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Abstract—Deep learning models, like traditional software sys-
tems, provide a large number of configuration options. A deep
learning model can be configured with different hyperparameters
and neural architectures. Recently, AutoML (Automated Machine
Learning) has been widely adopted to automate model training by
systematically exploring diverse configurations. However, current
AutoML approaches do not take into consideration the computa-
tional constraints imposed by various resources such as available
memory, computing power of devices, or execution time. The
training with non-conforming configurations could lead to many
failed AutoML trial jobs or inappropriate models, which cause
significant resource waste and severely slow down development
productivity.

In this paper, we propose DnnSAT, a resource-guided AutoML
approach for deep learning models to help existing AutoML tools
efficiently reduce the configuration space ahead of time. DnnSAT
can speed up the search process and achieve equal or even better
model learning performance because it excludes trial jobs not
satisfying the constraints and saves resources for more trials.
We formulate the resource-guided configuration space reduction
as a constraint satisfaction problem. DnnSAT includes a unified
analytic cost model to construct common constraints with respect
to the model weight size, number of floating-point operations,
model inference time, and GPU memory consumption. It then
utilizes an SMT solver to obtain the satisfiable configurations of
hyperparameters and neural architectures. Our evaluation results
demonstrate the effectiveness of DnnSAT in accelerating state-
of-the-art AutoML methods (Hyperparameter Optimization and
Neural Architecture Search) with an average speedup from 1.19X
to 3.95X on public benchmarks. We believe that DnnSAT can
make AutoML more practical in a real-world environment with
constrained resources.

Index Terms—configurable systems, deep learning, AutoML,
constraint solving

I. INTRODUCTION

Many traditional software systems, such as compilers and
web servers, are highly configurable. They provide many
configuration options, and different combinations of the options
could lead to different system quality attributes. In recent
years, deep learning (DL) models have become an integral part
of many modern software-intensive systems such as speech
recognition systems, chatbots, and games. Like traditional
software systems, DL models also provide many configuration
options for developers to tune. These configuration options can
be largely classified into two categories: hyperparameter (such
as the batch size and learning rate) and neural architecture (such
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as the number of layers and layer type). The numerous options
provided by a DL model result in an exponential number
of possible configurations, making manual tuning extremely
tedious and time-consuming.

Recently, automated machine learning (AutoML) techniques
have been widely adopted to automate and accelerate DL
model tuning. AutoML tools such as NNI (Neural Network
Intelligence) [1] usually apply Hyperparameter Optimization
(HPO) [2] and Neural Architecture Search (NAS) [3] algorithms
and launch hundreds or even thousands of AutoML trial jobs (or
trials for short) to systematically explore diverse configurations
of hyperparameters and neural architectures. It has been found
that AutoML significantly boosts the productivity of DL
development [2]–[4].

However, current AutoML approaches do not take into
consideration the computational constraints imposed by various
resources such as available memory, computing power of
devices, or execution time, because the resources required
by a DL model often remain unknown to developers before
job execution. Non-conforming model configurations could
lead to many failed AutoML trials or inappropriate models,
which not only waste significant shared resources (such as
GPU, CPU, storage, and network I/O) but also severely slow
down development productivity. A typical resource is GPU
memory, which is critical yet limited for training. If developers
do not size the model carefully enough, trials will trigger
OOM (out-of-memory) exceptions and fail. For instance, one
PyTorch ResNet-50 [5] trial with an overlarge batch size of 256
causes an OOM when being scheduled on the NVIDIA Tesla
P100 GPU; it requires 22 GB of GPU memory, but P100 has
only 16 GB in total [6]. Even worse, since there can be more
than ten tunable hyperparameters for the ResNet-50 model,
other hundreds of trials with the same batch size could also
experience OOM and crash. According to our recent empirical
study on failed DL jobs in Microsoft [7], 8.8% of the 4960
job failures were caused by GPU memory exhaustion, which
accounts for the largest category in all deep learning specific
failures. Therefore, it is necessary for AutoML tools to enforce
a constraint that a DL model cannot consume more GPU
memory than the capacity when exploring model configurations.
Another useful constraint is that the size of a model’s weights
cannot exceed a certain upper bound. Otherwise, the resulting
DL application may be too large for efficient management and
execution due to insufficient computing power of the target



resource-restricted devices. If the unsatisfiable AutoML trials
can be excluded ahead of time, resources will be saved to
perform more trials, thus a larger configuration space could be
explored.

A simple workaround is to run and profile trials for a
while to estimate their resource consumption. Such a resource-
consuming method is unaffordable in the scenario of AutoML,
where there exist a large number of possible hyperparameter
combinations and neural architectures. Some research work [8]–
[10] incorporates certain resource quantification into the loss
function for a global optimization with the model learning
performance (e.g., accuracy). However, their purpose is to
reduce the resource consumption of the final model as much
as possible while achieving an expected model learning
performance, instead of excluding unsatisfiable trials in advance
to improve the search efficiency. Therefore, such work could
also cause failed trials/inappropriate models and resource waste.
Besides, they are limited to NAS algorithms only and cannot
be applied to HPO algorithms.

In this paper, we propose DnnSAT, a resource-guided
AutoML approach for deep learning models, which can help
existing AutoML tools efficiently reduce the configuration
space ahead of time. We formulate such a resource-guided
space reduction problem as a constraint satisfaction problem
(CSP) [11]. DnnSAT includes a unified analytic cost model to
construct common constraints with respect to the model weight
size, number of floating-point operations (FLOPs), model
inference time, and GPU memory consumption. It then utilizes
an SMT (satisfiability modulo theories) solver (e.g., Microsoft
Z3 [12]) to obtain the satisfiable model configurations before
trial execution. According to the characteristics of constraints
(e.g., monotonicity), we also apply some special optimizations
to accelerate the solving.

We have implemented DnnSAT and evaluated it exten-
sively on public AutoML benchmarks (HPOBench [13] and
NAS-Bench-101 [14]) with various search methods (Random
Search [15], Regularized Evolution [16], Hyperband [2], and
Reinforcement Learning [14]) and representative DL models
(VGG-16 [17] and LSTM [18]-based Seq2Seq [19]). The
experimental results show that DnnSAT achieves an average
speedup from 1.19X to 3.95X on public benchmarks and
noticeably reduces the configuration space.

In summary, this paper makes the following contributions:
1) We propose a resource-guided AutoML approach for deep

learning models to efficiently reduce the configuration
space ahead of time.

2) We build a unified analytic cost model to construct
common constraints and utilize an SMT solver to obtain
the satisfiable configurations of hyperparameters and
neural architectures.

3) We implement a tool named DnnSAT and demonstrate
its practical effectiveness.

The rest of the paper is organized as follows. Section II
introduces the background. Section III presents our analytic
approach. Section IV details the design and implementation
of DnnSAT. Section V shows experimental results. Section VI

1 from tensorflow.keras import layers, models
2 ...
3 model = models.Sequential()
4 model.add(layers.Conv2D(filters=64, kernel_size=(3, 3),

activation='relu', input_shape=(32, 32, 3)))↪→
5 model.add(layers.AveragePooling2D(pool_size=(2, 2), padding

='same'))↪→
6 model.add(layers.Flatten())
7 model.add(layers.Dense(units=64, activation='relu'))
8 model.compile(optimizer='adam',

loss=tf.keras.losses.MeanSquaredError())↪→
9 model.fit(train_images, train_labels, batch_size, epochs=10)

(a) Training program using Keras API.

(b) Computation graph for model infer-
ence.

(c) Tensors with shapes on which Conv2D
operates.

Fig. 1: A sample TensorFlow model sequentially constructed by the framework
built-in Conv2D (2D convolution), AvgPool2D (2D average pooling),
Flatten (collapsing the input into one dimension without affecting the
batch size), and Dense (fully connected layer) operators.

discusses extensibility and possible threats. We survey related
work in Section VII and conclude this paper in Section VIII.

II. BACKGROUND

Deep learning (DL) is a subfield of machine learning to learn
layered data representations known as models. A DL model
is formalized as a tensor-oriented computation graph [20] by
frameworks such as TensorFlow (TF) [21], PyTorch [22], and
MXNet [23], which is a directed acyclic graph (DAG). The
inputs and outputs of such a computation graph and its nodes
are tensors (multi-dimensional arrays of numerical values). The
shape of a tensor is the element number in each dimension
plus the element data type. Each node represents the invocation
of a mathematical operation called an operator (e.g., element-
wise matrix addition). An edge delivers an output tensor and
specifies the execution dependency. In this paper, we use the
terms “operator” and “node” interchangeably since a node is
completely determined by its invoked operator.

Fig. 1a shows a simple TensorFlow training program using
the Keras [24] API, which sets up a sequential model with
the framework built-in Conv2D (2D convolution with a 3× 3
kernel size), AvgPool2D (2D average pooling with the “same”
padding setting1), Flatten (collapsing the input into one
dimension without affecting the batch size), and Dense (fully
connected layer with 64 units) operators (lines 4-7). The above
filter size, padding, and number of units are hyperparameters,
which are parameters to control the training process. Fig. 1b
demonstrates the corresponding computation graph for model

1See https://keras.io/api/layers/pooling layers/average pooling2d/ for an
explanation of the padding argument.

https://keras.io/api/layers/pooling_layers/average_pooling2d/


1 # search_space.json
2 {
3 "batch_size":{"_type":"choice", "_value":[16,32,64]},
4 "kernel_size":{"_type":"choice", "_value":[3,5,7,11]},
5 "filters":{"_type":"choice", "_value":[64,128,512]},
6 "unit_size":{"_type":"choice", "_value":[64,512]},
7 "lr":{"_type":"choice", "_value":[0.0001,0.001,0.01,0.1]}
8 }
9

10 # config.yml
11 ...
12 searchSpacePath: search_space.json
13 tuner:
14 builtinTunerName: Random
15 trial:
16 command: python3 mnist.py
17 gpuNum: 1
18 cpuNum: 1
19 memoryMB: 8196
20 ...

Fig. 2: Settings of an MNIST training program supported by NNI with
Hyperparameter Optimization.

inference. Fig. 1c illustrates the input, weight, and output
tensors with shapes on which Conv2D operates.

To choose better configurations of hyperparameters and
neural architectures, developers often adopt a trial-and-error
strategy: submitting hundreds or even thousands of trial jobs
with each being assigned a different model configuration. This
strategy is very inefficient because of the overlarge config-
uration space. Recently, many AutoML tools, such as NNI
(Neural Network Intelligence) [1], Auto-Keras [4], and Auto-
Sklearn [25], are proposed to automate the exploration of model
configurations. They help developers find a hyperparameter
combination (Hyperparameter Optimization (HPO) [13]) or
design an elaborate neural network (Neural Architecture Search
(NAS) [14]), which can both minimize the loss and maximize
the model learning performance (e.g., accuracy).

Suppose that a DL model has m hyperparameters whose
domains are B1, B2, · · · , Bm. A model configuration is an
instance of such a model with concrete hyperparameter values.
All model configurations constitute the configuration space.
HPO applies some search method (e.g., random search, evolu-
tionary strategies, or Bayesian optimization) in the enumeration
of the configuration space to find a candidate with the optimal
hyperparameter vector (combination) λ ∈ B1×B2×· · ·×Bm,
which best meets the training objective. Fig. 2 shows the
settings of an MNIST training program supported by the
AutoML tool NNI with HPO. The upper part (lines 1-8) defines
the possible values of tunable hyperparameters (batch size,
learning rate, etc.); the bottom part (lines 10-20) specifies
the search method and runtime resource requirements (GPU
count, main memory size, etc.). The controller process of
NNI performs a random search (line 14) and may fork over a
hundred trials executing the command on line 16. Trials send
timely feedback such as the mean squared error or accuracy
to the controller for the decision of early stopping.

Similarly, NAS automates the architecture engineering of a
DL model. The configuration space consists of various automat-
ically generated, syntactically legal neural network structures
such as chained or multi-branch networks. NAS also applies

TABLE I
COMMON HYPERPARAMETERS OF DL MODELS.

Hyperparameter Domain Hyperparameter Domain

Batch Size N Kernel Size N
Output Channels N Stride N

Padding N # of RNN Layers N
# of Units N Sequence Length N

Operator Type N Edge B
Learning Rate R+ Dropout [0, 1)

different search methods including random search, gradient-
based algorithms, and reinforcement learning (RL) [26] for the
space exploration.

III. PROPOSED APPROACH

A. Problem Formulation

Formally, a DL model X is represented as a directed acyclic
graph (DAG) [20]:

X = 〈{ui}ni=1, {(ui, uj)}i6=j , {pk}mk=1〉

Each node ui is an operator (i.e., a mathematical operation
such as convolution and pooling). A directed edge (ui, uj)
pointing from an output of node ui to an input of uj delivers
the output tensor and specifies the execution dependency. Each
pk is a hyperparameter (e.g., input tensor shape and batch size)
whose domain is denoted as Bk. Table I lists some commonly
used hyperparameters with their domains.

For bk ∈ Bk where 1 ≤ k ≤ m, we use X(b1, b2, · · · , bm)
to represent one model configuration of X . Then, the con-
figuration space of model X , denoted by ∆X , is defined as
follows:

∆X = {X(b1, b2, · · · , bm) | bk ∈ Bk for k ∈ [1,m]}

In an AutoML experiment, there may exist a series of DL
models X1,X2, · · · ,XN (e.g., models searched by NAS).
For such an experiment, its configuration space ∆ is defined
as the union set of all models’ configuration spaces:

∆ =
⋃N

i=1 ∆Xi

We formulate the resource-guided configuration space re-
duction for an AutoML experiment with N models as the
following constraint satisfaction problem 〈V,D,C〉 [11]:

V = {V1, V2, · · · , VN}
D = {D1, D2, · · · , DN | Di = ∆Xi for i ∈ [1, N ]}
C = {Cj : lbj ≤ fj(Vi) ≤ ubj}

V is a set of model configuration variables, D represents the
respective variable domains, and C is the constraint set. Each
variable Vi∈[1,N ] can take on the model configurations of Xi

(i.e., the domain of Vi is ∆Xi
). For a constraint Cj , fj is a

non-negative restriction function which denotes the demand for
a certain resource; lbj and ubj are the lower and upper bounds
of that resource, respectively. If one is more interested in the
upper bound, we simply assume that lbj = 0. Hyperparameters



are decision variables of the constraints, which are quantities
controlled by the decision-maker to define the search space for
optimization. As mentioned before, an example fj calculates
the GPU memory consumption for training a DL model, and
ubj is the memory capacity of the allocated GPU device (e.g.,
16 GB for NVIDIA Tesla P100).

B. The Proposed Analytic Approach

DnnSAT adopts an analytic approach to construct the restric-
tion functions on resources. We observe that the algorithmic
execution of a DL model can be represented as iterative forward
and backward propagation on its computation graph.2 Therefore,
computing the resource consumption for one iteration is then
reduced to the calculation of the resource required by each
operator on the computation graph in accordance with a certain
graph traversal order. Currently, a DL model is required to
be deterministic without control-flow operators (e.g., loops
and conditional branches), thus we assume that the execution
flow and resource consumption across different iterations are
identical. We define an auxiliary function g on the operator
set, which represents the current resource consumption when
the operator under visiting has just finished execution in
the iteration. Let S = 〈ui1 , ui2 , · · · , uin〉 be a topological
(linear) order extended from the edge order of the model
such that uij ≺S uik =⇒ (uik , uij ) /∈ X . S is called an
operator schedule, representing the actual runtime execution
order of operators. DnnSAT pre-generates S by referring to the
framework implementations [27]–[29]. Suppose that r is the
operator resource cost function, IterCnt is the iteration count,
and Rinit, Rfini are the resource consumption of the one-off
initialization and clean-up performed by DL frameworks which
are assumed to be 0 if not specifically mentioned. We define
g and the restriction function f as follows:

g(ui1) = r(ui1)

g(uij ) = h({〈ui1 , g(ui1)〉, · · · , 〈uij−1
, g(uij−1

)〉}) + r(uij )

f(X) = Rinit +Rfini + t(IterCnt, {g(uij )}nj=1)

So long as the above h and t are functions, g uniquely exists by
the transfinite recursion theorem schema [30] since S is a well
order, and f also exists. The formalization of g indicates that it
could compute the current resource consumption by referring to
extra information of previous consumption and visited operators.
Examples of g and f can be found in Section IV-B. DnnSAT
includes a unified analytic cost model to define operators’
resource cost functions and common constraints. Table II lists
the constraints that we have implemented.

The objective of DnnSAT is to reduce the configuration
space ∆ by eliminating those Xi(bi1 , bi2 , · · · , bim) which
violate the enforced constraints before submitting AutoML
trials. A naive method is to compute the values of the restriction
functions for each model configuration in ∆ and then check
whether such values fall within the allowed bounds. DnnSAT
adopts a much more efficient approach: it specifies those

2This also applies to model inference which has a simplified representation
with single-pass forward propagation and no backward propagation.

TABLE II
COMMON CONSTRAINTS IMPOSED BY THE COMPUTATIONAL RESOURCES.

Restriction Category Resource Upper Bound Scenario
Model Weight Size Allowed Binary Size Inference
Number of Floating-point (Device FLOPS) × Inference
Operations (FLOPs) (SLA of Inference Latency)∗

Model Inference Time SLA of Inference Latency Inference
GPU Memory Consumption Device Memory Capacity Training

Inference
∗“FLOPS” denotes floating-point operations per second, and “SLA”
stands for service-level agreement.

Fig. 3: Workflow of DnnSAT.

constraints in the SMT-LIB (Satisfiability Modulo Theories
Library [31]) syntax and uses the Microsoft Z3 solver [12]
to obtain all the satisfiable model configurations. Such an
approach is feasible because the restriction functions of the
common constraints can be composed by SMT solvers’ built-in
functions (e.g., multiplication and division) and the constraints
are simple numerical inequalities. We also apply some special
optimizations to accelerate the solving based on the constraint
characteristics (e.g., monotonicity), which are described in
Section IV-E.

IV. DESIGN AND IMPLEMENTATION

A. Workflow

Fig. 3 shows the workflow of DnnSAT. It accepts a source
DL model, configuration settings, and constraint settings
as input. The model is parsed by a front-end parser and
reconstructed to the corresponding computation graph. Some
DL frameworks such as PyTorch employ the define-by-run
approach [22] such that a saved model records only an
execution trace instead of the full computation graph. DnnSAT
currently relies on users to supply multiple models in case
the graph may dynamically change (in the future, it may be
possible to try extracting the full computation graph from a
DL program by static code analysis). Configuration settings
include the hyperparameters to be tuned and their domain
definitions. Constraint settings contain the built-in constraints
that need to be satisfied and their allowed bounds, as well as
constraint-related runtime constants of the DL framework (e.g.,
type and version) and target device (e.g., FLOPS).

DnnSAT has defined four common constraints (Section IV-B)
and a set of analytic and framework-independent resource cost
functions for DL operators (Section IV-C). It traverses the
computation graph in accordance with a predefined operator
schedule (i.e., operator execution order) to automatically
generate the constraint specifications in SMT-LIB for later
solving (Section IV-D). There are two working modes for



integrating DnnSAT with existing AutoML tools. One is the
interactive mode, in which AutoML tools work as usual but
each configuration will be sent to DnnSAT for solving via
an API call before launching a trial. Such a mode is simple,
non-intrusive, and requires less effort. We have run DnnSAT
with HPOBench [13] and NAS-Bench-101 [14] interactively
to evaluate the effectiveness in speeding up AutoML methods
(Section V-A), and similar integration work could be done in
AutoML tools such as NNI and Auto-Keras. The other is the
pruning mode, in which DnnSAT eliminates the unsatisfiable
model configurations in advance and feedbacks a reduced
configuration space to AutoML tools during their initialization.
To solve the constraints, the Microsoft Z3 solver is invoked with
some optimizations (Section IV-E). DnnSAT is extensible to
support user-defined constraints by permitting users to specify
their own constraint specifications in SMT-LIB with those
defined hyperparameters.

B. The Constraints

DL models are both compute-intensive and memory-
intensive, making them difficult to be trained or deployed
on systems and platforms with limited resources. In this
paper, we consider four representative computational constraints
with respect to the model, namely weight size, number of
floating-point operations, inference time, and GPU memory
consumption. The meaning of the notations and symbols can
be found in Section III.
Model Weight Size. Weights (including biases) are the
numerical learnable parameters of operators, being saved
in the model file and taking up most of the space. The
size of weights is important, especially on resource-restricted
devices such as mobile phones. An overlarge DL model
causes inefficient model/application management, expends
unaffordable energy [32], or even cannot fit in the target devices’
main memory. The total model weight size is calculated by
accumulating the weight size of each operator. Assuming that
WT is the restriction function and WTmin, WTmax are the
lower and upper bounds in bytes, the constraint is then defined
as follows:

g(uij ) = g(uij−1
) + r(uij )

WT (X) = max{g(uij )}nj=1 =
∑n

j=1r(uij )

WTmin ≤WT (X) ≤WTmax

Number of Floating-point Operations (FLOPs). FLOPs is
considered as a stronger predictor of energy usage and inference
time [33]. The total FLOPs for inference is calculated by
accumulating the FLOPs of each operator in accordance with
the operator schedule. Assuming that F is the restriction
function and Fmin, Fmax are the minimal and maximal values
allowed, the constraint is then defined as follows:

g(uij ) = g(uij−1) + r(uij ), IterCnt = 1

F (X) = IterCnt×max{g(uij )}nj=1 =
∑n

j=1r(uij )

Fmin ≤ F (X) ≤ Fmax

Model Inference Time. This is a critical runtime performance
indicator for DL applications. The total time is calculated by
accumulating the execution time of each operator in accordance
with the operator schedule. Assuming that T is the restriction
function and Tmin, Tmax are the lower and upper bounds, the
constraint is then defined as follows:

g(uij ) = g(uij−1) + r(uij ), IterCnt = 1

T (X) = IterCnt×max{g(uij )}nj=1 =
∑n

j=1r(uij )

Tmin ≤ T (X) ≤ Tmax

GPU Memory Consumption. As mentioned before, GPU
OOM accounts for the largest DL failure category [7], therefore
controlling the GPU memory consumption is critical to
reduce OOM exceptions and save shared resources. However,
the calculation is rather complicated since there are many
hidden framework factors observably affecting the final GPU
memory consumption [6]. We adopt a simplified yet common
approach for both inference and data-parallel training, which
accumulates the GPU memory required by each operator under
forward propagation in accordance with the operator schedule.
Assuming that M is the restriction function and Mmin, Mmax

are the minimal and maximal GPU memory consumption
allowed in bytes (e.g., taking the memory capacity as the
maximal value), the constraint is then defined as follows:

g(uij ) = g(uij−1) + r(uij )

M(X) = Rinit +max{g(uij )}nj=1 = Rinit +
∑n

j=1r(uij )

Mmin ≤M(X) ≤Mmax

If u is an operator under backward propagation, we let
r(u) = 0. Rinit represents the GPU memory consumed
by the CUDA context and initial input tensors during the
framework initialization. The CUDA context contains managing
information to control and use GPU devices, which is assumed
to be a constant obtained by profiling.

C. Resource Cost Functions of Operators

Operators are mathematical functions on various types of
tensors. DnnSAT defines analytic and framework-independent
resource cost functions for operators. Such a solution is
technically feasible because: (1) frequently used operators
are well-defined with clear syntax and semantics; (2) DL
frameworks implement them similarly (e.g., calling NVIDIA
CUDA, cuDNN, or cuBLAS APIs). In this section, we take
the Conv2D operator in Fig. 1b as an example to illustrate
the four resource cost functions with respect to the studied
constraints.

The following symbols are used to denote the hyperparam-
eters and tensor shapes. Sf is the size of input data type
(e.g., 4 bytes for FLOAT32 data). N represents batch size. Hk

and Wk are kernel (filter) height and width; they are usually
equal. flti and si are filter size and stride size at index i. flt
represents the number of filters. Padding padi “controls the
amount of implicit zero-paddings on both sides for padding
number of points for each dimension”, and dilation di “controls
the spacing between the kernel points” [34]. Hin, Win, and



Cin are input height, width, and channels, respectively. Ho,
Wo, and Co are output height, width, and channels, which
have the following relations with other symbols:

Ho = 1 + (Hin + 2× pad0 − d0 × (Hk − 1)− 1)/s0

Wo = 1 + (Win + 2× pad1 − d1 × (Wk − 1)− 1)/s1

Co = flt

Then, the resource cost functions with respect to the four
constraints model weight size (WT ), FLOPs (F ), model
inference time (T ), and GPU memory consumption (M )
are defined as follows:

WT (Conv2D) = Sf × (Cin ×Hk ×Wk × Co + Co)

F (Conv2D) = 2× Co × (Hk ×Wk × Cin + 1)×N ×Ho ×Wo

Mit = N × Cin ×Hin ×Win

Mwt = WT (Conv2D)

Mot = Sf ×N × Co ×Ho ×Wo

T (Conv2D) = (Mit +Mwt +Mot)/Bd + F (Conv2D)/Flops

M(Conv2D) = Mwt +Mot

Mit, Mwt, and Mout denote the GPU memory occupied by
the input, weight, and output tensors, respectively. Bd and
Flops are memory bandwidth and floating-point operations per
second (FLOPS) of the target device, which can be assumed to
be constants. The first item of T (Conv2D) represents the data
access time from and to GPU memory [35]. We do not count
Mit in the GPU memory consumption because an operator’s
input tensors reuse the GPU memory of either the initial
inputs or predecessors’ outputs, which have been calculated in
the initialization cost (Rinit) and predecessor operators’ cost
functions. More details about the estimation of FLOPs and
model inference time can be found at [35] and [36].

Currently, DnnSAT supports 70+ operators. It is also exten-
sible and can support new operators, which are discussed in
Section VI.

D. Constraint Specification

In this section, we describe how to automatically generate a
constraint specification in SMT-LIB. The DL model in Fig. 1
is used as an example, and the enforced constraint is the model
weight size must be less than or equal to 10 MB. A snippet of
the constraint setting is shown as follows:

{"constraint":"weight_size","max":10485760,"min":0}

Fig. 4 lists the illustrated SMT-LIB code. First, DnnSAT
specifies the constraint bounds read from the constraint setting
file (lines 3-5). It then declares the hyperparameters of the
size of input data type (Sf ), number of input channels (Cin),
kernel size (Hk and Wk), filter size (flt), and unit size (U )
of the Dense operator (lines 7-12) and writes their domains
(lines 14-16), according to the contents of the configuration
setting file. As the batch size (N ) does not contribute to the
model weight size, we simply ignore it.

Next, DnnSAT traverses the computation graph from
Conv2D to Dense one after another. For each operator type,
we prepare SMT-LIB templates in Python via Z3 APIs for

1 (set-logic QF_UFNIA) ; Non-linear integer arithmetic logic
2 ; Constraint bounds
3 (declare-const WT_Min Int) ; Lower bound: 0 MB
4 (declare-const WT_Max Int) ; Upper bound: 10 MB
5 (assert (and (= WT_Min 0) (= WT_Max 10485760)))
6 ; Hyperparameters
7 (declare-const Sf Int) ; Size of input data type
8 (declare-const Cin Int) ; Conv2D input channels
9 (declare-const Hk Int) ; Conv2D kernel height

10 (declare-const Wk Int) ; Conv2D kernel weight
11 (declare-const flt Int) ; Conv2D number of filters
12 (declare-const U Int) ; Dense unit size
13 ; Hyperparameter domains
14 (assert (and (and (= Sf 4) (= Cin 3)) (and (= Hk Wk) (or (=

U 64) (= U 512)))))↪→
15 (assert (or (or (= Hk 3) (= Hk 5)) (or (= Hk 7) (= Hk 11))))
16 (assert (or (or (= flt 64) (= flt 128)) (= flt 512)))
17 ; Compute the weight size of Conv2D
18 (declare-const WT_Conv2D Int) ; Conv2D weight size
19 (declare-const Co Int) ; Conv2D output channels
20 (assert (= flt Co))
21 (assert (= (* Sf (+ (* (*(* Hk Wk) Cin) Co) Co)) WT_Conv2D))
22 ; Compute the weight size of Dense
23 (declare-const WT_Dense Int)
24 (assert (= (* Sf (+ U 1)) WT_Dense))
25 ; Compute the model weight size
26 (declare-const WT Int)
27 (assert (= (+ WT_Conv2D WT_Dense) WT))
28 ; Specify the constraint
29 (assert (and (<= WT_Min WT) (<= WT WT_Max)))
30 (check-sat)
31 (exit)

Fig. 4: Illustrated constraint specification in SMT-LIB, which enforces that the
weight size of the model in Fig. 1 must be within the interval [0 MB, 10 MB].

the resource cost functions. When an operator is visited,
DnnSAT locates the matched template and generates the Python
wrapper of SMT-LIB code using those declared hyperparameter
symbols. For example, lines 18-21 correspond to calculating the
weight size of Conv2D. Since AvgPool2D uses the “same”
padding setting (line 5 in Fig. 1a), its output tensor shape
keeps unchanged with that of Conv2D. Both AvgPool2D
and Flatten do not have weights, so we also ignore them.
Dense has a weight tensor of a 64-element array plus a bias
of 1 data element (lines 23-24). Therefore, the total model
weight size is equal to the sum of the weight sizes of both
Conv2D and Dense (lines 26-27). Finally, DnnSAT asserts
that the result must fall between the lower and upper bounds
(line 29). Note that although the example uses only integer
variables, DnnSAT can easily replace the variable statements
to support real-valued hyperparameters because the underlying
SMT solver Z3 supports real values and real functions.

E. Constraint Solving

The resource-guided configuration space reduction is for-
mulated as a constraint satisfaction problem (CSP). DnnSAT
chooses Microsoft Z3 to solve the constraints because the SMT
solver is very efficient to handle higher-order and nonlinear
functions. However, the solving may slow down significantly
when dealing with an overlarge configuration space or a very
complicated restriction function. We summarize below our
major optimization techniques for accelerating the solving
speed:



1) Parallel and distributed solving. DnnSAT partitions the
full configuration space into multiple smaller subspaces
and solves them in parallel. The process is shown
schematically in Fig. 5. For the parallel solving, each
worker thread is assigned a standalone Z3 context. The
distributed solving is built on top of Spark [37], which
handles configuration space partitioning, distributed task
deployment (via the mapPartitions API), schedul-
ing, and fault tolerance.

2) Tiny subspaces. Proper partitioning of the configuration
space is very important for tackling the skew prob-
lem [38], [39] in the parallel and distributed solving.
DnnSAT adopts the idea of tiny tasks [40] and divides the
original space into numerous tiny subspaces (e.g., each
containing less than 100 configurations). Our approach
has two advantages: (1) it will not result in observable
computation skew across subspaces; (2) the Z3 solver
cannot return all the satisfiable model configurations at
once like what ALLSAT [41] does, hence DnnSAT has
to iteratively call Z3 by providing the conjunction of the
negation of each existing solution to derive the next one.
A tiny subspace does not make the conjunction long and
complicated, thus the solving efficiency is significantly
improved. DnnSAT currently implements a simple work
queue to manage the tiny subspaces. We will consider
dynamic partitioning and work stealing [42] for better
load balancing in the future.

3) Interval filtering. The restriction function of a con-
straint may be monotonic with regard to (w.r.t. for
short) some hyperparameters. For instance, the model
weight size function is monotonically increasing w.r.t.
kernel size, filter size, and unit size mentioned in
Fig. 4. Another example is that the FLOPs function
is monotonically increasing w.r.t. batch size but not
to kernel size. This is because the output height and
width of the Conv2D operator decrease with kernel size
increasing, which may reduce the FLOPs of subsequent
operators. With such monotonicity information, we
can apply the interval filtering technique which safely
discards specific value intervals of the hyperparameters.
Suppose that the restriction function is monotonically
increasing w.r.t. the hyperparameter p1 whose domain is
[vmin, vmax]. If the function value of a configuration
〈p1 = v1, p2 = vp2 , · · · , pm = vpm〉 exceeds the
upper bound, any configurations 〈p1 ∈ (v1, vmax], p2 =
vp2

, · · · , pm = vpm
〉 will not satisfy the constraint either;

if it is smaller than the lower bound, any configurations
〈p1 ∈ [vmin, v1), p2 = vp2

, · · · , pm = vpm
〉 will also

violate the constraint. Furthermore, if two configurations
〈p1 ∈ {v1, v2}, p2 = vp2 , · · · , pm = vpm〉 are satisfied
and v1 < v2, any configurations 〈p1 ∈ (v1, v2), p2 =
vp2

, · · · , pm = vpm
〉 will satisfy the constraint as well.

V. EVALUATION

To evaluate the proposed DnnSAT, we experiment with
different representative AutoML benchmarks and DL models.

Fig. 5: Parallel and distributed solving by partitioning the configuration space.

We aim to answer the following Research Questions (RQs):
RQ1: How effective is DnnSAT in speeding up AutoML
methods?
RQ2: How effective is DnnSAT in reducing the configuration
space?
RQ3: How efficient is DnnSAT in constraint solving?

Our experiments are conducted on an Azure Standard ND12s
virtual machine with 12 Intel Xeon E5-2690 vCPUs, 224 GB
main memory, and 2 NVIDIA Tesla P40 (24 GB GDDR5X
memory) GPUs, running Ubuntu 16.04.

A. RQ1: How effective is DnnSAT in speeding up AutoML
methods?

In this section, we consider the model weight size constraint
and evaluate the effectiveness of DnnSAT on the following
two benchmarks:

1) HPOBench is for HPO methods and consists of “a large
grid of hyperparameter configurations of feedforward
neural networks for regression” [13]. The model has
two tunable Dense operators followed by a non-tunable
Dense on top. There are nine hyperparameters (e.g.,
batch size, unit size, and initial learning rate) and 62208
model configurations in total. We use the HPO-Bench-
Protein dataset. The maximal model weight size is 256
KB.

2) NAS-Bench-101 is for NAS methods and “constructs a
compact, yet expressive, search space, exploiting graph
isomorphisms to identify 423k unique convolutional
architectures” [14]. The dataset is CIFAR10 [43]. The
maximal model weight size is about 47.7 MB.

Both benchmarks generated DL models and collected a rich
set of runtime statistics (final training/validation/test error and
accuracy, total training time, etc.) from the trained models.
These statistics can be used to simulate the execution of
AutoML trials and evaluate different configuration search
methods. To evaluate the learning performance of a model
configuration resulted from an AutoML trial, following the
existing work [8], [13], [14], [44], we use the mean squared
error (MSE) for HPOBench and regret (i.e., 1 − accuracy)
for NAS-Bench-101 as the test measurement. The smaller the
value, the better the model. We choose the model weight
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(c) Hyperband (HB)

Fig. 6: Test measurement curves and speedups of the HPOBench experiments on 100 trials using different search methods, with an 8 KB upper bound of the
model weight size.
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Fig. 7: Test measurement curves and speedups of the NAS-Bench-101 experiments on 500 trials using different search methods, with a 38 MB upper bound of
the model weight size.
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Fig. 8: Test measurement curves and speedups of the HPOBench experiments
on 100 trials using Random Search, with three upper bounds (2 KB, 8 KB,
and 16 KB) of the model weight size.

size constraint because it is one of the most representative
constraints for DL applications and for performing model
inference on resource-restricted devices such as mobile phones.

On each benchmark, we perform two sets of experiments:
baseline experiments and DnnSAT-guided experiments. We
choose the following commonly used search methods in

AutoML as baselines: Random Search (RS) [15], Regularized
Evolution (RE) [16], Hyperband (HB; HPOBench only) [2],
and Reinforcement Learning (RL; NAS-Bench-101 only) [14].
The two sets of experiments perform the same number of trials
(100 for HPOBench and 500 for NAS-Bench-101). We then
measure the speedup achieved by DnnSAT over each baseline
method on each benchmark. The speedup is calculated as Tbase

TDnnSAT
,

where Tbase is the estimated time of a baseline (i.e., RS, RE,
and HB) reaching the lowest test measurement (i.e., the best
learning performance) and TDnnSAT is the time of a DnnSAT-
guided method reaching the same or lower test measurement.
We repeat each experiment 10 times and compute the average
speedup value. DnnSAT runs in the interactive mode because
of the simplicity of the integration effort. To solve the first
model configuration, DnnSAT needs to build the constraint
from scratch (i.e., warm-up), which spends more time than
solving later individual configurations of the same model. For
HPOBench, the solving time is 0.1s (warm-up: 2.5s) on average.
For NAS-Bench-101, it is 0.6s (warm-up: 14.0s) on average.

Fig. 6 demonstrates the test measurement (MSE) curves of
HPOBench on 100 evaluated trials. The upper bound of the



model weight size is set to a small value of 8 KB (which is
set for deploying KB-sized DL models to resource-restricted
IoT devices [45]). The x-axis is the wall-clock time, and the
y-axis denotes the test measurement value. Overall, DnnSAT
achieves a speedup of 2.04X (RS), 1.19X (RE), and 3.95X
(HB) on HPOBench, for obtaining the same optimal model
learning performance that can be found by the baseline. From
the experiment results, we also find that DnnSAT helps the
curves go down faster and reach smaller test measurement
values, which means that better model configurations are found.
The reason is that DnnSAT reduces the configuration space
so that HPOBench can perform a much more efficient search
than before. We also notice that the experiment time has been
observably shortened when DnnSAT is enabled since a smaller
model size implies fewer FLOPs and thus less training time.
In Fig. 6c, time reduction is particularly significant because
of the mechanism of Hyperband: the more resources saved by
DnnSAT, the more training budget allocated to Hyperband for
high-efficiency search.

Fig. 7 demonstrates the test measurement (regret) curves of
NAS-Bench-101 on 500 evaluated trials, with the upper bound
of the model weight size set to 38 MB. DnnSAT achieves a
speedup of 1.23X (RS), 1.19X (RE), and 1.52X (RL).

To understand the generality of our approach under different
constraint bounds, we additionally choose two upper bounds
(2 KB and 16 KB) and conduct HPOBench experiments using
Random Search. The results of Fig. 8 and Fig. 6a indicate
that DnnSAT is generally effective and achieves a speedup
of 4.15X (2 KB), 2.04X (8 KB), and 1.21X (16 KB). The
results also show that the stricter the constraint, the greater the
improvement achieved by DnnSAT.

B. RQ2: How effective is DnnSAT in reducing the configuration
space?

In this section, we evaluate the reduction effectiveness of
DnnSAT on real-world DL models. We choose two representa-
tive models as our experimental subjects, namely VGG-16
(VGG model with 16 layers) [17] and LSTM [18]-based
Seq2Seq [19]. For VGG-16, we select batch size (interval
[1, 256]), kernel size (1, 3, and 5), and unit size (128, 512, 1024,
4096, and 10240) as the hyperparameters; hence there are 3840
model configurations in total. For Seq2Seq, we consider batch
size (interval [128, 512]) and hidden size (interval [16, 128]),
in which the configuration space consists of 43505 model
configurations.

We apply all the four discussed constraints separately and
collectively to both DL models. Each constraint is set with
several upper bounds. The bound choices are based on actual
conditions such as the model scale, device capability, and
application SLA. For example, we choose 6, 8, and 12 GB
for VGG-16 under the GPU memory consumption constraint
because they correspond to three typical memory capacities of
NVIDIA GPUs. Since the two models differ a lot, we cannot
use the same bound value for both. Note that we use batched
inference time, that is, the total inference time of a batch of data
items. Specific upper bound values can be found in Table III.

TABLE III
CONFIGURATION SPACE REDUCTION ON REAL-WORLD DL MODELS.

Model Max Weight Max GPU Max BI Max FLOPs All
Name Size (MB) Memory (GB) Time (S) (GFLOPs) Constraints

VGG-16 1024 12 1000 4096
(80.0%) (84.3%) (80.3%) (58.4%) (53.4%)

512 8 800 3584
(60.0%) (56.2%) (64.0%) (51.1%) (31.8%)

128 6 10 3072
(0.0%) (42.1%) (0.7%) (43.7%) (0.0%)

Seq2Seq 128 0.6 50 64
(LSTM) (32.1%) (34.7%) (74.1%) (35.2%) (24.1%)

64 0.4 30 4
(18.0%) (15.3%) (67.2%) (26.0%) (1.6%)

32 0.2 1 1
(5.0%) (0.0%) (33.2%) (4.2%) (0.0%)

Note: “BI Time” stands for batched inference time, which calculates the total
inference time of a batch of data items. The two values in a cell represent the
upper bound and space ratio, respectively.

The space ratio (SR) is used to assess the reduction
effectiveness of DnnSAT. Suppose that ∆ and ∆DnnSAT are
the original and reduced configuration spaces, respectively.
Then, SR = |∆DnnSAT|

|∆| ×100%. A smaller SR means a stronger
reduction effect. The promising experimental results in Table III
demonstrate that DnnSAT is effective in configuration space
reduction. For example, the SR of VGG-16 under the GPU
memory consumption constraint ranges from 42.1% to 84.3%.
Meanwhile, the SR of Seq2Seq under the batched inference
(BI) time constraint ranges from 33.2% to 74.1%. Tighter
bounds or a combination of multiple constraints will lead
to a more significant reduction. The results can also give
hints to developers and help them choose optimal settings
of neural architectures, hyperparameters, and computational
resources. For instance, the SR of VGG-16 equals 0% when
the upper bound of the model weight size is set to 128
MB, which indicates that such a model may not be further
dwindled by simply adjusting the hyperparameters. Therefore,
developers need to look for advanced DL techniques (e.g.,
model compression [32]) to embed it into a resource-restricted
application. After applying four constraints collectively, the
SR value further decreases and is below the minimum of the
one-constraint SR values. The results demonstrate the stronger
reduction effect when adopting multiple constraints collectively.

DnnSAT runs in both interactive and pruning modes with 12
threads, tiny subspaces containing 10 model configurations, and
interval filtering being off. We show the runtime performance of
DnnSAT under one constraint and four constraints as follows:

1) Interactive mode. For VGG-16, the solving time per
configuration is 0.10s (warm-up: 6.13s) on average under
one constraint, and 0.13s (warm-up: 6.18s) under four
constraints. For Seq2Seq, the corresponding time is 0.05s
(warm-up: 1.40s) on average and 0.12s (warm-up: 1.44s),
respectively.

2) Pruning mode. For VGG-16, DnnSAT spends 226s
on average under one constraint and 283s under four
constraints. For Seq2Seq, the corresponding time is 806s
on average and 1301s, respectively.



C. RQ3: How efficient is DnnSAT in constraint solving?

In this section, we evaluate the solving efficiency of the
optimization techniques proposed in Section IV-E. We choose
the LSTM-based Seq2Seq model with batch size (interval
[1, 4800]) and hidden size (interval [16, 20]) as the hyperparam-
eters. The configuration space then consists of 24000 model
configurations in total. To increase the solving difficulty, we
use a loose FLOPs constraint under which every configuration
satisfies.

A series of experiments are conducted with different thread
numbers (1, 4, 8, and 12), subspace sizes (10, 50, 100, 500,
1000, and equipartition), and interval filtering settings (ON and
OFF). We do not create more threads since the experimental
machine has only 12 vCPUs. “Equipartition” means that we
divide the original configuration space equally by the number
of threads and do not further split it into tiny subspaces. For
example, in the case of 12 threads, each thread independently
solves a subspace of 2000 configurations.

Table IV shows the end-to-end execution time (in seconds)
and speedup relative to the baseline experiment (1 thread,
equipartition, and interval filtering being off). The speedup
ranges from 7.6X to 17892.1X, confirming the strong effec-
tiveness of our optimizations. Simply increasing the number of
threads achieves an ultra-linear speedup from 9.3X to 51.9X
because a smaller configuration space notably reduces the
overhead of ALLSAT solving (Section IV-E). Tiny subspaces
achieve a speedup from 7.6X to 83.0X in the experiments
that turn off interval filtering, with the same reason as the
parallel solving. Nevertheless, as the subspace size getting
smaller, the speedup grows slowly and then drops (from
the size of 50) because the overhead of ALLSAT solving
is no longer noticeable while the management cost of tiny
subspaces increases. Interval filtering demonstrates dramatic
improvements in the equipartition experiments and achieves
a maximal speedup of 17892.1X. The reason is that DnnSAT
divides the original configuration space on hidden size to
keep as long a continuous interval of batch size as possible
since FLOPs is monotonically increasing with regard to batch
size. Therefore, DnnSAT solves only a small number of
configurations to reach the conclusion that the entire subspace
satisfies the constraint. However, if there exist many short
intervals of batch size (e.g., the domain of batch size is small
or tiny subspaces are used), the effect of interval filtering will
not be so significant.

VI. DISCUSSION

A. Extensibility of DnnSAT

Currently, DnnSAT supports 70+ commonly used operators.
DnnSAT is extensible, and users can incorporate new operators
and constraints. To add a new operator, users formulate the
analytic resource cost functions based on its semantics and then
implement the SMT-LIB templates. To support a new constraint,
users formulate the analytic restriction function using defined
hyperparameters and carry out the above operator-adding steps
for each of the operators under consideration. Besides, users

TABLE IV
RUNTIME PERFORMANCE OF DNNSAT UNDER THE FLOPS CONSTRAINT

WITH OPTIMIZATION TECHNIQUES OF PARALLEL SOLVING, TINY
SUBSPACES, AND INTERVAL FILTERING.

Subspace Number of Threads
Size Interval Filtering OFF Interval Filtering ON

1 4 8 12 1 4 8 12
Equipartition 1.0 9.3 26.7 51.9 17892.1 17,730.6 17,572.3 15,496.8

(19681.0s) (2116.2s) (737.1s) (379.2s) (1.1s) (1.11s) (1.12s) (1.27s)
1000 8.8 28.9 50.3 68.5 1640.1 5046.4 7872.5 9840.6

(2236.4s) (681.0s) (391.2s) (287.3s) (12.0s) (3.9s) (2.5s) (2.0s)
500 10.5 33.7 57.0 77.0 841.0 2659.6 4100.2 5319.2

(1874.3s) (584.0s) (345.2s) (255.6s) (23.4s) (7.4s) (4.8s) (3.7s)
100 12.1 38.9 63.2 83.0 169.8 560.7 882.5 1063.8

(1626.5s) (505.9s) (311.4s) (237.1s) (115.9s) (35.1s) (22.3s) (18.5s)
50 11.6 37.6 60.0 76.0 85.2 258.2 441.2 533.3

(1696.6s) (523.4s) (328.0s) (258.9s) (231.0s) (76.2s) (44.6s) (36.9s)
10 7.6 25.7 40.0 48.9 17.1 57.3 89.5 107.1

(2589.6s) (765.8s) (492.0s) (402.4s) (1150.9s) (343.4s) (219.9s) (183.7s)
Note: The two values in a cell represent the speedup and execution time (in seconds).

may need to reimplement the graph traversal to compute more
accurate current resource consumption by employing additional
information, including visited operators, edges, and previously
calculated resource consumption.

B. Threats to Validity

We discuss the following threats to the validity of our work:
1) Resource cost functions. We examine the source code

of frameworks to extract the resource cost functions
of DL operators for inferring resource usage. However,
the implementation of operators can call proprietary
NVIDIA CUDA, cuDNN, or cuBLAS APIs, which may
introduce some fluctuations in the cost functions. For
example, cudnnConvolutionForward() could use
temporary GPU memory called workspace to improve
the runtime performance. Nevertheless, the workspace
size is convolution algorithm-dependent and thus unpre-
dictable. We mitigated this threat by refining the resource
cost functions after carefully referring to the NVIDIA
development documentation, dynamically profiling the
APIs using NVIDIA nvprof, and analyzing the framework
runtime logs.

2) Hidden factors. There are a number of hidden frame-
work factors that can observably affect the GPU memory
consumption and inference time of a DL model. For
example, the GPU memory consumption has compli-
cated dependencies on the allocation policy (e.g., tensor
fragmentation, alignment, garbage collection, and reser-
vation), internal usage (e.g., CUDA context), operator
scheduling, etc. To mitigate this threat, we referred to
the framework source code carefully to identify hidden
factors. However, it is very challenging to directly
formulate all such factors (e.g., garbage collection and
reservation) analytically. Hence, DnnSAT conservatively
calculates the resource usage to reduce the influence
of hidden factors. For instance, DnnSAT adopts a sim-
plified yet common approach to accumulate the GPU
memory required by each operator under only forward
propagation (Section IV-B), which computes a smaller
value than the actual GPU memory consumption. If the
computed value (a conservative value) already exceeds



the GPU memory upper bound, the corresponding model
configuration indeed does not satisfy the constraint.
Therefore, valid (satisfiable) model configurations will
not be discarded. However, some invalid (unsatisfiable)
model configurations may not be eliminated correctly due
to the inaccuracy in the calculation of hidden factors. In
the experiment on VGG-16 (Section V-B), we notice that
on average 9.53% of model configurations are actually
invalid under four constraints yet passed DnnSAT, but no
valid model configurations are discarded. In the future,
we will identify more hidden factors and design more
accurate restriction functions to obtain more precise
results.

3) SMT solving. The simple and non-intrusive integration
with existing AutoML tools is to run DnnSAT in the
interactive mode. According to the experimental results
in Section V, the cost of solving one model configuration
is very low. In the pruning mode, it takes a longer time
for constraint solving because of the large configuration
space. For example, Table IV in SectionV-C shows that
DnnSAT spends 19681 seconds (about 5.5 hours) to
solve the 24000-configuration space of Seq2Seq. We
currently propose some effective optimization techniques
in Section IV-E to increase the scalability of constraint
solving: (1) DnnSAT supports parallel and distributed
solving (via Spark), in which the full configuration
space can be partitioned into any number of independent
subspaces and solved concurrently by different threads
and machines; (2) the use of tiny subspaces reduces
the complexity of solving individual subspaces, removes
the computation skew across subspaces, balances the
workload among threads, and thus avoids stragglers (i.e.,
threads that take an unusually long time to finish) [40]; (3)
interval filtering can further reduce the solving complexity
significantly if the restriction function of a constraint is
monotonic with regard to some hyperparameters. The
experimental results in Table IV confirm the strong
effectiveness of our optimizations. However, as the
number of hyperparameters and their domains increase,
the configuration space can enlarge exponentially, thus
the computational complexity may still exceed the
capabilities of an SMT solver. In addition to advancing
the solvers, it is possible to tackle this problem by trying
larger-scale distributed solving with better load balancing.

VII. RELATED WORK

Many software systems are highly configurable by providing
a rich set of configuration options. Configuration options
are also considered as features in the software product line
context. However, it is very time-consuming and error-prone
for manual configuration tuning due to a large number of
option combinations. Software engineering researchers have
proposed various approaches to predicting the performance
of configurable systems [44], [46], [47], checking the con-
sistency of configurations [48]–[51], and understanding how
configuration options and their interactions influence system

performance [52], [53]. Like traditional software systems,
DL models are also highly configurable. In this work, we
analyze DL models and propose to optimize the configuration
exploration (AutoML) through resource-guided space reduction.

Google Vizier [54] and Microsoft HyperDrive [55] are
representative AutoML systems, which concentrate more on the
system design and operation. Hyperband [2] is an HPO search
method and focuses on speeding up random search through
adaptive resource allocation and early stopping. ENAS [3] uses
a controller to discover various neural architectures and search
for the optimal one. These methods and systems are not aware
of the constraints imposed by computational resources, which
can cause an expensive waste of shared resources. Our work
can help them efficiently reduce the configuration space ahead
of time and accelerate training.

The authors of [56], [57] analyzed the resource budget
constraint for HPO. However, they encoded the budget into the
algorithm instead of formulating explicit resource constraints,
and thus their method cannot be applied to other AutoML
methods directly. Hernández-Lobato et al. [58] considered
constraints for Bayesian Optimization, but the work is for a
specific algorithm. Gordon et al. [59] proposed an approach to
automate the design of neural structures via a resource-weighted
sparsifying regularizer. AMS [60] generated the AutoML search
space from an unordered set of API components. Our work
formulates common constraints imposed by resources and uses
a unified analytic approach to eliminate the unsatisfiable model
configurations in advance.

There have been many program analysis methods [61]–[64]
to determine the quantitative resource usage (e.g., memory and
heap space) of computer programs. For example, Hoffmann et
al. [61] used the automatic amortized resource analysis (AARA)
technique in analyzing the worst-case resource consumption
of arbitrary multivariate polynomial functions. Jost et al. [64]
employed a type-based approach by exploiting linearity and
focusing on the reference number to an object. However, such
work usually targets higher-order functional programs and
cannot be directly applied to DL models because of the wide
differences in the representation structures. Our work proposes
an analytic and framework-independent cost model to infer
the resource consumption of a DL model and utilizes an SMT
solver to obtain all the satisfiable model configurations.

VIII. CONCLUSION

In this paper, we have presented DnnSAT, a resource-guided
AutoML approach for deep learning models to efficiently
reduce the configuration space under computational constraints.
Powered by DnnSAT, we demonstrate that commonly used
AutoML methods can efficiently prune unsatisfiable model
configurations ahead of time to avoid unnecessary training costs
and achieve significant speedups. We believe that DnnSAT can
make AutoML more practical in a real-world environment with
constrained resources.
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M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. IEEE Press, 2012,
pp. 167–177.

[47] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov,
K. Czarnecki, A. Wasowski, and H. Yu, “Data-efficient performance
learning for configurable systems,” Empirical Softw. Engg., vol. 23,
no. 3, pp. 1826–1867, Jun. 2018. [Online]. Available: https:
//doi.org/10.1007/s10664-017-9573-6

[48] D. Batory, D. Benavides, and A. Ruiz-Cortes, “Automated analysis of
feature models: Challenges ahead,” Commun. ACM, vol. 49, no. 12, pp.
45–47, Dec. 2006. [Online]. Available: https://doi.org/10.1145/1183236.
1183264

[49] J. Sun, H. Zhang, Y. Fang, and L. Wang, “Formal semantics and
verification for feature modeling,” in IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS’05), June 2005,
pp. 303–312.

[50] K. Czarnecki and C. Kim, “Cardinality-based feature modeling and
constraints : A progress report,” 2005.

[51] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, pp. 615–636, 09 2010.

[52] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
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