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Abstract
Influence maximization is the task of selecting a
small number of seed nodes in a social network to
maximize the spread of the influence from these
seeds, and it has been widely investigated in the
past two decades. In the canonical setting, the
whole social network as well as its diffusion pa-
rameters is given as input. In this paper, we con-
sider the more realistic sampling setting where
the network is unknown and we only have a set of
passively observed cascades that record the set of
activated nodes at each diffusion step. We study
the task of influence maximization from these
cascade samples (IMS), and present constant ap-
proximation algorithms for this task under mild
conditions on the seed set distribution. To achieve
the optimization goal, we also provide a novel
solution to the network inference problem, that
is, learning diffusion parameters and the network
structure from the cascade data. Comparing with
prior solutions, our network inference algorithm
requires weaker assumptions and does not rely
on maximum-likelihood estimation and convex
programming. Our IMS algorithms enhance the
learning-and-then-optimization approach by al-
lowing a constant approximation ratio even when
the diffusion parameters are hard to learn, and we
do not need any assumption related to the network
structure or diffusion parameters.

1. Introduction
Maximizing the spread of influence through a social network
has been widely studied in the past two decades. It models
the phenomenon in which a small set of initially active
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nodes called seeds takes some piece of information (news,
ideas or opinions, etc.), and the information spreads over
the network to activate the remaining nodes. The expected
number of final active nodes is called the influence spread
of the seed set. The influence maximization problem asks
to pick at most k seeds in order to maximize the influence
spread. Under many diffusion models such as the discrete
time independent cascade (IC) model and linear threshold
(LT) model (Kempe et al., 2003), the problem enjoys a (1−
1/e− ε)-approximation (with small ε > 0), which is tight
assuming P 6= NP (Feige, 1998). It has found applications
in many scenarios.

Traditional influence maximization problem requires as in-
put the whole social network (as well as its parameters),
based on which one can compute or estimate the influence
spread function. In many scenarios, however, this might be
too demanding, especially for those who do not have free
access to the network. In this work, we consider influence
maximization in the sampling setting where one only has
access to a set of passively observed cascades spreading
over an implicit social network. Each cascade records the
set of activated nodes at each time step. Such sample data
is available in many scenarios, especially on the Internet
where the timestamps can be recorded in principle. We
are interested in whether we can maximize the influence
from such sample data. We model this problem as influence
maximization from samples below:

Influence maximization from samples (IMS). For an un-
known social network G with IC model parameters, given t
cascade samples where each seed is independently sampled
with an unknown probability, can we find a seed set of size
at most k such that its influence spread is a constant approx-
imation of the optimal seed set, when t is polynomial to the
size of G?

En route to solving the above problem, a natural and rea-
sonable approach is to first learn the network structure as
well as its parameters, and then maximize the influence over
the learned network. This leads to the well-studied network
inference problem below.

Network Inference. For an unknown social network G,
given polynomial number of cascade samples where each
seed is sampled independently with an unknown probability,
estimate all IC model parameters such that with probability
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at least 1− δ, every parameter is estimated within a small
additive error ε.

Our contributions in this work are mainly two fold. First,
we revisit the network inference problem and design a brand
new algorithm for it. While all previous algorithms are
based on the maximum likelihood estimation and convex
programming (Netrapalli & Sanghavi, 2012; Narasimhan
et al., 2015; Pouget-Abadie & Horel, 2015), our algorithm
builds on a closed-form expression for each edge probability
in terms of quantities which can be efficiently estimated. As
a result, our algorithm enjoys faster implementation, lower
sample complexity and weaker assumptions comparing to
previous algorithms. Our assumptions are also easy to verify
from cascade samples. We will discuss these differences
further in the end of Section 3.

Second, we provide several end-to-end IMS algorithms with
constant approximation guarantee. Following the canonical
learning-and-then-optimization framework, we first present
an IMS algorithm by directly invoking our network infer-
ence algorithm. The algorithm thus needs the assumptions
used for learning. Next, we present alternative algorithms
which only need two simple assumptions on the seed dis-
tribution and impose no requirements on the underlying
network. In contrast, all the known algorithms for network
inference (including ours) impose some restrictions on the
network. This result is highly non-trivial since it is im-
possible to resolve network inference problem on arbitrary
graphs and hence the learning-and-then-optimization frame-
work fails in this case. For instance, consider a complete
graph and another graph with one edge removed from the
complete graph, where all edge probabilities are 1. If each
node is picked as a seed independently with probability
1/2, one cannot distinguish them within polynomially many
cascade samples. Our IMS follows the general optimization-
from-samples framework (Balkanski et al., 2017b), and
generalizes the recent result on optimization from structured
samples for coverage functions (Chen et al.) (see the dis-
cussion below). Finally, we remark that our results not only
apply to influence maximization, but also to other learning
and optimization settings such as probabilistic maximum
cover with application in online advertising (Chen et al.,
2016).

1.1. Related Work

Influence maximization from samples follows the frame-
work of optimization from samples (OPS) originally pro-
posed by Balkanski et al. (2017b): given a set of polynomial
number of samples {Si, f(Si)}ti=1 and constraintM, can
we find a set S ∈ M such that f(S) ≥ c ·maxT∈M f(T )
for some constant c? The OPS framework is very important
for the data-driven integration of learning and optimization
where the underlying model (function f above) is not read-

ily known. Surprisingly, Balkanski et al. (2017b) show that
even for the maximum coverage problem, there is no con-
stant approximation algorithm under the OPS model, despite
prior results that a coverage function f is learnable from
samples (Badanidiyuru et al., 2012) and constant optimiza-
tion is available when f is known. Subsequently, several
attempts (Balkanski et al., 2016; 2017a; Rosenfeld et al.,
2018; Chen et al.) have been made to circumvent the im-
possibility result of (Balkanski et al., 2017b). Among them
the most related one is the optimization from structured
samples (OPSS) model for coverage functions (Chen et al.),
where the samples carry additional structural information
in the form of {Si, N(Si)}ti=1, where N(Si) contains the
nodes covered by Si. It was shown that if the samples are
generated from a “negatively correlated” distribution, the
maximum coverage problem enjoys constant approximation
in the OPSS model. Recall that coverage functions can be
regarded as influence spread functions defined over a bipar-
tite graph with edge probabilities in {0, 1}. Thus, our result
on IMS greatly generalizes OPSS to allow general graphs
and stochastic cascades over edges.

End-to-end influence maximization from data has been ex-
plored by Goyal et al. (2011), but they only used a heuristic
method to learn influence spread functions and then used
the greedy method for influence maximization, so there was
no end-to-end guarantee on IMS. A recent work (Balkan-
ski et al., 2017a) revisited IMS problem under OPS model,
and provided a constant approximation algorithm when the
underlying network is generated from the stochastic block
model. Our study is the first to provide IMS algorithms with
theoretical guarantees that work on arbitrary networks.

Network inference has been extensively studied over the past
decade (Gomez-Rodriguez et al., 2010; Myers & Leskovec,
2010; Gomez-Rodriguez et al., 2011; Du et al., 2012; Netra-
palli & Sanghavi, 2012; Abrahao et al., 2013; Daneshmand
et al.; Du et al., 2013; 2014; Narasimhan et al., 2015; Pouget-
Abadie & Horel, 2015; He et al., 2016). While most of them
focused on the continuous time diffusion model, there are
several results under the discrete time IC model (Netrapalli
& Sanghavi, 2012; Narasimhan et al., 2015; Pouget-Abadie
& Horel, 2015), all of which build on the maximum likeli-
hood estimation. We will compare these results with ours
after we present our approach.

1.2. Organization

In Section 2, we describe the model, some concepts and
notations as well as two Chernoff-type lemmas used in the
analysis. In Section 3, we present an algorithm for network
inference, i.e. estimating edge probabilities from samples,
which can be adapted to recover the network structure. In
Section 4, we present algorithms for influence maximization
from samples. Finally, we conclude the paper in Section 5.
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2. Preliminaries
Social network, IC model and influence maximization.
A social network is modeled as a weighted directed graph
G = (V,E, p), where V is the set of |V | = n nodes and
E is the set of directed edges. Each edge (u, v) ∈ E is
associated with a weight or probability puv ∈ [0, 1]. For
convenience, we assume that puv = 0 if (u, v) /∈ E and
puv > 0 otherwise. We also use N in(v) to denote the in-
neighbors of node v ∈ V .

The information or influence propagates through the net-
work in discrete time steps. Each node v ∈ V is either active
or inactive, indicating whether it receives the information.
Denote by St ⊆ V the set of active nodes at time step t.
The nodes in the set S0 at time step 0 are called seeds. The
diffusion is assumed to be progressive, which means a node
will remain active once it is activated. So for all t ≥ 1,
St−1 ⊆ St.

Given a set of seeds S0, the independent cascade (IC)
model describes how the information propagates and St
is generated for each t ≥ 1. At time step t, first let
St = St−1. Next for each node v /∈ St−1, each node u ∈
N in(v)∩ (St−1 \ St−2) will try to activate v independently
with probability puv (denote S−1 = ∅). Thus, v becomes
active with probability 1−

∏
u∈Nin(v)∩(St−1\St−2)(1−puv)

at this step. Once activated, v will be added into St. The
propagation terminates when at the end of some time step
t, St = St−1. Clearly, the process proceeds in at most
n− 1 time steps and we use (S0, S1, · · · , Sn−1) to denote
the random sequence of the active nodes.

Let Φ(S0) = Sn−1 be the final active set given the seed
set S0, whose expected size is denoted by E[|Φ(S0)|] and
is commonly called the influence spread of seed set S0.
Influence maximization asks to find a set of at most k seeds
so as to maximize the influence spread of the chosen seed
set. Formally, define the influence spread function σ : 2V →
R≥0 such that σ(S) = E[|Φ(S)|] for any S ⊆ V . Given a
positive integer k ≤ n, influence maximization corresponds
to the following problem argmaxS⊆V,|S|≤k σ(S).

The sampling setting. Standard influence maximization
problem takes as input the social network G = (V,E, p),
based on which one can compute or estimate the influence
spread function σ. In this paper, we consider the problem in
the sampling setting where G is not given explicitly.

A cascade refers to a realization of the sequence of the
active nodes (S0, S1, · · · , Sn−1). By slightly abusing the
notation, we still denote the cascade by (S0, S1, · · · , Sn−1).
In the sampling setting, a set of t independent cascades
(Si,0, Si,1, · · · , Si,n−1)ti=1 is given as input, where the seed
set Si,0 in cascade i is generated independently from a seed
set distribution D over the node sets. Throughout this work,

we assume that D is a product distribution where each node
u ∈ V is drawn independently with probability qu. We aim
to solve the following two problems.

1. Network inference1. Given a set of t samples
(Si,0, Si,1, · · · , Si,n−1)ti=1 defined as above, estimate
the values of puv within an additive error. More for-
mally, for some ε ∈ (0, 1), compute a vector p̂ such
that |p̂uv − puv| ≤ ε for all u, v ∈ V .

2. Influence maximization from samples (IMS). Given
a set of t samples (Si,0, Si,1, · · · , Si,n−1)ti=1 defined
as above, find a set SA of at most k seeds such that
σ(SA) ≥ κ · σ(S∗) for some constant κ ∈ (0, 1),
where S∗ denotes the optimal solution.

Notations. Our algorithms actually only use Si,0 and Si,1
in those cascades to infer information about the graph, and
we find it convenient to define some corresponding concepts
and notations in advance. These concepts are indeed crucial
to our algorithm design. For v ∈ V , we denote by apG,D(v)
the activation probability of node v in one time step dur-
ing a cascade (S0, S1, · · · , Sn−1) on graph G starting with
a random seed S0 drawn from the distribution D. Thus,
apG,D(v) = PrG,D[v ∈ S1]. Note that it contains the possi-
bility that v itself is a seed, i.e. v ∈ S0 ⊆ S1. For u, v ∈ V ,
we define apG,D(v |u) = PrG,D[v ∈ S1 |u ∈ S0] and
apG,D(v | ū) = PrG,D[v ∈ S1 |u /∈ S0], respectively,
which are the corresponding probabilities conditioned on
whether u is selected as a seed. When the context is clear,
we often omit the subscripts G and D in the notation.

Chernoff-type bounds. Following are Chernoff-type
bounds we will use in our analysis.
Lemma 1 (Multiplicative Chernoff bound, (Mitzenmacher
& Upfal, 2005)). Let X1, X2, · · · , Xn be independent ran-
dom variables in {0, 1} with Pr[Xi = 1] = pi. Let
X =

∑n
i=1Xi and µ =

∑n
i=1 pi. Then, for 0 < a < 1,

Pr[X ≥ (1 + a)µ] ≤ e−µa
2/3,

and
Pr[X ≤ (1− a)µ] ≤ e−µa

2/2.

Lemma 2 (Additive Chernoff bound, (Alon & Spencer,
2008; Bansal & Sviridenko, 2006)). Let X1, · · · , Xn be
independent random variables in {0, 1} with Pr[Xi = 1] =
pi. Let X =

∑n
i=1Xi and µ =

∑n
i=1 pi. Then for any

a > 0, we have

Pr[X − µ ≥ a] ≤ exp(−amin(1/5, a/4µ)).

Moreover, for any a > 0, we have

Pr[X − µ ≤ −a] ≤ exp(−a2/2µ).

1In the literature, network inference often means to recover
network structure, i.e. the edge set E. Here we slightly abuse the
terminology to also mean learning edge parameters.



Network Inference and Influence Maximization from Samples

3. Network Inference
In this section, we present a novel algorithm for estimating
the edge probabilities of the underlying graph G, i.e. we
need to find an estimate p̂ of p such that |p̂uv − puv| ≤ ε for
all u, v ∈ V . While all previous studies rely on maximum
likelihood estimation to estimate p̂ (Netrapalli & Sanghavi,
2012; Narasimhan et al., 2015; Pouget-Abadie & Horel,
2015), our algorithm is based on the following key observa-
tion on the connection between puv and the one-step activa-
tion probabilities ap(v) and ap(v | ū). We remark that our
algorithm does not rely on the knowledge of edges in graph
G, and in fact it can be used to also reconstruct the edges of
the graph.

Lemma 3. For any u, v ∈ V with u 6= v,

puv =
ap(v)− ap(v | ū)

qu(1− ap(v | ū))
.

Proof. To avoid confusion, we write the underlying graph
G and the seed distribution D explicitly in notation ap(·),
i.e. ap(v) = apG,D(v). Consider the subgraph G′ = G \
{u} by removing node u. Node v has two chances to be
activated in one time step: either by nodes in G′ (including
the case where v itself is a seed) or by node u. Since D is a
product distribution, we have

apG,D(v) = apG′,D(v) + (1− apG′,D(v))qupuv.

Besides, apG′,D(v) = apG,D(v | ū) since when considering
one-step activation of v, node u not being the seed is equiv-
alent to removing it from the graph. Plugging the equality
into the last one, we obtain

puv =
apG,D(v)− apG,D(v | ū)

qu(1− apG,D(v | ū))
,

which proves the lemma.

Equipped with the lemma, we are able to estimate puv by es-
timating qu, ap(v) and ap(v | ū) respectively from cascade
samples. Let tu = |{i ∈ [t] | u ∈ Si,0}| be the number
of cascades where u is a seed, tū = |{i ∈ [t] | u /∈ Si,0}|
the number of cascades where u is not a seed, tv = |{i ∈
[t] | v ∈ Si,1}| the number of cascades where v is activated
in one time step and tvū = |{i ∈ [t] | u /∈ Si,0, v ∈ Si,1}|
the number of cascades where u is not a seed and v is ac-
tivated in one time step. Then, q̂u = tu/t, âp(v) = tv/t
and âp(v | ū) = tvū/tū are good estimates of qu, ap(v) and
ap(v | ū), respectively. The formal procedure is formulated
as Algorithm 1.

Algorithm 1 needs to work under Assumption 1 below,
which ensures that all quantities are well estimated. As-
sumption 1 consists of two conditions. The first means that
node v ∈ V has a non-negligible probability of not being

Algorithm 1 Estimate Edge Probabilities
Input: A set of cascades (Si,0, Si,1, · · · , Si,n−1)ti=1.
Output: {p̂uv}u,v∈V such that |p̂uv − puv| ≤ ε for all

u, v ∈ V .
1: for each u ∈ V do
2: Compute q̂u = tu/t, where tu = |{i ∈ [t] | u ∈

Si,0}|.
3: end for
4: for each v ∈ V do
5: Compute âp(v) = tv/t, where tv = |{i ∈ [t] | v ∈

Si,1}|.
6: end for
7: for each v ∈ V do
8: for each u ∈ V do
9: Compute âp(v | ū) = tvū/tū, where tū = |{i ∈

[t] | u /∈ Si,0}| and tvū = |{i ∈ [t] | u /∈ Si,0, v ∈
Si,1}|.

10: Let p̂uv = âp(v)−âp(v | ū)
q̂u(1−âp(v | ū)) .

11: end for
12: end for
13: return {p̂uv}u,v∈V .

activated in one time step. The second means that the prob-
ability of a node u ∈ V being selected as a seed is neither
too low nor too high.

Assumption 1 (Assumptions for Edge Probabilities Estima-
tion). For some parameters α ∈ (0, 1], γ ∈ (0, 1/2],

1. ap(v) ≤ 1− α for all v ∈ V .

2. γ ≤ qu ≤ 1− γ for all u ∈ V .

We now give an analysis of Algorithm 1. The proof of
Lemma 4 is presented in the appendix.

Lemma 4. Under Assumption 1, for any η ∈ (0, 4/5), δ ∈
(0, 1), for q̂u, âp(v), and âp(v | ū) defined in Algorithm 1, if
the number of samples t ≥ 16

γη2 ln 12n
δ , with probability at

least 1− δ, we have

1. |q̂u − qu| ≤ ηqu for all u ∈ V ,

2. |âp(v)− ap(v)| ≤ η for all v ∈ V ,

3. |âp(v | ū)− ap(v | ū)| ≤ η for all u, v ∈ V .

Theorem 1. Under Assumption 1, for any ε, δ ∈ (0, 1),
let η = εαγ/4 < 1/8, and {p̂uv}u,v∈V be the set of edge
probabilities returned by Algorithm 1. If the number of
cascades t ≥ 16

γη2 ln 12n
δ = 256

ε2α2γ3 ln 12n
δ , with probability

at least 1− δ, for any u, v ∈ V , |p̂uv − puv| ≤ ε.

Proof. With probability at least 1 − δ, all the events in
Lemma 4 occur. We assume that this is exactly the case in
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the following. Since ap(v | ū) ≤ ap(v) ≤ 1 − α, we have
1 − ap(v | ū) ≥ α. By the value of η and the assumption
that qu ≥ γ, we have

η ≤ εγ

4
(1− ap(v | ū)) ≤ ε

4
qu(1− ap(v | ū)). (1)

To prove p̂uv ≤ puv + ε, we have

p̂uv =
âp(v)− âp(v | ū)

q̂u(1− âp(v | ū))

≤ ap(v)− ap(v | ū) + 2η

(1− η)qu(1− ap(v | ū)− η)

≤ ap(v)− ap(v | ū) + 2η

(1− η)(1− εγ/4)qu(1− ap(v | ū))

≤ puv + ε/2

(1− η)(1− εγ/4)
≤ puv + ε. (2)

The first inequality holds due to Lemma 4. The second
inequality holds by applying the first inequality in Eq. (1).
The third inequality holds due to Lemma 3 and the second
inequality in Eq. (1). To see the correctness of the last
inequality, first observe that

(puv + ε)(1− η)(1− εγ/4)

≥ (puv + ε)(1− η − εγ/4)

≥ (puv + ε)− (1 + ε)(η + εγ/4).

Next, note that

(1+ε)(η+εγ/4) = (1+ε)(1+α)εγ/4 ≤ (1+ε)ε/4 ≤ ε/2.

The equality is due to the definition of η. The two inequal-
ities hold since α ∈ (0, 1], γ ∈ (0, 1/2] and ε ∈ (0, 1),
respectively. Combining the above two observations, we
have the desired inequality

(puv+ε)(1−η)(1−εγ/4) ≥ (puv+ε)−ε/2 = puv+ε/2.

On the other hand, to prove p̂uv ≥ puv − ε, first assume
that puv ≥ ε, since otherwise the claim would be trivial for
p̂uv ≥ 0. We now have

p̂uv =
âp(v)− âp(v | ū)

q̂u(1− âp(v | ū))

≥ ap(v)− ap(v | ū)− 2η

(1 + η)qu(1− ap(v | ū) + η)

≥ apG(v)− ap(v | ū)− 2η

(1 + η)(1 + εγ/4)qu(1− ap(v | ū))

≥ puv − ε/2
(1 + η)(1 + εγ/4)

≥ puv − ε.

The first inequality holds due to Lemma 4. The second
inequality holds by applying the first inequality in Eq. (1).

Algorithm 2 Recover Network Structure
Input: A set of cascades (Si,0, Si,1, · · · , Si,n−1)ti=1, pa-

rameter β ∈ (0, 1).
Output: An estimated edge set Ê.

1: {p̂uv}u,v∈V = Estimate-Edge-Probabilities
((Si,0, Si,1, · · · , Si,n−1)ti=1). {With estimation accu-
racy β/2.}

2: return Ê = {(u, v) | p̂uv > β/2}.

The third inequality holds due to Lemma 3 and the second
inequality in Eq. (1). The last inequality follows from a
similar argument as the one for the last inequality in Eq.(2),
and we omit it for conciseness.

With the ability of estimating edge probabilities, we further
show that we can recover the graph structure by a standard
threshold approach (Netrapalli & Sanghavi, 2012; Pouget-
Abadie & Horel, 2015). The formal procedure is depicted
as Algorithm 2, which estimates the edge probabilities to
a prescribed accuracy and returns the edges whose esti-
mated probabilities are above a prescribed threshold. Its
guarantee is shown in Theorem 2, which shows that no
“zero-probability edge” is incorrectly recognized as an edge.
Besides, only small-probability edges are omitted, which is
reasonable for practical use.

Theorem 2. Under Assumption 1, if the number of cascades
t ≥ 1024

α2β2γ3 ln 4n
δ , with probability at least 1− δ, the edge

set Ê returned by Algorithm 2 satisfies (1) Ê ⊆ E, and (2)
if puv > β, then (u, v) ∈ Ê. As a corollary, if puv > β for
all (u, v) ∈ E, then Ê = E.

Proof. By Theorem 1, |p̂uv − puv| ≤ ε = β/2 for all
u, v ∈ V with probability at least 1− δ. If (u, v) /∈ E, then
puv = 0 and hence p̂uv ≤ β/2, which implies (u, v) /∈ Ê.
Thus, Ê ⊆ E. If (u, v) ∈ E and puv > β. Then, p̂uv ≥
puv−β/2 > β/2 and hence (u, v) ∈ Ê. Finally, if puv > β
for all (u, v) ∈ E, then E ⊆ Ê and hence Ê = E, which
concludes the proof.

Discussion. It is worth comparing the result in (Netrapalli
& Sanghavi, 2012; Narasimhan et al., 2015; Pouget-Abadie
& Horel, 2015) with ours, since all of them studied network
inference under the IC model. Specifically, Netrapalli &
Sanghavi (2012) initiated the study of recovering network
structure and did not consider the estimation of edge param-
eters. Narasimhan et al. (2015); Pouget-Abadie & Horel
(2015) studied how to estimate edge parameters. Both of
them used the Euclidean norm of the edge probability vector
as the measurement of accuracy, while we use the infinite
norm and therefore our estimation is accurate for every
single edge. Besides, in (Narasimhan et al., 2015), it was
additionally assumed that the network structure is known in
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advance. In (Pouget-Abadie & Horel, 2015), totally differ-
ent assumptions were used, which seems incomparable to
ours, and thus we will not further compare against it below.

There are several important differences besides the above.
First, the approaches taken are different. All the algorithms
in the previous works build on the maximum likelihood
estimation (MLE) and require to solve a convex program,
while we directly find a closed-form expression for the edge
probability puv , thus rendering fast implementation.

Second, the assumptions required are different. The assump-
tions puv > β for all u, v ∈ V and γ ≤ qu ≤ 1− γ for all
u ∈ V are also required in the previous works (though may
be presented in different forms). The key difference is the
condition ap(v) ≤ 1 − α for all v ∈ V . In (Netrapalli &
Sanghavi, 2012), its role is replaced by the correlation de-
cay condition, which requires that

∑
u∈Nin(v) puv ≤ 1− α

for all v ∈ V . In (Narasimhan et al., 2015), it is instead as-
sumed that 1−

∏
u∈Nin(v)(1− puv) ≤ 1−α for all v ∈ V .

By observing that ap(v) ≤ 1 −
∏
u∈Nin(v)(1 − puv) ≤∑

u∈Nin(v) puv (see the appendix), it is easy to see that our
assumptions are the weakest compared with those in (Netra-
palli & Sanghavi, 2012; Narasimhan et al., 2015). Besides,
Assumption 1 enjoys the advantage that it is verifiable, since
one can find suitable values for α and γ by estimating ap(v)
and qu from cascade samples. However, it is impossible
to verify the assumptions in (Netrapalli & Sanghavi, 2012;
Narasimhan et al., 2015) based only on cascade samples. We
remark that our network inference algorithm replies on the
assumption that each seed node is independently sampled.
This assumption is also made in (Netrapalli & Sanghavi,
2012; Narasimhan et al., 2015) for the MLE method, but
conceptually it might be easier to relax this assumption with
MLE. We leave the relaxation of the independence sampling
assumption of our method as a future work.

Finally, our algorithm has lower sample complexity
compared with those in (Netrapalli & Sanghavi, 2012;
Narasimhan et al., 2015). Assume that ap(v) ≤ 1 −∏
u∈Nin(v)(1 − puv) ≤

∑
u∈Nin(v) puv ≤ 1 − α. Then,

Netrapalli & Sanghavi (2012) needs Õ( 1
α7β2γD

2 log n
δ )

samples to recover network structure, where D is the
maximum in-degree of the network, while we only need
O( 1

α2β2γ3 ln 4n
δ ) samples by Theorem 2. On the other hand,

assume that the network structure is known and m = |E|.
Narasimhan et al. (2015) needs Õ( 1

ε2α2β2γ2(1−γ)4mn ln n
δ )

samples to achieve ||p̂ − p||22 ≤ ε, while we only need
O( 1

εα2γ2m ln n
δ ) samples by achieving |p̂uv − puv| ≤

√
ε
m .

4. Influence Maximization from Samples
In this section, we present several algorithms for influence
maximization from samples. In Section 4.1, we present an
approximation-preserving algorithm under Assumption 1.

Algorithm 3 Influence Maximization from Samples under
Assumption 1
Input: A set of cascades (Si,0, Si,1, · · · , Si,n−1)ti=1 and

k ∈ N+.
1: {p̂uv}u,v∈V = Estimate-Edge-Probabilities

((Si,0, Si,1, · · · , Si,n−1)ti=1). {With estimation accu-
racy εk/(2n3).}

2: Let Ĝ = (V,E, p̂).
3: Let SA = A(Ĝ, k), where A is a κ-approximation

algorithm for influence maximization.
4: return SA.

In Section 4.2, we show that under an alternative assumption
(Assumption 2), there is a constant approximation algorithm
for the problem. An attractive feature of Assumption 2
(compared to Assumption 1) is that it has no requirement
on the network. We also show that by slightly strengthening
Assumption 2, we again obtain an approximation-preserving
algorithm.

4.1. Influence Maximization under Assumption 1

Our first influence maximization algorithm is presented as
Algorithm 3. It follows the canonical learning-and-then-
optimization approach by first learning a surrogate graph
Ĝ = (V,E, p̂) from the cascades and then executing any
κ-approximation algorithm A for standard influence max-
imization on Ĝ to obtain a solution as output. The con-
struction of Ĝ builds on Algorithm 1 and is obtained by
estimating all the edge probabilities to a sufficiently small
additive error. Algorithm 3 works under Assumption 1,
since Algorithm 1 does.

The correctness of Algorithm 3 relies on Lemma 5, which
translates the estimation error in edge probabilities into the
learning error in the influence spread function. We use it in
Theorem 3 to prove that with high probability, Algorithm
3 almost preserves the approximation ratio of any standard
influence maximization algorithm A. In the following, we
use σp(·) to specify the graph parameters explicitly.
Lemma 5 ((Narasimhan et al., 2015)). Fix S ⊆ V . For any
two edge probability vectors p, p̂ with ‖p− p̂‖1 ≤ ε/n, we
have |σp(S)− σp̂(S)| ≤ ε.
Theorem 3. Under Assumption 1, for any ε ∈ (0, 1)
and k ∈ N+, suppose that the number of cascades t ≥

1024
ε2α2γ3

n6

k2 ln 12n
δ . Let A be a κ-approximation algorithm

for influence maximization. Let SA be the set returned by
Algorithm 3 and S∗ be the optimal solution on the original
graph. We have

Pr[σ(SA) ≥ (κ− ε)σ(S∗)] ≥ 1− δ.

Proof. By Theorem 1, with probability at least 1 − δ, for
any u, v ∈ V , |p̂uv−puv| ≤ εk/(2n3). Hence, ‖p− p̂‖1 =
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u,v∈V |puv − p̂uv| ≤ εk/(2n). Applying this condition

to Lemma 5, we have that |σp(S) − σp̂(S)| ≤ εk/2 for
every seed set S. We thus have

σ(SA) ≥ σp̂(SA)− εk/2 ≥ κ · σp̂(S∗)− εk/2
≥ κ · (σ(S∗)− εk/2)− εk/2
= κ · σ(S∗)− (1 + κ)εk/2 ≥ (κ− ε)σ(S∗).

The second inequality holds since SA is a κ-approximation
on Ĝ. The last inequality holds since σ(S∗) ≥ k ≥ (1 +
κ)k/2.

Compared with our learning algorithms for network infer-
ence, Algorithm 3 has an additional overhead of n6/k2 in
the number of cascades. This is because it needs to esti-
mate edge probabilities within an additive error of at most
εk/(2n3). One can also invoke known network inference
algorithms other than ours in Algorithm 3 to obtain a simi-
lar approximate solution, but as discussed above, this only
incurs higher sample complexity. We are not aware of any
approach to reduce the sample complexity and leave it as an
interesting open problem.

4.2. Influence Maximization under Assumptions
Independent of the Network

Condition 1 of Assumption 1 depends on diffusion network,
and thus our Algorithm 3 may not be applicable to all net-
works. In this section, we show that under an alternative
assumption (Assumption 2), which is entirely independent
of the diffusion network, there still exists a constant approx-
imation algorithm (Algorithm 4) for influence maximization
from samples.

Assumption 2 (Assumptions for Influence Maximization
from Samples, Independent of the Network). For some
constant c > 0 and parameter γ ∈ (0, 1/2],

1.
∑
u∈V qu ≤ ck.

2. γ ≤ qu ≤ 1− γ for all u ∈ V .

Assumption 2 consists of two conditions. The condition∑
u∈V qu ≤ ck replaces the condition ap(v) ≤ 1 − α

in Assumption 1. It means that a random seed set drawn
from the product distribution D has an expected size at
most linear in k (but not necessarily bounded above by
k). Assumption 2 puts forward two plausible requirements
for the seed distribution D and has no requirement for the
underlying network. Thus, in principle, one can handle
any social networks, as long as the seed set sampling is
reasonable according to Assumption 2.

We now describe the high-level idea of Algorithm 4. It
might be surprising at first glance that one can remove the
condition ap(v) ≤ 1− α for all v ∈ V . After all, it is very

hard to learn information about incoming edges of v if ap(v)
is very close to 1. To handle this difficulty, recall that ap(v)
is defined as the activation probability of v in one time step.
Hence, if ap(v) is close to 1, v will be active with high prob-
ability starting from a random seed set. The observation
suggests that one can divide nodes into two parts according
to their ap(·). For the nodes with small ap(·), Assumption 1
is satisfied and one can find a good approximation for them
via a similar approach as Algorithm 3. For the nodes with
large ap(·), a random seed set is already a good approxima-
tion for them. So there is no need to learn their incoming
edges. A technical issue here is that a random seed set may
not be a feasible solution for the maximization task. This is
the reason why we introduce Condition 1 of Assumption 2,
by which the expected size of the seed set is at most linear
in k. So we can replace it by its random subset of size k
while keeping a constant approximation. To summarize, we
find two candidate solutions whose union must be a good
approximation over the whole network. If we choose one
of them randomly, we will finally obtain a feasible solution
with constant approximation.

Following the guidance of the above idea, Algorithm 4
first computes an estimate âp(v) of ap(v) for all v ∈ V
and partitions V into two disjoint subsets V1 = {v ∈ V |
âp(v) < 1−δ/(4n)} and V2 = V \V1. It then estimates the
probabilities of incoming edges of V1 using Algorithm 1 and
sets the probabilities of incoming edges of V2 to 1 directly
for technical reasons. The constructed graph is denoted by
Ĝ. Let T1 be a κ-approximation on Ĝ and T2 = S1,0 be the
first random seed set. Finally, Algorithm 4 selects T1 or T2

with equal probability, and if it selects T2 while |T2| > k,
it further selects a random subset of T2 with size k, as the
final output seed set SA.

We now give an analysis of Algorithm 4. Our analysis
requires a technical lemma (Lemma 6) which bounds the
influence of the seed set when setting the probabilities of
incoming edges of R to 1 by the influence of the seed set
augmented with R. Its proof is presented in the appendix.

Lemma 6. Let G = (V,E, p) be a directed graph and R ⊆
V . Let G′ = (V,E, p′) be a directed graph obtained from
G as follows: p′uv = 1 if v ∈ R and p′uv = puv otherwise.
Then, for any S ⊆ V , we have σp(S ∪R) ≥ σp′(S).

Theorem 4. Under Assumption 2, suppose that the num-
ber of cascades t ≥ 36864

ε2δ2γ3
n8

k2 ln 36n
δ + 72n2

δ2 ln 12n
δ , and

the number of samples used to estimate ap(v)’s is t′ =
72n2

δ2 ln 12n
δ . Let A be a κ-approximation algorithm for in-

fluence maximization. Assume that k ≥ 3
c ln 3

δ . Let SA be
the set returned by Algorithm 4 and S∗ be the optimal so-
lution on the original graph. We have that SA is a feasible
solution, and

Pr[E[σ(SA)] ≥ min

{
1

2c
, 1

}
κ− ε

2
σ(S∗)] ≥ 1− δ,
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Algorithm 4 Influence Maximization from Samples under
Assumption 2
Input: A set of cascades (Si,0, Si,1, · · · , Si,n−1)ti=1, k ∈

N+, error probability δ > 0, number of samples t′ ∈ [t]
used to estimate ap(v)’s.

1: Set V1 = V and V2 = ∅.
2: for each v ∈ V do
3: Use the first t′ samples (Si,0, Si,1, · · · , Si,n−1)t

′

i=1

to compute âp(v) = tv/t′, where tv = |{i ∈ [t′] |
v ∈ Si,1}|.

4: if âp(v) ≥ 1− δ/(4n) then
5: Set p̂uv = 1 for all u ∈ V .
6: V1 = V1 \ {v} and V2 = V2 ∪ {v}.
7: end if
8: end for
9: {p̂uv}u∈V,v∈V1

= Estimate-Edge-Probabilities
((Si,0, Si,1, · · · , Si,n−1)ti=t′+1) on V1. {With accuracy
εk/(2n3), α = δ/(6n) in Assumption 1.}

10: Let Ĝ = (V,E, p̂).
11: T1 = A(Ĝ, k), whereA is a κ-approximation algorithm

for influence maximization.
12: T2 = S1,0.
13: Let T be a random set by picking T1 and T2 with equal

probability. If T ≤ k, let SA = T ; otherwise, let SA

be a uniformly random subset of T with |SA| = k.
14: return SA.

where the probability is taken over the randomness of
(Si,0, Si,1, · · · , Si,n−1)ti=1 and the expectation is taken
over the randomness from line 13 of Algorithm 4.

Proof. Let G = (V,E, p) be the original graph. Let V1 =
{v ∈ V | âp(v) ≤ 1 − δ

4n} and V2 = V \ V1, defined
as in Algorithm 4. Let B = {(u, v) | u ∈ V, v ∈ V2}
be the set of all edges pointing to some node in V2. Let
G′ = (V,E, p′) be a directed graph obtained from G as
follows: p′uv = 1 if (u, v) ∈ B and p′uv = puv otherwise.
Let Ĝ = (V,E, p̂) be a directed graph obtained from G′ by
replacing puv with p̂uv for any (u, v) /∈ B. Clearly, Ĝ is
exactly the same graph we constructed in Algorithm 4.

For any node v ∈ V , by Lemma 2, when t′ = 72n2

δ2 ln 12n
δ ,

Pr[|âp(v)− ap(v)| ≥ δ/(12n)]

≤ exp(−t′(δ/(12n)) min(1/5, (δ/(12n)) · (1/ap(v)))

+ exp(−t′(δ/(12n))2/2ap(v))

≤ δ/(6n) + δ/(6n) = δ/(3n).

By union bound, with probability 1 − δ/3, for all nodes
v ∈ V , |âp(v) − ap(v)| ≤ δ/(12n). Specifically, for a
node v ∈ V1 with âp(v) ≤ 1 − δ/(4n), we have ap(v) ≤
âp(v) + δ/(12n) ≤ 1 − δ/(6n). For a node v ∈ V2 with
âp(v) > 1− δ/(4n), we have ap(v) ≥ âp(v)− δ/(12n) ≥

1− δ/(3n).

Since for any v ∈ V2, ap(v) ≥ 1 − δ/(3n), by union
bound, it means that with probability at least 1 − δ/3 in
one time step all nodes in V2 are activated. Assume that
indeed all nodes in V2 are activated in one time step. Then,
we have σp(T1 ∪ T2) = σp(T1 ∪ S1,0) ≥ σp(T1 ∪ V2).
By plugging S = T1, R = V2 into Lemma 6, we obtain
σp(T1 ∪ V2) ≥ σp′(T1). Therefore, by submodularity of σ,
σp(T1) + σp(T2) ≥ σp(T1 ∪ T2) ≥ σp′(T1).

Since {p̂}u,v is obtained by running Estimate-Edge-
Probability with parameters εk/(2n3), α = δ/(6n), γ,
when the number of cascades t − t′ ≥ 36864

ε2δ2γ3
n8

k2 ln 36n
δ ,

with probability 1− δ/3, we have |p̂uv − puv| ≤ εk/(2n3)
for any (u, v) /∈ B. Since p̂uv = p′uv = 1 for (u, v) ∈ B,
we have ‖p̂− p′‖1 ≤ εk/(2n). Therefore, by Lemma 5, for
any S ⊆ V , |σp̂(S)− σp′(S)| ≤ εk/2. We have

σp
′
(T1) ≥ σp̂(T1)− εk/2 ≥ κ · σp̂(S∗)− εk/2

≥ κ · (σp
′
(S∗)− εk/2)− εk/2

≥ κ · (σp(S∗)− εk/2)− εk/2 ≥ (κ− ε)σp(S∗).

The second inequality holds since T1 is a κ approximation of
S∗ on Ĝ. The forth inequality holds since σp

′
(S) ≥ σp(S)

for any S ⊆ V , due to p′uv ≥ puv for any (u, v) ∈ E. The
last inequality holds as long as (1 + κ)k/2 ≤ k ≤ σp(S∗),
which holds trivially since κ ≤ 1 and σp(S∗) ≥ k.

Combining the previous inequalities, we have

σp(T1) + σp(T2) ≥ σp
′
(T1) ≥ (κ− ε)σp(S∗),

which implies that E[σp(T )] = 1
2 (σp(T1) + σp(T2)) ≥

1
2 (κ− ε)σp(S∗).

Finally, since
∑
u∈V qu ≤ ck, Pr[|S1,0| ≥ 2ck] ≤

e−ck/3 ≤ δ/3 when k ≥ 3
c ln 3

δ . Assume that |T2| =
|S1,0| ≤ 2ck. If T = T1 or T = T2 but |T2| ≤ k,
then SA = T . If T = T2 and |T2| > k, then SA is
a uniform subset of T with size k. Since σ(·) is sub-
modular, we have E[σp(SA)] ≥ min

{
1
2c , 1

}
E[σp(T )] ≥

min
{

1
2c , 1

}
κ−ε

2 σp(S∗).

To conclude, by union bound, with probability at least
1 − δ, SA is a feasible solution and E[σp(SA)] ≥
min

{
1
2c , 1

}
κ−ε

2 σp(S∗).

Improving the approximation ratio. Compared with Al-
gorithm 3, Algorithm 4 has a worse (though still con-
stant) approximation ratio. We show that if the constant
c in Assumption 2 equals to some prescribed small ε ∈
(0, 1/3), we can modify Algorithm 4 to be an approximation-
preserving algorithm as follows: let T1 = A(Ĝ, (1− 2ε)k)
and returns T1∪T2 directly. It is easy to see that the modified
algorithm works since T1 loses little in the approximation
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Algorithm 5 Influence Maximization from Samples under
Assumption 2 with c = ε

Input: A set of cascades (Si,0, Si,1, · · · , Si,n−1)ti=1 and
k ∈ N+, parameter ε ∈ (0, 1/3), error probability
δ > 0, number of samples t′ ∈ [t] used to estimate
ap(v)’s.

1: Set V1 = V and V2 = ∅.
2: for each v ∈ V do
3: Use the first t′ samples (Si,0, Si,1, · · · , Si,n−1)t

′

i=1

to compute âp(v) = tv/t′, where tv = |{i ∈ [t′] |
v ∈ Si,1}|.

4: if âp(v) ≥ 1− δ/(4n) then
5: Set p̂uv = 1 for all u ∈ V .
6: V1 = V1 \ {v} and V2 = V2 ∪ {v}.
7: end if
8: end for
9: {p̂uv}u∈V,v∈V1

= Estimate-Edge-Probabilities
((Si,0, Si,1, · · · , Si,n−1)ti=t′+1) on V1. {With accuracy
εk/(2n3), α = δ/(6n) in Assumption 1.}

10: Let Ĝ = (V,E, p̂).
11: T1 = A(Ĝ, (1− 2ε)k), where A is a κ-approximation

algorithm for influence maximization.
12: T2 = S1,0.
13: return SA = T1 ∪ T2.

ratio and T1 ∪ T2 is feasible with high probability. The for-
mal procedure is presented in Algorithm 5 and its guarantee
is presented below.
Theorem 5. Under Assumption 2 with c = ε ∈ (0, 1/3),
suppose that the number of cascades t ≥ 36864

ε2δ2γ3
n8

k2 ln 36n
δ +

72n2

δ2 ln 12n
δ and the number of samples used to estimate

ap(v)’s is t′ = 72n2

δ2 ln 12n
δ . Let A be an κ-approximation

algorithm for influence maximization. Assume that k ≥
3
ε ln 3

δ . Let SA be the set returned by Algorithm 5 and S∗

be the optimal solution on the original graph. We have

Pr[|SA| ≤ k ∧ σ(SA) ≥ (κ− 3ε)σ(S∗)] ≥ 1− δ.

Proof. By a similar analysis for Algorithm 4, σp(T1∪T2) ≥
σp
′
(T1) with probability at least 1−δ/3, and for any S ⊆ V ,

|σp̂(S)− σp′(S)| ≤ εk/2 with probability at least 1− δ/3.
We thus have

σp
′
(T1) ≥ σp̂(T1)− εk/2

≥ κ(1− 2ε) · σp̂(S∗)− εk/2

≥ κ(1− 2ε) · (σp
′
(S∗)− εk/2)− εk/2

≥ κ(1− 2ε) · (σp(S∗)− εk/2)− εk/2
≥ (κ− 2ε) · σp(S∗)− (1 + κ)εk/2

≥ (κ− 3ε) · σp(S∗).

The second inequality holds since T1 is a κ(1 − 2ε) ap-
proximation of S∗ on Ĝ. The forth inequality holds since

σp
′
(S) ≥ σp(S) for any S ⊆ V , due to p′uv ≥ puv

for any (u, v) ∈ E. The last inequality holds as long
as (1 + κ)k/2 ≤ k ≤ σp(S∗), which holds trivially
since κ ≤ 1 and σp(S∗) ≥ k. Therefore, we have
σp(SA) = σp(T1 ∪ T2) ≥ (κ− 3ε)σp(S∗).

Finally, since
∑
u∈V qu ≤ εk, by Lemma 1, Pr[|S1,0| ≥

2εk] ≤ e−εk/3 ≤ δ/3 when k ≥ 3
ε ln 3

δ . If |S1,0| ≤ 2εk,
|SA| = |T1 ∪ T2| ≤ (1− 2ε)k + 2εk = k.

To conclude, by union bound, with probability at least 1− δ,
|SA| ≤ k and σ(SA) ≥ (κ− 3ε)σ(S∗).

5. Conclusion and Future Work
In this paper, we conduct a rigorous theoretical treatment
to the influence maximization from samples (IMS) prob-
lem, and provide several end-to-end IMS algorithms with
constant approximation guarantee. We also provide a novel
and efficient algorithm for network inference with weaker
assumptions.

There are many future directions to extend and improve this
work. First, our IMS algorithms require a large number of
samples (though polynomial) since we have to estimate edge
probabilities to a very high accuracy. It is very interesting
to investigate how to improve the sample complexity by
leveraging sparsity and different importance of edges in the
networks. Second, our samples contain activation sets at
every step. One can further study how to do IMS when
we only observe the final activation set. Other directions
include studying IMS for other stochastic diffusion models
(e.g. LT model or the cumulative activation model in (Shan
et al., 2019)), relaxing the independent seed node sampling
assumption, and going beyond influence maximization to
study other optimization tasks directly from data samples.
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Appendix

A. Comparing Assumptions
We summarize the assumptions used in (Netrapalli & Sanghavi, 2012; Narasimhan et al., 2015) below and show that they
are strictly stronger than our assumptions.

Assumption 3 (Assumptions in (Netrapalli & Sanghavi, 2012)). For some parameters α, β ∈ (0, 1),

1. puv ≥ β for all (u, v) ∈ E.

2. (Correlation decay)
∑
u∈Nin(v) puv < 1− α for all v ∈ V .

3. qudv < 1/2 for all u, v ∈ V .

Assumption 4 (Assumptions in (Narasimhan et al., 2015)). For some parameters β ≥ α ∈ (0, 1/2) and γ ∈ (0, 1),

1. puv ≥ β for all (u, v) ∈ E.

2. 1−
∏
u∈Nin(v)(1− puv) ≤ 1− α for all v ∈ V .

3. γ ≤ qu ≤ 1− γ for all u ∈ V .

Lemma 7. ap(v) ≤ 1−
∏
u∈Nin(v)(1− puv) ≤

∑
u∈Nin(v) puv .

Proof. The first inequality follows from ap(v) = 1−
∏
u∈Nin(v)(1 − qupuv) ≤ 1 −

∏
u∈Nin(v)(1 − puv), since qu ≤ 1

for all u ∈ V . The second inequality follows from the claim below.

Claim 1. For any x1, · · · , xn ∈ [0, 1],
∏n
i=1(1− xi) ≥ 1−

∑n
i=1 xi.

Proof of the Claim. The claim holds trivially when n = 1. Assume that the claim holds for any k < n. Then,

n∏
i=1

(1− xi) =

n−1∏
i=1

(1− xi)(1− xn) ≥ (1−
n−1∑
i=1

xi)(1− xn) ≥ 1−
n∑
i=1

xi.

The two inequalities both hold by induction.

B. Omitted Proofs
B.1. Proof of Lemma 4

Lemma 4. Under Assumption 1, for any η ∈ (0, 4/5), δ ∈ (0, 1), for q̂u, âp(v), and âp(v | ū) defined in Algorithm 1, if the
number of samples t ≥ 16

γη2 ln 12n
δ , with probability at least 1− δ, we have

1. |q̂u − qu| ≤ ηqu for all u ∈ V ,

2. |âp(v)− ap(v)| ≤ η for all v ∈ V ,

3. |âp(v | ū)− ap(v | ū)| ≤ η for all u, v ∈ V .

Proof. For a node u ∈ V , for i ∈ [t], let Xi be a 0-1 random variable such that Xi = 1 iff u ∈ Si,0. Thus q̂u =
∑t
i=1Xi/t.

By Lemma 1,

Pr[|q̂u − qu| ≥ ηqu] = Pr[|
t∑
i=1

Xi − tqu| ≥ ηtqu] ≤ 2 exp(−tquη2/3) ≤ 2 exp(−tγη2/3) ≤ δ/(3n).

The last inequality requires that t ≥ 3
γη2 ln 6n

δ .
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For a node v ∈ V , for i ∈ [t], let Yi be a 0-1 random variable such that Yi = 1 iff v ∈ Si,1. Thus âp(v) =
∑t
i=1 Yi/t. By

Lemma 2 (a = ηt, µ = t · ap(v)),

Pr[|âp(v)− ap(v)| ≥ η] ≤ exp(−ηtmin(1/5, η/(4 · ap(v)))) + exp(−η2t/(2 · ap(v)))

≤ exp(−ηtmin(1/5, η/4)) + exp(−η2t/2) ≤ δ/(6n) + δ/(6n) = δ/(3n).

The second inequality holds since ap(v) ≤ 1 by definition. The last inequality requires that t ≥ 4
η2 ln 6n

δ .

For u ∈ V , let tū = |{i ∈ [t] | u /∈ Si,0}| be the number of cascades where u is not a seed. Since qu ≤ 1 − γ,
8 ln(12n/δ)/η2 ≤ t(1− qu)/2. By Lemma 1 (a = 1/2, µ = t(1− qu)),

Pr[tū ≤ 8 ln(12n/δ)/η2] ≤ Pr[tū ≤ t(1− qu)/2] ≤ exp(−t(1− qu)/8) ≤ exp(−tγ/8) ≤ δ/(6n2).

The last inequality holds as long as t ≥ 16 ln(6n/δ)/γ.

Given a fixed `, assume that there are tū = ` cascades where u is not a seed. For i ∈ [`], let Zi be a 0-1 random variable
such that Zi = 1 iff v ∈ Si,1 in the i-th cascade, among the ` cascades where u is not a seed. Then, âp(v | ū) =

∑`
i=1 Zi/`.

By Lemma 2 (a = η`, µ = ` · ap(v | ū)),

Pr[|âp(v | ū)− ap(v | ū)| ≥ η | tu = `] ≤ exp(−η`min(1/5, η/(4 · ap(v | ū)))) + exp(−η2`/(2 · ap(v | ū)))

≤ exp(−η`min(1/5, η/4)) + exp(−η2`/2).

The last inequality holds since ap(v |u) ≤ 1 by definition. If ` ≥ 8 ln(12n/δ)/η2, then

Pr[|âp(v | ū)− ap(v | ū)| ≥ η | tu = `] ≤ δ/(6n2).

By law of total probability,

Pr[|âp(v | ū)− ap(v | ū)| ≥ η]

≤

 ∑
`<8 ln(12n/δ)/η2

+
∑

`≥8 ln(12n/δ)/η2

Pr[tu = `] Pr[|âp(v | ū)− ap(v | ū)| ≥ η | tu = `]

≤ Pr[tū < 8 ln(12n/δ)/η2] + Pr[tū ≥ 8 ln(12n/δ)/η2] · δ/(6n2)

≤ δ/(6n2) + δ/(6n2) = δ/(3n2).

The lemma follows immediately by union bound.

B.2. Proof of Lemma 6

To prove Lemma 6, we will use live-edge graphs to interpret the IC model and help understand the influence spread.
Formally, a live-edge graph corresponding the IC model is a random subgraph of G such that each edge (u, v) is picked
independently with probability puv. Let σu(S) be the probability that u is reachable from S in the live-edge graph. Then,
σu(S) is also the probability that u is activated by S and hence the influence spread function σ(S) =

∑
u∈V σu(S). For a

node u ∈ V , a fixed edge set A and a seed set S, let 1u(A,S) be the indicator variable that u is reachable from S through
edges in A. Then, σu(S) can be written as

σu(S) =
∑
A⊆E

∏
(a,b)∈A

pab
∏

(a,b)∈E\A

(1− pab)1u(A,S).

Finally, when needed, we will use notations σp and σpu to specify the edge probabilities explicitly.

Lemma 6. Let G = (V,E, p) be a directed graph and R ⊆ V . Let G′ = (V,E, p′) be a directed graph obtained from G as
follows: p′uv = 1 if v ∈ R and p′uv = puv otherwise. Then, for any S ⊆ V , we have σp(S ∪R) ≥ σp′(S).

Proof. Let B = {(u, v) | u ∈ V, v ∈ R} be the set of in-edges of R. By definition, p′ab = 1 for (a, b) ∈ B and p′ab = pab
otherwise. Let B ⊆ B be a random subset ofB such that for each edge (a, b) ∈ B, (a, b) ∈ B independently with probability
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pab. For a fixed u ∈ V , we consider its activation probability. First, we have

σpu(S ∪R) =
∑

A⊆E\B

∏
(a,b)∈A

pab
∏

(a,b)∈E\(A∪B)

(1− pab)E[1u(A ∪ B, S ∪R)]

=
∑

A⊆E\B

∏
(a,b)∈A

pab
∏

(a,b)∈E\(A∪B)

(1− pab)1u(A ∪B,S ∪R).

The expectation in the first equality is taken over the randomness of B. The second equality holds since R itself is part of the
seed set, and it makes no difference whether its in-edges B are picked into the live-edge graph. Next, by the definition of p′,

σp
′

u (S) =
∑

A⊆E\B

∏
(a,b)∈A

pab
∏

(a,b)∈E\(A∪B)

(1− pab)1u(A ∪B,S).

It follows that σpu(S ∪R) ≥ σp′u (S) and therefore σp(S ∪R) ≥ σp′(S).


