Metalnsight: Automatic Discovery of Structured Knowledge for
Exploratory Data Analysis

Pingchuan Ma* Rui Ding"
HKUST Microsoft Research
Hong Kong, China Beijing, China
pmaab@ust.hk juding@microsoft.com
ABSTRACT

Automatic Exploratory Data Analysis (EDA) focuses on automati-
cally discovering pieces of knowledge in the form of interesting data
patterns. However, the knowledge conveyed by these suggested
data patterns is disjointed or lacks of organization. Therefore, it is
difficult for users to gain structured knowledge. As the number of
suggested patterns grows, these stand-alone patterns are less likely
to motivate users to conduct follow-up analysis, which hinders
the suggested patterns from being effectively utilized to facilitate
EDA. In this paper, we propose Metalnsight, a structured represen-
tation of knowledge extracted from multi-dimensional data, which
aims to facilitate EDA effectively. Specifically, we propose a novel
formulation of basic data patterns to capture essential characteris-
tics of the raw data distribution to achieve knowledge extraction.
Then, based on the mined homogeneous data patterns (HDPs) and
inter-pattern similarity, Metalnsights are identified by categorizing
basic data patterns (within an HDP) into commonness(es) and ex-
ceptions, thus achieving structured knowledge representation. The
commonness(es) and exceptions concretize knowledge obtained by
the induction and validation processes, which are two typical anal-
ysis mechanisms conducted in EDA. We propose a novel scoring
function to quantify the usefulness of Metalnsights, an effective and
efficient mining procedure and a ranking algorithm to automati-
cally discover high-quality Metalnsights from multi-dimensional
data. We demonstrate the effectiveness and efficiency of Metaln-
sight (w.r.t. facilitating EDA) through experiments on real-world
datasets and user studies on both expert and non-expert users.

ACM Reference Format:

Pingchuan Ma, Rui Ding, Shi Han, and Dongmei Zhang. 2021. Metalnsight:
Automatic Discovery of Structured Knowledge for Exploratory Data Analy-
sis. In Proceedings of the 2021 International Conference on Management of
Data (SIGMOD ’21), June 20-25, 2021, Virtual Event, China. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3448016.3457267

“Pingchuan Ma’s work was done during his internship at Microsoft, Beijing, China.
 Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457267

Shi Han
Microsoft Research
Beijing, China
shihan@microsoft.com

Dongmei Zhang
Microsoft Research
Beijing, China
dongmeiz@microsoft.com

1 INTRODUCTION

Exploratory Data Analysis (EDA) emphasizes gaining knowledge
of data and is a primary step in facilitating further in-depth analysis
[9, 16, 20, 32]. Insights obtained via EDA have been increasingly
important for decision making in various domains. As highlighted
in Gartner Reviews in 2018 and 2019 [3, 5], automatic EDA [25]
is an emerging topic which focuses on automatically discovering
pieces of knowledge in the form of interesting data patterns.

Typically, automatic pattern discovery boils down to the problem
of the formulation of data patterns [11, 31]. For example, QuickIn-
sight attempts to propose a unified formulation of data patterns as
a 4-tuple called insights [11]. Commercial tools have been built on
top of this, such as Microsoft Excel Ideas [1] or Microsoft Power BI
Quick-Insights [2], which automatically suggests a list of insights
to facilitate EDA. However, the knowledge conveyed by these sug-
gested data patterns is disjointed or lacks of organization. Therefore,
it is difficult for users to gain structured knowledge (i.e., knowledge
of how facts or concepts are organized by certain relations [7, 8, 18]).
As the number of suggested patterns grows, these stand-alone pat-
terns are less likely to motivate users to conduct follow-up analysis
[17, 22] (also evidenced by our user study). This in turn hinders the
suggested patterns being effectively utilized to facilitate EDA.

Let us take a typical EDA iteration cycle as an example. Consider
a multi-dimensional data about house sales in California in 2019, as
shown in Figure 2(a). A real estate agent, Bob, is conducting EDA
over the dataset. He first sees that compared with other months,
Los Angeles has had minimal sales in April. Bob then raises an
inductive hypothesis: “the other cities have similarly bad sales”.
With additional data exploration, he learns that this is a common
case, because quite a few other cities also have bad sales in April
(commonness). Based on the commonness, Bob now concentrates
on exceptional cases, and he raises a validity inquiry: “did ALL
cities have bad sales in April or are there any exceptions?” After a
careful inspection of all cities in California, Bob identifies that San
Diego had bad sales in July (exception). Bob has now completed
an EDA iteration cycle, and he attains the following insights: he
extracts a piece of knowledge (Los Angeles had bad sales in April)
and further gains structured knowledge (most cities had bad sales
in April except San Diego) from the data. He would thus like to
regard the exception (San Diego) as a new entry point for further
analysis. We depict the above analysis in Figure 1.

In this paper, we propose Metalnsight, a structured representa-
tion of knowledge extracted from multi-dimensional data, aiming
to facilitate EDA automatically and effectively. Specifically, we pro-
pose a novel formulation of basic data patterns to capture essential
characteristics of raw data distributions for knowledge extraction. A

https://doi.org/10.1145/3448016.3457267
https://doi.org/10.1145/3448016.3457267

For San Francisco, Apr has minimum Sales
400

&

7

Sales (million $)

|

For Los Angeles, Apr has minimum Sales
400

°
°

¢ sales (million $)
Jan
Feb
Mar
Apr
May
Jun
July
Aug
Sep
Oct
Nov
Dec
Jan

Sales (million $)

For Alameda, Apr has minimum Sales
00

400

Jan
Feb
Mar
Apr
May
Jun
July
Aug
Sep
oct
Nov
Dec

sales (million $)
sales (million $)

0

°

5
<

z

>3

P_— o
e 8 8
a

& o

2 % 2
] 3
v = z

Jan

c sz w
5 53
s 2322

starting from a basic data pattern

Feb

Mar

Feb

Mar

Apr
May

For San Diego, July has minimum Sales

Apr

induction and validation over homogenous dat:

For Amador, Apr has minimum Sales

For most Cities in Californin, Apr has minimum Sales;
except San Diego

——San Diego

Nov

——Alameda

Jun
July
Aug
Sep
Oct
Dec
Sales (million $)

—Amador
—San Francisco
—Los Angeles

/

o

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec

2
3

8
E

Jun
Aug
Sep
Oct

> =3
233
s data

pattern Metalnsight

Figure 1: An example scenario of leveraging Metalnsight to facilitate EDA

homogeneous data pattern (HDP) represents a set of basic data pat-
terns that share certain relations. For example, the different cities in
Figurel form a sibling relation w.r.t. subspaces. Within an HDP, one
commonness represents a set of similar basic data patterns. And the
remaining data patterns, that do not belong to any commonness(es),
are called exceptions. Based on the mined HDPs and inter-pattern
similarity, Metalnsights are identified by categorizing basic data pat-
terns (within an HDP) into commonness(es) and exceptions. Thus,
Metalnsight achieves structured knowledge representation. The
commonness(es) and exceptions concretize knowledge obtained
by the induction and validation processes, which are typical anal-
ysis mechanisms conducted in EDA. Commonness(es) concisely
expresses to what extent the inductive hypothesis is applicable (i.e.,
the generality of characteristics of a basic data pattern), and excep-
tions provide a concentration of unusual cases and how they differ
from the general knowledge as a result of a validity inquiry. Note
that induction and validation are typical bottom-up or data-driven
sensemaking mechanisms in the cognitive process [40].

To automatically discover high-quality Metalnsights from multi-
dimensional data, we propose a novel scoring function to quantify
the usefulness of Metalnsights, an effective and efficient mining
procedure and a ranking algorithm:

1) Scoring. To reflect its usefulness for facilitating EDA, the scor-
ing of Metalnsight should consider three heterogeneous factors: im-
portance, conciseness and actionability. A useful Metalnsight should
convey information (e.g., the associated dimensions, measures or
aggregates) that is important. A smaller number of commonness(es)
convey more general knowledge and are easier to understand due
to conciseness. Despite the purpose of data understanding, it is a
further merit if a Metalnsight is actionable to motivate users for
further analysis. These factors are particularly tailored to score
Metalnsight, and also deemed as useful for EDA [12, 21].

2) Mining. The search space of mining Metalnsights grows expo-
nentially w.r.t. the number of dimensions and dimension cardinali-
ties. However, since EDA is typically conducted in an interactive
manner, the Metalnsight mining procedure is expected to respond
within a limited time budget. It is unrealistic to conduct exhaustive
enumerations over all subspaces. Thus, designing a strategic and
efficient mining procedure is crucial to make Metalnsight practical.

3) Ranking. In order to select the top-k useful Metalnsights among
n candidates (which are obtained from the mining procedure), we

should not only consider the score of each Metalnsight but also the
inter-Metalnsight redundancy. Due to two Metalnsights possibly
conveying knowledge from a similar perspective or containing
redundant information, how a subset of Metalnsights with higher
individual scores and lower inter-Metalnsight redundancy to be
selected needs to be tackled.

Our main contributions are summarized as follows:
We propose Metalnsight, a structured representation of knowl-
edge from multi-dimensional data to facilitate EDA.
We propose a novel scoring function to quantify Metaln-
sight’s usefulness w.r.t. facilitating EDA.
We propose an effective and efficient mining procedure and
ranking algorithm to automatically discover and suggest
high-quality Metalnsights from multi-dimensional data.
We comprehensively evaluate the effectiveness and efficiency
of Metalnsight by experiments on real-world datasets and
two user studies with expert and non-expert users.

2
2.1

Multi-dimensional data are conceptually organized in tabular for-
mat, where each row is a record and each column is an attribute.
An illustrative example of multi-dimensional data is presented at
the left-hand side of Figure 2(a). Generally, there are two types of
columns in the table: dimensions and measures. Dimensions are
used to group or filter records and the values of dimensions are ei-
ther categorical (e.g., “City”) or temporal (e.g., “Month”). Measures,
meanwhile, are numerical columns (e.g., “Sales”) on which cer-
tain aggregates (e.g., SUM) can be performed. Further, we use D =
(Dim, M) to represent a multi-dimensional data, where Dim
{dimy, ...,dimg} is the set of d dimensions and M is the set of mea-
sures. In addition, we use dom(dim;) to denote the domain of dim;
(e.g., dom(Month) = {Jan, - - - , Dec}) and|dim;| := |dom(dimi)| as
the cardinality of dim; (e.g.,|Month| := |d0m(Month)| = 12). In the
following, we define some important notations in our work.
Subspace. A subspace s = {s1,...,sq} is a size-d set of filters on
each dimension, where s; € dom(col;) U {x}. Here, s; = {*} refers
to “any” value in dim; (i.e., empty filter). In the remainder of the
paper, we omit empty filters for brevity; e.g., {City: Los Angeles,
House Style: *, Month: *} = {City: Los Angeles}, and we further sim-
plify it as {Los Angeles} for notational simplicity.

PRELIMINARIES
Multi-Dimensional Data

raw data

Pattern Type

Evaluation Result

Trend

False

City Month Sales
City House Style | Month Sales
Jan | 288,231,200
Los Angeles 2Story Jan 208,500 ds = | Los Angeles evalunte
Dec [269,562,200| patterns
Los Angeles 1.5Fin Dec 163,200
t execute query
Yub: 1.5Unf De 118,000
uba n fd 4 SELECT Month, SUM(Sales) FROM DATASET WHERE
meta data City==“Los Angeles” GROUP BY Month

City |House5tyle| Month | Sales | |

[categorical | categorical | Temporal | Numerical | .. | construct query

1

data model subspace {Los Angeles}
D = ({City, House Style, Month, ...}, (SUM(Sales), ..} - breakdown Month
dimension measure pick a data scope measure SUM(sales)

(a) Workflow of data pattern generation

Sales (million $)

Unimodality True
Jan Apr July Oct Jan. Apr July Oct
*generate valid pattern
For Los Angeles, has Sales
400
o Jan Apr July Oct Jan Apr July Oct
0
dp = (ds, Unimodality, (April, Valley})
type highlight Jan Apr July Oct Jan Apr July Oct

(b) Partition of homogeneous data pattern

Figure 2: Illustrative examples

Sibling group. We define the sibling group of subspace s w.r.t. the
i-th filter as SG(s,i) == {s’ | Vj # i, s]'. = sj,5; # {*}}. Subspaces
within the same sibling group only differ from each other in one non-
empty filter, e.g., {City: Los Angeles, April} and {City: Yuba, April}
are within the sibling group that is extended by “City”.
Breakdown. A breakdown dimension is the dimension where group-
by operator is performed. A sibling group is generated when a break-
down dimension is applied on a subspace; e.g., when we break down
{Los Angeles} by dimension “Month”, we obtain the corresponding
sibling group SG ={Los Angeles, Jan}, {Los Angeles, Feb}, - - - }.

2.2 Data Scope
We define a data scope as a 3-tuple.

Definition 2.1. Data Scope
)

A data scope ds corresponds to a raw data distribution, which
indicates a sibling group with corresponding aggregate values on
the measure. Thus, a data scope specifies the content of interests
for data analysis purpose. A data scope example and corresponding
raw data distribution are illustrated in the middle of Figure 2(a).

We further define the impact of a data scope ds as:

ds = (subspace, breakdown, measure>

Mimpact (ds.subspace)

mImpact({*})

where Impacty, reflects the importance of the data scope against
the entire dataset. It can be determined by promoting the data scope
regarding any “meaningful measure”. Here, we term such a “mean-
ingful measure” as a impact-measure Mmimpact, and denote the value
of Mimpact as Mimpact(ds.subspace). For example, let SUM(Sales)
be an impact measure for the multi-dimensional data in Figure 2(a).
The impact of data scope ds is the proportion of total sales in Los
Angeles against the total sales in California. A real estate agent
naturally has more interest in cities with higher sales (i.e., cities
with a higher impact). We note that impact is a commonly used
metric to evaluate the importance of subspaces [11, 31].

€ [0, 1]

Impacty, =

@

3 FORMULATION

In this section, we give the formal definition of Metalnsight. We
first define a basic data pattern to achieve knowledge extraction

by symbolically representing the raw data distribution of a data
scope. Grounded on basic data patterns, we design three feasible
inter-pattern relations, which lead to the definition of homogeneous
data pattern. Finally, we define a Metalnsight by categorizing basic
data patterns within an HDP into commonness(es) and exceptions
to achieve structured knowledge representation.

3.1 Basic Data Pattern
We define a basic data pattern dp as a 5-tuple:

Definition 3.1. Basic Data Pattern
®3)

Here, ds is a data scope (3-tuple) which indicates raw data distribu-
tions in terms of aggregate values on measure over corresponding
sibling groups. type indicates a certain perspective to interpret the
data distribution. For example, when the breakdown of data scope
is a temporal dimension, the distribution forms a time series which
can be interpreted from the perspectives of trend, outlier, etc.

We use Evaluate(ds, type) € {true, false} to denote evalua-
tion function conducted on raw data distribution of ds from a
specific perspective, that is, type. Here, the function depicts the
soundness of the given perspective via an evaluation criterion (e.g.,
detecting outliers by 3-sigma rule). Once the criterion is satisfied,
Evaluate(ds, type) = true; otherwise, Evaluate(ds, type) = false.
At the top-right of Figure 2(a), Evaluate is conducted on ds with
different types. We also have Evaluate(ds, Trend) = false, but
Evaluate(ds, Unimodality) is true, which indicates a valid pattern
in ds w.r.t. the unimodality perspective. Note that Unimodality in-
dicates a time series which forms a U-shaped valley or peak shape.

highlight is a type-dependent notion to encode essential char-
acteristics as a result of Evaluate(ds, type). For instance, a uni-
modality pattern’s highlight is position of extreme points. Table 1
illustrates basic data patterns. In summary, our definition of ba-
sic data patterns provides a systematic way to extract essential
characteristics of raw data distributions symbolically.
Type-induced basic data pattern. Denote dp(ds, type) as a gen-
erative function that takes a data scope and a type as inputs and
returns a basic data pattern. The detailed definition is as follows:

(1) dp(ds, type) = <ds, type, highlight), if Evaluate(ds, type) =

true;

dp = <ds, type, highlight)

(2) dp(ds, type) = (ds, Other Pattern), if Evaluate(ds, type) =

false and 3¢’ # type s.t. Evaluate(ds,t’) = true;

(3) dp(ds, type) = (ds, No Pattern), otherwise.

In addition to pre-defined pattern types, we use “Other Pattern”
and “No Pattern” as placeholders if the criterion of the specified
type does not hold in the data scope. Take the right-hand side in
Figure 2(a) as an example. If we evaluate the data scope by Unimodal-
ity, then dp(ds, Unimodality) is <ds, Unimodality, (Valley, April>>
since Evaluate(ds, Unimodality) = true; in contrast, dp(ds, Trend)
is (ds, Other Pattern) because Evaluate(ds, Trend) = false, but
the evaluation on Unimodality is true. If the evaluation function
returns false for all types, then “No Pattern” is returned.

Table 1: Examples of basic data patterns

Type Illustrations of Highlights
Outstand #1 subspace with the highest aggregate value
Trend upward or downward trend
Outlier position of outlier data points
Seasonality length of seasonality period
Unimodality | position of extreme point of a U-shaped valley or peak shape.

We implement 11 types of basic data patterns corresponding to
11 perspectives which are commonly used in EDA. Table 1 lists
some examples. Although both evaluation criteria and pattern types
vary by domain, the design of Metalnsight is pattern-type agnostic
and extendable. Users can add more domain-specific pattern types
to facilitate EDA in their own scenarios. In subsequent discussions,
we use “data pattern” as shorthand for “basic data pattern”.

3.2 Homogeneous Data Patterns

Our definition of a data pattern makes it capable of extracting
essential characteristics of the raw data distribution on a specific
data scope in the form of type and highlight. To further provide
structured knowledge representation grounded on data patterns,
we first illustrate prospective relations among data scopes.

Recall that a data scope ds = (s, b, m) is a 3-tuple. Naturally,
there are three ways to derive data scopes that are homogeneous
w.r.t. ds (i.e., the data scopes that only differ from ds by one element
under certain constraints). Considering this, we present the three
amenable extending strategies, Exds;, Exdp,, Exdp, on a data scope
ds to constitute the homogeneous data scope. Below, we use ds =
<Los Angeles, Month, SUM(Sales)) as an example.

Subspace Extending. Exds, extends the subspace s to its sibling
group SG(s, i) while keeping b and m unchanged:

Exds, ({s, b, m)) = {(s’, b.m) | s € SG(. i)} @)

where i specifies which filter of s is used to generate sibling groups.
For example, applying Exdy ¢ Angelesy,, 01 ds, we obtain a set of
data scopes that correspond to sales in different cities over months
(middle part of Figure 2(a)).

Measure Extending. Exd,, extends the measure m to all measures
while keeping s and b unchanged:

Exd,({s, b, m)) = {(s, bym') | m’ € M} (5)

Applying Exdsym(sales) on ds, we have a set of data scopes with dif-
ferent measures (e.g., SUM(Sales), SUM(Profits) and AVG(Profit Rate))
in Los Angeles over months.

Breakdown Extending. Exd; extends the breakdown dimension
b to all temporal dimensions while s and m remain unchanged. To
ensure that the homogeneous data scope is semantically meaningful,
we restrict all extended breakdown dimensions to being temporal:

Exdp({s, b, m)) = {<s b',m) | b’ € Dim,b" is temporal} (6)

Applying Exdponth On ds, we obtain a set of time series of sales
in Los Angeles with different time granularities, e.g., over “Day”,
“Week” and “Month”.

With the above extending strategies, we derive a list of data
scopes that form a homogeneous data scope:

Definition 3.2. (Homogeneous Data Scope) A homogeneous data
scope (HDS) derived from a data scope ds is a set of data scopes
that are extended by either one of the above extending strategies.

Definition 3.3. (Homogeneous Data Pattern) An HDP is a set of
type-induced data patterns derived from an HDS.

HOP ,pe(HDS) := {dp(type, ds) | ds € HDS} @)

For example, as is shown in the middle part of Figure 1, the break-
down dimensions and measures of all the data scopes (indicated
by charts) are identical (Month and SUM(Sales)) and these charts
only differ in the subspace. Thus, they form a subspace extended
HDS. These charts also convey HDP which is a set of unimodality-
induced data patterns. According to Def. 3.3, data patterns within
an HDP can be naturally and meaningfully compared. Thus, we
define similarity of two data patterns as a Boolean function Sim:

True dp;.t=dp;.t,dp;.h=dp;.h ®)

False Otherwise

Sim(dp;, dp;j) = {

where dp; . t and dp; . h are short for the type and highlight of dp;.
In addition to Eqn. 8, Sim(dp;, dp;) always returns False when
either type of dp; or dpj is “Other Pattern” or “No Pattern”.

The definition of similarity follows intuition: when two data
patterns belong to the same HDP (thus can be compared), and
share the same essential characteristics (highlight) from the same
perspective (type), then they are deemed to be similar. As is shown
in Figure 2(b), patterns with a valley at April are similar (marked
in blue), corresponding to the cities with bad sales in April.

Algebraically, Sim is an equivalence relation, and thus the corre-
sponding equivalence classes form a partitioning of an HDP. We call
an equivalence class a commonness if its ratio exceeds a threshold
7; the set of all commonnesses is called commonness set.

Definition 3.4. (Commonness Set) CommSet.

C
CommSet := {C | C € HDP/Sim, s.t. |I-|ITI|3| > 7} 9)

Here, ‘/’ is a quotient operator and HDP/Simis a quotient set w.r.t. the

equivalence relation Sim, where HDP is partitioned into Sim-equivalence

classes. Each element in CommSet is denoted as a commonness (a

collection of data patterns that share the same type and highlight).
Exceptions denote the remaining data patterns that do not belong
to any commonness(es). 7 is a pre-defined threshold indicating the
acceptance rate of the generality of a specifically extracted piece of
knowledge. That is, a specific data pattern is deemed as general in
its HDP if the proportion of similar data patterns exceeds 7. For the
example in Figure 2(b), there are two commonness(es) (one blue
and one orange) with an exception, provided that 7 = 0.3. With def-
initions of commonness set and exceptions, we define Metalnsight.

Definition 3.5. (Metalnsight)
Metalnsightypp = (CommSet, Exc) s.t. CommSet # 0 (10)

Metalnsight categorizes an HDP into a CommSet and exceptions
Exc to provide a structured (by homogeneous relations) knowledge
representation. Metalnsight concretizes knowledge obtained by the
induction and validation processes which are typically conducted
in EDA: each commonness indicates a piece of general knowledge,
and exceptions are used to focus the users on unusual cases and
how they differ from general knowledge.

4 APPROACH

In this section, we elaborate on the design of the Metalnsight scoring
function, mining procedure and ranking algorithm.

4.1 Scoring

In facilitating EDA, there are three essential factors to assess the
usefulness of Metalnsight: conciseness, actionability and impact.
Among these three factors, conciseness plays a central role and is
defined on the commonness set and categorization of exceptions.
We start by elaborating on how exceptions are categorized.
Categorization of exceptions. As previous mentioned, in the
context of EDA, exceptions are typically used to focus the users on
unusual cases and how they differ from general knowledge. There-
fore, users tend to focus on identifying contrasts against common-
ness(es) before further inspecting the details of a specific exception
pattern. For example, in Figure 1, after obtaining general knowledge
(“most cities had bad sales in April”), users can easily understand
that San Diego has behaved differently because its highlight (the
month of bad sales) is on July rather than April. We categorize such
an exception as a “highlight change”. Based on the definition of
data patterns, we propose an exception categorization that divides
exceptions into three categories:

1) Highlight-Change denotes an exceptional pattern whose
highlight is different from all patterns in the commonness set.

2) Type-Change denotes an exceptional pattern whose pattern
type is “Other Pattern”. For example, “For most Cities in California,
Month:Apr has the lowest Sales, except for San Jose, where Sales
are distributed evenly”

3) No-Pattern denotes an exceptional pattern whose pattern
type is “No Pattern”. For example, “For most Cities in California,
Month:Apr has the lowest Sales, except for Riverside, where Sales
do not exhibit any particular patterns”

These three categories are typical ways to categorize exceptions,
though, in general, there may be more categories of exceptions
by considering the finer granularity of relations of highlights (e.g.,

partial/complete highlight change). In the following discussion,
we denote k as the number of categories of exceptions. Here, we
propose a fine-grained Metalnsight representation as follows:

Definition 4.1. (Metalnsight representation) A Metalnsight from
an n-length HDP is represented by the u + v categories:

{Cl,"',cu,el,"‘,ev} (11)

where u > 1,0 < v < k, ¢; denotes the i-th commonness, and
ej denotes the j-th exception category. The proportion of each
category in the Metalnsight is denoted as

{al»' cc »au’ﬂly' o 7ﬁv}
N (12)

v
s.t. ai + Zﬁ] =1, Oti,ﬁj € (0,1],Vi,a; > 1

=1 j=1

Conciseness as a core element. The implication of conciseness is
two-fold: First, conciseness measures the generality of knowledge
from Metalnsight; second, conciseness can quantify the human
effort to understand Metalnsight. As we have categorized all data
patterns in Metalnsight in Def. 4.1, we first propose an entropy-like
formula to quantify the complexity of a Metalnsight representation:

u v
S=- Z;ailogai-krz;ﬁjlogﬁj (13)
i= Jj=

Intuitively, smaller entropy S indicates better conciseness, and thus
it requires less effort to understand. E.g., suppose a Metalnsight with
a1 = 1; then S = 0, which indicates perfect conciseness because
this Metalnsight is the easiest to understand. Here, r serves as a
balancing parameter that distinguishes complexity brought by the
commonness(es) and exception categories.
Based on such a consideration, we define conciseness as follows:
. S
ConcisenessSyw = 1 — o (14)
where S* is the upper bound of S, which serves as a normalization
factor that ensures Conciseness;ayw is bounded in [0, 1].

Lemma 4.1. The maximal S of a Metalnsight is:

rkzl/r
3

k< (1;728
(1-7)e (15)
ri/r

—log(7) + loge

§'() = — — — 1=z
tlogr —r(1-1)log 7+ k=

where e is the Natural Base, k is the number of exception categories,
r is the same balancing parameter as in Eqn. 13, 7 is the threshold
of commonness(es) and $*(r) is continuous w.r.t. 7.

Corollary 4.1.1. (Continuity & Monotonicity) $*(r) is continuous
and monotonically decreasing w.r.t. 7.

According to the corollary, higher 7 brings lower upper bound of
entropy S, which is compliant with intuition since higher 7 means
higher generality of commonness, which offers less complexity.
Regularization for actionability. Despite commonness(es) pro-
viding general knowledge concisely, exceptions are more actionable
for follow-up analysis. To encourage the presence of exceptions, we
design a regularization term to penalize cases without exceptions,
namely an indicator function I =1t

S+ylyn ,_
Ysz*]l a=1 (16)

where y is a hyperparameter which should be chosen such that

S+ yI < S* for any possible Metalnsights.

Impact as importance measure. We adapt Eqn. 2 for homoge-

neous data scopes as follows:

Concisenessreg =1-

X mimpact(ds.subspace)

Impactyps = Z Impactys = - D
dseHDs Impact

We quantify the usefulness of a Metalnsight as follows.

(17)

Score(I) = f(Concisenessyeg) X g(Impactyps) (18)

where f(x) and g(x) are monotonically increasing functions € [0, 1].
Parameters in our implementation. We set hyper-parameter
7 = 0.5, which is a simple and natural threshold indicates majority
(a well-known ratio to reflect generality). Note that 7 could vary
in different EDA scenarios. According to our empirical study, the
identified Metalnsight are not sensitive to the changes of 7 in real-
world datasets. We further set k = 3 and r = 1. To ensure that
Concisenessyeg is within [0, 1], we restrict 0 < y < 1+ 0.5logk
and let y = 0.1. For Eqn. 18, we let f(x) = g(x) = x.

4.2 Mining

Design. To achieve efficient and interactive EDA, Metalnsight min-
ing procedure is first designed to be progressive, returning best-so-
far results within a pre-specified time budget. We decompose the
mining procedure into search, query and evaluation functionalities,
and optimize each functionality to improve mining efficiency. Dur-
ing mining process, all qualified Metalnsight candidates are stored,
which will be used for downstream tasks, such as pattern-indexing,
ranking or diversification. Therefore, we intend to make our mining
procedure generic for the needs of various downstream tasks.

o Pattern guided
Data Pattern Metalnsight Mining|

Mining Module o

Metalnsight
Mining Module

output

Ranking

o0 o o / 0w
Multi-dimensional — 9 query
Figure 3: Metalnsight Mining Procedure

Workflow. As shown in Figure 3, data pattern mining module first
takes multi-dimensional data as input and discovers data patterns in
the dataset. Once a data pattern is found, its data scope is extended
into several HDSs and corresponding Metalnsight compute units are
emitted to examine the existence of Metalnsight in the Metalnsight
mining module. Discovered Metalnsights are stored and sent to the
ranking module when the time budget has been used up.
Conceptually, the mining procedure consists of three main func-
tionalities: search, query and evaluation (shown in Figure 3). The
search functionality explores possible (homogeneous) data scopes,
emits corresponding compute units and schedules the priority of
compute units; the query functionality is executed within each
compute unit, and is responsible for querying and aggregating spec-
ified (homogeneous) data scopes from raw data; and the evaluation

functionality conducts data pattern evaluation or Metalnsight eval-
uation to determine the existence of data patterns or Metalnsights.
Now, we elaborate on how we optimize these functionalities to
achieve efficient Metalnsight mining.

Priority Queue I for
Data Pattern Compute Units

ds, | ds, | ds, ds,

impact,|impact | impact, impact,

Data Pattern
Evaluation

Data Pattern Mining Module

Priority Queue IT for
Metalnsight Compute Units

HDS, | HDS,| HDS, HDS,
impact | impact, |impact, impact,
Metalnsight
Evaluation

Metalnsight Mining Module

>

Search

| Data Scope

Figure 4: Pattern guided Metalnsight mining

4.2.1 Search. To deal with the typical scale of real-world data, it is
impossible to enumerate all possible HDP(s) within a realistic time
budget. Thus, we are motivated to optimize the search strategy.
Search space analysis. Let dataset D = (Dim, M) where Dim =
{dimy, - - ,dimg}. Recall that the subspace consists of d filters
(including empty and non-empty filters). Hence, the size of the
subspace |S| is exponential w.r.t. dimensionality and cardinalities,
ie. [] (dim;| + 1). By further considering the combination with
measures, the number of distinct data scopes is greater than or
equal to| M| x [] (dim;| + 1). Therefore, the number of distinct data
scopes is exponential to the number of dimensions and cardinalities.
Pattern-guided mining. To search for Metalnsight, a straight-
forward approach is directly enumerating all HDSs and evaluate
Metalnsight accordingly. For example, a subspace-extended HDS
can be viewed as a data scope augmented with an additional group-
by from the subspace-extending dimension. Generally, the number
of subspace extended HDSs is about Xd more than all possible data
scope size. Thus, the cost of directly enumerating HDSs is prohib-
itively large. On the other hand, considering data patterns rarely
appear in data and a valid Metalnsight contains at least nt data pat-
terns, most HDSs triggered by straightforward approach contains
no Metalnsight, in which computations are drastically wasted. In-
stead, we propose pattern-guided Metalnsight mining. Here, we use
data pattern mining module to trigger compute units for Metaln-
sight evaluation. The data pattern mining module is responsible for
enumerating data scopes and evaluating corresponding data pat-
terns. Metalnsight compute units are emitted from three extending
strategies in terms of dp, only when dp is identified by data pattern
mining module. In this way, the number of emitted Metalnsight
compute units (and the workload of Metalnsight mining module) is
drastically reduced. Considering the evaluation of data patterns is
relatively lightweight (cf. Metalnsight evaluation), pattern-guided
mining strategy saves significant computational cost.

Priority queue. As shown at the right-hand side of Figure 4, emit-
ted Metalnsight compute units are stored in a queue. Ideally, we
would evaluate the compute units with higher scores earlier. At
first glance, considering each compute unit only has information
of the HDS and its corresponding impact, without knowing its
conciseness, we can see that, without conducting an evaluation,
the high-scoring Metalnsights are randomly hidden in compute
units. However, considering that the definition of the Metalnsights
score (see Eqn. 18), score is monotonic w.r.t. impact. We can sort
these compute units by impact (in descending order) and serve the

compute units with higher impact earlier. This can be viewed as a
best-effort search if we treat the conciseness as a random variable
which is independent of impacts. As a result, we propose a priority
queue to store Metalnsight compute units by setting impact as a
priority. Compared with a FIFO (first-in, first-out) queue, our strat-
egy achieves more efficient utilization of the time budget. Likewise,
we employ another priority queue for data pattern evaluation.

Table 2: Query APIs

Query API SQL Query

SELECT ds.measure, ds.breakdown FROM D WHERE
filter = ds.subspace GROUP BY ds.breakdown
SELECT myq,--- ,m‘M‘,dsAbreakdown, d FROM D WHERE

filter = ds.subspace \ d GROUP BY ds.breakdown, d

BasicQuery(ds)

AugmentedQuery (ds, d)

4.2.2 Query. Metalnsight mainly conducts queries to obtain data
(raw data distributions) of data scopes and HDSs. We elaborate the
design of query and cache for efficient Metalnsight mining.

Basic query. Denote the query for obtaining data of a data scope as
a basic query, which is shown in the 1st row of Table 2. An example
of basic query and query result is shown in middle of Figure 2(a).

Augmented query. According to Def. 3.2, an HDS is a collection
of data scopes. Thus, a natural way to query for HDS is to use
basic queries as building blocks. However, such an approach results
in massive calls to an underlying database which further leads to
significant performance degradation. For instance, we need |M]|
basic queries for a measure-extending HDS. Instead, we propose
augmented query (2nd row in Table 2) to reduce the number of
queries. Compared with basic query, each augmented query re-
quests aggregate values over all measures (highlighted by blue in
Table 2), and conducts an additional group-by from dimension d
(highlighted by red in Table 2). The result can be represented by
multiple 2-dimensional grids, where each grid corresponds to aggre-
gation over a specific measure and grouped by ds.breakdown and
d. It is easy to verify that, query result contains not only raw data
of data scope ds (used in the data pattern mining module, shown at
left-most of Figure 3), but also raw data for measure-extending and
subspace-extending HDSs generated from ds (used in Metalnsight
mining module, shown at right of Figure 3). Moreover, augmented
query pre-fetches measure-extending HDSs for sibling group of
ds.subspace and subspace-extending HDSs for all the other mea-
sures. These pre-fetched results are stored in query cache, which is
useful to serve upcoming compute units. Given above considera-
tions, we apply augmented query thorough the mining procedure.
Query cache. We choose the cache unit to be in one-to-one corre-
spondence to data of basic query, which efficiently serves queries
for data scopes, HDSs and impact calculation (i.e., basic query from
the impact measure). Each cache unit is a 2-dimensional aggrega-
tion result grouped-by breakdown, and across all measures with
a specific filter. Data generated by augmented queries are stored
in such multiple units, where the filter of each unit forms a sibling
group SG(ds.subspace, d). An example is shown in Figure 5.

4.2.3 Evaluation. After query results are obtained in a specific
compute unit, data pattern mining module and Metalnsight mining
module start to evaluate existence of (homogeneous) data patterns.

Los Angeles | SUM(Sales) AVG(Profit Rate) | impact measure

Jan 288,231,200 0.13

Dec 142,345,200 B 0.09

Figure 5: An Example of Query Cache Units

Pattern cache. Data pattern evaluations could be duplicated be-
tween the data pattern mining module and the Metalnsight mining
module, since evaluation of an HDP is almost equal to (without
considering pruning) evaluating n data patterns (corresponding to
the n data scopes of HDS). We propose a pattern cache to store the
data patterns which have been evaluated. According to Def. 3.1, we
use the combination of data scope and type as a key to query the
evaluation result from the pattern cache.

Pruning. The goal of pruning follows two principles: 1) HDP evalu-
ation should be terminated based on Metalnsights’ criteria; 2) trivial
Metalnsights with extremely low scores should be discarded. Based
on the principles, we propose two pruning strategies.

Pruning 1. According to Def. 3.5, a valid Metalnsight requires at
least one commonness with % greater than 7. Therefore, during
the HDP evaluation process, which sequentially evaluates data
patterns over n data scopes, after evaluating the j-th data scope, we
record the ratio of the largest commonness as fj'. If fJf +(n—j)/n<r,
then terminate the HDP evaluation process.

Pruning 2. Users often have no interest in a Metalnsight with
an extremely small score. According to Eqn. 18, we have score =

g(Impactyps)X f(Conciseness) < g(Impactyps). Thus, if g(Impactyps)

of a compute unit is already smaller than a threshold (e.g., 0.01), we
discard this compute unit from the priority queue.

4.3 Ranking

When suggesting a set of Metalnsights to users, two or more Metaln-
sights may convey knowledge with certain overlaps, which is called
inter-Metalnsight redundancy. Given N Metalnsights discovered
by the mining procedure (Sec. 4.2), our ranking problem aims to
pick k < N Metalnsights with high individual scores and low
inter-Metalnsight redundancy. In other words, maximize the “total
usefulness” (w.r.t. facilitating EDA) of the k Metalnsights.

Here we use|I| to denote the usefulness (w.r.t. facilitating EDA)
of an individual Metalnsight I.

Definition 4.2. |I| := Score(I)

We further define the total usefulness of p Metalnsights Iy, - - - p
by adopting inclusion-exclusion principle:

Definition 4.3. TotalUse(ly,---,Ip)

U U= - > Ennl+e)P RN 0
i 1<i<j<p
(19)

To fulfill the above definition, we define the overlap of knowledge
among p Metalnsights:

Definition 4.4. Overlap(ly,--- ,Ip)
[N N Ip| = min(hl, - |, L 1) (20)

r(Iy, -+ ,Ip) denotes overlap ratio, which reflects inter-Metalnsight
redundancy among Iy, - - - p. Ifr=110,--- ,Ip are fully identical,
whereas r = 0 means there is no overlap of knowledge among
I, - -+, Ip. Hence, higher overlap ratio indicates more redundancy
among these p Metalnsights. In our implementation, we propose
a heuristic-based method to quantify the overlap ratio of a collec-
tion of Metalnsights, which can be viewed as a generalization of
commonly used overlap coefficient [34].
We further formulate our ranking problem as follows:

M= Ly (21)

argmax

(oo {1 N}
where M is the suggested Metalnsights. Our problem is similar
to the result diversification problem discussed in [13]. In result
diversification problem, 8 axioms are presented, and it is easy to
verify that our objective function Eqn. 21 satisfies all the axioms
except stability (note that in the language of [13], our problem has
a generalized relevance function but without a distance function).
According to [13], maximizing the objective is NP-hard. Therefore,
approximations are necessary for efficiency.
Second-order approximation. We make a second-order approxi-
mation of Eqn. 21 by discarding higher-order terms (i.e., only pre-
serve first- and second-order terms):

Z |Ii NI j| (22)

TotalUseapprox(l1, -« ,1Ip) = ZIL’I -
i 1<i<j<p

TotalUse(lj,, - -

Greedy algorithm. To further improve efficiency, we adopt greedy
algorithm to solve Eqn. 22. We maintain a selected Metalnsight set S
(which initially contains the Metalnsight with highest score). In each
iteration, we pick a new Metalnsight which increases TotalUsegpprox
the most and insert it into S. We terminate the iteration when size
of S reaches k, and then return S.

Our ranking algorithm (second-order approximation with greedy
algorithm) makes reasonable trade-off between accuracy and ef-
ficiency. Based on our experiment (Sec. 5.1.3), it is rare to have
multiple Metalnsights sharing non-trivial overlap and our greedy
algorithm often achieves near-optimum.

5 EVALUATION

We evaluate the effectiveness and efficiency of Metalnsight by quan-
titative experiments on real-world datasets (Sec. 5.1), and its useful-
ness in assisting EDA by two user studies with 18 non-expert users
and three expert users (Sec. 5.2).

5.1 Experiments on Real-world Datasets

5.1.1 Setup. Dataset. We select 35 datasets from more than 10
domains (e.g., Sales, Environment and Healthcare) to evaluate the
effectiveness and efficiency of Metalnsight. These datasets are of
different scales, ranging from one thousand cells to over one mil-
lion cells. In particular, we pick four large datasets to evaluate
Metalnsight’s efficiency at the extreme.

Environment. We conduct all experiments on Windows 10 with
an Intel Core i7-8700 and 16 GB RAM. The Metalnsight mining
procedure is implemented by C#, and we implement a plugin on
Microsoft Excel to work with its query interface. We set the configu-
ration as follows: #worker threads = 8 and the maximal filter size in
a subspace = 3. We set COUNT (*) as impact-measure for all datasets,

for simplicity, and we note that the choice of impact-measure only
has a negligible effect on evaluating efficiency.

5.1.2 Experiment Design. We evaluate Metalnsight from two as-
pects, namely, the efficiency of the Metalnsight mining procedure,
and the optimality of our ranking algorithm.

In terms of mining efficiency, we employ several optimizations to
boost the search, query and evaluation functionalities. We conduct
an ablation study by disabling one of the optimizations or replacing
it with a baseline. Specifically, we compare the efficiency by using
priority queues vs. using FIFO queues, by enabling query cache
vs. disabling query cache, and enabling pattern cache vs. disabling
pattern cache. We define Metalnsight precision to measure the
effectiveness of each optimization. In addition, we also conduct
end-to-end comparisons between Metalnsight and QuickInsight to
evaluate Metalnsight extra cost, since Metalnsight conducts not
only mining of basic data patterns (which QuickInsight does), but
also mining of HDPs. We use total number of emitted queries as
metric which reflects major performance cost.

Definition 5.1. (Metalnsight Precision) Let M and M, denote
two sets of Metalnsights, where My is the golden set and M is the
comparative set. The Metalnsight precision f is

5- Mo M|
[Mo

In our golden setting, all optimizations are enabled and the time bud-
get is 600 seconds. Then, we compare the golden set M with other
results in different methods and compute Metalnsight precisions.
Each comparative method is repeated under different time bud-
gets on four datasets. Higher precision denotes better performance.
B = 1 means that the mining procedure can achieve equivalent
performance under this setting. As a part of our optimizations, in
addition to Metalnsight precision, we also report the statistics of
the query cache and the pattern cache in the 35 datasets to show
how much communication and computational cost is saved.

To understand the optimality of our ranking algorithm, we first
run a standalone baseline algorithm (neither second-order approxi-
mation or greedy algorithm is enabled) to find the globally optimal
top-k set of Eqn. 19. Then we use this set as the golden set, and
evaluate the optimality of our ranking algorithm. We also com-
pare our algorithm with a rank-by-score algorithm (sorting all the
Metalnsights by scores in descending order and picking the top-k
ones).

(23)

5.1.3 Results. Figure 6 reports the precision over different time
budgets for the four different settings. The full functionality mining
procedure achieves the best performance on all datasets among all
time budgets. As we use the results of 600 seconds to be the golden
set, we would like to note that the satisfactory results are generated
in a much shorter time (e.g., the full functionality mining proce-
dure achieves equivalent performance within 120s in the “Sales
Forecast” dataset). However, when either of these optimizations is
disabled, there is notable performance degradation in most time
budgets. We also find that, with the scale of the dataset growing,
the implications of optimizations become increasingly important
to the overall performance. In the “Hotel Booking” dataset (the
largest dataset among the four, w/ 1M+ cells), the effectiveness
of our optimizations is obvious. For a medium-sized dataset (w/

—— Full Functionality
wlo Pattern Cache

0.8 — wlo Query Cache
—— FIFO Queue

—— Full Functionality

wlo Pattern Cache
0.8 — wlo Query Cache
—— FIFO Queue

coverage
coverage

20 a0 100 120 20 a0 60 80 100 120 140

time budget (second)

(a) Sales Forecast (b) Tablet Sales

1.0 1.0
— Full Functionality —— Full Functionality /—/
w/o Pattern Cache wj/o Pattern Cache
0.8{ — w/o Query Cache 0.8 { = w/o Query Cache

— FIFO Queue —— FIFO Queue

60 80
time budget (second)

coverage
coverage
°
S

o
S

02 0.2

5 10 15 20 25 30 10 20
time budget (second)

(c) Credit Card

30 40 50 60
time budget (second)

(d) Hotel Booking

Figure 6: Efficiency of Metalnsight mining procedure (in
terms of precision) under different datasets and settings

100k-1M cells), e.g., the “Tablet Sales” dataset, when either of the
caches is disabled, the mining procedure takes 12x longer (5s vs.
60s) to achieve the same performance, let alone the mining proce-
dure without a priority queue. Also, the importance of the query
cache is relatively smaller than the others for the medium-sized
datasets; given enough time, the mining procedure can discover
good Metalnsights as well. However, as there are many duplicated
data pattern evaluations, the absence of pattern cache may greatly
slow down the performance.

Table 3: Cache Statistics

#Cells ‘ #Cq ‘ rq ‘ #Cp ‘ p
0-1k 0.5 | 80.4% | 179 | 26.0%
1k-10k 35.9 | 75.6% | 7175 | 34.8%
10k-100k | 38.5 | 65.8% | 1497 | 37.9%
100k-1M | 99.4 | 74.9% | 5594 | 42.2%
1M+ 294 | 70.6% | 3584 | 50.1%

10°

10t ‘ ‘ |

Dataset ID

B Quickinsight
s Metalnsight

#Query
T
S 9

-
b3

Figure 7: Query Count

We use a total of 35 representative datasets to show the effec-
tiveness of the query cache and pattern cache. We report the cache
statistics in Table. 3, where #Cq and #Cp denote the size of the
query cache and pattern cache, respectively, and r4 and r,, denote
the cache hit rate of the query cache and pattern cache. Since the
query cache employs a compound data structure (see Figure 5),
#Cq is the memory size in MB (megabytes). As given in the table,

a substantial number of data queries and pattern evaluations are
eliminated by prefetching in the query cache and pattern cache.
On the “Hotel Booking” dataset, we find that more than 80% of
queries are prefetched in the query cache, which explains the large
performance degradation in Figure 6(d). The results of the pattern
cache hit rate also validate our statement in Sec. 4.2, where data
pattern evaluations are often duplicated (i.e., a basic data pattern
may serve for different HDPs).. For datasets with more than one
million cells, more than half the data pattern evaluations are saved.

We further report the total emitted number of queries by Quick-
Insight and Metalnsight in Figure 7. Metalnsight conducts 17.1%
extra queries on average compared with QuickInsight. On large
datasets (QuickInsight emits more than 10, 000 queries), the extra
cost of Metalnsight is only 7.9% due to the better utilization of query
and pattern cache. Overall, Metalnsight has modest extra cost and
is feasible to be integrated into production.

Table 4: Optimality of Metalnsight’s Ranking

Dataset Algorithm Time | TotalUse | Precision
Baseline >1min 3.31 N/A
Sales Forecast | Our 0.93 s 3.27 0.90
Rank-by-Score | 0.52's 2.48 0.40
Baseline >1min 6.59 N/A
Tablet Sales Our 1.04's 6.59 1.0
Rank-by-Score | 0.23's 4.23 0.30
Baseline >1min 8.52 N/A
Credit Card Our 1.90 s 8.52 1.0
Rank-by-Score | 0.36 s 4.82 0.30
Baseline >1min 8.43 N/A
Hotel Booking | Our 237s 8.43 1.0
Rank-by-Score | 0.39s 3.78 0.30

Table 4 reports the results of Metalnsight ranking algorithm
optimality (second-order approximation) compared with baseline
(accurate algorithm) and rank-by-score algorithm (first-order ap-
proximation). The results of our ranking algorithm are in line with
baseline algorithm in above datasets. Owing to high-order redun-
dancy being small to have much of an effect on the total usefulness,
our second-order approximation captures major redundancy and
with much lower time complexity (compared with baseline). It is
worth noting that the time cost of baseline is more than one minute
(even more than one hour in some datasets) which impedes its use
in interactive EDA. However, if we do not take redundancy into
account in the ranking algorithm, i.e., the rank-by-score algorithm,
the precision is dropped significantly. In summary, our algorithm
takes acceptable time and gives a plausible ranking result.

5.2 User Study

5.2.1 Methodology. Metalnsight is designed to serve both expert
and non-expert users, whose analytical needs are often different.
Non-expert users would like to gain a better understanding of data,
whereas expert users are more familiar with the data to be analyzed,
so they would like Metalnsight to aid their in-depth data analysis
and decision making. Thus, we conduct two user studies on expert
and non-expert users, respectively.

Overall design. For expert users, we compare Metalnsight exam-
ples (generated by Metalnsight mining framework) with Quick-
Insight examples (generated by Microsoft Excel Ideas [1], a com-
mercial tool for facilitating EDA built on top of Quickinsight) on
the same dataset. For non-expert users, we design an alternative

representation of Metalnsight called Flat-List Representation (FLR).
An FLR is obtained by unfolding all the data patterns within an
HDP (of a Metalnsight), which presents each data pattern separately.
We use FLR as a reference to evaluate Metalnsight conciseness and
potential information loss, since FLR conveys complete information
of HDP (i.e., no conciseness and no information loss).

For both studies, participants need to answer two rating ques-
tions to assess each Metalnsight example:

Q1: How helpful is this fact for you to understand the data charac-
teristics?

Q2: To what extent do you feel interested to take follow-up analy-
sis?

Here, the answers to both questions range from 1 to 5. A higher
score indicates this fact is more helpful (Q1) or the willingness to
do some follow-up analysis is higher (Q2). Q1 and Q2 are designed
according to the two typical usage scenarios of EDA (data under-
standing and facilitating further analysis). In addition, for expert
users, we also ask the same questions for each QuickInsight exam-
ple to make direct comparison. For non-expert users, we instead
ask two more single-choice questions to each Metalnsight example
to assess the conciseness and potential information loss by using
corresponding FLR as reference:

Q3: Compared with FLR, how much easier is it to gain knowledge
by Metalnsight?

Q4: Compared with FLR, how much useful information is lost (for
your purpose of data analysis) by Metalnsight?

We assign five choices for Q3: “much easier”, “easier”, “neutral”,
“harder”, and “much harder”. We assign three choices for Q4: “none”,
“a few (with some information loss but does not affect data analysis)”
and “a lot (with noticeable information loss which affects data
analysis)”. The setup for each user study is elaborated below.

Table 5: Dataset Description

Dataset User Group | #Rows | #Cols
Survey on Remote Working Expert 474 24
Car Sales Non-expert 275 5
Air Pollution Emissions Non-expert | 4862 8
Hiking Trail Non-expert 141 7

User study for expert users. We invite three data analysts to par-
ticipate in our expert user study. They are responsible for analyzing
a survey about employees’ experience of remote work (i.e., working
from home) due to COVID-19.

The dataset is the survey feedback collected from 473 respon-
dents from a large organization in the form of an Excel spreadsheet.
As shown in the first row of Table 5, the dataset has 24 dimensions
corresponding to the 24 single-choice questions in the survey. A
total of 473 records are collected, where each record is the response
from a specific respondent, with specific answers on the 24 ques-
tions. Most questions, such as “I have flexible work hours”, are
designed with 5 answer choices:: {strongly disagree, disagree, neu-
tral, agree, strongly agree}. The dataset contains only one measure,
COUNT (*), and we also use it as an impact measure.

Our study consists of three stages. In the first stage, we compare
the top-10 Metalnsight examples generated by our implementation
and top-10 QuickInsight examples generated by Microsoft Excel

Ideas [1]. Thus, the comparison is in an end-to-end manner. We
follow the convention of QuickInsight to create text descriptions
and visual representations for Metalnsight examples (similar to
the right-hand-side part of Figure 1), to minimize potential bias or
unfairness during presentation. We educate the participants how to
interpret a QuickInsight or a Metalnsight from text description and
visual representation. In the second stage, participants assign scores
to the questions of each example. They are encouraged to provide
additional comments as well. In the last stage, we ask participants
for their overall feedback, and whether or how Metalnsight helps
to facilitate their analytical tasks.

Since there is no temporal dimension, and with only one mea-
sure, all Metalnsight examples are extracted from the dataset with
subspace-extended HDS. This can be interpreted as the cross-analysis
of two questions: one question (primary question) is used to form a
sibling group, and another (secondary question) is used as a break-
down. For instance, a Metalnsight example is extracted from “I
have insufficient workspace setup” (primary question) and “How
has your productivity changed vs. working in office” (secondary
question). Here, all participants provide positive feedback on the
secondary question (represented by an outstanding top-two data
pattern, with “about the same” and “more productive” as the two
top answers). However, those, who answer “strongly agree” to the
primary question, are more negative to the secondary question
(“less productive” becomes a highlight).

User study for non-expert users. We invite 18 participants
for this user study. They have certain data analysis needs but none
of them are professional data analysts. To minimize potential bias,
we select participants with diverse roles and experience. Most are
experienced in data analysis: more than half of the participants
(10/18) conduct data analysis daily or weekly, and about a third of
participants (5/18) conduct data analysis monthly. Since non-expert
users normally do not have dedicated analytical tasks, we select
three public datasets which are common and easy to understand.
Table 5 (row 2 to 4) lists the information of these datasets. We
present the top three Metalnsight examples of each dataset (nine
examples in total). For each Metalnsight example, we also present
it in the FLR, where each data pattern is presented using the same
style of QuickInsight (similar to the middle part of Figure 1). For non-
expert study, we only assign scores to Metalnsight examples, where
no direct comparison between Metalnsight and FLR is conducted.

5.2.2 Key Findings. We report the feedback statistics in Figure 8.
The first row shows the feedback histograms from expert users
on Q1 and Q2. For each question, the distribution of the ratings of
Metalnsight examples is compared with the QuickInsight examples.
The other four charts show results for non-expert users on Q1-Q4
respectively. We identify five findings from the two user studies.
1. Metalnsight is helpful for gaining knowledge of data.
Both expert and non-expert users provide positive feedback for
Metalnsight w.r.t. data understanding. For expert users, the average
rating of Metalnsight examples on Q1 is about 4.0 (3.90 + 0.74),
which is a positive indicator. Moreover, the rating of Metalnsight
examples is significantly higher than the rating of QuickInsight
examples in Q1 (3.90 + 0.74 vs. 2.46 + 0.99, as is shown at the top-
left of Figure 8). As reported by two of expert users, the results
of QuickInsight are often consistent with their prior knowledge

Statistics of feedback of Q2
(expert user

Statistics of feedback of Q1
(expert user)
W Quicklnsight 0.6 ™ Quickinsight

= Metalnsight

o
@

= Metalnsight

o
IS

0.4

)
0 I - I I 0 - [] I
1 2 3 a4 5 1 2 3 4 5

Rating Rating

Proportion

o
N

Statistics of feedback of Q1
(non-expert user)

TTITTTT

Statistics of feedback of Q2
(non-expert user)

AR

12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9
Index of Metalnsight examples

Average Rating
ok N W A 0
ok N w s o«

Index of Metalnsight examples

Statistics of feedback of Q3
(non-expert user) (non-expert user)

0.4
m 0 _

Much easier Easier Neutral Harder Much harder None Afew Alot

Statistics of feedback of Q4

Proportion
oS o
5 R &
°
b

o

Figure 8: Statistics of feedback.

(note that they are quite familiar with the dataset). For example,
the first QuickInsight example shows that a significant number of
respondents strongly agree with “I feel good spending less time on
commute”. Such expected knowledge leads to low rating scores. In
contrast, the knowledge conveyed by Metalnsight examples is more
general and robust, and the exceptions of Metalnsights often convey
“surprising” information contrary to their prior knowledge, which
provides valuable information to gain a deeper understanding of
data. For non-expert users, the average rating on Q1 is 4.19 + 0.14
(middle-left in Figure 8) which is higher and has a much smaller
variance (compared with 3.90 + 0.74), indicating that Metalnsight
provides more value on data understanding for non-expert users.

2. Metalnsight motivates follow-up analysis. Both expert
and non-expert users provide positive feedback for Metalnsight
w.r.t. follow-up analysis. For expert users, the average rating of
Metalnsight examples on Q2 is 3.07 + 1.06 (top-right of Figure 8),
which is significantly higher than the rating of the QuickInsight
examples (2.13 =+ 0.88). For non-expert users, a non-negligible por-
tion of feedback on Q2 (30/162) shows very strong willingness (i.e.,
rating=>5) to perform follow-up analysis after inspecting a Metaln-
sight example, which indicates the effectiveness of Metalnsight to
motivate follow-up analysis since non-expert users did not have
any analytical need for these common datasets beforehand.

We further notice that the presence of exceptions of Metaln-
sights has a strong correlation with the rating on Q2 (willingness to
conduct follow-up analysis). For non-expert users, there are three
Metalnsight examples (#3, #6 and #8) with no exceptions. As shown
at the mid-right-side of Figure 8, these three examples have a signif-
icantly lower rating than the rest (we apply a t-test on this case and
confirm it with a p-value p = 0.018 < 0.05). The same observation
also appears for expert users (2.00 + 0.81 vs. 3.07 = 1.06 on Q2),
which strongly suggests that exceptions of Metalnsights provide
good entry points for follow-up analysis.

Below, we present two findings based on detailed feedback from
expert users under the context of their analytical tasks.

3. Metalnsight helps verify a hypothesis. The question “How
has your productivity changed vs. working in office?” (productivity,
for short) is important in the survey. An analytical task is to answer
the causes of productivity change. The analysts hypothesize that the
sufficiency of workspace may be a driving factor for productivity.
During the user study, one Metalnsight example directly verifies this
hypothesis. It uses insufficient workspace as the primary question
(short for “I have insufficient workspace setup”) and productivity
as the secondary question. This Metalnsight conveys that all par-
ticipants are positive for productivity, except those who answer
“strongly agree” to insufficient workspace and whose answers to the
secondary question are more negative (“less productive” becomes
a highlight). Therefore, this Metalnsight provides strong evidence
that workspace sufficiency is an important factor in productivity.

4. Metalnsight helps improve questionnaire design. Two
Metalnsight examples use “I feel good wearing more comfortable
clothing” (comfortable for short) as the secondary question, with
the primary questions “I have clear work-life boundary” (work-life
balance for short) and “It is difficult to find dining options” (un-
pleasant dinner for short), respectively. Both Metalnsight examples
have a commonness and one exception. Each commonness con-
veys the same knowledge: people wear more comfortable clothes at
home (the answers “agree” and “strongly agree” are about half-and-
half). However, for respondents who answer “strongly agree” on
work-life balance or “strongly disagree” on unpleasant dinner, the
answers to the secondary question are almost all “strongly agree”.
These respondents (corresponding to exceptions) deliver strong
emotions which favor working from home over working in the
office. As a result, the analysts would want to add more targeted
questions to these “optimistic” people.

Below, we present one finding from the non-expert users.

5. Metalnsight is a concise and compact representation of
knowledge. As shown at the bottom-left, 84% feedback is in agree-
ment that the knowledge conveyed by Metalnsight is easier to
understand (compared with FLR). More specifically, only 2% of feed-
back reports the inconvenience of the Metalnsight representation.
Therefore, Metalnsight can be viewed as a concise representation of
knowledge. As shown at the bottom-right, regarding information
loss in comparison to FLR (Q4), almost all of the feedback (97%)
reports that the information loss of Metalnsights has no effect on
data analysis. The feedback on Q3 and Q4 together indicates that
Metalnsight is a concise and compact representation of knowledge.

6 DISCUSSION

Alternative structured representation. We use data patterns to
encode essential characteristics of raw data distribution to achieve
knowledge extraction. We further define similarity over data pat-
terns to identify commonness(es) and exceptions of HDP. An alter-
native representation can be achieved by directly applying similar-
ity measure over raw data distributions (e.g., KL distance), bypass-
ing pattern extraction stage. Clustering analysis can be conducted
subsequently to obtain clusters as commonness(es) and outliers as
exceptions. However, compared with raw distributions, extracted
patterns effectively encode analysis semantics for EDA. Hence, our

similarity measure, based on extracted patterns, is more robust to
categorize commonness(es) and exceptions w.r.t. facilitating EDA.
Extensibility of Metalnsight formulation. Our definitions of
data scope (Def. 2.1) and HDS (Def. 3.2) support a wide range of
data analysis needs in practice. According to a recent study which
collects over 121, 000 pivot tables (each pivot table can be viewed
as a specific analysis result) from 74, 000 real-world Excel spread-
sheets [42], about 3/4 of pivot tables can be either represented by
data scope (~ 38%) or by HDS (~ 36%). We can easily enrich our
supported types of data patterns to cover the content of these pivot
tables. For the remaining quarter of pivot tables, most of them have
multiple breakdown dimensions (e.g., hierarchical pivot table) or
multiple measures (e.g., scatter plot), which cannot be directly rep-
resented by data scope. We leave extending definition of data scope
for multiple breakdown dimensions or measures for future work.

7 RELATED WORK

Pattern mining in multi-dimensional data. Research on min-
ing various types of data patterns from multi-dimensional data has
been ongoing for decades. Sarawagi et al. [28] aim to find regions
of anomalies in OLAP data cubes. Chen et al. [6] investigate ap-
proaches to multi-dimensional regression analysis of time series
data for trend and outlier detection. Wu et al. [38] propose pro-
motion analysis to discover top ranked subspaces w.r.t. a given
promotion object. Vartak et al. [33] focus on recommending high-
deviation patterns by visual interaction. Tang et al. [31] propose
complex measure aggregations (composite extractors) to discover
latent yet interesting patterns. [11] was the first to propose a unified
formulation of various types of data patterns, called QuickInsight,
where each pattern is represented as a 4-tuple (subspace, breakdown,
measure, type). Metalnsight extends this formulation by including
highlights to define a 5-tuple basic data pattern (Def. 3.1), which ef-
fectively captures essential characteristics of raw data distributions.
By using data patterns as building blocks, Metalnsight further con-
structs HDP and categorizes these patterns into commonness(es)
and exceptions based on inter-pattern similarity, achieving a struc-
tured knowledge representation. Metalnsight overcomes the limita-
tions of QuickInsight, such that the suggested commonness(es) and
exceptions are tailored to facilitate the induction and validation
analysis mechanisms for EDA.

Analysis mechanisms for EDA. It is evident that induction and
validation are typical analysis mechanisms for EDA, with support
from domains of data analysis, sensemaking and cognitive science.
Sarawagi et al. [27, 29] proposes two operators, RELAX and SUR-
PRISE, to facilitate EDA. RELAX evaluates to what extent a specific
data pattern is generally applicable by rolling up the subspace
(of the given data pattern) to a higher level and searches on sib-
ling subspaces. It follows the induction process on gaining general
knowledge of data, which is a typical sub-task in EDA. SURPRISE
quantifies how much a fact is contrary to the user’s prior knowl-
edge. In EDA iteration cycles, users’ prior knowledge is typically
gained or refined by the induction process. Therefore, SURPRISE
facilitates the validation process by suggesting exceptions w.r.t.
general knowledge. In comparison, Metalnsight is an automatic and
systematic approach to concretize the processes of induction and

validation. Ground on a unified formulation of data patterns, we pro-
pose three extending strategies to obtain HDP, where RELAX can
be viewed as the subspace extending strategy, and we consider het-
erogeneous factors (importance, consciousness and actionability)
to systematically quantify Metalnsight usefulness w.r.t. facilitating
EDA. In the domain of sensemaking, Zhang et al. [40] state that
bottom-up sensemaking activities (e.g., EDA) involve recognizing
patterns from data and building on the patterns of similarity and
differences to generalize to the structured representation of knowl-
edge. Mai [24] proposes two typical information-seeking processes
which are highly relevant to EDA: (1) induction and deduction to
examine particular instances and reason towards generalization;
(2) validity and reliability to study how compelling the knowledge
will be. In summary, our formulation of Metalnsight is consistent
with human sensemaking mechanisms w.r.t. facilitating EDA.
OLAP and cubing. OLAP cubing techniques have been developed
for decades [14]. These techniques provide different strategies to
pre-compute cubes to facilitate EDA, including bottom-up [41],
top-down [4] or hybrid [39]. Instead of pre-constructing data cubes,
Metalnsight mining procedure adopts on-demand querying and
caching to avoid generating unnecessary cubes. Moreover, Metaln-
sight mining procedure conducts augmented query to efficiently
obtain HDS. The design of either caching or pruning is tailored for
Metalnsight, which is not addressed by general cubing techniques.
Visualization recommendation. To facilitate interactive EDA, a
complementary approach is visualization recommendation-aided
pattern discovery. Recent works [10, 15, 23, 30, 33, 35, 37] suggest
data patterns (in the form of visualization candidates) based on
various perspectives [26, 36]. For example, Profiler [19] finds anom-
alies; SeeDB [33] identifies charts that are largely deviated from a
given reference; Zenvisage [30] targets charts that are similar to
a given input. We believe the concepts introduced by Metalnsight,
such as highlight of a data pattern, commonness(es) and exceptions
to concretize knowledge obtained by the induction and validation
processes, can help visualization recommendation systems produce
more useful and actionable visualizations.

8 CONCLUSION

We propose Metalnsight as a structured representation of knowl-
edge from multi-dimensional data to facilitate EDA. We design a
novel scoring function to quantify the usefulness of Metalnsights,
an effective and efficient mining procedure and a ranking algorithm
to automatically discover high-quality Metalnsights. We conduct
thorough evaluation on both real-world datasets and user studies,
demonstrating the effectiveness and efficiency of Metalnsight in
facilitating EDA.

ACKNOWLEDGE

The authors would like to thank Dr. Shuai Wang for proofreading
our manuscript and helpful discussions.

REFERENCES

[1] [n.d.]. https://aka.ms/Excel-Ideas.

[2] [n.d.]. https://aka.ms/QuickInsights.

[3] J Belissent, E Cullen, G Leganza, and J Lee. 2019. Gartner identifies top 10 data and
analytics technology trends for 2019. Technical Report. Technical report, Gartner.

https://aka.ms/Excel-Ideas
https://aka.ms/QuickInsights

(71

(8]
(9]

[10]

(1]

(12]

[13]

Kevin Beyer and Raghu Ramakrishnan. 1999. Bottom-up computation of sparse
and iceberg cube. In Proceedings of the 1999 ACM SIGMOD international conference
on Management of data. 359-370.

David CeArley, Brian Burke, Samantha Searle, and Mike J Walker. 2017. Gartner
Top 10 strategic technology trends for 2018. Technical Report. Technical report,
Gartner.

Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W Wah, and Jianyoung Wang.
2002. Multi-dimensional regression analysis of time-series data streams. In
VLDB’02: Proceedings of the 28th International Conference on Very Large Databases.
Elsevier, 323-334.

Roy B Clariana. 2010. Multi-decision approaches for eliciting knowledge structure.
In Computer-based diagnostics and systematic analysis of knowledge. Springer,
41-59.

James L Crowley. 2012. Intelligent Systems: Reasoning and Recognition. training
1000 (2012), 1.

Jay Devore. 2007. Making sense of data: A practical guide to exploratory data
analysis and data mining.

Victor Dibia and Cagatay Demiralp. 2019. Data2vis: Automatic generation of
data visualizations using sequence-to-sequence recurrent neural networks. IEEE
computer graphics and applications 39, 5 (2019), 33-46.

Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. 2019. Quickin-
sights: Quick and automatic discovery of insights from multi-dimensional data. In
Proceedings of the 2019 International Conference on Management of Data. 317-332.
Liqiang Geng and Howard] Hamilton. 2006. Interestingness measures for data
mining: A survey. Comput. Surveys 38, 3 (2006), 9—es.

Sreenivas Gollapudi and Aneesh Sharma. 2009. An axiomatic approach for result
diversification. In Proceedings of the 18th international conference on World wide
web. 381-390.

[14] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,

[15]

[16

[17]

(18

[19]

[20]

[21]

[22]

Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A re-
lational aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data mining and knowledge discovery 1, 1 (1997), 29-53.

Kevin Hu, Michiel A Bakker, Stephen Li, Tim Kraska, and César Hidalgo. 2019.
Vizml: A machine learning approach to visualization recommendation. In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1-12.

Andrew T Jebb, Scott Parrigon, and Sang Eun Woo. 2017. Exploratory data
analysis as a foundation of inductive research. Human Resource Management
Review 27, 2 (2017), 265-276.

Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran. 2015. Smart
drill-down: A new data exploration operator. In Proceedings of the VLDB Endow-
ment International Conference on Very Large Data Bases, Vol. 8. NIH Public Access,
1928.

David H Jonassen. 2000. Toward a design theory of problem solving. Educational
technology research and development 438, 4 (2000), 63-85.

Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey
Heer. 2012. Profiler: Integrated statistical analysis and visualization for data
quality assessment. In Proceedings of the International Working Conference on
Advanced Visual Interfaces. 547-554.

Matthieu Komorowski, Dominic C. Marshall, Justin D. Salciccioli, and Yves Cru-
tain. 2016. Exploratory Data Analysis. Springer International Publishing, Cham,
185-203. https://doi.org/10.1007/978-3-319-43742-2_15

Po-Ming Law, Alex Endert, and John Stasko. 2020. What are Data Insights to
Professional Visualization Users? arXiv preprint arXiv:2008.13057 (2020).

Doris Jung-Lin Lee, Himel Dev, Huizi Hu, Hazem Elmeleegy, and Aditya
Parameswaran. 2019. Avoiding drill-down fallacies with VisPilot: assisted ex-
ploration of data subsets. In Proceedings of the 24th International Conference on
Intelligent User Interfaces. 186—196.

(23]

[24]

[25]

@
=

[35

[36

[37

&
&

[39

[40

[41

[42

Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards
Automatic Data Visualization. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE, 101-112.

Jens-Erik Mai. 2016. Looking for information: A survey of research on information
seeking, needs, and behavior. Emerald Group Publishing.

Tova Milo and Amit Somech. 2020. Automating exploratory data analysis via
machine learning: An overview. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. 2617-2622.

Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2019. Making data visualization
more efficient and effective: a survey. The VLDB Journal (2019), 1-25.

Sunita Sarawagi. 2000. User-adaptive exploration of multidimensional data. In
Proceedings of the VLDB Endowment, Vol. 2000. 307-316.

Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-driven
exploration of OLAP data cubes. In International Conference on Extending Database
Technology. Springer, 168-182.

Sunita Sarawagi and Gayatri Sathe. 2000. i3: intelligent, interactive investigation
of OLAP data cubes. ACM SIGMOD Record 29, 2 (2000), 589.

Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya
Parameswaran. 2016. Effortless Data Exploration with zenvisage: An Expressive
ar%d Int)eractive Visual Analytics System. Proceedings of the VLDB Endowment 10,
4(2016).

Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. 2017. Ex-
tracting Top-K Insights from Multi-Dimensional Data. In Proceedings of the 2017
ACM International Conference on Management of Data (Chicago, Illinois, USA).
1509-1524.

John W Tukey. 1977. Exploratory data analysis. Vol. 2. Reading, Mass.

Manasi Vartak, Samuel Madden, Aditya Parameswaran, and Neoklis Polyzotis.
2014. SeeDB: automatically generating query visualizations. Proceedings of the
VLDB Endowment 7, 13, 1581-1584.

MK Vijaymeena and K Kavitha. 2016. A survey on similarity measures in text
mining. Machine Learning and Applications: An International Journal 3, 2 (2016),
19-28.

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2015. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE transactions on visualization and computer
graphics 22, 1 (2015), 649-658.

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2016. Towards a general-purpose query language for
visualization recommendation. In Proceedings of the Workshop on Human-In-the-
Loop Data Analytics. 1-6.

Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2:
Augmenting visual analysis with partial view specifications. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. ACM, 2648-2659.
Tianyi Wu, Dong Xin, Qiaozhu Mei, and Jiawei Han. 2009. Promotion analysis
in multi-dimensional space. Proceedings of the VLDB Endowment 2, 1, 109-120.
Dong Xin, Jiawei Han, Xiaolei Li, and Benjamin W Wah. 2003. Star-cubing:
Computing iceberg cubes by top-down and bottom-up integration. In Proceedings
2003 VLDB Conference. Elsevier, 476-487.

Pengyi Zhang and Dagobert Soergel. 2014. Towards a comprehensive model of
the cognitive process and mechanisms of individual sensemaking. Journal of the
Association for Information Science and Technology 65, 9 (2014), 1733-1756.
Yihong Zhao, Prasad M Deshpande, and Jeffrey F Naughton. 1997. An array-based
algorithm for simultaneous multidimensional aggregates. In Proceedings of the
1997 ACM SIGMOD international conference on Management of data. 159-170.
Mengyu Zhou, Wang Tao, Ji Pengxin, Han Shi, and Zhang Dongmei. 2020. Ta-
ble2Analysis: Modeling and Recommendation of Common Analysis Patterns
for Multi-Dimensional Data. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 320-328.

https://doi.org/10.1007/978-3-319-43742-2_15

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multi-Dimensional Data
	2.2 Data Scope

	3 Formulation
	3.1 Basic Data Pattern
	3.2 Homogeneous Data Patterns

	4 Approach
	4.1 Scoring
	4.2 Mining
	4.3 Ranking

	5 Evaluation
	5.1 Experiments on Real-world Datasets
	5.2 User Study

	6 Discussion
	7 Related Work
	8 Conclusion
	References

