optimal solution . Due to the space constraint,
the details are included in Appendix E.

5. Online Learning for MuLaNE
In the online setting, we continue to study both overlapping
and non-overlapping MuLaNE problem. However, the net-
work structure G, the distribution α and node weights σ are
not known a priori. Instead, the only information revealed
to the decision maker includes total budget B, the number
of layers m, the number of the target nodes |V| (or an upper
bound of it) and the budget constraint c.

5.1. Online Algorithm for Overlapping MuLaNE

For the unknown network structure and starting distributions,
we bypass the transition matrices Pi and directly estimate
the visiting probabilities Pi,u(b) ∈ [0, 1]. This avoids the
analysis for how the estimated P i affects the performance
of online algorithms, which could be unbounded since we
consider general graph structures and the reward function
given by Eq. (7) is highly non-linear in P i. Moreover, we
can save the matrix calculation by directly using Pi,u(b),

Multi-layered Network Exploration via Random Walks

which is efficient even for large networks.

Specifically, we maintain a set of base arms A =
{(i, u, b)|i ∈ [m], u ∈ V, b ∈ [ci]}, where the total num-
ber |A| =

∑
i∈[m] ci|V|. For each base arm (i, u, b) ∈ A,

we denote µi,u,b as the true value of each base arm, i.e.,
µi,u,b = Pi,u(b). For the unknown node weights, we main-
tain the optimistic weight σ̄u = 1 if u ∈ V has not been
visited. After u is first visited and its true value σu is re-
vealed, we replace σ̄u with σu. With a little abuse of the
notation, we use µ to denote the unknown intermediate
parameters and rµ,σ(k) to denote the reward rG,α,σ(k).

We present our algorithm in Alg. 3, which is an adaptation
of the CUCB algorithm for the general Combinatorial Multi-
arm Bandit (CMAB) framework (Chen et al., 2016) to our
setting. Notice that we use A as defined above in the algo-
rithm, andA is defined using V , which is the set of node ids
and should not be known before the learning process starts.
This is not an issue, because at the beginning we can create
|V| (which is known) placeholders for the node ids, and
once a new node is visited,we immediately replace one of
the placeholders with the new node id. Thus V appearing in
the above definition of A is just for notational convenience.

In Alg. 3, we maintain an unbiased estimation of the visiting
probability Pi,u(b), denoted as µ̂i,u,b. Let Ti,u,b record the
number of times arm (i, u, b) is played so far and σ̄v denote
the optimistic importance weight. In each round t ≥ 1, we
compute the confidence radius ρi,u,b in line 5, which con-
trols the level of exploration. The confidence radius is larger
when the arm (i, u, b) is not explored often (i.e. Ti,u,b is
small), and thus motivates more exploration. Due to the ran-
domness of the exploration process, the upper condifence
bound (UCB) value µ̃i,u,b could be decreasing w.r.t b, but
our offline oracle BEG can only accept non-decreasing UCB
values (otherwise the 1 − e−η approximation is not guar-
anteed). Therefore, in line 8, we increase the UCB value
µ̃i,u,b and set it to be maxj∈[b] µ̃i,u,j . This is the adaption of
the CUCB algorithm to fix our case, and thus we name our
algorithm as CUCB-MAX. After we apply the 1− e−η ap-
proximate solution k given by the BEG oracle (i.e., Alg. 1),
we get m trajectories as feedbacks. In line 11, we can up-
date the unknown weights of visited nodes. In line 13, for
base arms (i, u, b) with b ≤ ki, we update corresponding
statistics by the Bernoulli random variable Yi,u,b ∈ {0, 1}
indicating whether node u is visited by Wi in first b steps.

Regret Analysis. We define the reward gap
∆k= max(0, ξrµ,σ(k∗) − rµ,σ(k)) for all feasible
action k satisfying

∑m
i=1 ki = B, 0 ≤ ki ≤ ci,

where k∗ is the optimal solution for parameters µ,
σ and ξ = 1 − e−η is the approximation ratio of
the (ξ, 1)-approximate offline oracle. For each base
arm (i, u, b), we define ∆i,u,b

min = min∆k>0,ki=b ∆k and
∆i,u,b

max = max∆k>0,ki=b ∆k. As a convention, if there

Algorithm 3 CUCB-MAX Algorithm for the MuLaNE
Input: Budget B, number of layers m, number of nodes
|V|, constraints c, offline oracle BEG.

1: For each arm (i, u, b) ∈ A, Ti,u,b ← 0, µ̂i,u,b ← 0.
2: For each node v ∈ V , σ̄v ← 1.
3: for t = 1, 2, 3, ..., T do
4: for (i, u, b) ∈ A do
5: ρi,u,b ←

√
3 ln t/(2Ti,u,b).

6: µ̃i,u,b ← min{µ̂i,u,b + ρi,u,b, 1}.
7: end for
8: For (i, u, b) ∈ A, µ̄i,u,b ← maxj∈[b] µ̃i,u,j .
9: k← BEG((µ̄i,u,b)(i,u,b)∈A, (σ̄v)v∈V , B, c).

10: Apply budget allocation k, which gives trajectories
X := (Xi,1, ..., Xi,ki)i∈[m] as feedbacks.

11: For any visited node v ∈
⋃
i∈[m]{Xi,1, ..., Xi,ki},

receive its node weight σv and set σ̄v ← σv .
12: For any (i, u, b) ∈ τ := {(i, u, b) ∈ A| b ≤ ki},

Yi,u,b ← 1 if u ∈ {Xi,1, ..., Xi,b} and 0 otherwise.
13: For (i, u, b) ∈ τ , update Ti,u,b and µ̂i,u,b:

Ti,u,b ← Ti,u,b + 1, µ̂i,u,b ← µ̂i,u,b + (Yi,u,b −
µ̂i,u,b)/Ti,u,b.

14: end for

is no action k with ki = b such that ∆k>0, we define
∆i,u,b

min =∞ and ∆i,u,b
max =0. Let ∆min= min(i,u,b)∈A∆i,u,b

min

and ∆max= max(i,u,b)∈A∆i,u,b
max . The following theorem

summarizes the regret bound for Alg. 3.

Theorem 3. Algorithm 3 has the following distribution-
dependent (1− e−η, 1) approximation regret,

Regµ,σ(T) ≤
∑

(i,u,b)∈A
108m|V| lnT

∆i,u,b
min

+2|A|+π2

3 |A|∆max.

Remark 1. Looking at the above distribution dependent
bound, we have the O(log T) approximation regret, which
is asymptotically tight. Coefficient m|V| in the leading
term corresponds to the number of edges in the complete
bipartite coverage graph. Notice that we cannot use the true
edge number

∑
i∈[m] |Vi|, because the learning algorithm

does not know which nodes are contained in each layer, and
has to explore all visiting possibilities given by the default
complete bipartite graph. The set of base arms A has some
redundancy due to the correlation between these base arms,
and thus it is unclear if the summation over all base arms
in the regret bound is tight. For the non-overlapping case,
we further reduce the number of base arms to achieve better
regret bounds, but for the overlapping case, how to further
reduce base arms to achieve a tighter regret bound is a
challenging open question left for the future work.

Remark 2. The (1 − e−η, 1) approximate regret is deter-
mined by the offline oracle BEG that we plug in Line 9
and can be replaced by (1− 1/e, 1) regret using BEGE or
even by the exact regret if the oracle can obtain the opti-
mal budget allocation. The usage of BEG is a trade-off we

Multi-layered Network Exploration via Random Walks

make between computational efficiency and learning effi-
ciency and empirically, it performs well as we shall see in
Section 6.

Remark 3. The full proof of the above theorem is included
in the Appendix F, where we rely on the following properties
of rµ,σ(k) to bound the regret.

Property 1. (Monotonicity). The reward rµ,σ(k) is mono-
tonically increasing, i.e., for any budget allocation k, any
two vectors µ=(µi,u,b)(i,u,b)∈A, µ′=(µ′i,u,b)(i,u,b)∈A and
any node weights σ, σ′, we have rµ,σ(k) ≤ rµ′,σ′(k), if
µi,u,b ≤ µ′i,u,b and σv ≤ σ′v , ∀(i, u, b) ∈ A, v ∈ V .

Property 2. (1-Norm Bounded Smoothness). The reward
function rµ,σ(k) satisfies the 1-norm bounded smooth-
ness condition, i.e., for any budget allocation k, any two
vectors µ=(µi,u,b)(i,u,b)∈A, µ′=(µ′i,u,b)(i,u,b)∈A and any
node weights σ, σ′, we have |rµ,σ(k) − rµ′,σ′(k)| ≤∑
i∈[m],u∈V,b=ki(σu|µi,u,b − µ

′
i,u,b|+ |σu − σ′u|µ′i,u,b).

We emphasize that our algorithm and analysis differ from
the original CUCB algorithm (Chen et al., 2016) as follows.
First, we have the additional regret caused by the over-
estimated weights for unvisited nodes, i.e., |σu − σ′u|µ′i,u,b
term in property 2. We carefully bound this term based on
the observation that µ′i,u,b is small and decreasing quickly
before u is first visited. Next, we have to take the max
(line 8) to guarantee the UCB value is monotone w.r.t b since
our BEG oracle can only output (1−e−η, 1)-approximation
with monotone inputs. Due to the above operation, (i, u, b)’s
UCB value depends on the feedback from all arms (i, u, j)
for j ≤ b (set τ in line 12). So we should update all these
arms (line 13) to guarantee that the estimates to all these
arms are accurate enough. Finally, directly following the
standard CMAB result would have a larger regret, because
arms in τ are defined as triggered arms, but only arms in
τ ′ = {(i, u, b) ∈ A|ki = b} affect the rewards. So we
conceptually view arms in τ ′ as triggered arms and use a
tighter 1-Norm Bounded Smoothness condition as given
above to derive a tighter regret bound. This improves the
coefficient of the leading lnT term in the distribution de-
pendent regret by a factor of |τ |/|τ ′| = O(B/m), and the
1/∆i,u,b

min term is smaller since the original definition would
have ∆i,u,b

min = min∆k>0,b≤ki ∆k.

5.2. Online Algorithm for Non-overlapping Case

For the non-overlapping case, we set layer-wise marginal
gains as our base arms. Concretely, we maintain a set of
base arms A = {(i, b)|i ∈ [m], b ∈ [ci]}. For each base
arm (i, b) ∈ A., let µi,b =

∑
u∈V σu(Pi,u(b)−Pi,u(b−1))

be the true marginal gain of assigning budget b in layer i.
We apply the standard CUCB algorithm to this setting and
call the resulting algorithm CUCB-MG (Algorithm 9 in Ap-
pendix G). Note that in the non-overlapping setting we can

(a) Offline, overlapping. (b) Offline, non-overlapping.

(c) Online, overlapping. (d) Online, non-overlapping.

Figure 1. Above: total weights of unique nodes visited for offline
algorithms. Below: regret for online algorithms when B = 3000.

Table 2. Statistics for FF-TW-YT network
Layer FriendFeed Twitter YouTube

of vertices 5,540 5,702 663
of edges 31,921 42,327 614

solve the offline problem exactly, so we can use the exact of-
fline oracle to solve the online problem and achieve an exact
regret bound. This is the major advantage over the over-
lapping setting where we can only achieve an approximate
bound. Define ∆k = rµ,σ(k∗) − rµ,σ(k) for all feasible
action k, and ∆i,b

min = min∆k>0,ki≥b ∆k, CUCB-MG has
a O(

∑
(i,b)∈A 48B lnT/∆i,b

min) regret bound.

6. Experiments
Dataset and settings. We conduct experiments on a real-
world multi-layered network FF-TW-YT, which contains
m = 3 layers representing users’ social connections in
FriendFeed (FF), Twitter (TW) and YouTube (YT) (Dick-
ison et al., 2016). In total, FF-TW-YT has 6, 407 distinct
vertices representing users and 74, 836 directed edges rep-
resenting connections (“who follows whom”) among users.
The statistics for each layer is summarized in Table 2. We
transform the FF-TW-YT network G(V, E) into a symmetric
directed network (by adding a new edge (v, u) if (u, v) ∈ E
but (v, u) /∈ E) because a user can be visited via her follow-
ers or followees. Each edge weight is set to be 1 and the
node weights are set to be σu ∈ {0, 0.5, 1} uniformly at ran-
dom. Each random walker always starts from the smallest
node-id in each layer and we set constraints ci equal to the
total budgetB. Note that in order to test the non-overlapping
case, we use the same network but relabel node-ids so that

Multi-layered Network Exploration via Random Walks

Table 3. Running time (seconds) for offline and online algorithms.

B=2.6k B=2.8k B=3.0k

BEG 0.274 0.316 0.363
BEGE 34.37 45.51 59.20
OPT 91.16 98.42 105.63

(a) Running time of offline algorithms
for the overlapping case with different
budgets B.

B=2.6k B=2.8k B=3.0k

DP 0.038 0.044 0.050
MG 0.008 0.009 0.010
OPT 70.10 75.78 81.11

(b) Running time of offline algorithms for
the non-overlapping case with different
budgets B.

Overlapping? X ×
BEG 1.22 NA

BEGE 60.03 NA
DP NA 0.86

OPT 107.33 82.01
(c) Per-round running time for CUCB-
MAX (or CUCB-MG) with different ora-
cles when B=3.0k.

they do not overlap between different layers. To handle
the randomness, we repeat 10, 000 times and present the
averaged total weights of unique nodes visited for offline
optimization. We calculate the regret by comparing with
the optimal solution, which is stronger than comparing with
(1− e−η, 1)-approximate solution as defined in Eq. (4). We
average over 200 independent experiments to provide the
mean regret with 95% confidence interval. To evaluate the
computational efficiency, we also present the running time
for both offline and online algorithms in Table 3.

Algorithms in comparison. For the offline setting, we
present the results for Alg. 1 (denoted as BEG), Alg. 2
(denoted as MG), BEG with partial enumeration (denoted
as BEGE) and Alg. 7 (denoted as DP). We provide two
baselines PROP-S and PROP-W, which allocates the budget
proportional to the layer size and proportional to the total
weights if we allocateB/3 budgets to that layer, respectively.
The optimal solution (denoted as OPT) is also provided by
enumerating all possible budget allocations. For online
settings, we consider CUCB-MAX (Alg. 3) and CUCB-MG
(Alg. 9) algorithms. We shrink the confidence interval by
γ, i.e., ρi,u,b ← γρi,u,b, to speed up the learning, though
our theoretical regret bound requires γ = 1. For baselines,
we consider the EMP algorithm which always allocates
according to the empirical mean, and the ε-Greedy algorithm
which allocates budgets according to empirical mean with
probability 1− ε and allocates all B budgets to the i-th layer
with probability ε/m. We also compare with the Thompson
sampling (TS) method (Wang & Chen, 2018), which uses
Beta distribution Beta(α, β) (where α = β = 1 initially) as
prior distribution for each base arm.

Experimental results. We show the results for MuLaNE
problems in Figure 1. For the offline overlapping case,
both BEG and MG outperform two baselines PROP-W and
PROP-S in receiving total weights. Although not guaranteed
by the theory, BEG are empirically close to BEGE and the
optimal solution (OPT). As for the computational efficiency,
in Table 3a, the BEG is at least two orders of magnitude
(e.g.,163 times when B=3.0k) faster than BEGE and OPT.
Combining that the reward of BEG is empirically close to
BEGE and the optimal solution, this shows that BEG is
empirically better than BEGE and OPT. For the offline non-

overlapping case, the results are similar, but the difference
is that we have the theoretical guarantee for the optimality
of DP. For the online setting, all CUCB-MAX/CUCB-MG
curves outperform the baselines. This demonstrates empiri-
cally that CUCB-MAX algorithm can effectively learn the
unknown parameters while optimizing the objective. For
the computational efficiency of online learning algorithms,
since the running time for algorithms with the same oracle
is similar, we present the running time for CUCB-MAX
with different oracles in Table 3c. CUCB-MAX with BEG
is 50 times faster than BEGE, which is consistent with our
theoretical analysis. The results for different budgets B
are consistent with B = 3000, which are included in the
Appendix H.2. Results and analysis for stationary starting
distributions are also in the Appendix H.1.

7. Conclusions and Future Work
This paper formulates the multi-layered network exploration
via random walks (MuLaNE) as a budget allocation prob-
lem, requiring that the total weights of distinct nodes visited
on the multi-layered network is maximized. For the offline
setting, we propose four algorithms for MuLaNE according
to the specification of multi-layered network (overlapping
or non-overlapping) and starting distributions (arbitrary or
stationary), each of which has a provable guarantee on ap-
proximation factors and running time. We further study the
online setting where network structure and the node weights
are not known a priori. We propose the CUCB-MAX al-
gorithm for overlapping MuLaNE and the CUCB-MG al-
gorithm for the non-overlapping case, both of which are
bounded by a O(log T) (approximate) regret. Finally, we
conduct experiments on a social network dataset to show
the empirical performance of our algorithms.

There are many compelling directions for the future study.
For example, it would be interesting to extend our problem
where the decision maker can jointly optimize the start-
ing distribution and the budget allocation. One could also
study the adaptive MuLaNE by using the feedback from the
exploration results of the previous steps to determine the
exploration strategy for future steps.

Multi-layered Network Exploration via Random Walks

8. Acknowledgement
The work of John C.S. Lui was supported in part by the
GRF 14200420.

References
Alon, N., Gamzu, I., and Tennenholtz, M. Optimizing

budget allocation among channels and influencers. In
Proceedings of the 21st international conference on World
Wide Web, pp. 381–388. ACM, 2012.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foun-
dations and Trends R© in Machine Learning, 5(1):1–122,
2012.

Chen, W., Wang, Y., and Yang, S. Efficient influence maxi-
mization in social networks. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 199–208, 2009.

Chen, W., Wang, Y., Yuan, Y., and Wang, Q. Combinatorial
multi-armed bandit and its extension to probabilistically
triggered arms. The Journal of Machine Learning Re-
search, 17(1):1746–1778, 2016.

Chen, X., Huang, W., Chen, W., and Lui, J. C. Community
exploration: From offline optimization to online learning.
In Advances in Neural Information Processing Systems,
pp. 5474–5483, 2018.

Dickison, M. E., Magnani, M., and Rossi, L. Multilayer
social networks. Cambridge University Press, 2016.

Dubhashi, D. P. and Panconesi, A. Concentration of measure
for the analysis of randomized algorithms. Cambridge
University Press, 2009.

Gai, Y., Krishnamachari, B., and Jain, R. Combinatorial net-
work optimization with unknown variables: Multi-armed
bandits with linear rewards and individual observations.
IEEE/ACM Transactions on Networking (TON), 20(5):
1466–1478, 2012.

Gleich, D. F. Pagerank beyond the web. SIAM Review, 57
(3):321–363, 2015.

Kapralov, M., Post, I., and Vondrák, J. Online submodular
welfare maximization: Greedy is optimal. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, pp. 1216–1225. SIAM, 2013.

Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the
spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 137–146,
2003.

Khuller, S., Moss, A., and Naor, J. S. The budgeted maxi-
mum coverage problem. Information processing letters,
70(1):39–45, 1999.

Kijima, M. Markov processes for stochastic modeling, vol-
ume 6. CRC Press, 1997.

Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., and
Faloutsos, C. Efficient sensor placement optimization
for securing large water distribution networks. Journal
of Water Resources Planning and Management, 134(6):
516–526, 2008.

Lerman, K. and Jones, L. Social browsing on flickr. arXiv
preprint cs/0612047, 2006.

Li, Y., Wu, Z., Lin, S., Xie, H., Lv, M., Xu, Y., and Lui, J. C.
Walking with perception: Efficient random walk sampling
via common neighbor awareness. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE),
pp. 962–973. IEEE, 2019.

Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. Search
and replication in unstructured peer-to-peer networks.
In Proceedings of the 16th international conference on
Supercomputing, pp. 84–95, 2002.

Pons, P. and Latapy, M. Computing communities in large
networks using random walks. In International sympo-
sium on computer and information sciences, pp. 284–293.
Springer, 2005.

Raginsky, M., Sason, I., et al. Concentration of measure
inequalities in information theory, communications, and
coding. Foundations and Trends R© in Communications
and Information Theory, 10(1-2):1–246, 2013.

Robbins, H. Some aspects of the sequential design of exper-
iments. Bulletin of the American Mathematical Society,
58(5):527–535, 1952.

Serfozo, R. Basics of applied stochastic processes. Springer
Science & Business Media, 2009.

Soma, T. and Yoshida, Y. A generalization of submodular
cover via the diminishing return property on the integer
lattice. In Advances in Neural Information Processing
Systems, pp. 847–855, 2015.

Soma, T., Kakimura, N., Inaba, K., and Kawarabayashi,
K.-i. Optimal budget allocation: Theoretical guarantee
and efficient algorithm. In International Conference on
Machine Learning, pp. 351–359, 2014.

Wang, C., Chen, W., and Wang, Y. Scalable influence max-
imization for independent cascade model in large-scale
social networks. Data Mining and Knowledge Discovery,
25(3):545–576, 2012.

Multi-layered Network Exploration via Random Walks

Wang, Q. and Chen, W. Improving regret bounds for com-
binatorial semi-bandits with probabilistically triggered
arms and its applications. In Advances in Neural Infor-
mation Processing Systems, pp. 1161–1171, 2017.

Wang, S. and Chen, W. Thompson sampling for combi-
natorial semi-bandits. In International Conference on
Machine Learning, pp. 5114–5122, 2018.

Wilder, B., Immorlica, N., Rice, E., and Tambe, M. Maxi-
mizing influence in an unknown social network. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Multi-layered Network Exploration via Random Walks

Supplementary Material
The supplementary material is organized as follows.

We first discuss how we handle the multiple random walks
in Section A. We provide proofs and examples for properties
of the visiting probability in Section B. Proofs of offline op-
timization for overlapping MuLaNE are provided in Section
C. We provide the detailed budget effective greedy algorithm
with partial enumeration (BEGE) and its analysis in Sec-
tion D. Proofs of offline optimization for non-overlapping
MuLaNE are provided in Section E. We state the detailed
analysis of online learning for overlapping MuLaNE in Sec-
tion F. We state the detailed analysis of online learning
for non-overlapping MuLaNE in Section G. Supplemental
experiments are provided in Section H.

A. Handling the Multiple Random Walkers

(a) Overlapping. (b) Non-overlapping.

Figure 2. Two types of multi-layered networks.

We can handle the scenario where each layer is explored by
multiple random walkers using the bipartite coverage model.
Without loss of generality, suppose we want to add a new
random walker W ′1 to the layer L1. A new node W ′1 can
be easily added to L representing the new random explorer,
and new edges {(W ′1, u)|u ∈ V1} are added to E ′. Thus,
we can use the same algorithms and analysis to solve the
optimization problem on the newly constructed bipartite
coverage graph.

B. Proofs and Examples for Properties of the
Visiting Probability Pi,u(ki)

B.1. Starting From Arbitrary Distributions

Lemma 1. gi,u(ki) ≥ 0 for any i ∈ [m], u ∈ Vi, ki ∈ Z>0.

Proof. For analysis, we use the following equivalent for-
mulation for ki ≥ 2, (trivially Pi,u(0) = 0 and Pi,u(1) =
αi,u),

Pi,u(ki) = ((αi)
>
−u(Γi)uki + αi,u), (12)

where (Γi)uki = (I + Ti(u) + ... + Ti(u)ki−2)(pi)u,
(pi)u = (Pi[·, u])−u, Ti(u) = (Pi)−u,−u, (we use Eq.

(2.67) in (Kijima, 1997) to derive Γuki). Note that p−u ∈
Rn−1 is the vector obtained by deleting the u-th element
from p ∈ Rn, and P−u,−v ∈ R(n−1)×(n−1) is the matrix
obtained by deleting the u-th row and the v-th column from
P ∈ Rn×n.

We further derive the marginal gain of Pi,u(·) at step ki ≥ 2
(trivially gi,u(1) = αi,u) as,

gi,u(ki) = (αi)
>
−uTi(u)ki−2(pi)u. (13)

Now, we can show gi,u(ki) is non-negative because any
element of (αi)

>
−u, Ti(u) and (pi)u are non-negative,

which means Pi,u(ki) is non-decreasing with respect to
step ki. �

An example showing gi,u(ki) is not monotone: Consider
a path P3 with three nodes as the i-th layer Gi(Vi, Ei), where
Vi = {u, v, w} and Ei = {(u, v), (v, u), (v, w), (w, v)}. If
the Wi always starts from the left-most node u and chooses
the right-most node w as our target node. Then, gi,w(1) =
gi,w(2) = 0 but gi,w(3) > 0 since at least three steps are
needed to visit the node w, which shows that gi,w(ki) is not
always non-increasing.

B.2. Starting From the Stationary Distribution

Lemma 2. gi,u(ki + 1) − gi,u(ki) ≤ 0 for any i ∈ [m],
u ∈ Vi, ki ∈ Z>0, if αi = πi, where π>i Pi = π>i .

Proof. Consider any layer Li with transition probability
matrix Pi, if we start from the stationary distribution πi,
the probability that node u ∈ Vi is ever visited in the
first ki steps is Pi,u(ki) = (πi)

>
−u(Γi)uki + πi,u, where

(Γi)uki = (I + Ti(u) + ... + Ti(u)k−2)(pi)u, Ti(u) =
(Pi)−u,−u, (pi)u = (Pi[·, u])−u. Then the marginal
gain for node u is gi,u(ki) = Pi,u(ki) − Pi,u(ki − 1) =
(πi)

>
−uTi(u)ki−2(pi)u for ki ≥ 2 and gi,u(ki) = πi,u

when ki = 1.

Define the margin of the marginal gain as ∆i,u(ki) =
gi,u(ki + 1) − gi,u(ki). When k = 1, ∆(u, 1) =
gi,u(2) − gi,u(1) = (πi)

>
−u · (pi)u − πi,u = πi,u −

πi,uP [u, u] − πi,u = −πi,uP [u, u] ≤ 0. When
ki ≥ 2, ∆i,u(ki) = gi,u(ki + 1) − gi,u(ki) =
(πi)−u(Ti(u)ki−1 −Ti(u)ki−2)(pi)u. Because π>i Pi =
π>i , we have (πi)

>
−u − (πi)

>
−uPi(u) = πi,u(qi)

>
u ,

where (qi)
>
u = (Pi[u, ·])−u. Thus, ∆i,u(ki) =

−(πi,u)(qi)
>
u Ti(u)ki−2(pi)u ≤ 0 because any element

in πi, (qi)
>
u , (pi)u and Pi(u) is non-negative. �

More interestingly, the stationary distribution πi is the only
starting distribution for Pi such that any u ∈ Vi, ki ∈ Z>0,
gi,u(ki + 1) − gi,u(ki) ≤ 0 when Pi is ergodic and there
are no self loops in Gi.

Multi-layered Network Exploration via Random Walks

Proof. With a little abuse of the notation, we use P to
denote the transition probability matrix Pi ∈ Rn×n and
let Pi,j be the element in the i-th row and the j-th col-
umn. Since P is ergodic, according to Theorem 54 in (Ser-
fozo, 2009), there exists a unique and positive station-
ary distribution π = (π1, ..., πn), i.e., πP = π and
π > 0. Any starting distribution α can be represented
by π + ε, where ε = (ε1, ..., εn) is a perturbation vector,
and −πj ≤ εj ≤ 1 − πj , j ∈ [n]. We have the following
equation for the margin of marginal gains for node u in the
first two steps,

∆u = gi,u(1)− gi,u(2) = (πu + εu)−
∑
j 6=u

(πj + εj)Pj,u

= πuPuu + εu −
∑
j 6=u

εjPj,u.

Since G has no self loops, i.e., Pu,u = 0, we have ∆u =
εu −

∑
j 6=u εiPj,u, and we can verify that

∑
u∈[n] ∆u =∑

u∈[n](1 −
∑
j 6=uPu,j)εu = 0. Therefore, we have to

guarantee ∆u = 0 for all u, otherwise there will exist a
node u such that ∆u < 0. To ensure ∆u = 0, we need
to ensure εP = ε by rephrasing the equations ∆u = 0
for all u. Again, since there exists a unique and positive
stationary distribution for P and

∑
u∈[n] εu = 0, we can

derive ε = βπ, where β has to be 0. Therefore, combined
with Lemma 2, the stationary distribution is the only starting
distribution such that for any Pi, any u ∈ Vi, ki ∈ Z>0,
gi,u(ki + 1)− gi,u(ki) ≤ 0. �

C. Proofs of Offline Optimization for
Overlapping MuLaNE

C.1. Starting from the arbitrary distribution

Lemma 3. For any network G, distribution α and weights
σ, rG,α,σ(·) : Zm≥0 → R is monotone and submodular.

Proof. By definition, we need to show rG,α,σ(x ∧ y) +
rG,α,σ(x ∨ y) ≤ rG,α,σ(x) + rG,α,σ(y) for any x,y ∈
Zm≥0, and rG,α,σ(x) ≤ rG,α,σ(y) if x ≤ y.

(Monotonicity.) By Eq. (7), rG,α,σ(k) =
∑
v∈V σv(1 −∏

i∈[m](1−Pi,v(ki))). Since Pj,v(xj) ≤ Pj,v(xj + 1), for
any j ∈ [m], v ∈ V , xj ∈ Z≥0, we have

rG,α,σ(x+ χj)− rG,α,σ(x)

=
∑
v∈V

σv((
∏
i 6=j

(1− Pi,v(xi))) (Pj,v(xj + 1)− Pj,v(kj)))

≥ 0,

for any x ∈ Zm≥0, j ∈ [m]. Then we can use the above
inequality repeatedly to show that rG,α,σ(x) ≤ rG,α,σ(y)
when x ≤ y.

(Submodularity.) For submodular property, it is sufficient
to prove (1−

∏
i∈[m](1− Pi,v(ki))) is submodular for any

v ∈ V , because a positive weighted sum of submodular
function is still submodular. We will rely on the following
lemma to prove the submodularity of rG,α,σ(k).

Lemma 5. Function f : Zm≥0 → R is submodular if and
only if

f(x+ χi)− f(x) ≥ f(x+ χj + χi)− f(x+ χj),

for any x ∈ Zm≥0 and i 6= j.
(14)

Proof of Lemma 5. (If part.) We first prove, if inequal-
ity (14) holds, the following inequality holds,

f(x+ χi)− f(x) ≥ f(y + χi)− f(y) (15)

for any x ≤ y and i ∈ [m] such that xi = yi.

Let I0 = {i ∈ [m] : xi = yi}, I1 = {i ∈ [m] : xi < yi}.
For any x ≤ y, we denote the elements in I1 by i1, ..., is
and write y = x+

∑s
j=1 αjχij , where αj = yj − xj . For

any i ∈ I0, we have

f(x+ χi)− f(x)

≥ f(x+ χi1 + χi)− f(x+ χi1)

≥ f(x+ 2χi1 + χi)− f(x+ 2χi1)

≥ ...
≥ f(x+ αi1χi1 + χi)− f(x+ αi1χi1)

≥ f(x+ αi1χi1 + χi2 + χi)− f(x+ αi1χi1 + χi2)

≥ f(x+ αi1χi1 + αi2χi2 + χi)− f(x+ αi1χi1 + αi2χi2)

≥ ...

≥ f(x+

s∑
j=1

αjχij + χi)− f(x+

s∑
j=1

αjχij)

= f(y + χi)− f(y). (16)

Then for any i ∈ I0 and a ∈ Z≥0, we have

f(x+ aχi)− f(x)

=

a∑
j=1

(f(x+ jχi)− f(x+ (j − 1)χi))

≥
a∑
j=1

(f(y + jχi)− f(y + (j − 1)χi))

≥ f(y + aχi)− f(y). (17)

The first inequality holds because of Inequality (16), the fact
x+(j−1)χi ≤ y+(j−1)χi and xi+ j−1 = yi+ j−1.

Then for any x,y ∈ Zm≥0, let I2 = {i ∈ [m] : xi > yi} =

Multi-layered Network Exploration via Random Walks

{i1, ..., is}. We have

f(x)− f(x ∧ y)

=

s∑
l=1

(
f

(
x ∧ y +

l∑
j=1

(xij − yij)χij

)

− f

(
x ∧ y +

l−1∑
j=1

(xij − yij)χij

))

≥
s∑
l=1

(
f

(
y +

l∑
j=1

(xij − yij)χij

)

− f

(
y +

l−1∑
j=1

(xij − yij)χij

))
= f(x ∨ y)− f(y).

The inequality is derived from Inequality (17) because y +∑l−1
j=1 (xij − yij)χij ≥ x ∧ y +

∑l−1
j=1 (xij − yij)χij for

any 0 ≤ l ≤ s and (x ∧ y)il = yil, which concludes the if
part.

(Only if part.) Assume f is submodular, let a = x +
χi, b = x + χj , i 6= j, we have a ∨ b = x + χi + χj ,
a ∧ b = x. f(x + χi) − f(x) = f(a) − f(a ∧ b) ≥
f(a ∨ b)− f(b) = f(x+ χj + χi)− f(x+ χj).

�

Then, by Lemma 5 and the explicit formula of the re-
ward function given by Eq. (7), we can prove g(x, v) −
g(x + χl, v) ≥ g(x + χj , v) − g(x + χl + χj , v) for
any x ∈ Zm≥0, v ∈ V and l 6= j ∈ [m], where g(x, v) =∏
i∈[m](1 − Pi,v(xi)). This holds due to the fact that the

left hand side equals to
(∏

i∈[m]\{j,l}(1− Pi,v(xi))
)

(1−
Pj,v(kj))(Pl,v(kl + 1) − Pl,v(kl)) and the right hand

side equals to
(∏

i∈[m]\{j,l}(1− Pi,v(xi))
)

(1−Pj,v(kj +

1))(Pl,v(kl + 1)−Pl,v(kl)), and the left hand side is larger
or equal to the right hand side because (1 − Pj,v(kj)) ≥
(1−Pj,v(kj+1)). By summation over all nodes v ∈ V with
node weights σv ∈ [0, 1], we can prove the reward function
is submodular. �

Theorem 1. Algorithm 1 obtains a (1 − e−η) ≈ 0.357-
approximate solution, where η is the solution of equation
eη = 2− η, to the overlapping MuLaNE problem.

Proof. For theoretical analysis, we first give a modified ver-
sion of Alg. 1 in Alg. 4. Both algorithms provide the same
solution k given the same problem instance (G,α,σ, B, c).
To see this fact, Alg. 4 considers invalid tentative allocations
(i∗, b∗) (adding it will exceed the total budget constraint B)
and remove them in line 13 of Alg. 4, while Alg. 1 only

Algorithm 4 Equivalent Budget Effective Greedy Algo-
rithm (BEG) for the Overlapping MuLaNE.

Input: Network G, starting distributions α, node weights
σ, budget B, constraints c.

Output: Budget allocation k.
1: Compute visiting probabilities (Pi,u(b))i∈[m],u∈V,b∈[ci]

according to Eq. (9).
2: k← BEG((Pi,u(b))i∈[m],u∈V,b∈[ci], σ, B, c).

3: Procedure BEG((Pi,u(b))i∈[m],u∈V,b∈[ci], σ, B, c)
4: Let k := (k1, ..., km)← 0, K ← B.
5: Let Q ← {(i, bi) | i ∈ [m], 1 ≤ bi ≤ ci}.
6: while K > 0 and Q 6= ∅ do
7: (i∗, b∗)← arg max(i,b)∈Q δ(i, b,k)/b .Eq. (11)
8: if b∗ ≤ K then
9: ki∗ ← ki∗ + b∗, K ← K − b∗.

10: Modify pairs (i∗, b) ∈ Q to (i∗, b− b∗).
11: Remove paris (i∗, b) ∈ Q such that b ≤ 0.
12: else
13: Remove (i∗, b∗) from Q.
14: end if
15: end while
16: for i ∈ [m] do
17: if rG,α,σ(ciχi) > rG,α,σ(k), then k← ciχi.
18: end forreturn k := (k1, ..., km).
19: end Procedure

considers valid allocations by directly removing invalid al-
locations in advance in line 10 of Alg. 1.

With a little abuse of the notation, we use r(k) to represent
the reward rG,α,σ(k) of a given problem instance. Let
k∗ ∈ Zm≥0 denote the optimal budget allocation and kj ∈
Zm≥0 denote the budget allocation before entering the j-th
iteration of the while loop (line 6-13) in Alg. 4. After
entering the j-th iteration, the algorithm tries to extend the
current budget allocation kj by choosing the pair (i∗, b∗) in
line 7, which we denote as (ij , bj). Let s be the first iteration
we can not extend the current solution, i.e., ks = ks+1 and
kj < kj+1 for j = 1, ..., s − 1. If we can always extend
the current solution, we set s to be B + 1. For analysis,
we temporarily add (is, bs) (in the algorithm, this pair is
removed by line 13 in the s-th iteration) to form a ”virtual”
budget allocation ks+1=ks + bsχis . Let kg ∈ Zm≥0 denote
the solution returned by Alg. 4.

We first introduce lemmas describing two important proper-
ties given by the submodularity over the integer lattice.

Lemma 6. (Soma et al., 2014). Let f : Zm≥0 → R be a

Multi-layered Network Exploration via Random Walks

submodular function. For any x,y ∈ Zm≥0, we have,

f(x ∨ y)

≤ f(x) +
∑

i∈supp+(y−x)

(f (x+ (yi − xi)χi)− f(x)) .

(18)

Lemma 7. (Soma et al., 2014). Let f : Zm≥0 → R be a
monotone submodular function. For any x,y ∈ Zm≥0 with
x ≤ y and i ∈ [m] we have,

f(x ∨ kχi)− f(x) ≥ f(y ∨ kχi)− f(y). (19)

Then, we have the following lemma.

Lemma 8. For j = 1, ..., s,

r(kj+1) ≥ (1− bj

B
)r(kj) +

bj

B
r(k∗). (20)

Proof of Lemma 8. This is because

r(k∗)

≤ r(k∗ ∨ kj)

≤ r(kj) +
∑

i∈supp+(k∗−kj)

(
r(kj + (k∗i − k

j
i)χi)− r(k

j)
)

= r(kj) +
∑

i∈supp+(k∗−kj)

(
r(kj + αiχi)− r(kj)

)
(Let αi = k∗i − k

j
i)

≤ r(kj) +
∑

i∈supp+(k∗−kj)

(
αi
r(kj+1)− r(kj)

bj

)

≤ r(kj) +B

(
r(kj+1)− r(kj)

bj

)
. (21)

The second inequality comes from Lemma 6, the third in-
equality holds because of the greedy procedure in line 7 and
the last inequality holds because

∑
i∈supp+(k∗−kj) αi ≤ B.

By rearranging terms, Inequality (20) holds. �

Next, We can prove the following lemma.

Lemma 9. For l = 1, ..., s,

r(kl+1) ≥ r(k1)

l∏
j=1

(
1− bj

B

)

+ r(k∗)

1−
l∏

j=1

(
1− bj

B

) .

(22)

Proof of Lemma 9. We can prove this lemma by induction
on l. When l = 1, the lemma holds due to Lemma 8.
Assume that the lemma holds for l−1, we have the following
inequality holds,

r(kl+1)

≥ (1− bl

B
)r(kl) +

bl

B
r(k∗)

≥ (1− bl

B
)r(k1)

l−1∏
j=1

(
1− bj

B

)

+ (1− bl

B
)r(k∗)

1−
l−1∏
j=1

(
1− bj

B

)+
bl

B
r(k∗)

= r(k1)

l∏
j=1

(
1− bj

B

)
+ r(k∗)

1−
l∏

j=1

(
1− bj

B

) ,

(23)

where the first inequality is due to Lemma 8 by setting j = l,
and the second inequality is by the assumption for l− 1. By
induction, Lemma 9 holds.

�

We then consider the following cases.

Case 1. Suppose the total budget used for ks is larger or
equal to ηB, i.e.,

∑s−1
j=1 b

j ≥ ηB, where η ∈ [0, 1].

We have the following inequality.

r(ks) ≥ (1− e−η)r(k∗). (24)

This is due to Lem. 9 by setting l = s− 1, combined with
the fact that k1 = 0 and

∏s−1
j=1

(
1− bj

B

)
≤ e−η. The later

fact holds because,

log

s−1∏
j=1

(
1− bj

B

) = (s− 1)

s−1∑
j=1

1

s− 1
log

(
1− bj

B

)

≤ (s− 1) log

1− 1

s− 1

s−1∑
j=1

bj

B


≤ (s− 1) log(1− η

s− 1
),

where the first inequality holds because of the Jensen’s
Inequality (Raginsky et al., 2013) and the second inequality
holds because

∑s−1
j=1

bj

B ≥ η. Then we can easily check∏s−1
j=1

(
1− bj

B

)
≤ (1− η

s−1)s−1 ≤ e−η .

Case 2. Suppose the total budget
∑s−1
j=1 b

j ≤ ηB. Then, we
have bs > (1− η)B. We can prove the following inequality
holds,

r(kg) ≥ (1− 1

2− η
)r(k∗). (25)

Multi-layered Network Exploration via Random Walks

This is due to Inequality (21), we have

r(k∗) ≤ r(ks) +B

(
r(ks+1)− r(ks)

bs

)
≤ r(ks) +

(
r(ks+1)− r(ks)

1− η

)
≤ (1 +

1

1− η
)r(kg),

where the second inequality is due to bs > (1 − η)B and
the last equality is due to the fact r(ks+1)− r(ks) ≤ r(kg),
r(ks) ≤ r(kg). To see the above fact, we assume without
loss of generality the pair (is, bs) improves ks towards the
optimal budget allocation, i.e., ks+1

is
= bs + ksis ≤ k∗is . Oth-

erwise, if bs +ksis > k∗is , we can safely delete (is, bs) in the
queueQ and does not affect the greedy solution, the optimal
solution and the analysis. Let rmax = maxi∈[m] r(ciχi),
we have r(ks+1) − r(ks) ≤ r(ks ∨ k∗isχis) − r(ks) ≤
r(k∗isχis) − r(0) ≤ rmax ≤ r(kg). Also, we can obtain
that r(ks) ≤ r(kg) since ks ≤ kg. By rearranging the
terms, Inequality (25) holds.

Combining Inequality (24) and (25), we have

r(kg) ≥ min
η∈[0,1]

max (1− e−η, 1− 1

2− η
)r(k∗)

≥ (1− e−η)r(k∗),

where η is the solution for equation eη = 2− η.

�

C.2. Starting From the Stationary Distribution

Lemma 4. For any network G, stationary distributions π
and node weights σ, function rG,π,σ,(·) : Zm≥0 → R is
monotone and DR-submodular.

Proof. By definition, we need to show rG,π,σ(y +
χj) − rG,π,σ(y) ≤ rG,π,σ(x + χj) − rG,π,σ(x), and
rG,π,σ(x) ≤ rG,π,σ(y) for any x ≤ y, j ∈ [m].

We first introduce the following lemma to help us to prove
the DR-submodularity.

Lemma 10. Function f is DR-submodular if and only if

f(x+ χi)− f(x) ≥ f(x+ χj + χi)− f(x+ χj),

for any x ∈ Zm≥0.
(26)

Proof of Lemma 10. (If part.) We can easily check this
direction holds by using the similar argument for Inequal-
ity (16), where the only difference is we consider i ∈ [m]
instead of i ∈ I0.

(Only if part.) We can set y := x′ + χj , x := x′ + χi,
for any i, j ∈ [m],x′ ∈ Zm≥0, and use Inequality (15) to

show the only if part holds. �

Since rG,α,σ(k) is submodular for arbitrary starting distribu-
tions α, Inequality (14) holds. Then consider any layer j ∈
[m] and budget allocation x ∈ Zm≥0, it is sufficient to show
rG,π,σ(x+ 2χj)− rG,π,σ(x+χj) ≤ rG,π,σ(x+χj)−
rG,π,σ(x). Since the left hand side minus the right hand

side equals to
∑
v∈V σv[

(∏
i∈[m],i6=j (1− Pi,v (xi))

)
·

(Pj,v(xj)− 2Pj,u(xj + 1) + Pj,v(xj + 2))], we only need

to show
∑
v∈V σv[

(∏
i∈[m],i6=j (1− Pi,v (xi))

)
·(gj,v(xj +

2)−gj,v(xj+1))] ≤ 0. The above inequality holds because
of Lemma 2. �

Theorem 2. Algorithm 2 obtains a (1− 1/e)-approximate
solution to the overlapping MulaNE with the stationary
starting distributions.

Proof. We can observe that line 7 always select the pair
(i∗, b∗) with b∗ = 1 because rG,α,σ(k+ bχi)− rG,α,σ(k+
(b − 1)χi) ≤ rG,α,σ(k + χi) − rG,α,σ(k) for arbitrary
k, i and b. Thus, we have s = B + 1 and by the similar
argument for Inequality (24), we have r(kg) = r(kB+1) ≥
(1− 1/e)r(k∗), which completes the proof. �

C.3. Efficiently Evaluating the Reward Function

One key issue to derive the budget allocation is to efficiently
evaluate the reward function rG,α,σ(k) and its marginal
gains δ(i, b,k). Since we need to repetitively use the vis-
iting probabilities Pi,u(ki), we pre-calculate Pi,u(ki) in
O(m ‖c‖∞ n3

max) time in our algorithms based on Eq. (9),
where nmax = maxi |Vi|. For the overlapping case, given
the current budget allocation k, we maintain a value pu =∏
i∈[m] (1− Pi,u(ki)) for each node u ∈ V . The marginal

gain δ(i, b,k) =
∑
u∈V σu

[
pu

(
1− 1−Pi,u(ki+b)

1−Pi,u(ki)

)]
/b

can be evaluated in O(nmax) time. Then, we update all
pu = pu

(
1−Pi,u(ki+b)

1−Pi,u(ki)

)
in O(nmax) after we allocate b

more budgets to layer i. Therefore, we can use O(nmax)
in total to evaluate δ(i, b,k). In practice, lazy evalua-
tion (Krause et al., 2008) and parallel computing can be
used to further accelerate our algorithm.

D. Budget Effective Greedy Algorithm With
Partial Enumeration and Its Analysis

D.1. Algorithm

The algorithm is shown in Alg. 5.

D.2. Analysis

Theorem 4. The Algorithm 5 obtains a (1 − 1/e)-
approximate solution to the overlapping MuLaNE with ar-

Multi-layered Network Exploration via Random Walks

Algorithm 5 Budget Effective Greedy Algorithm with Par-
tial Enumeration (BEGE).
Input: Graph G, starting distributions α, node weights σ,

budget B, constraints c.
Output: Budget allocation k.

1: Compute visiting probabilities (Pi,u(b))i∈[m],u∈V,b∈[ci]

according to Eq. (7).
2: k← BEGE((Pi,u(b))i∈[m],u∈V,b∈[ci], σ, B, c).

3: Procedure BEGE((Pi,u(b))i∈[m],u∈V,b∈[ci], σ, B, c)
4: Let kmax ← 0.
5: S ← {k = (k1, ..., km)|0 ≤ ki ≤ ci,

∑
i∈[m] ki ≤

B,
∑
i∈[m] I{ki > 0} ≤ 3}. .S contains all

partial solutions which allocate partial budgets to at
most three layers

6: for k ∈ S do
7: K ← B −

∑
i∈[m] ki.

8: Let Q ← {(i, bi) | i ∈ [m], 1 ≤ bi ≤ ci − ki}.
9: while K > 0 and Q 6= ∅ do

10: (i∗, b∗) ← arg max(i,b)∈Q δ(i, b,k)/b.
.Eq. (11)

11: if b∗ ≤ K then
12: ki∗ ← ki∗ + b∗, K ← K − b∗.
13: Modify all pairs (i∗, b) ∈ Q to (i∗, b− b∗).
14: Remove all pairs (i∗, b) ∈ Q such that b ≤ 0.
15: else
16: Remove (i∗, b∗) from Q.
17: end if
18: end while
19: if rG,α,σ(k) > rG,α,σ(kmax), then kmax ← k.
20: end forreturn kmax := (k1, ..., km).
21: end Procedure

bitrary starting distributions.

Proof. Suppose that we start from a partial solution k1 ∈
Zm≥0 6= 0. Let us first reorder the optimal solution k∗ accord-
ing to a non-increasing marginal gain ordering. Namely, the
marginal gain of the pair (s∗1, b

∗
1) with respect to the empty

pair is the highest among all other pairs, the marginal gain
of the pair (s∗2, b

∗
2) with respect to the solution consisting

of pair (s∗1, b
∗
1) is the highest among all remaining pairs,

and so on. To be concrete, k∗ = {(s∗1, b∗1), ..., (s∗m, b
∗
m)},

where s∗i ∈ [m] \ {s∗1, ..., s∗i−1} is selected to maximize the
following equation:r

i−1∑
j=1

b∗jχs∗j + b∗s∗iχl

− r
i−1∑
j=1

b∗jχs∗j

 . (27)

Then, we try to bound the ”virtual” marginal gain ∆s =
r(ks+1) − r(ks), and recall s is the first iteration we can
not extend the current solution. Without loss of generality,
we assume the virtual pair (is, bs) improves ks towards the

optimal budget allocation, i.e., bs+ksis ≤ k∗is . Otherwise, if
bs + ksis > k∗is , we can safely delete (is, bs) in the queue Q
and does not affect the greedy solution, the optimal solution
and the analysis.

If we start from the initial solution k1 such that k1 matches
(s∗1, b

∗
1), (s∗2, b

∗
2), (s∗3, b

∗
3), i.e., k1

s∗i
= b∗i for i = 1, 2, 3,

we have ∆s = r(ks+1) − r(ks) ≤ r(ks ∨ k∗isχis) −
r(ks) ≤ r(k∗isχis) − r(0) ≤ r(b∗1χs∗1). Moreover, ∆s =
r(ks+1) − r(ks) ≤ r(ks ∨ k∗isχis) − r(ks) = r(ks ∨
b∗1χs∗1 ∨ k

∗
isχis)− r(ks ∨ b∗1χs∗1) ≤ r(b∗1χs∗1 ∨ k

∗
isχis)−

r(b∗1χs∗1) ≤ r(b∗1χs∗1 + b∗2χs∗2) − r(b∗1χs∗1). Similarly, we
have ∆s ≤ r(b∗1χs∗1 +b∗2χs∗2 +b∗3χs∗3)−r(b∗1χs∗1 +b∗2χs∗2).
By adding above inequalities, we have ∆s ≤ r(k1)/3.

Now, we can use Lemma 9 by setting l = s and the
fact

∑s
j=1 b

j ≥ B to show r(ks+1) ≥ r(k1) + (1 −
1/e)(r(k∗)− r(k1)). Combining ∆s ≤ r(k1)/3, we have
r(ks) ≥ (1 − 1/3)r(k1) + (1 − 1/e)(r(k∗) − r(k1)) ≥
(1− 1/e)r(k∗), which completes the proof. �

The time complexity of Alg. 5 is O(B4m4 ‖c‖∞ nmax +
‖c‖∞mn3

max). This is because the number of all partial so-
lutions is |S| = O(B3m3), and for any partial enumeration
k ∈ S, the time complexity is the same order as the Alg. 1,
i.e., O(B ‖c‖∞mnmax), where O(nmax) is the time to
evaluate δ(i, b,k) as discussed before.

E. Algorithms and Analysis of Offline
Optimization for Non-overlapping
MuLaNE

E.1. Starting From the Stationary Distribution

According to Eq. (8) and (10), the reward function can be
rewritten as

rG,α,σ(k) =
∑
i∈[m]

∑
b∈[ki]

gi(b), (28)

where gi(b) represents the layer-level marginal gain when
we allocate one more budget (from b − 1 to b) to layer i,
which is given by

gi(b) =
∑
v∈Vi

σv(Pi,v(b)− Pi,v(b− 1)). (29)

From the definition of the reward function, we have two
observations. First, budgets allocated to a layer will not
affect the reward of other layers because layers are non-
overlapping. Second, the layer-level marginal gain gi(b)
for the i-th layer is non-increasing with with respect to
budget b. Based on these two observation, we propose the
myopic greedy algorithm (Alg. 6), which is a slight modi-
fication of Alg. 2. Alg. 6 takes the multi-layered network
G = (G1, ...,Gm), starting distributions (α1, ...,αm), node
weights σ = (σ1, ..., σ|V|) and total budget B as inputs. It

Multi-layered Network Exploration via Random Walks

consists of B rounds to compute the optimal budget alloca-
tion k∗. In each round, line 7 in Alg. 6 selects the layer i∗

with the largest layer-level marginal gain and allocate one
budget to layer i∗ until total B budgets are used up.

Algorithm 6 Myopic Greedy Algorithm for the Non-
overlapping MuLaNE

Input: Network G, starting distributions α, budget B, con-
straints c.

Output: Budget allocation k.
1: Compute visiting probabilities (Pi,u(b))i∈[m],u∈V,b∈[ci]

according to Eq. (8).
2: Compute layer-level marginal gain gi(b)i∈[m],b∈[ci] ac-

cording to Eq. (29).
3: k←MG((gi(b))i∈[m],b∈[ci], B, c)

4: Procedure MG((gi(b))i∈[m],b∈[ci], B, c)
5: Let k := {k1, ..., km} ← 0, K ← B.
6: while K > 0 do
7: i∗ ← arg maxi∈[m],ki+1≤ci gi(ki+1). .O(logm)

using the priority queue
8: ki∗ ← ki∗ + 1, K ← K − 1.
9: end whilereturn k = (k1, ..., km).

10: end Procedure

Theorem 5. The Algorithm 6 obtains the optimal budget
allocation to the non-overlapping MuLaNE with the station-
ary starting distributions.

Proof. Define a two dimensional array M ∈
Rc1+c2+...+cm , where (i, j)-th entry is the j-th
step layer-level marginal gain for layer i, i.e.,
M [i, j] =

∑
v∈Vi gi,v(j), for i ∈ [m], j ∈ [ci].

Given the budget allocation k = {k1, ..., km}, the expected
reward rG,α,σ(k) can be written as the sum of elements
in M , i.e., rG,α,σ(k) =

∑m
i=1

∑ki
j=1M [i, j]. Because

gi,v(ki) is non-increasing with respect to ki, the element in
each row or the layer-level marginal gain is non-increasing.
Hence, the greedy method at step s choose the s-th largest
element inM . At step s = B, the greedy policy selects all
B largest elements and the corresponding budget allocation
maximizes the expected reward rG,α,σ(k). �

Alg. 6 uses O(‖c‖∞mn3
max) to compute visiting probabil-

ities Pi,u(ki) and O(‖c‖∞mnmax) to compute layer-wise
marginal gains gi(b). Then δ(i, 1,k) can be evaluated in
O(logm) using the priority queue, which is repeated for
B iterations. Therefore, the time complexity of Alg. 6 is
O(B logm+ ‖c‖∞mn3

max).

E.2. Starting From Arbitrary Distributions

When random explorers start from any arbitrary distribution,
Alg. 6 can not obtain the optimal solution. This is because
the layer-level marginal gain gi(b) is not non-increasing

Algorithm 7 Dynamic Programming (DP) Algorithm for
the Non-overlapping MuLaNE

Input: Network G, starting distributions α, node weights
σ, budget B, constraints c.

Output: Budget allocation k.
1: Compute visiting probabilities (Pi,u(b))i∈[m],u∈V,b∈[ci]

according to Eq. (8).
2: Compute layer-level marginal gain (gi(b))i∈[m],b∈[ci]

according to Eq. (29).
3: k← DP((gi(b))i∈[m],b∈[ci], B, c)

4: Procedure DP((gi(b))i∈[m],b∈ci , B, c)
5: for i ∈ 0 ∪ [m], b ∈ 0 ∪ [B]. do
6: Set A[i, b]← 0, V [i, b]← 0.
7: end for
8: for i← 0 to m− 1 do
9: for b ∈ [B] do

10: j∗ ← arg maxj∈0∪[ci+1]((V [i, b − j] +
rG,α,σ(jχi+1)).

11: A[i+ 1, b]← A[i, b− j∗] + j∗χi+1.
12: V [i+ 1, b]← V [i, b− j∗] + rG,α,σ(j∗χi+1).
13: end for
14: end forreturn A[m,B].
15: end Procedure

with respect to b. So we have to adopt a more general
technique, dynamic programming (DP), to solve the budget
allocation problem. The key idea is to keep a DP budget
allocation table A ∈ R(m+1)×(B+1), where the (i, b)-th
entry A[i, b] saves the optimal budget allocation by allo-
cating b budgets to the first i layers. Another DP table
V ∈ R(m+1)×(B+1) saves the value of the optimal reward,
where the (i, b)-th entry V [i, b] corresponds to the optimal
reward when setting A[i, b] as the budget allocation. In
the i′-th outer loop and b′-th inner loop in Alg 7, we have
already obtained the optimal budget allocation for A[i, b]
with i = 0, ..., i′, b ∈ [B], which help us to find the optimal
amount of budget j∗ to (i′+1)-th layer (in line 10), and thus
we can obtain the A[i′ + 1, b′] and V [i′ + 1, b′] accordingly.

Theorem 6. Algorithm 7 obtains the optimal budget allo-
cation to the non-overlapping MuLaNE with an arbitrary
starting distribution.

Alg. 7 uses O(‖c‖∞mn3
max) to compute visiting probabil-

ities Pi,u(ki) and O(‖c‖∞mnmax) to compute layer-wise
marginal gains gi(b). In the DP procedure, we can also pre-
calculate all rewards rG,α,σ(jχi+1) in O(‖c‖∞m). Then
DP procedure takes O(‖c‖∞) to find j∗, which is repeated
for Bm iterations. Therefore, the Alg. 7 has the time com-
plexity of O(B ‖c‖∞m+ ‖c‖∞mn3

max).

Multi-layered Network Exploration via Random Walks

F. Analysis of Online Learning for
Overlapping MuLaNE

F.1. Proof of 1-Norm Bounded Smoothness.

Property 1. (Monotonicity). The reward rµ,σ(k) is mono-
tonically increasing, i.e., for any budget allocation k, any
two vectors µ=(µi,u,b)(i,u,b)∈A, µ′=(µ′i,u,b)(i,u,b)∈A and
any node weights σ, σ′, we have rµ,σ(k) ≤ rµ′,σ′(k), if
µi,u,b ≤ µ′i,u,b and σv ≤ σ′v , ∀(i, u, b) ∈ A, v ∈ V .

Proof. According to Eq. (7), and since µi,u,b ≤ µ′i,u,b, for
(i, u, b) ∈ A, we have (1 −

∏
i∈[m](1 − µi,u,ki)) ≤ (1 −∏

i∈[m](1− µ′i,u,ki)). Therefore for any σu ≤ σ′u, we have
σu(1−

∏
i∈[m](1−µi,u,ki)) ≤ σ′u(1−

∏
i∈[m](1−µ′i,u,ki))

By summing up both sides over u ∈ V , we have rk(µ,σ) ≤
rk(µ′,σ′). �

Property 2. (1-Norm Bounded Smoothness). The reward
function rµ,σ(k) satisfies the 1-norm bounded smooth-
ness condition, i.e., for any budget allocation k, any two
vectors µ=(µi,u,b)(i,u,b)∈A, µ′=(µ′i,u,b)(i,u,b)∈A and any
node weights σ, σ′, we have |rµ,σ(k) − rµ′,σ′(k)| ≤∑
i∈[m],u∈V,b=ki(σu|µi,u,b − µ

′
i,u,b|+ |σu − σ′u|µ′i,u,b).

Proof. The left-hand side:

|rµ,σ(k)− rµ′,σ′(k)|

=
∣∣∣∑
u∈V

[
σu

1−
∏
i∈[m]

(1− µi,u,ki)


− σ′u

1−
∏
i∈[m]

(
1− µ′i,u,ki

)]∣∣∣
≤
∑
u∈V

∣∣∣∣∣∣σu(1−
∏
i∈[m]

qi,u)− σ′u(1−
∏
i∈[m]

q′i,u)

∣∣∣∣∣∣
=
∑
u∈V
|σu(1−

∏
i∈[m]

qi,u)− σu(1−
∏
i∈[m]

q′i,u)

+ σu(1−
∏
i∈[m]

q′i,u)− σ′u(1−
∏
i∈[m]

q′i,u)|

≤
∑
u∈V

σu|
∏
i∈[m]

qi,u −
∏
i∈[m]

q′i,u|

+
∑
u∈V
|σu − σ′u|(1−

∏
i∈[m]

q′i,u),

where qi,u = (1− µi,u,ki), q′i,u = (1− µ′i,u,ki).

For the first term, it can be derived that,

σu

∣∣∣∣∣∣
∏
i∈[m]

qi,u −
∏
i∈[m]

q′i,u

∣∣∣∣∣∣
= σu

∣∣∣∣∣∣
m∑
i=1

i−1∏
j=1

q′j,u

 (qi,u − q′i,u)

 m∏
j=i+1

qj,u

∣∣∣∣∣∣
≤ σu

m∑
i=1

∣∣∣∣∣∣
i−1∏

j=1

q′j,u

 (qi,u − q′i,u)

 m∏
j=i+1

qj,u

∣∣∣∣∣∣
≤ σu

m∑
i=1

∣∣qi,u − q′i,u∣∣
= σu

∑
i∈[m]

∣∣µi,u,ki − µ′i,u,ki∣∣ ,
where last inequality holds because qj,u, q′j,u ≤ 1 and σu ∈
[0, 1], for any j ∈ [m], u ∈ V .

For the second term, we have

|σu − σ′u|(1−
∏
i∈[m]

q′i,u)

= |σu − σ′u|(1−
∏
i∈[m]

(1− µ′i,u,ki))

≤ |σu − σ′u|
∑
i∈[m]

µ′i,u,ki ,

where the inequality holds because of the Weierstrass prod-
uct inequality. Plugging the above two terms into the pre-
vious inequality, 1-Norm Bounded Smoothness is satis-
fied. �

F.2. Regret Analysis for Overlapping MuLaNE

In this section, we give the regret analysis for overlapping
MuLaNE.

F.2.1. FACTS

We utilize the following tail bound in our analysis.

Fact 1 (Hoeffding’s Inequality (Dubhashi & Panconesi,
2009).). Let Y1, ..., Yn be independent and identically dis-
tributed (i.e., i.i.d) random variables with common suppport
[0, 1] and mean µ. Let Z = Y1 + ...+ Yn. Then for all δ,

Pr{|Z − nµ| ≥ δ} ≤ 2e−2δ2/n.

F.2.2. PROOF DETAILS

Let A denote the set containing all base arms, i.e., A =
{(i, u, b)|i ∈ [m], u ∈ V, b ∈ [ci]}. We add subscript t to
denote the value of a variable at the end of round t ∈ [T],
e.g. σ̄t, µ̂i,u,b,t, where T is the total number of rounds. For
example, Ti,u,b,t denotes the total number of times that arm

Multi-layered Network Exploration via Random Walks

(i, u, b) is played at the end of round t. Let us first introduce
a definition of an unlikely event, where µ̂i,u,b,t−1 is not
accurate as expected.

Definition 2. We say that the sampling is nice at the begin-
ning of round t, if for every arm (i, u, b) ∈ A, |µ̂i,u,b,t−1 −
µi,u,b| < ρi,u,b,t, where ρi,u,b,t =

√
3 ln t

2Ti,u,b,t−1
. Let Nt be

such event.

Lemma 11. For each round t ≥ 1, Pr{¬Nt} ≤ 2|A|t−2

Proof. For each round t ≥ 1, we have

Pr{¬Nt}

= Pr{∃(i, u, b) ∈ A, |µ̂i,u,b,t−1 − µi,u,b| ≥

√
3 ln t

2Ti,u,b,t−1
}

≤
∑

(i,u,b)∈A

Pr{|µ̂i,u,b,t−1 − µi,u,b| ≥

√
3 ln t

2Ti,u,b,t−1
}

=
∑

(i,u,b)∈A

t−1∑
k=1

Pr{Ti,u,b,t−1 = k

∧ |µ̂i,u,b,t−1 − µi,u,b| ≥

√
3 ln t

2Ti,u,b,t−1
}

≤
∑

(i,u,b)∈A

(t−1)∑
k=1

2

t3
≤ 2|A|t−2.

Given Ti,u,b,t−1 = k, µ̂i,u,b,t−1 is the average of k i.i.d. ran-
dom variables Y [1]

i,u,b, ..., Y
[k]
i,u,b, where Y [j]

i,u,b is the Bernoulli
random variable (computed in Alg. 3 line 12) when the
arm (i, u, b) is played for the j-th time during the execution.
That is, µ̂i,u,b,t−1 =

∑k
j=1 Y

[j]
i,u,b/k. Note that the indepen-

dence of Y [1]
i,u,b, ..., Y

[k]
i,u,b comes from the fact we select a

new starting position following the starting distribution αi
at the beginning of each round t. And the last inequality
uses the Hoeffding Inequaility (Fact 1). �

Then we can use monotonicity and 1-norm bounded smooth-
ness properties (Property 1 and Property 2) to bound the
reward gap ∆kt = ξrµ,σ(k∗)− rµ,σ(kt) between the op-
timal action k∗ and the action kt = (kt,1, ..., kt,m) selected
by our algorithm A. To achieve this, we introduce a positive
real number Mi,u,b for each arm (i, u, b) and define Mkt =
max(i,u,b)∈St

Mi,u,b, where St = {(i, u, b) ∈ A|b = kt,i}.
Define |E ′| = |St| =

∑
i∈[m] |V| = m|V|, and let

κT (M, s) =


2, if s = 0,

3
√

6 lnT
s , if 1 ≤ s ≤ `T (M),

0, if s ≥ `T (M) + 1,

where

`T (M) = b54|E ′|2 lnT

M2
c.

Lemma 12. If {∆kt
≥Mkt} and Nt holds, we have

∆kt ≤
∑

(i,u,b)∈St

κT (Mi,u,b, Ti,u,b,t−1). (30)

Proof. First, we can observe, for (i, u, b) ∈ A, µi,u,b is
upper bounded by µ̄i,u,b,t, i.e., µ̄i,u,b,t ≥ µi,u,b, when Nt
holds. This is due to

µ̄i,u,b,t = max
j∈[b]

µ̃i,u,j,t

≥ µ̃i,u,b,t
= min{µ̂i,u,b,t−1 + ρi,u,b,t, 1}
≥ µi,u,b,

where the last inequality comes from the fact that
|µ̂i,u,b,t−1 − µi,u,b| < ρi,u,b,t when Nt holds.

Then, notice that the right hand of Inequality (30) is non-
negative, it is trivially satisfied when ∆kt

= 0. We only
need to consider ∆kt > 0. By Nt and Property 1, We have
the following inequalities,

rµ̄t,σ̄(kt) ≥ ξrµ̄t,σ̄(k∗) ≥ ξrµ,σ(k∗) = ∆kt +rµ,σ(kt).

The first inequality is due to the oracle outputs the (ξ, β)-
approximate solution given parameters µ̄t, where ξ = 1−
e−η, β = 1 by definition. The second inequality is due to
Condition 1 (monotonicity).

Then, by Condition 2, we have

∆kt ≤ rµ̄t,σ̄(kt)− rµ,σ(kt)

≤
∑

(i,u,b)∈St

(σu|µ̄i,u,b,t − µi,u,b|+ |σ̄u − σu|µ̄i,u,b,t)

≤
∑

(i,u,b)∈St

(|µ̄i,u,b,t − µi,u,b|+ ρi,u,b,t),

where the last inequality is due to the following observation:
σ̄u 6= σu if and only if u has not been visited so far, so
µ̂i,u,b,t−1 = 0 for any i ∈ [m], b ∈ [B] and µ̄i,u,b,t =
maxj∈[b]{µ̂i,u,j,t−1 + ρi,u,j,t} = ρi,u,b,t.

Next, we can bound ∆kt by bounding µ̄i,u,b,t − µi,u,b +
ρi,u,b,t by applying a transformation. As {∆kt ≥ Mkt}
holds by assumption, so

∑
(i,u,b)∈St

|µ̄i,u,b,t − µi,u,b| +

Multi-layered Network Exploration via Random Walks

ρi,u,b,t ≥ ∆kt ≥Mkt . We have

∆kt ≤
∑

(i,u,b)∈St

(|µ̄i,u,b,t − µi,u,b|+ ρi,u,b,t)

≤ −Mkt + 2
∑

(i,u,b)∈St

|µ̄i,u,b,t − µi,u,b|+ ρi,u,b,t

= 2
∑

(i,u,b)∈St

(|µ̄i,u,b,t − µi,u,b|+ ρi,u,b,t −
Mkt

2|E ′|
)

≤ 2
∑

(i,u,b)∈St

(|µ̄i,u,b,t − µi,u,b|+ ρi,u,b,t −
Mi,u,b

2|E ′|
).

(31)

By Nt, for all (i, u, b) ∈ A, we have:

|µ̄i,u,b,t − µi,u,b|+ ρi,u,b,t −
Mi,u,b

2|E ′|

= µ̃i,u,l,t − µi,u,b + ρi,u,b,t −
Mi,u,b

2|E ′|
(l = arg maxj∈[b] µ̃i,u,j,t)

≤ µ̃i,u,l,t − µi,u,l + ρi,u,b,t −
Mi,u,b

2|E ′|

≤ min{2ρi,u,l,t + ρi,u,b,t, 1} −
Mi,u,b

2|E ′|

≤ min{3ρi,u,b,t, 1} −
Mi,u,b

2|E ′|

≤ min

{
3

√
3 lnT

2Ti,u,b,t−1
, 1

}
− Mi,u,b

2|E ′|
.

where the first inequality is due to µi,u,j ≤ µi,u,b for j ≤ b,
the second inequality is due to the event Nt and the third
inequality holds because Ti,u,j,t−1 ≥ Ti,u,b,t−1 for j ≤ b.

Now consider the following cases:

Case 1. If Ti,u,b,t−1 ≤ `T (Mi,u,b), we have µ̄i,u,b,t −
µi,u,b + ρi,u,b,t − Mi,u,b

2|E′| ≤ min
{

3
√

3 lnT
2Ti,u,b,t−1

, 1
}
≤

1
2κT (Mi,u,b, Ti,u,b,t−1).

Case 2. If Ti,b,t−1 ≥ `T (Mi,u,b,t) + 1, then

3
√

3 lnT
2Ti,u,b,t−1

≤ Mi,u,b

2|E′| , so µ̄i,u,b,t − µi,u,b + ρi,u,b,t −
Mi,u,b

2|E′| ≤ 0 = 1
2κT (Mi,u,b, Ti,u,b,t−1).

Combine these two cases and inequality (31), we have the
following inequality, which concludes the lemma.

∆kt ≤
∑

(i,u,b)∈St

κT (Mi,u,b, Ti,u,b,t−1).

�

Theorem 3. Algorithm 3 has the following distribution-

dependent (1− e−η, 1) approximation regret,

Regµ,σ(T) ≤
∑

(i,u,b)∈A
108m|V| lnT

∆i,u,b
min

+2|A|+π2

3 |A|∆max.

Proof of Theorem 3. By above lemmas, we have

T∑
t=1

I ({∆kt ≥Mkt} ∧ Nt) ∆kt

≤
T∑
t=1

∑
(i,u,b)∈St

κT (Mi,u,b, Ti,u,b,t−1)

=
∑

(i,u,b)∈A

∑
t′∈{t|t∈[T],kt,i=b}

κT (Mi,u,b, Ti,u,b,t′−1)

≤
∑

(i,u,b)∈A

Ti,u,b,T∑
s=0

κT (Mi,u,b, s)

≤ 2|A|+
∑

(i,u,b)∈A

`T (Mi,u,b)∑
s=1

3

√
6

lnT

s

≤ 2|A|+
∑

(i,u,b)∈A

∫ `T (Mi,u,b)

s=0

3

√
6

lnT

s
ds

≤ 2|A|+
∑

(i,u,b)∈A

6
√

6 lnT`T (Mi,u,b)

≤ 2|A|+
∑

(i,u,b)∈A

108|E ′| lnT
Mi,u,b

.

For distribution dependent bound, let us set Mi,u,b = ∆i,u,b
min

and thus the event {∆kt ≥ Mkt} always holds, i.e.,
I{∆kt < Mkt} = 0 . We have

T∑
t=1

I (Nt ∧ {∆kt ≥Mkt}) ∆kt

≤ 2|A|+
∑

(i,u,b)∈A

108|E ′| lnT
∆i,u,b

min

.

By Lem. 11, Pr{¬Nt} ≤ 2|A|t−2, then

E

[
T∑
t=1

I (¬Nt) ∆kt

]
≤

T∑
t=1

2|A|t−2∆max ≤
π2

3
|A|∆max.

By our choice of Mi,u,b,

T∑
t=1

I (∆kt < Mkt) ∆kt = 0.

By the definition of the regret,

Multi-layered Network Exploration via Random Walks

Regµ(T) = E

[
T∑
t=1

∆kt

]

≤ E
[T∑
t=1

(
I
(
¬Nt

)
+ I
(
∆kt < Mkt

)
+ I
(
Nt ∧ {∆kt ≥Mkt}

))
∆kt

]
≤

∑
(i,u,b)∈A

108|E ′| lnT
∆i,u,b
min

+ 2|A|+ π2

3
|A|∆max

=
∑

(i,u,b)∈A

108m|V| lnT
∆i,u,b
min

+ 2|A|+ π2

3
|A|∆max.

For distribution independent bound, we take Mi,u,b =

M =
√

108|E ′||A| lnT/T , then we have
∑T
t=1 I{∆kt ≤

Mkt} ≤ TM .

Then

Regµ(T)

≤
∑

(i,u,b)∈A

108|E ′| lnT
Mi,u,b

+ 2|A|+ π2

3
|A|∆max + TM

≤ 108|E ′||A| lnT
M

+ 2|A|+ π2

3
|A|∆max + TM

= 2
√

108|E ′||A|T lnT +
π2

3
|A|∆max + 2|A|

≤ 21
√
m|V||A|T lnT +

π2

3
|A|∆max + 2|A|.

�

F.3. Extension for Random Node Weights

In this section, we extend the deterministic node weight σu
for node u ∈ V to a random weight. Specifically, we denote
σ̃u ∈ [0, 1] as the random weight when we first visit u (after
the first visit we will not get any reward so on so forth), and
denote σu := E[σ̃u].

For the offline setting, the reward function in Eq.(7) re-
mains the same since σ̃u is independent of all other random
variables. For the online setting, since the reward func-
tion remains unchanged, property 1 and property 2 still
hold. However, we need to change the way we maintain the
optimistic node weight σ̄u.

We present our CUCB-MAX-R algorithm in Alg. 8. Com-
pared with Alg. 3, the major difference is that σ̄u now rep-
resent the upper confidence bound (UCB) value of σu. In
line 2, we denote T ′v as the number of times node v is played
so far and σ̂v as the empirical mean of v’s weight. In line 9,
ρ′v is the confidence radius and σ̄u is the UCB value of node

Algorithm 8 CUCB-MAX-R: Combinatorial Upper Confi-
dence Bound algorithm for the overlapping MuLaNE, with
Random node weights
Input: Budget B, number of layers m, number of nodes
|V|, constraints c, offline oracle BEG.

1: For each arm (i, u, b) ∈ A, Ti,u,b ← 0, µ̂i,u,b ← 0.
2: For each node v ∈ V , T ′v ← 0, σ̂v ← 0.
3: for t = 1, 2, 3, ..., T do
4: for (i, u, b) ∈ A do
5: ρi,u,b ←

√
3 ln t/(2Ti,u,b).

6: µ̃i,u,b ← min{µ̂i,u,b + ρi,u,b, 1}.
7: end for
8: for v ∈ V do
9: ρ′v ←

√
3 ln t/(2T ′v).

10: σ̂v ← min{σ̂v + ρ′v, 1}.
11: end for
12: For (i, u, b) ∈ A, µ̄i,u,b ← maxj∈[b] µ̃i,u,j .
13: k← BEG((µ̄i,u,b)(i,u,b)∈A, (σ̄v)v∈V , B, c).
14: Apply budget allocation k, which gives trajectories

X := (Xi,1, ..., Xi,ki)i∈[m] as feedbacks.
15: For any visited node v ∈

⋃
i∈[m]{Xi,1, ..., Xi,ki},

receive its random node weight σ̃v, update T ′v ←
T ′v + 1, σ̂v ← σ̂v + (σ̃v − σ̂v)/T ′v

16: For any (i, u, b) ∈ τ := {(i, u, b) ∈ A| b ≤ ki},
Yi,u,b ← 1 if u ∈ {Xi,1, ..., Xi,b} and 0 otherwise.

17: For (i, u, b) ∈ τ , update Ti,u,b and µ̂i,u,b:
Ti,u,b ← Ti,u,b + 1, µ̂i,u,b ← µ̂i,u,b + (Yi,u,b −
µ̂i,u,b)/Ti,u,b.

18: end for

weight σu. In line 15, we update the empirical mean σ̂v for
any visited v.

Regret analysis. Let A denote the set containing all base
arms for visiting probabilities, i.e., A = {(i, u, b)|i ∈
[m], u ∈ V, b ∈ [ci]}. With a bit of abuse of notation,
we also use V to denote the set of base arms correspond-
ing to the node weights. Therefore, A ∪ V is the set of
all base arms, which is different from the Section F.2 that
only has A as base arms and does not have base arms for
random weights. Following the notations of (Wang & Chen,
2017), we define Xa ∈ [0, 1] be the random outcome of
base arm a ∈ A ∪ V and define D as the unknown joint
distribution of random outcomes X = (Xa)a∈A∪V with
unknown mean µa = EX∼D[Xa]. Let k be any feasible
budget allocation, we denote pD,ka the probability that ac-
tion k triggers arm a (i.e. outcome Xa is observed) when
the unknown environment distribution is D. Specifically,
pD,ka = 1 for a ∈ {(i, u, b)|i ∈ [m], u ∈ V, b = ki},
pD,ka = 1 −

∏
i∈[m](1 − µi,a,ki) for a ∈ V and pD,ki = 0

for the rest of base arms. Therefore, we can rewrite the

Multi-layered Network Exploration via Random Walks

inequality in property 2 as

|rµ,σ(k)− rµ′,σ′(k)|

≤
∑

i∈[m],u∈V,b=ki

(σ′u|µi,u,b − µ′i,u,b|)

+
∑
u∈V
|σu − σ′u|

1−
∏
i∈[m]

(1− µi,u,b)


≤
∑
a∈A

pD,ka |µa − µ′a|, (32)

where we abuse the notation to denote µa as σa and µ′a as
σ′a if a ∈ A2 in the last inequality. We can observe that
the above rewritten property 2 can be viewed as a special
case of the 1-norm TPM bounded smoothness condition in
(Wang & Chen, 2017).

Now we can apply the similar proof in Section B.3 in
(Wang & Chen, 2017), together with how we deal with
the |µ̄i,u,b,t − µi,u,b| in Section F.2.2 to get a distribution-
dependent regret bound.

Let K = m|V|+ |V| be the maximum number of triggered
arms, |A ∪ V| = Bm|V|+ |V| be the number of base arms
and dxe0 = max{dxe, 0}. For any feasible budget allo-
cation k and any base arm a ∈ A ∪ V , the gap ∆k =
max{0, ξrµ,σ(k∗) − rµ,σ(k)} and we define ∆a

min =
infk:pD,k

a >0,∆k>0 ∆k, ∆a
max = supk:pD,k

a >0,∆k>0 ∆k. As
convention, if there is no action k such that pD,ka > 0 and
∆k > 0, we define ∆a

min = +∞,∆a
max = 0. We define

mina∈A∆a
min and maxa∈A∆a

max.

Theorem 7. Algorithm 8 has the following distribution-
dependent (1− e−η, 1) approximation regret,

Regµ,σ(T) ≤
∑

a∈A∪V

576K lnT

∆a
min

+ 4|A ∪ V|+
∑

a∈A∪V

(
dlog2

2K

∆a
min

e0 + 2

)
π2

6
∆max,

We can also have a distribution-independent bound,

Regµ,σ(T) ≤ 12
√
|A ∪ V|KT lnT

+ 2|A ∪ V|+
(
dlog2

T

18 lnT
e0 + 2

)
π2

6
∆max,

Remark. Compared with the regret bound in Thm. 3 in the
main text, we can see the base arms now become A

⋃
V

instead of A, which is worse than the regret bound of the
fixed unknown weight setting. This is a trade-off since we
need more estimation to handle the uncertain random node
weight, which incurs additional regrets. It also shows our
non-trivial analysis of the fixed unknown weights carefully
merge the error term into base arms A and incurs only
constant-factor of extra regrets.

G. Online Learning for Non-overlapping
MuLaNE

G.1. Online Learning Algorithm for Non-overlapping
MuLaNE

For non-overlapping MuLaNE, we estimate layer-level
marginal gains as our parameters, rather than probabili-
ties Pi,u(b) and node weights σ. By doing so, we can
largely simply our analysis since we no longer need to han-
dle the unknown weights and the extra constraint of Pi,u(b)
as in the overlapping setting. Concretely, we maintain a
set of base arms A = {(i, b)|i ∈ [m], b ∈ [ci]}, and let
|A| =

∑
i∈[m] ci be the total number of these arms. For

each base arm (i, b) ∈ A., denote µi,b as the truth value of
each base arm, i.e., µi,b =

∑
u∈V σu(Pi,u(b)−Pi,u(b−1)).

Based on the definition of base arms, we can see that we
do not need to explicitly estimate the node weights σ or
probabilities Pi,u(b), so we will use rµ(k) to denote the
reward function rG,α,σ(k).

We present our algorithm in Alg. 9, which has three dif-
ferences compared with the Alg. 3 for overlapping Mu-
LaNE. First, the expected reward of action k is rµ(k) =∑m
i=1

∑ki
b=1 µi,b, which is a linear reward function and sat-

isfies two new Monotonicity and 1-Norm Bounded Smooth-
ness conditions (see Condition 1 and 2). Second, we use
the Dynamic Programming method (Alg. 7) as our Oracle,
which does not require the parameters µi,b to be increas-
ing. Moreover, the offline oracle always outputs optimal
solutions. Third, we use a new random variable Yi,b, which
indicates the gain of weights which depends on whether a
new node is visited by random walker from the i-th layer
exactly at the b-th step, i.e., Yi,b =

∑
u∈

⋃b
j=1{Xi,j} σu −∑

u∈
⋃b−1

j=1{Xi,j} σu for base arms (i, b) such that b ≤ ki.

Condition 1 (Monotonicity). The reward rµ(k) is mono-
tonically increasing, i.e., for any budget allocation k and
any two vectors µ = (µi,b)(i,b)∈A, µ′ = (µ′i,b)(i,b)∈A, we
have rµ(k) ≤ rµ′(k), if µi,b ≤ µ′i,b, for (i, b) ∈ A.

Condition 2 (1-Norm Bounded Smoothness). The reward
function rµ(k) satisfies the 1-norm bounded smoothness,
i.e., for any budget allocation k and any two vectors
µ = (µi,b)(i,b)∈A, µ′ = (µ′i,b)(i,b)∈A, we have |rµ(k) −
rµ′(k)| ≤

∑
b≤ki |µi,b − µ

′
i,b|.

We define the reward gap ∆k = rµ(k∗) − rµ(k) for all
feasible action k satisfying

∑m
i=1 ki = B, 0 ≤ ki ≤ ci. For

each base arm (i, b), we define ∆i,b
min = min∆k>0,ki≥b ∆k

and ∆i,b
max = max∆k>0,ki≥b ∆k. As a convention, if there

is no action with ki ≥ b such that ∆k > 0, we define
∆i,b

min = ∞ and ∆i,b
max = 0. Also, we define ∆min =

min(i,b)∈A∆i,b
min and ∆max = max(i,b)∈A∆i,b

max.

Theorem 8. CUCB-MG has the following distribution-

Multi-layered Network Exploration via Random Walks

Algorithm 9 CUCB-MG: Combinatorial Upper Confidence
Bound (CUCB) algorithm for non-overlapping MuLaNE,
using Marginal Gains as the base arms

Input: Budget B, number of layers m, offline oracle DP.
1: For each (i, b) ∈ A, Ti,b ← 0, µ̂i,b ← 1.
2: for t = 1, 2, 3, ..., T do
3: for (i, b) ∈ A do
4: ρi,b ←

√
3 ln t/(2Ti,b).

5: µ̂i,b = min{µ̂i,b + ρi,b, 1}.
6: end for
7: k← DP((µ̄i,b)i,b, B, c)
8: Apply budget allocation k, which gives trajectories

X := (Xi,1, ..., Xi,ki)i∈[m] as feedbacks.
9: For (i, b) ∈ τ := {(i, b) ∈ A| b ≤ ki},

Yi,b =
∑
u∈

⋃b
j=1{Xi,j} σu −

∑
u∈

⋃b−1
j=1{Xi,j} σu.

10: For (i, b) ∈ τ , update Ti,b and µ̂i,b:
11: Ti,b = Ti,b + 1, µ̂i,b = µ̂i,b + (Yi,b − µ̂i,b)/Ti,b.
12: end for

dependent regret bound,

Regµ(T) ≤
∑

(i,b)∈A
48B lnT

∆i,b
min

+ 2|A|+ π2

3 |A|∆max.

G.2. Regret Analysis for Non-overlapping MuLaNE

In this section, we give the regret analysis for CUCB-MG,
which applies the standard CUCB algorithm (Wang & Chen,
2017) to this setting.

G.2.1. PROOF DETAILS

Let A denote the set containing all base arms, i.e., A =
{(i, b)|i ∈ [m], b ∈ [ci]}. We add subscript t to denote
the value of a variable at the end of t. For example, Ti,b,t
denotes the total times of arm (i, b) ∈ A is played at the end
of round t. Let us first introduce a definition of an unlikely
event that µ̂i,b,t−1 is not accurate as expected.

Definition 3. We say that the sampling is nice at the be-
ginning of round t, if for every arm (i, b) ∈ A, |µ̂i,b,t−1 −
µi,b| < ρi,b,t, where ρi,b,t =

√
3 ln t

2Ti,b,t−1
. Let Nt be such

event.

Lemma 13. For each round t ≥ 1, Pr{¬Nt} ≤ 2|A|t−2

Proof. For each round t ≥ 1, we have

Pr{¬Nt}

= Pr{∃(i, b) ∈ A, |µ̂i,b,t−1 − µi,b| ≥

√
3 ln t

2Ti,b,t−1
}

≤
∑

(i,b)∈A

Pr{|µ̂i,b,t−1 − µi,b| ≥

√
3 ln t

2Ti,b,t−1
}

=
∑

(i,b)∈A

t−1∑
k=1

Pr{Ti,b,t−1 = k

∧ |µ̂i,b,t−1 − µi,b| ≥

√
3 ln t

2Ti,b,t−1
}

≤
∑

(i,b)∈A

(t−1)∑
k=1

2

t3
≤ 2|A|t−2.

When Ti,b,t−1 = k, µ̂i,b,t−1 is the average of k i.i.d. random
variables Y [1]

i,b , ..., Y
[k]
i,b , where Y [j]

i,b is the Bernoulli random
variable of arm (i, b) when it is played for the j-th time
during the execution. That is, µ̂i,b,t−1 =

∑k
j=1 Y

[j]
i,b /k.

Note that the independence of Y [1]
i,b , ..., Y

[k]
i,b comes from the

fact we select a new starting position following the starting
distribution αi at the beginning of each round t. The last
inequality uses the Hoeffding Inequaility (Fact 1). �

Then we can use monotonicity and 1-norm bounded smooth-
ness propterty (Condition 1 and Condition 2)to bound the
reward gap ∆kt = rµ(k∗)− rµ(kt) between the optimal
action k∗ and the action kt = (kt,1, ..., kt,m) selected by
our algorithm A. To achieve this, we introduce a positive
real number Mi,b for each arm (i, b) and define Mkt =
max(i,b)∈St

Mi,b, where St = {(i, b) ∈ A|b ≤ kt,i} and
|St| = B. Define,

κT (M, s) =


2, if s = 0,

2
√

6 lnT
s , if 1 ≤ s ≤ `T (M),

0, if s ≥ `T (M) + 1,

where

`T (M) = b24B2 lnT

M2
c.

Lemma 14. If {∆kt
≥Mkt} and Nt holds, we have

∆kt
≤

∑
(i,b)∈St

κT (Mi,b, Ti,b,t−1). (33)

Proof. First, we can observe µ̄i,b,t ≥ µi,b, for (i, b) ∈
A, when Nt holds. This comes from the fact µ̄i,b,t =
min{µ̂i,b,t−1 + ρi,b,t, 1} and |µ̂i,b,t−1 − µi,b| < ρi,b,t.

Multi-layered Network Exploration via Random Walks

Notice that the right hand of Inequality (33) is non-negative,
it is trivially satisfied when ∆kt = 0. We only need to
consider ∆kt > 0. By Nt and Condition 1, We have the
following inequalities,

rµ̄t
(kt) ≥ rµ̄t

(k∗) ≥ rµ(k∗) = ∆kt + rµ(kt).

The first inequality is due to the oracle outputs the optimal
solution given parameters µ̄t ,the second inequality is due
to Condition 1 (monotonicity).

Then, by Condition 2, we have

∆kt ≤ rµ̄t(kt)− rµ(kt) ≤
∑

(i,b)∈St

|µ̄i,b,t − µi,b|.

Next, we can bound ∆kt by bounding µ̄i,b,t − µi,b by ap-
plying a transformation. As {∆kt

≥ Mkt} holds by as-
sumption, so

∑
(i,b)∈St

|µ̄i,b,t − µi,b| ≥ ∆kt ≥ Mkt . We
have

∆kt ≤
∑

(i,b)∈St

|µ̄i,b,t − µi,b|

≤ −Mkt + 2
∑

(i,b)∈St

|µ̄i,b,t − µi,b|

= 2
∑

(i,b)∈St

(|µ̄i,b,t − µi,b| −
Mkt

2B
)

≤ 2
∑

(i,b)∈St

(|µ̄i,b,t − µi,b| −
Mi,b

2B
). (34)

By Nt, we have:

|µ̄i,b,t − µi,b| −
Mi,b

2B
≤ min{2ρi,b,t, 1} −

Mi,b

2B

≤ min

{
2

√
3 lnT

2Ti,b,t−1
, 1

}
− Mi,b

2B
.

Now consider the following cases:

Case 1. If Ti,b,t−1 ≤ `T (Mi,b), we have µ̄i,b,t − µi,b −
Mi,b

2B ≤ min
{

2
√

3 lnT
2Ti,b,t−1

, 1
}
≤ 1

2κT (Mi,b, Ti,b,t−1).

Case 2. If Ti,b,t−1 ≥ `T (Mi,b,t) + 1, then 2
√

3 lnT
2Ti,b,t−1

≤
Mi,b

2B , so µ̄i,b,t − µi,b − Mi,b

2B ≤ 0 = 1
2κT (Mi,b, Ti,b,t−1).

Combine these two cases and inequality (34), we have the
following inequality, which concludes the lemma.

∆kt
≤

∑
(i,b)∈St

κT (Mi,b, Ti,b,t−1).

�

Theorem 8. CUCB-MG has the following distribution-

dependent regret bound,

Regµ(T) ≤
∑

(i,b)∈A
48B lnT

∆i,b
min

+ 2|A|+ π2

3 |A|∆max.

Proof of Theorem 8. By above lemmas, we have

T∑
t=1

I ({∆kt ≥Mkt} ∧ Nt) ∆kt

≤
T∑
t=1

∑
(i,b):(i,b)∈St

κT (Mi,b, Ti,b,t−1)

=
∑

(i,b)∈A

∑
t′∈{t|t∈[T],kt,i≥b}

κT (Mi,b, Ti,b,t′−1)

≤
∑

(i,b)∈A

Ti,b,T∑
s=0

κT (Mi,b, s)

≤ 2|A|+
∑

(i,b)∈A

`T (Mi,b)∑
s=1

2

√
6

lnT

s

≤ 2|A|+
∑

(i,b)∈A

∫ `T (Mi,b)

s=0

2

√
6

lnT

s
ds

≤ 2|A|+
∑

(i,b)∈A

4
√

6 lnT`T (Mi,b)

≤ 2|A|+
∑

(i,b)∈A

48B lnT

Mi,b
.

Let us set Mi,b = ∆i,b
min and thus the event {∆kt ≥ Mkt}

always holds. We have

T∑
t=1

I (Nt ∧ {∆kt ≥Mkt}) ∆kt

≤ 2|A|+
∑

(i,b)∈A

48B lnT

∆i,b
min

.

By Lem. 13, Pr{¬Nt} ≤ 2|A|t−2, then we have

E

[
T∑
t=1

I (¬Nt) ∆kt

]
≤

T∑
t=1

2|A|t−2∆max ≤
π2

3
|A|∆max.

By our choice of Mi,b,

T∑
t=1

I (∆kt < Mkt) ∆kt = 0.

By the definition of the regret,

Multi-layered Network Exploration via Random Walks

Regµ(T) = E

[
T∑
t=1

∆kt

]

≤ E
[T∑
t=1

(
I
(
¬Nt

)
+ I
(
∆kt < Mkt

)
+ I
(
Nt ∧ {∆kt ≥Mkt}

))
∆kt

]
≤

∑
(i,b)∈A

48B lnT

∆i,b
min

+ 2|A|+ π2

3
|A|∆max.

For distribution independent bound, we take Mi,b = M =√
48B|A| lnT/T , then we have

∑T
t=1 I{∆kt ≤ Mkt} ≤

TM .

Then

Regµ(T) ≤
∑

(i,b)∈A

48B lnT

Mi,b
+ 2|A|+ π2

3
|A|∆max + TM

≤ 48B|A| lnT
M

+ 2|A|+ π2

3
|A|∆max + TM

= 2
√

48B|A|T lnT +
π2

3
|A|∆max + 2|A|

≤ 14
√
B|A|T lnT +

π2

3
|A|∆max + 2|A|.

�

H. Supplemental Experiments
H.1. Experimental Results for Stationary Distributions

In this section, we show experimental results with explorers
starting from stationary distributions in Fig. 3. Specifically,
each explorer Wi starts from the node u in layer Li with
probability proportional to the out-degree of u. For offline
overlapping case, the total weights of unique nodes visited
for BEG and MG are the same, and outperforms two base-
lines, which accords with our theoretical analysis. Similar
to the Sec. 6, BEG and MG are empirically close to the opti-
mal solution. For offline non-overlapping case, DP and MG
give us the same optimal solution. For the online learning
algorithms, note that we still use BEG rather than MG as
the offline oracle, this is due to the UCB values do not have
the diminishing return properties. The same applies for the
non-overlapping case, where DP (instead of MG) is used as
the offline oracle. The trend of the curves and the analysis
are similar to that in the Sec. 6.

(a) Offline, overlapping. (b) Offline, non-overlapping.

(c) Online, overlapping. (d) Online, non-overlapping

Figure 3. Explorers start with stationary distributions. Above: to-
tal weights of unique nodes visited given by different offline al-
gorithms. Below: regret for different online algorithms when
B = 3000.

(a) Overlapping, fix node. (b) Overlapping, stationary.

(c) Non-overlapping, fix node. (d) Non-overlapping, stationary.

Figure 4. Regret for different online algorithms, when total budget
B = 2000.

H.2. Experimental Results for Online Learning
Algorithms with Different Budgets B

As shown in Fig. 4 and Fig. 5, although there are some
fluctuations, the trend of the curves and the analysis are
almost the same as that when B = 3000, which shows our
experimental results are consistent for different budgets.

Multi-layered Network Exploration via Random Walks

(a) Overlapping, fix node. (b) Overlapping, stationary.

(c) Non-overlapping, fix node. (d) Non-overlapping, stationary.

Figure 5. Regret for different online algorithms, when total budget
B = 4000.

