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ABSTRACT
We study the problem of using low computational cost to automate the choices of learners and hyperparameters
for an ad-hoc training dataset and error metric, by conducting trials of different configurations on the given
training data. We investigate the joint impact of multiple factors on both trial cost and model error, and propose
several design guidelines. Following them, we build a fast and lightweight library FLAML which optimizes for
low computational resource in finding accurate models. FLAML integrates several simple but effective search
strategies into an adaptive system. It significantly outperforms top-ranked AutoML libraries on a large open
source AutoML benchmark under equal, or sometimes orders of magnitude smaller budget constraints.

1 INTRODUCTION

It is predicted that in the next 10 years, hundreds of thou-
sands of small teams will build millions of ML-infused
applications – most just moderately remunerative, but with
huge collective value (Agrawal et al., 2020). Operating by
large teams of ML experts and running on massive dedicated
infrastructures is not well justified for these new applica-
tions. That motivates fast and economical software solutions
to Automated Machine Learning (AutoML): Given a train-
ing dataset and an error metric, use low computational cost
to search for learner and hyperparameter choices and pro-
duce models optimizing the error metric in short time.

To provide a concrete context, let us consider the use of
ML in database systems. The database community has
grown an increasing interest of integrating data-driven de-
cision making components fueled by machine learning
techniques. For example, classification or regression mod-
els have been explored for indexing (Kraska et al., 2018;
Galakatos et al., 2019), cardinality and selectivity estima-
tion (Kipf et al., 2019; Dutt et al., 2019), query performance
prediction (Marcus & Papaemmanouil, 2019), and workload
forecasting (Ma et al., 2018). These models make predic-
tions by learning from a large amount of labeled data, which
are generated automatically by the system for each dataset
or workload instance. For example, a selectivity estima-
tion model can be built for each table or join expression
using selectivity labels generated from synthetic queries or
a given workload (Dutt et al., 2019; 2020), and the best
model configurations vary per instance of training dataset.
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AutoML solutions for these applications are required to be
fast and economic, as the system needs to select hyperpa-
rameters or learners frequently on different training data (for
numerous tables, join expressions, and frequent updates),
and continuously and timely deploy them (Renggli et al.,
2019). Computational resource of the system is precious
(e.g., for answering database queries), and only a small frac-
tion can be allocated to AutoML, e.g., a few CPU minutes
per selectivity estimation model.

A number of AutoML libraries have been developed, which
usually involve multiple trials of different configurations.
One drawback in existing solutions is they require long time
or large amounts of resources to produce accurate models
for large scale training datasets. For example, given one
CPU hour, when tested on a recent large-scale AutoML
benchmark (Gijsbers et al., 2019), the state-of-the-art so-
lutions underperform a tuned random forest baseline on
36-51% of the tasks. And the ratio is even higher when the
budget is smaller.

To address the problem systematically, it is desirable to fac-
tor the trial cost, i.e., the CPU cost of training and assessing
the model error, explicitly in the AutoML problem. We
recognize that the cost of one trial is jointly decided by
the following variables: the choice of learner, a subset of
the hyperparameters for the chosen learner, the size of the
training data, and the resampling strategy. Those variables
also affect the trial error (i.e., the assessed model error)
jointly. Given an ad-hoc dataset, an AutoML solution that is
only optimized for low trial error may invoke unnecessarily
expensive trials, while a solution that is only optimized for
low trial cost may keep making cheap but erroneous trials.
Some hyperparameter optimization methods made an effort
to balance the two objectives, but the scope is limited and
most systems target resource-consuming clusters (Snoek
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start when each trial is finished

Figure 1. Example of search performance for FLAML vs. a baseline in the same search space. Each marker corresponds to one trial
of configuration evaluation in a particular method. Model auc regret=best auc-model auc. Each marker corresponds to one trial of
configuration evaluation in a particular method. Subfigure (a) suggests that FLAML makes fewer expensive trials with high error (top right
corner) than HpBandSter. Subfigure (b) further displays that the expense of trials made by FLAML grows gradually with total time spent,
while for HpBandSter there is no such trend. As a result, subfigure (c) shows that FLAML outperforms in both early and late stages.

et al., 2012; Li et al., 2017; Falkner et al., 2018; Liaw et al.,
2019; Li et al., 2020). No previous AutoML system handles
the complex dependency among the multiple variables men-
tioned above. Though challenging, it is desired to have an
economical system that holistically considers the multiple
factors in the cost-error tradeoff, and handles different tasks
robustly and efficiently.

We design and implement a lightweight Python library
FLAML1. FLAML leverages the structure of the search
space to choose a search order optimized for both cost and
error. It iteratively decides the learner, hyperparameter, sam-
ple size and resampling strategy while leveraging their com-
pound impact on both cost and error as the search proceeds.
First, we analyze the relation of these factors and deduce
desirable properties of an economical AutoML system. To
satisfy these properties, we integrate several non-traditional
search strategies judiciously because commonly employed
strategies do not sufficiently exploit the analyzed relations
of the multiple factors. Overall, the search tends to gradually
move from cheap trials and inaccurate models to expensive
trials and accurate models (a typical example is illustrated
in Figure 1). FLAML is designed for robustly adapting to an
ad-hoc dataset out of the box, without relying on expensive
preparation such as meta-learning. In fact, our system has
almost no computational overhead beyond the trial cost of
each configuration.

We perform extensive evaluation using a recent open source
AutoML benchmark (Gijsbers et al., 2019) plus regression
datasets from a regression benchmark (Olson et al., 2017).
With varying time budget from one minute to one hour,
FLAML outperforms top three open-source AutoML li-
braries as well as a commercial cloud-based AutoML ser-
vice in a majority of the tasks given equal or smaller budget,
with significant margins. We study an application to selec-
tivity estimation in the end.

1https://github.com/microsoft/FLAML

2 RELATED WORK

First, we review the top-performing open-source AutoML li-
braries according to the AutoML Benchmark (Gijsbers et al.,
2019). (1) Auto-sklearn (Feurer et al., 2015) is declared
the overall winner of the ChaLearn AutoML Challenge 1
in 2015-2016 and 2 in 2017-2018. It employs Bayesian
optimization (BO) (Hutter et al., 2011) for hyperparame-
ter tuning and learner selection, and uses meta-learning to
warm-start the search procedure with a few pipelines. (2)
TPOT (Olson et al., 2016) (Tree-based Pipeline Optimiza-
tion Tool) constructs machine learning pipelines of arbitrary
length using scikit-learn learners and XGBoost and uses
genetic programming for hyperparameter tuning. (3) H2O
AutoML (H2O.ai) is a Java-based library. It performs ran-
domized grid search for each learner in the H2O machine
learning package, in addition to XGBoost. The learners are
ordered manually and each learner is allocated a predefined
portion of search iterations. They all use model ensembles
to boost accuracy.

A number of commercial platforms are available: Amazon
AWS SageMaker (Liberty et al., 2020), DataRobot, Google
Cloud AutoML Tables, Microsoft AzureML AutoML, Sales-
force TransmogrifAI, H2O Driverless AI, Darwin AutoML
and Oracle AutoML. They provide end-to-end AutoML ser-
vice, i.e., directly consuming uncleaned raw data and then
producing trained models and predictions.

To summarize the learnings from existing AutoML systems,
the dominating approach is based on trials in a large search
space. The order of the trials thus has a large impact in the
search efficiency. Meta-learning is one technique often pro-
posed to improve the search order, with the assumption that
one can collect a large number of datasets and experiments
for meta-training, and the performance of learners and hy-
perparameters from these experiments is indicative of their
future performance in new datasets and tasks (Feurer et al.,
2015; Fusi et al., 2018; Shang et al., 2019). In addition,

https://github.com/microsoft/FLAML
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ensemble of multiple learners is often considered useful
for boosting accuracy at the cost of increased inference
latency (Erickson et al., 2020).

FLAML is designed to perform efficiently and robustly with-
out relying on meta-learning or ensemble at first order, for
several usability reasons. First, this makes FLAML an easy
plug-in in new application scenarios, without requiring a
developer to collect many diverse meta-training datasets be-
fore being able to use it. Second, it allows the user to easily
customize learners, search spaces and optimization metrics
and use FLAML immediately after the customization, with-
out waiting for another expensive round of meta-learning
if any of these changes. Third, our customers prefer sin-
gle learners over ensembles due to the advantage in model
complexity, inference latency, ease of deployment, debugga-
bility and explanability. How to leverage meta-learning and
ensemble with good usability is interesting future work.

One notable standalone subarea in AutoML is neural archi-
tecture search (NAS) (Elsken et al., 2019) which specifically
targets neural networks. Most application scenarios of NAS
involve unstructured data like images and text. While the
search space and application scenario are different, our de-
sign principles in cost minimization might be applicable.

3 API, FORMULATION AND ANALYSIS

FLAML is implemented in Python because of its popularity
in data science. It has a scikit-learn (Pedregosa et al., 2011)
style API:

1 from flaml import AutoML
2 automl = AutoML()
3 automl.fit(X_train, y_train, task=’

classification’)
4 prediction = automl.predict(X_test)

Additional settings include time budget, optimization metric,
estimator list etc. It is easy to add customized learners or
metrics in FLAML:

1 # MyLearner is a custom estimator class
2 automl.add_learner(learner_name=’mylearner’

, learner_class=MyLearner)
3 # mymetric is a custom metric function
4 automl.fit(X_train, y_train, metric=

mymetric, time_budget=60,
estimator_list=[’mylearner’,’xgboost’])

The main innovation of FLAML is in its fit() method: au-
tomatically producing an accurate model (measured by a
given error metric) for an ad-hoc featurized dataset2.

2Given existing fast automatic featurization libraries such as
autofeat (Horn et al., 2019) and azureml-sdk (Mukunthu et al.,
2019), FLAML does not innovate on featurization techniques,
though the system can easily support feature preprocessors.

Table 1. Notions and notations.
L number of learners l learner
ε̃ validation error ε test error
h hyperparameter values χ configuration
s sample size r resampling strategy
M trained model κ trial cost

3.1 Formulation

We consider L learners, each with its own set of hyper-
parameters. The learners can be customized by users, as
long as they have well-defined train and prediction meth-
ods and search space of hyperparameters. We denote the
search space of hyperparameters for learner l as Hl. For
each trial, we can choose a learner l, the hyperparameters
h ∈ Hl, together with two other variables: sample size s
of training data, and resampling strategy r. s is an integer
to denote the number of examples in a sample of training
data, and r ∈ {cv, holdout} is a binary choice between k-
fold cross-validation and holdout with ratio ρ.3 A learning
configuration is defined as a tuple χ = (l,h, s, r). When
we make a trial with χ, we can obtain a validation error ε̃(χ)
and a model M(χ). Depending on whether the resampling
strategy is cross validation or holdout, the model M corre-
sponds to training data of size s or s · (1−ρ), where ρ is the
holdout ratio, and the error ε̃ corresponds to cross validation
error or error on the heldout validation data. ε̃ is a proxy of
the actual error ε(M) on unseen test data. The cost of the
trial is mainly the CPU time of training and testing using
cross-validation or holdout, denoted as κ(χ). The goal of
fast and economical AutoML is to minimize the total cost
before finding a model with the lowest test error. The total
cost is expected to increase as the test error decreases, and
desired to be approximately optimal.

3.2 Analysis

We first analyze the factors considered in our search se-
quence and several desirable properties of the search dynam-
ics about them. Figure 2 summarizes the relations among
several variables, using notations summarized in Table 1.
The domain of the hyperparameters h depends on the learner
l. The test error ε is not observable during AutoML. It is a
blackbox function of the learner l, the hyperparameters h,
and the sample size s. It is approximated by the validation
error ε̃. We observe several non-blackbox relations among
the variables, which are not first noticed by us but rarely
leveraged by existing AutoML systems.

Observation 1 (Sample size + resampling→ error)
First, it is reasonable to assume the test error ε, as well

3In general, we can consider a large search space for the resam-
pling strategy by making k and ρ variables as well. We make k
and ρ constants in this work to simplify the problem.
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Figure 2. Relations among the variables.

as the gap between ε and ε̃, decreases or stays with the
increase of the sample size s when all the other factors
are fixed (Huang et al., 2019, pg. 2) ((Nakkiran et al.,
2020) observes this after the sample size is above a
threshold). Second, the gap between ε and ε̃ is smaller for
cross-validation than holdout, when all the other factors
are fixed (Kohavi, 1995; Feurer et al., 2015).

Observation 2 (Hyperparameter + sample size→ error)
Many learners have a subset of hyperparameters related to
model complexity or regularization, e.g., the number of trees
and the depth of each tree in tree-based learners. For a
fixed sample size, ε does not necessarily reach its minimum
at maximal complexity. Generally speaking, smaller sample
size (in a local region) requires lower complexity and more
regularization to avoid overfitting (Hastie et al., 2001;
Nakkiran et al., 2020).

Observation 3 (Quantifiable impact on cost) For each
fixed combination of learner l and resampling strategy r,
the cost κ is approximately proportional to the sample size
s and a subset of cost-related hyperparameters, such as the
number of trees. When all the other factors are fixed, k-fold
cross-validation roughly takes k−1

1−ρ× cost as holdout using
holdout ratio ρ.

Based on the joint effect of hyperparameter and sample
size on error and cost (Observation 2 and 3), we have the
following property.

Property 1 (SuitableSampleSize) Small sample size can
be used to train and compare low-complexity configura-
tions, while large sample size is needed for comparing high-
complexity configurations.

From the compound impact of sample size and resampling
strategy on error and cost (Observation 1 and 3), when
sample size is small, cross-validation reduces the variance of
validation error while the cost is bounded. When sample size
is large, validation error from holdout is close to test error,

Figure 3. Major components in FLAML.

and the cost is much lower than cross-validation. Since
the trial-based AutoML requires a fair selection mechanism
among all the configurations, we have:

Property 2 (Resample) Cross-validation is preferred over
holdout for small sample size or large time budget.

From the target of error minimization and Observation 1, as
well as the fact that the optimal choice of l∗ is unknown, we
derive the following property.

Property 3 (FairChance) Given any search sequence pre-
fix, every learner l should have a chance to be searched
again, unless all the valid hyperparameter values of h have
been searched using the full training data size in the prefix.

From the target of cost minimization and Observation 3,
we can derive the following property, which is in general
difficult to achieve as the optimal configuration is unknown.

Property 4 (OptimalTrial) The total cost of any search se-
quence prefix is desired to be approximately optimal (i.e.,
have a bounded ratio over the optimal cost) for the lowest er-
ror it achieved. Similar for the subsequence corresponding
to each learner l.

Although these properties are idealistic properties and they
are not necessarily complete, they provide meaningful guid-
ance in designing a low-cost AutoML system.

4 FLAML
We present our design following the guidelines. Section 4.1
presents an overview, and Section 4.2 details our search
strategy used in each component respectively.

4.1 Design Overview

Our design is presented in Figure 3, with the purpose of
easy realization of the desired properties described in our
analysis. It consists of two layers, including a ML layer
and an AutoML layer. The ML layer contains the candidate
learners. The AutoML layer includes a learner proposer,
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a hyperparameter and sample size proposer, a resampling
strategy proposer and a controller. The order of the control
flow is indexed on the arrows in Figure 3 as four steps. Steps
0-2 involve choosing the corresponding variables in each
component. In step 3, the controller will invoke the trial
using the selected learner in the ML layer, and observe the
corresponding validation error ε̃ and cost κ. Steps 1-3 are
repeated by iterations until running out of budget. In a par-
allel environment, the controller can execute a new iteration
of steps 1-3 before an iteration finishes if there are available
resources. Changing one strategy inside each component
does not affect the strategy of others. This design allows
easy upgrade by incorporation of novel search schemes to
replace each component.

Our system differs from previous work in multiple perspec-
tives: (1) It is different in how we decouple the searched
variables and search strategies (Table 2). For example, we
couple the decision of h and s in our design to ensure sam-
ple size is decided together with the hyperparameters, which
reflects Property 1. We decouple learner and hyperparam-
eters and use the order of {l} → {h, s} to respect domain
dependency. (2) As the first trial-based library targeting
ad-hoc data (including large-scale datasets) using low-cost,
FLAML focuses on the core search efficiency and does not
use meta-learning or ensemble. It is considered as future
work to develop lightweight meta-learning and ensemble
techniques for FLAML while keeping the system economic,
generic and capable of handling ad-hoc datasets. (3) Since
the commonly used search strategies are not designed to
deeply exploit the compound relations of the multiple fac-
tors as analyzed in Section 3.2, we employ new search
strategies as introduced in the next subsection.

4.2 Search Strategy

Before introducing our search strategies, we first introduce
the notion of estimated cost for improvement (ECI) which
will be used in the search strategies. For each learner l ∈ [L],
ECI1(l) (abrv. ECI1) denotes our estimation of the cost
for l to find a configuration with lower error than the current
best error (denoted as ε̃l) under the current sample size.
ECI2(l) (abrv. ECI2) denotes our estimation of the cost to
try the current configuration for l (which took κl cost) with
increased sample size (multiplied by a factor of c). Finally,
ECI(l) (abrv. ECI) is our estimation of the cost it takes to
find a configuration with l and lower error than the current
best error among all the learners (denoted as ε̃∗).

Let K1 > K2 be abbreviations of K1(l) > K2(l), repre-
senting the total cost spent on l when the two most recent
updates of best configurations happened for l respectively,
K0 (abbreviations of K0(l)) be the total cost spent on l so
far, and δ (abbreviations of δ(l)) be the error reduction be-
tween the two corresponding best configurations. We set:
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Figure 4. Illustration of ECI-based prioritization.

ECI1 = max(K0 −K1,K1 −K2), ECI2 = c · κl

ECI = max

(
(ε̃l − ε̃∗)(K0 −K2)

δ
,min(ECI1, ECI2)

)
(1)

The calculation of ECI1 is based on the assumption that it
takes higher cost to find an improvement in the later stage
of search.4 ECI2 is set to be c times as large as the trial
cost of the current configuration for l, because we expect the
error of the current configuration to improve when given c
times as large sample size. This simple cost estimation can
be refined when the complexity of the training procedure
is known with respect to sample size. It works well for the
learners in our experiments which have linear complexity.
ECI is calculated depending on whether l currently has the
lowest error among all the learners:

(a) l currently has the best error among all the learners. In
this case, by definition ECI = min(ECI1, ECI2).

(b) l does not have the best error among all the learners

4For learners which have not been tried in the search, theECI1
is set to the smallest trial cost for those learners. Since the smallest
trial cost varies with input data, we first run the fastest learner and
gets its smallest cost on the input data, and then set the ECI1 for
other learners as multiples of this cost using predefined constants.
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Table 2. Comparison of search strategy.
Tool Searched variable Search strategy

Alpine Meadow (Shang et al., 2019) {l} → {h} → {s} Meta learning → BO → Progressive sampling
Auto-sklearn (Feurer et al., 2015) {l,h} Bayesian optimization, with meta-learning and ensemble

H2O AutoML (H2O.ai) {l} → {h} Enumeration → Randomized grid search, with ensemble
HpBandSter (Falkner et al., 2018; Li et al., 2017) {l,h}, {s} Bayesian optimization, Hyperband

PMF-automl (Fusi et al., 2018) {l,h} Collaborative filtering, with post-processing ensemble
TPOT (Olson et al., 2016) {l,h} Genetic programming, with ensemble embedded

FLAML {l} → ECI-based sampling of learner choices →
{h, s} Randomized direct search, ECI-based choice of sample size

currently. For l to match the current best error ε̃∗, it needs
to improve its own error by at least ε̃l − ε̃∗. To estimate the
cost to fill that gap, we also need to estimate the efficiency
of improvement v for l. That is, how fast l is expected to
reduce the error in its own search sequence. We calculate v
as: v = δ

τ , where τ = K0 −K2 is the estimated cost spent
on l for making the error reduction δ. In the special case
where δ = 0, i.e., the first configuration searched for l is
the best configuration for l so far, we set δ = ε̃l, and τ as
the total cost spent on l. In our implementation, we double
the cost to fill the gap as the estimated cost for finding an
improvement because we assume the improvement with
respect to cost has a diminishing return.

Combining the two cases we have Eq. (1). A visual demon-
stration is provided in Figure 4 corresponding to the same
example in Figure 1. The figure on the top plots the best
error per learner vs. automl time, and visualizes the ECI
of two learners LightGBM and XGBoost based on Eq. (1)
when the current time point is 35s. To illustrate that ECI
is self-adjustable, we add a hypothetical new trial of XG-
Boost (the dashed triangle marker at 38s) which does not
find a better model. In this case, ECI(xgb) will be increased
as shown in the horizontal orange arrow, and the priority
of XGBoost will be decreased. The figure on the bottom
visualizes the search trajectory of each learner.

Step 0: The resampling strategy proposer chooses r. Re-
sampling strategy is decided based on a simple thresholding
rule. It is the simplest design which follows Property 2
(Resample). If the training dataset has fewer than 100K
instances and # instances × # features / budget is smaller
than 10M/hour, we use cross validation. Otherwise, we
use holdout. This simple thresholding rule can be easily
replaced by more complex rules, e.g., from meta learning.
By default, FLAML uses 5-fold cross-validation and 0.1 as
the holdout ratio.

Step 1: The learner proposer chooses l. With the con-
cept of ECI introduced, we design a search strategy where
each learner l is chosen with probability proportional to
1/ECI(l). There are several reasons why ECI is desir-
able in our system: (1) This design follows Property 3 and 4.
Property 4 (OptimalTrial) suggests that we prioritize choices

which are expected to improve the error using small cost,
hence we assign choices with lower ECI higher probability.
(2) Instead of directly choosing the learner with lowest ECI,
we use randomization because Property 3 (FairChance) re-
quires every learner to have chance to be searched again,
and our estimation is not precise. Based on our sampling
scheme, the expectation of ECI for the probabilistic choice
is E[ECI] =

∑
l
ECI(l)·ECI(l)−1∑

l′ ECI(l
′)−1 = the harmonic mean

of all the ECIs. That means, the expected cost for improve-
ment using our sampling scheme is still dominated by and
close to the lowest ECIs. (3) With more observations about
l being collected, ECI will be updated dynamically. The
dynamic update of ECI leads to a self-correcting behavior:
If our ECI is an overestimate, it will decrease; if it is an
underestimate, it will increase. This can be reflected from
the formula of ECI and Figure 4.

Although a related concept EIperSec (Expected Improve-
ment per Second) was proposed in (Snoek et al., 2012), it
is designed for a different context of Bayesian optimization
and not applicable to our goal of learner selection.

Step 2: The hyperparameter and sample size proposer
chooses h and s.

For hyperparameters, we adopt a recently proposed random-
ized direct search method (Wu et al., 2021), which can
perform cost-effective optimization for cost-related hyper-
parameters. The algorithm uses a low-cost configuration
as the start point. At each iteration, it samples a random
direction u in a (|h| − 1)-dimensional unit sphere and then
decides whether to move to a new h along the randomly
sampled direction (or the opposite direction) depending on
the observed sign of change of validation error. The cost
of the next trial can be upper bounded with respect to the
cost of the best config of the considered learner. This upper
bound of trial cost is guaranteed by the search procedure
used, and increases only progressively if the best error is
reduced. Step-size of the move is adjusted adaptively (large
in the beginning to fast approach the required complexity)
and the search is restarted (from randomized initial points)
occasionally to escape local optima.

Though the randomized direct search method does not han-
dle subsampling, it is a good option to use in our framework
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Table 3. Details of the case study in Figure 1. It reveals that FLAML avoids trying unnecessarily expensive configs in the beginning more
than HpBandSter though they are given the same search space. Even though FLAML eventually tries expensive configs, it chooses the
more promising learner (in this example, XGBoost) based on the observed cost and error in early trials.

Iter Time (s) Learner Config tried by FLAML Error Cost (s)
1 4 LightGBM tree num: 4, leaf num: 4, min child weight: 20, learning rate: 0.1... 0.3272 3

... ... ... ... ... ...
9 40 XGBoost tree num: 13, leaf num: 9, min child weight: 18, learning rate: 0.4... 0.2242 5

... ... ... ... ... ...
20 402 XGBoost tree num: 76, leaf num: 116, min child weight: 3, learning rate: 0.2... 0.2003 26
... ... ... ... ... ...
26 1935 XGBoost tree num: 548, leaf num: 247, min child weight: 1.1, learning rate: 0.02... 0.1896 238
27 3225 XGBoost tree num: 1312, leaf num: 739, min child weight: 1.1, learning rate: 0.01... 0.1882 1290
... ... ... ... ... ...

Iter Time (s) Learner Config tried by HpBandSter Error Cost (s)
1 16 XGBoost tree num: 47, leaf num: 50, min child weight: 0.004, learning rate: 0.8... 0.2497 15
2 1193 XGBoost tree num: 17863, leaf num: 2735, min child weight: 3.7, learning rate: 0.1... 0.1979 1177
3 1356 CatBoost early stop rounds: 15, learning rate: 0.03... 0.1978 163

... ... ... ... ... ...
7 2011 XGBoost tree num: 10369, leaf num: 369, min child weight: 0.1, learning rate: 0.4... 0.2036 583
8 3325 RF tree num: 2155, max features: 0.36, criterion: entropy 0.2007 1313

... ... ... ... ... ...

due to two important reasons: (1) The method proved its
effectiveness in controlling trial cost both theoretically and
empirically. The theoretical analysis of this method shows
its alignment with Property 4 (OptimalTrial), and its em-
pirical study demonstrates superiority over Bayesian opti-
mization methods including the one using EIPerSec when
cost-related hyperparameters exist. (2) The method works
without requiring the exact validation error of each trial
as feedback, as long as the relative order of any two trials
can be determined, and we can leverage that to modify the
method to incorporate data subsampling. We make several
important adjustments to enable data subsampling. Specif-
ically, we begin with a small sample size (10K) for each
l. For each requested l, we first make a choice between
increasing the sample size and trying a new configuration
with the current sample size, by comparing ECI1(l) and
ECI2(l). When ECI1(l) ≥ ECI2(l), we keep the current
hyperparameter values and increase the sample size. Oth-
erwise, we stay with the current sample size, and generate
hyperparameter values using the randomized direct search
method described above. With this design, the system will
adaptively change the sample size as needed. Once the sam-
ple size for a learner reaches the full data size, it keeps using
that size until convergence for that learner. That reduces the
risk of pruning good configurations by small sample size
compared to multi-fidelity pruning. We reset the sample size
to the initial value as the search for that learner is restarted.

The implementation of the randomized direct search method
follows (Wu et al., 2021). At each iteration, a random direc-
tion is used first to train a model. If the error does not reduce,
we train another model using the opposite direction. The
initial stepsize is set to be

√
d. It will be decreased when

the number of consecutively no improvement iterations is

larger than 2d−1 until it reaches a lower bound, i.e., con-
verges. Specifically, stepsize is discounted by a reduction
ratio > 1, which is intuitively the ratio between the total
number of iterations taken in total since the last restart of
the search and the total number of iterations taken to find the
best configuration since the last restart. We perform adap-
tive step-size adjustments and random restart only when the
largest sample size is reached. Our system shuffles the data
randomly in the beginning and to get a sample with size
s, it takes the first s tuples of the shuffled data. Stratified
shuffling is used for classification tasks based on the labels.

Advantages of our design. First, our search strategies are
designed toward strong final performance (i.e., low final
error) for ad-hoc datasets, which requires a large config-
uration search space. The random sampling according to
ECI in Step 1 and the random restart in Step 2 help the
method escape local optima. Second, our search strategies
are designed toward strong anytime performance for ad-hoc
datasets. The ECI-based prioritization in Step 1 favors cheap
learners in the beginning but penalizes them later if the error
improvement is slow. The hyperparameter and sample size
proposer in Step 2 tends to propose cheap configurations at
the beginning stage of the search, but quickly move to con-
figurations with high model complexity and large sample
size when needed in the later stage of the search. These de-
signs make FLAML navigate large search space efficiently
for both small and large datasets. Last, the computational
overhead in the AutoML layer compared to the trial cost in
the ML layer is negligible in our solution: ECI-based sam-
pling, randomized direct search, and update of ECIs. The
complexity of these operations for each iteration is linear
with the dimensionality of hyperparameters, and does not
depend on the number of trials.
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5 EXPERIMENTS

Our main empirical study is based on a combination of a
recent open source AutoML classification benchmark (Gijs-
bers et al., 2019) and a regression benchmark (Olson et al.,
2017), for a total of 53 datasets (39 classification + 14
regression). The two benchmarks can be found at: Au-
toML Benchmark (classification) - https://openml.
github.io/automlbenchmark, and PMLB (re-
gression) - https://github.com/EpistasisLab/
penn-ml-benchmarks. The first benchmark collects
39 classification tasks that represent real-world data science
problems of various sizes, domains and levels of difficulty
from previous AutoML papers, competitions and bench-
marks. In the second benchmark PMLB, most datasets
are of small scale, from which we selected the regression
datasets whose numbers of instances are larger than 10,000.
That results in 14 regression tasks. The statistics of all the
53 datasets are listed in Table 6-8 in the appendix. The 53
datasets have #instance × #feature ranging from 2,992 to
85,920,000 and vary in the occurrence of numeric features,
categorical features and missing values. The referred Au-
toML classification benchmark uses roc-auc and negative
log-loss as the scores to evaluate the performance on bi-
nary classification tasks and multi-class classification tasks
respectively. It calibrates the original scores using a con-
stant class prior predictor (=0) and a tuned random forest
(=1), the higher the better. The tuned random forest is a
strong baseline taking a long time to finish, and achieving a
score above 1 is not easy according to (Gijsbers et al., 2019).
For regression tasks, we use the r2 score which is a metric
bounded by 1 before calibration.

We compare FLAML (v0.1.3) to four trial-based AutoML li-
braries plus a hyperparameter optimization library designed
for budget constrained scenarios: auto-sklearn (v0.9.0)5,
H2O AutoML (v3.30.0.3), TPOT (v0.10.1), cloud-automl
(a commercial cloud-based AutoML service from one major
cloud provider), and HpBandSter (v0.7.4, an implementa-
tion of BOHB which integrates Bayesian optimization with
Hyperband). The first three are the top three performers
reported by the AutoML benchmark (Gijsbers et al., 2019)
and their performance is close to each other. HpBandSter
uses the same search space and resampling strategy as those
of FLAML (Table 5 in the appendix). It is worth noting that
all the libraries use a different search space from each other
by design except for HpBandSter and FLAML. The search
space of FLAML (reported in the appendix) neither sub-
sumes, nor is subsumed by the search space of auto-sklearn,
cloud-automl, H2O AutoML or TPOT. It is very challeng-
ing, if not impossible, to equalize the search space due to the
specific designs of each library (e.g., meta-learning by auto-
sklearn and cloud-automl, and special grid search by H2O

5AutoSklearn2Classifier (Feurer et al., 2020) for classification.

AutoML). We use their default setting and do not introduce
our own bias.

All experiments are executed on an Ubuntu server with Intel
Xeon Gold 6140 2.3GHz, and 512GB RAM. We use 1 CPU
core for each compared solution and vary the time budget
from one minute to one hour. We choose these settings
because this work is mainly concerned about performance
using low resource, while the numbers in (Gijsbers et al.,
2019) are obtained using a rather generous budget (8 to 32
hours of total CPU time). Cloud-automl with 1m budget is
not reported since it does not return within 2 minutes. As
each dataset has been split into 10 folds by OpenML (Van-
schoren et al., 2014), all the reported results are averaged
over the 10 folds.

5.1 Comparative Study

The scaled scores of all the methods given different desired
time budgets (1m, 10m and 1h) on all the datasets are shown
in Figure 5. Each of the radar charts shows the scaled scores
of different methods on a group of datasets (spokes on the
radar chart) given a desired time budget. Results of all 53
datasets are summarized into 3 sub-figures (rows) accord-
ing to their task types. Each row shows the performance
comparison on the same group of datasets given different
desired time budgets. Figure 6 presents the distribution of
score difference between FLAML and each individual base-
line, under equal budget (the first row) or smaller budget for
FLAML (the second row).

When using equal time budgets, FLAML clearly outper-
forms every competitor with large margins in most cases.
In a small fraction of cases, FLAML underperforms by a
small margin. Even with a smaller time budget, FLAML
can be better than or equal to the others in many cases.
For example, FLAML’s 1m result is no worse than others’
10m result on 62%-83% datasets, and 72%-89% for 10m
vs. 1h. In sum, FLAML demonstrates significant margin
over each competitor given equal budgets, and competitive
performance given smaller budgets than competitors. To
be fair, the prior libraries are not primarily designed for the
same low-resource setting as ours. We note that the search
space of FLAML contains both cheap and expensive config-
urations, but our integrated search strategies make FLAML
wisely prioritize them. As seen in Figure 1 and Table 3,
FLAML’s adaptive behavior is the key to strong anytime
performance.

5.2 Ablation Study

We study the effect of the three components in our system,
by comparing FLAML with three alternatives: roundrobin,
which takes trials for each learner l in turn; fulldata, which
uses the full data for the trials; and cv, which uses cross
validation for all the trials. Figure 7 plots the validation

https://openml.github.io/automlbenchmark
https://openml.github.io/automlbenchmark
https://github.com/EpistasisLab/penn-ml-benchmarks
https://github.com/EpistasisLab/penn-ml-benchmarks


FLAML: A Fast and Lightweight AutoML Library

blood-taustral
credit-

phoneme

kc1

sylvine

kr-vs-k

amazon_

jasmine

adult
bank_manumeraihiggs

airline

nomao

miniboo

christi

kddcup0

apsfail

albert

guiller
riccard

0

1

60s

Auto-sklearn Cloud-automl HpBandSter H2OAutoML TPOT FLAML

blood-taustral
credit-

phoneme

kc1

sylvine

kr-vs-k

amazon_

jasmine

adult
bank_manumeraihiggs

airline

nomao

miniboo

christi

kddcup0

apsfail

albert

guiller
riccard

0

1

600s
blood-taustral

credit-

phoneme

kc1

sylvine

kr-vs-k

amazon_

jasmine

adult
bank_manumeraihiggs

airline

nomao

miniboo

christi

kddcup0

apsfail

albert

guiller
riccard

0

1

3600s

(a) Binary classification datasets ordered by size counter clockwise, from smallest blood-transfusion to largest riccardo

carvehicle
segment

jungle_

mfeat-f

shuttle

cnae-9

helena
connect jannis

fabert

volkert

dilbert

dionis

coverty

fashion
robert

0

1

carvehicle
segment

jungle_

mfeat-f

shuttle

cnae-9

helena
connect jannis

fabert

volkert

dilbert

dionis

coverty

fashion
robert

0

1

carvehicle
segment

jungle_

mfeat-f

shuttle

cnae-9

helena
connect jannis

fabert

volkert

dilbert

dionis

coverty

fashion
robert

0

1

(b) Multi-class classification datasets ordered by size counter clockwise, from smallest car to largest robert

bng_ech
houses

house_8

bng_low

house_1

2dplane

fried
mv

pol

bng_bre

bng_pwl

poker

bng_pha

bng_pbc

0

1

bng_ech
houses

house_8

bng_low

house_1

2dplane

fried
mv

pol

bng_bre

bng_pwl

poker

bng_pha

bng_pbc

0

1

bng_ech
houses

house_8

bng_low

house_1

2dplane

fried
mv

pol

bng_bre

bng_pwl

poker

bng_pha

bng_pbc

0

1

(c) Regression datasets ordered by size counter clockwise, from smallest bng echomonths to largest bng pbc

Figure 5. Scaled scores of AutoML libraries on each dataset with each time budget. The longer is each spoke the better.

error of FLAML and its alternatives on a binary classifica-
tion dataset MiniBooNE, a multi-class classification dataset
Dionis, and a regression dataset bng pbc. The figure shows
how the error improves with respect to search time. We
can see that when removing any of the three aspects of the
FLAML search strategy, the search performance degrades.
In particular, the gap between FLAML and roundrobin in-
creases before converging due to FLAML’s prioritization
to more promising learners. The gap between FLAML and
fulldata is large initially because the initial trials of FLAML
are very fast using small sample of training data. That gap
reduces later as FLAML increases its sample size.

The ablation study verifies the effectiveness of the search
strategies. Figure 8 in the appendix plots the score difference
between FLAML and these alternatives over all the datasets.

5.3 Application to Selectivity Estimation

As an example application to database systems, we evaluate
the performance of AutoML libraries to the selectivity esti-
mation task. Selectivity estimates are necessary inputs for a
query optimizer to identify a good execution plan (Selinger
et al., 1979). A good selectivity estimator should provide
accurate and fast estimates for a wide variety of intermediate
query expressions at reasonable construction overhead (Cor-
mode et al., 2012). Estimators in most database systems
make use of limited statistics on the data, e.g., per-attribute
histograms or small data samples on the base tables (Or-
acle docs; SQL Server docs; Neumann & Freitag, 2020).
(Dutt et al., 2019; 2020) developed low-overhead regression
models which achieve much lower q-error (a relative error
metric used by the selectivity estimation literature) than all
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Table 4. 95th-percentile q-error for selectivity estimation (search
time listed if at least one method exceeds time limit). H2O AutoML
cannot return a model with the given budget.

Dataset FLAML Auto-sk. TPOT Manual
2D-Forest 1.41 1.42 2.70 1.84
2D-Power 2.03 3.28 4.70 4.09
2D-TPCH 2.19(42s) 2.11(197s) N/A 3.04

4D-Forest1 2.91 4.33 11.9 4.41
4D-Forest2 4.40(45s) 5.93(55s) 17.4(146s) 6.26
4D-Power 2.42(49s) 3.78(197s) 12.4(79s) 4.29
7D-Higgs 3.16(60s) 5.83(55s) 9.65(91s) 6.54
7D-Power 4.25(46s) 6.87(55s) 65.2(102s) 7.57

7D-Weather 4.71(54s) 6.44(55s) 30.1(118s) 6.84
10D-Forest 9.09(49s) 19.8(147s) 96.2(89s) 15.1

the other methods with similar inference time, including
the ones used in commercial database products. The recom-
mended learner is XGBoost with 16 trees and 16 leaves per
tree. We denote this configuration as ‘Manual’.

Table 4 compares the 95th-percentile q-error of the models
found by different AutoML libraries with one CPU minute

budget, using the same datasets from (Dutt et al., 2019).
FLAML outperforms the other AutoML libraries as well as
the manual configuration. On 10D-Forest, FLAML is the
only AutoML solution that outperforms Manual.

6 FUTURE WORK

While FLAML has superior performance on a variety of
benchmark tasks compared to the state of the art, it does
not use meta learning to optimize per task instance based
on previous experience. It is worthwhile to think how to
leverage meta learning in the cost-optimizing framework
without losing the robustness on ad-hoc datasets. Similarly,
it is interesting to study the new tradeoff between cost and
error when model ensembles are introduced.
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Table 5. Default search space in FLAML. S denotes the number of
training instances. Bold values indicate initialization correspond-
ing to lowest complexity and cost. lr - logistic regression.

Learner Hyperparameter Type Range
tree num int [4, min(32768,S)]
leaf num int [4, min(32768,S)]

min child weight float [0.01, 20]
learning rate float [0.01, 1.0]

XGBoost subsample float [0.6, 1.0]
reg alpha float [1e-10, 1.0]

reg lambda float [1e-10, 1.0]
colsample by level float [0.6, 1.0]
colsample by tree float [0.7, 1.0]

tree num int [4, min(32768,S)]
leaf num int [4, min(32768,S)]

min child weight float [0.01, 20]
learning rate float [0.01, 1.0]

LightGBM subsample float [0.6, 1.0]
reg alpha float [1e-10, 1.0]

reg lambda float [1e-10, 1.0]
max bin float [7, 1023]

colsample by tree float [0.7, 1.0]
CatBoost early stop rounds int [10, 150]

learning rate float [0.005,0.2]
sklearn tree num int [4, min(2048,S)]
random max features float [0.1, 1.0]
forest split criterion cat {gini, entropy}

sklearn tree num int [4, min(2048,S)]
extra max features float [0.1, 1.0]
trees split criterion cat {gini, entropy}

sklearn lr C float [0.03125, 32768]

APPENDIX

The default search space of FLAML is shown in Table 5.

For the learners which have not been tried in the search,
ECI1(l) is set to the smallest trial cost for each learner l.
Since the smallest trial cost varies with input data, we first
run the fastest learner and get its smallest cost on the input
data, and then set the ECI1 for other learners as multiples
of this cost using predefined constants. These constants are
easy to set as we only need to calibrate the running time of
the fastest configuration of each learner offline. We use the
following constants: {‘lightgbm’:1, ‘xgboost’:1.6, ’extra
tree’:1.9, ‘rf’:2, ’catboost’:15, ‘lr’:160 }. Meta-learning can
be potentially applied here to have a more instance-specific
prediction of the running time of the initial configuration.
We use c = 2 as the multiplicative factor of sample size in
the experiments.

FLAML is designed to work with low resource consumption,
and the extra computation in FLAML beyond trial cost
is negligible. So it tries one configuration at a time and
lets the learner consume all the given resources (cores and
RAM). Since we start search from inexpensive models for
every learner, this design minimizes the latency between
two iterations so that the proposers can get feedback as early

Table 6. Binary classification datasets.
name task id # instance # feature
adult 7592 48842 14
Airlines 189354 539383 7
Albert 189356 425240 78
Amazon employee access 34539 32769 9
APSFailure 168868 76000 170
Australian 146818 690 14
bank marketing 14965 45211 16
blood-transfusion 10101 748 4
christine 168908 5418 1636
credit-g 31 1000 20
guillermo 168337 20000 4296
higgs 146606 98050 28
jasmine 168911 2984 144
kc1 3917 2109 21
KDDCup09 appetency 3945 50000 230
kr-vs-kp 3 3196 36
MiniBooNE 168335 130064 50
nomao 9977 34465 118
numerai28.6 167120 96320 21
phoneme 9952 5404 5
riccardo 168333 20000 4296
sylvine 168853 5124 20

Table 7. Multi class classification datasets.
name task id # instance # feature
car 146821 1728 6
cnae-9 9981 1080 856
connect-4 146195 67557 42
Covertype 7593 581012 54
dilbert 168909 10000 2000
Dionis 189355 416188 60
fabert 168852 8237 800
Fashion-MNIST 146825 70000 784
Helena 168329 65196 27
Jannis 168330 83733 54
jungle chess 2pcs... 167119 44819 6
mfeat-factors 12 2000 216
Robert 168332 10000 7200
segment 146822 2310 19
shuttle 146212 58000 9
vehicle 53 846 18
volkert 168810 58310 180

Table 8. Regression Datasets.
name task id # instance # feature
2dplanes 2306 40768 10
bng breastTumor 7324 116640 9
bng echomonths 7323 17496 9
bng lowbwt 7320 31104 9
bng pbc 7318 1000000 18
bng pharynx 7322 1000000 11
bng pwLinear 7325 177147 10
fried 4885 40768 10
house 16H 4893 22784 16
house 8L 2309 22784 8
houses 5165 20640 8
mv 4774 40768 10
poker 10102 1025010 10
pol 2292 15000 48
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Figure 8. Score difference for FLAML vs. its own alternatives.

Table 9. % of tasks where FLAML has better or matching error vs.
the baselines when using smaller time budget.
FLAML vs. Baseline 1m vs 10m 10m vs 1h 1m vs 1h
FLAML vs. Auto-sklearn 65% 79% 58%
FLAML vs. Cloud-automl 62% 79% 48%
FLAML vs. HpBandSter 63% 89% 65%
FLAML vs. H2OAutoML 71% 72% 50%
FLAML vs. TPOT 83% 85% 65%

as possible. When abundant cores are available and a learner
cannot consume all of them, we can extend FLAML to work
with multiple search threads in parallel. After choosing one
learner based on ECI to perform one search iteration, if
there are extra available resources, we can sample another
learner by ECI, and so on. When one search iteration for a
learner finishes, the resource is released and we can select a
learner again using updated ECIs. One learner can also have
multiple search threads by using different starting points of
the hyperparameters. Due to the search space decomposition
and the randomized direct hyperparameter search strategy
used, the multiple search threads are largely independent
and do not interfere with each other.

Stacked ensemble can be added as a post-processing step
like existing libraries (H2O.ai). It requires remembering
the predictions on cross-validation folds of the models to
ensemble. And extra time needs to be spent on building the
ensemble and retraining each model. FLAML does not do it
by default to keep the overhead low, but it offers the option
to enable it when storage and extra computation time are
not concerns.

Richer types of ML tasks or model assessment criteria can
be allowed via customized learners and metric functions.
For example, one may search for the cheapest model with
error below a threshold using our framework.

In Table 9, each row shows the percentage of datasets where
FLAML is better than or equal to a particular baseline with
smaller time budget. For example, ‘1m vs 10m’ in the
header means FLAML’s time budget is one minute and the
concerned baseline’s time budget is ten minutes. We use a
tolerance ratio of 0.1% to exclude the marginal differences
on the scaled scores, i.e., when the difference between two
scores is within the tolerance ratio, they are considered

as close enough. FLAML’s performance in one minute is
already better than or equal to auto-sklearn, H2O AutoML
and TPOT’s performance in one hour on more than half of
the tasks.


