
Identifying Linked Incidents in Large-Scale Online Service
Systems

Yujun Chen∗
Microsoft Research

Beijing, China

Xian Yang
Hong Kong Baptist University

Hong Kong, China

Hang Dong
Microsoft Research

Beijing, China

Xiaoting He∗
Chinese Academy of Sciences

Beijing, China

Hongyu Zhang
The University of Newcastle

NSW, Australia

Qingwei Lin†
Microsoft Research

Beijing, China

Junjie Chen
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Pu Zhao
Yu Kang†

Microsoft Research
Beijing, China

Feng Gao
Zhangwei Xu
Microsoft Azure
Redmond, USA

Dongmei Zhang
Microsoft Research

Beijing, China

ABSTRACT
In large-scale online service systems, incidents occur frequently
due to a variety of causes, from updates of software and hard-
ware to changes in operation environment. These incidents could
significantly degrade system’s availability and customers’ satis-
faction. Some incidents are linked because they are duplicate or
inter-related. The linked incidents can greatly help on-call engi-
neers find mitigation solutions and identify the root causes. In this
work, we investigate the incidents and their links in a representa-
tive real-world incident management (IcM) system. Based on the
identified indicators of linked incidents, we further propose LiDAR
(Linked Incident identification with DAta-driven Representation), a
deep learning based approach to incident linking. More specifically,
we incorporate the textual description of incidents and structural
information extracted from historical linked incidents to identify
possible links among a large number of incidents. To show the effec-
tiveness of our method, we apply our method to a real-world IcM
system and find that our method outperforms other state-of-the-art
methods.

∗Work done during internship at Microsoft Research Asia.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409768

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Computer systems organization→ Cloud computing.

KEYWORDS
Linked incidents, incident management, online service system
ACM Reference Format:
Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei
Lin, Junjie Chen, Pu Zhao, Yu Kang, Feng Gao, Zhangwei Xu, and Dongmei
Zhang. 2020. Identifying Linked Incidents in Large-Scale Online Service
Systems. In Proceedings of the 28th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3368089.3409768

1 INTRODUCTION
Incidents, or unplanned interruptions or outages of the service, are
inevitable in large and complex online service systems [7, 8, 10, 16].
In practice, system failures keep occurring due to frequent updates
of system components, changes in operation environment, mobility
of devices, etc. Some devastating incidents in large online service
systems can significantly degrade system availability and drastically
affect user experiences. For example, the estimated cost of an one-
hour downtime for Amazon.com on Prime Day in 2018 (its biggest
sale event of the year) is up to $100 million1. Therefore, many cloud
service systems build the incident management (IcM) system to
manage incidents and ensure high quality services [7, 23].

When an incident occurs, on-call engineers (OCE) will check
the system logs and conduct troubleshooting actions [23]. Mean-
while, engineers will sometimes link several inter-related incidents
for efficient and effective diagnosis. For example, a few incidents
are usually reported together due to system dependencies, where
1https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-
millions-in-lost-sales-2018-7

https://doi.org/10.1145/3368089.3409768
https://doi.org/10.1145/3368089.3409768
Amazon.com

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao, Y. Kang, F. Gao, Z. Xu, D. Zhang

mitigating one incident can well resolve several other incidents.
Moreover, the links may represent other relevant information such
as re-occurrence relation or co-occurrence relation between two
incidents.

Detecting and recording such related incidents are valuable for
incident diagnosis. Large online systems are composed of many
services, with these services coupling with each other heavily. The
incidents may happen in one service and are actually caused by
problems in another service. Incident links discovered by OCEs
can provide strong evidence on such coupling structure and bring
insights to fault diagnosis.

Some traditional techniques used for duplicate bug detection can
partially be applied to the incident linkage problem in online ser-
vice systems [9, 29, 33]. For example, natural language processing
techniques used for mining textual information in bug reports can
help us retrieve similar bug reports [29, 33]. Extending information
retrieval framework with textual information is more effective in
locating similar bug reports [38]. However, linking incidents of
large-scale online service systems remains a complicated problem
and contains several new challenges:

• First, incidents are not only manually written by reporters,
but are also generated automatically by monitors [7]. The hy-
brid reporting interface in IcM system provides a convenient
and reasonable tunnel for collecting useful information for
investigating the incident, but these reports are intertwined
with different patterns of textual description, while many tra-
ditional bug duplicate methods only focus on human-written
bug reports [28, 40].

• Second, incidents with distinct descriptions may be linked
either because they share the same cause or they are se-
quentially happened. For example, a failure in the physical
network will cause the failure of the virtual network, and
both of these two failures will be reported as incidents. Miti-
gating the source incident will automatically mitigate all the
other incidents caused by this incident. However, traditional
text-based duplicate bug detection methods will label these
two failures as different incidents [21]. In practice, OCEs
tend to link two incidents together for understanding and
fixing the problems.

• Third, the dependency structure is neither known nor fixed
in large online service systems: the inter-dependency among
different services and components could be highly complex,
and this inter-dependency keeps changing as there are fre-
quent updates in the system. Therefore, it is hard to use
the dependency graph to identify linked incidents as done
in [30]. To our knowledge, no previous work has been con-
ducted on such a link identification problemwith component
dependencies, which is especially important for large online
service systems.

In this paper, we investigate the underlying links among the
incidents in large online service systems. We propose an effec-
tive framework for predicting linked incidents, which is called
LiDAR (Linked Incident identification with DAta-driven Represen-
tation). LiDAR is a scalable framework that can identify possible
links among a large number of incidents using both semantic in-
formation in incident description and the dependency structure

Online Service
System

Engineers

Monitors

Incident
Reporting

Incident
Triage

Incident
Linkage

Root Cause
 Analysis

OCEs

IcM

Incident Mitigation

Link
Identification

Figure 1: The workflow of an incident management system
in Microsoft.

of the online service system. For the semantic information, we
use a deep textual embedding module to learn the semantic infor-
mation, which is able to consistently encode the same symptom
reported from both automated monitors (expressed in a structured
pattern) and human engineers (expressed in a natural language).
Meanwhile, we use a representation learning approach to capture
the inter-dependency relationship among different components. At
last, we learn the links among incidents by combining both the
incident semantics and the service dependency representation.

Our major contributions are as follows:
(1) We investigate the linked incidents problem in an incident

management system of large online service system.
(2) We construct a component dependency network and adopt

a network representation learning technique to encode the
components into a latent feature space. The component de-
pendency network is extracted from historical incident links
and is embedded to preserve the network structural infor-
mation.

(3) We encode the textual description of incidents with an ad-
vanced deep learning model to capture the semantic features
for incident link identification.

(4) By utilizing the inter-dependency among components as well
as the textual information in the descriptions of incidents,
we develop an integrated framework that can effectively
identify possible linked incidents.

The remainder of this paper is as follows: an overview on the
linked incidents of a large online service system in Microsoft is
shown in Section 2. In Section 3, we introduce our proposed frame-
work for incident link identification in IcM systems for large online
service systems. Experimental results of our method on a real-world
IcM system and an extensive case study are shown in Section 4.
We discuss lessons learned in Section 5, summarize related work in
Section 6, and conclude our work in Section 7.

2 OVERVIEW OF LINKED INCIDENTS IN AN
ICM SYSTEM

2.1 The Incident Management System in
Microsoft

The workflow of the investigated IcM system is shown in Fig. 1.
To detect incidents, various system monitors and alerting tools
are deployed at different levels of a real-world large online service

Identifying Linked Incidents in Large-Scale Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: An illustrative of different types of linkage.

Parent Title Parent Component Child Title Child Component Link Type
Auto-monitoring Database job
report has not updated

BBB\CCCDev Database report was missing
since this morning

CCC\CCCInternal Duplicate

Auto-monitoring Database job
report has not updated

AAA\Triage Multiple devices failed to re-
sponse at Activity

DDD\Not Many Sequentially Related

Machine Monitoring system
has job failing with system er-
rors (code #50).

EEE\Expert-EN Alerting fromMachineMonitor-
ing system in the Pacific Area

AAA\Triage Sequentially Related

Components

Incidents

Service 1
Service 2

Figure 2: Illustration of the system structure of a large on-
line service system.

system in Microsoft. As shown in Fig. 2, the system is constructed
with a multi-layer structure.

Microsoft provides thousands of online services for billions of
users all around the world. In this section, we first provide an
overview of the incident management process in a large online
service system from Microsoft and discuss the potential of using
incident linkage information to accelerate incident mitigation and
root cause analysis. Then, we conduct a detailed investigation on
incident links, such as conditions when incidents are linked and
examples of linked incidents. Finally, we will introduce the hierar-
chical structure of the system, and show the importance of correctly
identifying cross-component incident links. Due to privacy policies
of Microsoft, we have deliberately masked sensitive data through-
out this paper.

In the IcM system, each application is composed of several ser-
vices and each service is composed of several components. Each
component will detect if an element fails to meet its expected func-
tionality. If an element fails, an incident report will be automatically
generated using the pre-defined patterns filled with the correspond-
ing environment variables, and will be reported to the IcM system.
Meanwhile, the IcM system usually allows its users to manually
submit incident reports with customized descriptions to the system,
because there are always failure situations that have impact on
customers but cannot be detected by existing monitors.

The creation of an incident in the IcM system would immediately
trigger the triage process, where engineers in the IcM system would
investigate and find the correct responsible component to take over
the incidents. Once the responsible component of the incident is
found, OCEs within the assigned component would try different
actions to mitigate the incident. After the incident is successfully

Pe
rc

en
ta

ge
 o

f r
ep

or
te

d
Li

nk
ed

 In
ci

de
nt

0

0.25

0.5

0.75

1

A B C D E F

machine reported human reported

Figure 3: Percentage of human andmachine reported linked
incidents in different applications (Application A-F)

mitigated, the engineers in the team will conduct postmortem anal-
ysis on the root cause of this incident. They will also determine
whether this incident should be linked to other existing incidents,
and label all the linked incidents accordingly. This is also known as
the incident linkage step.

Through the whole process, the incident mitigation step usually
consumes a lot of time and labor resources. This consumption can
be greatly reduced by transferring past knowledge and solutions
to current incidents by identifying the links. Therefore, this work
focuses on identifying incident links for OCEs (shown as the dashed
line in Figure 1) so as to quickly find the mitigation solution as well
as to figure out the right root cause of the incident.

2.2 Incident Links
In the IcM system, there are a variety of incidents linked by on-call
engineers. We illustrate some incident links in Table 1. In general,
incidents are linked due to duplicate descriptions or relatedness.

2.2.1 Duplicate Links. Duplicate links are those linked incidents
that refer to the same malfunction case described from the same
or different perspectives. For example, the first line in Table 1 is
a typical duplicate link. As we have mentioned in the previous
section, incidents are reported by both human and online monitors,
the linguistic style of whose descriptions for the same incident may
be quite different.

The first line of Table 1 shows the linked incidents, where the
parent and child incident title are similar, but with different styles
of description. In our system, parent incidents refer to incidents
investigated by engineers earlier , while child refers to those investi-
gated later. The parent incident title starts with "Auto-monitoring",
which indicates that the report is sent by a monitor automatically.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao, Y. Kang, F. Gao, Z. Xu, D. Zhang

I5

I1 I3 I4

I6

......
1456 Incidents

......
5 Incidents

......
21 Incidents

I2 I4

Figure 4: An illustration of linked incidents.

While the child incident is a simple description about a missing
database report, which is probably reported by a human engineer.
Further, these two incidents happened at different components
mostly because their reporting sources are from different services.
After investigation, it has been found that both of the two incidents
describe the database missing report issue, but they are described
in different ways and come from different aspects of the system. As
shown in Figure 3, for the six applications in our IcM system, at
least around 10% of the linked incidents are related to human re-
ported incidents. Therefore, proposing approaches that can capture
both human and machine reported incidents is helpful for finding
mitigation methods and root cause analysis.

2.2.2 Sequentially Related Links. The second type of link is when
the incidents happen sequentially. In large online service systems,
different components work jointly to support a number of online
services. It is common that one incident that indicates the malfunc-
tion of some parts of the system may also affect the functionality
of other parts, which leads to incidents that happen sequentially.
For example, if the storage of a cloud system broke down, many
products running on cloud storage would probably be impacted. If
we treat these incidents independently, it will largely ignore the
rich information of the functional inter-dependencies [39, 42, 43]. In
practice, linking these incidents together can also significantly help
engineers understand specific incidents and better fix the incidents.

Figure 4 gives an illustrative example of a series of sequentially
reported incidents in the investigated large online system. In Fig-
ure 4, I1 is an outage with regard to the cooling condition in a
data center, which is also an incident with high impact. It directly
causes a great number of incidents. Among them, I2 is also an im-
pactful incident related to the cooling system, and it causes six
other incidents. Similarly, I3 is caused by I2, and causes 22 incidents
including I4. Finally, incident I4 causes two alertings: I5 and I6. This
type of linked incident series is quite common in the system, which
may substantially reflect the possible operational and functional
dependency on different components, services and projects.

Among all incidents presented in Figure 4, the textual description
of these incidents may be distinct, and the components these linked
incidents belong to can be quite different. All these incidents hap-
pened sequentially (one after another). Traditional bug de-duplicate
methods have not considered this type of links.

2.3 Cross-Component Links
In the current IcM system, a great proportion of the incident links
are cross-component links, meaning that the two linked incidents

Table 2: Title of the incidents in Figure 4

Incident Title
I1 Cooling system is malfunctioned and impacted multiple ser-

vices in the SA area
I2 SA area Datacenter Experiencing Cooling Issues
I3 Alertings reaches threshold, Temperature Metric Api is over-

load
I4 Database Account Login Error and the dependency compo-

nents Error
I5 Alerting: dependency component analysis meets errors
I6 Alerting: Web Api has delays.

belong to different components, which may be either duplicate links
or related links. These links are strong indicators of the underlying
component structure, which keeps evolving due to frequent updates
in the system. For example, in the following case, Component A and
Component B are related by the sequential link between Incident A
and Incident B. Such cases of cross-component incident links occur
frequently in our investigated system. Previous bug de-duplicate
methods mainly focus on incidents happening at the same compo-
nent and fail to deal with this situation. In our attempt to predict
incident links, we consider characterizing this complex component
dependency structure in addition to utilizing the textual description
of incidents.

Incident A: Application A encountered a network outage.
Component A: Network Controller
—————————–
Incident B: Storage timeouts in Region WU.
Component B: Web Service Team

Overall, incident linking is both a challenging and important
function in an IcM system. To correctly predict true links among
incidents, we not only need to effectively learn the semantic rep-
resentation of a sentence, but also need to model the system com-
ponent dependency structure with high quality. In our work, we
consider both semantic and component dependency features to
learn incident links.

3 PROPOSED APPROACH
To deal with different types of incident links, we propose LiDAR,
a deep learning based model for identifying incident links. In this
section, we will first introduce the overall structure of the proposed
model, which is composed of two modules dealing with the textual
descriptions and the component dependency information, respec-
tively. Then we will describe each module in detail. Finally, the
integration combining these two modules for link identification
will be described.

3.1 An Overview
The overall structure of the proposed method, LiDAR, is shown
in Figure 5. To consider both the textual information and system
structure information, we extract two features from each incident
for learning: the description of incident in natural language and
the corresponding component that is responsible for the incident.

Identifying Linked Incidents in Large-Scale Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

.

.

.

.

.

.

...
.
.
.

.

.

.
...

W
eight

Distance
measXre

IQcLdeQW 1

IQcLdeQW 2

Te[tXal encoding modXle Component embedding modXle

Cooling

s\stem

 is

malfXnction

and

impacted

mXltiple

...

SA

 area

Datacenter

E[perience

 Cooling

IssXes

.

...

ConYolXtional la\er Zith
mXltiple filter Zidths and

featXre maps

Ma[-oYer-time
pooling+

Deep neXral netZork

Te[t 1
Te[t 2

C
om

ponent 1

Sampling strateg\Skip-gram model

C
om

ponent 2

Word embedding

Figure 5: The overview framework of LiDAR. The model mainly consists of two modules: textual embedding module and
component representation learning module.

These two features are fed into two modules: the textual em-
bedding module and the component representation module. These
two modules are aimed to extract the textual information and the
component dependency information, respectively.

First, to deal with the challenges brought by textual description
from different sources, we introduce a text encoder that can grasp
the semantic representation of the incident description rather than
textual only information. The textual module is trained to map the
textual description into a high dimensional semantic representation.

Then, to understand the system architecture and dependencies,
component representation module is realized with a novel network
representation learning approach. Each component in the system
is learned to be embedded into a low-dimensional latent space
according to their correlation with other components according
to historical links. Afterwards, the component-level similarity is
obtained by the similarity of these component embedded vectors,
capturing both the similarity in structural position as well as the
graph distance between two components.

After calculating similarities from these two distinct modules, we
integrate them together to obtain the final score and set a threshold
for link identification.

3.2 Modeling Textual Description
An incident title describes the symptom of the incident, including
the location, detailed occurring environment, impacted services and
customers, etc. This kind of comprehensive information is of great
help in finding potential links with other incidents. Here we learn
the relationship between two incidents’ descriptions by adopting a
representation approach using deep neural network.

Themodule for textual information extraction is a representation
learning process in nature, which learns a mapping from texts in
natural language into a representative numerical vector in the latent
space, and pushes the linked incidents close to each other in this
space. To better extract the semantic features, we use a three-stage
textual representation method, including word-level embedding,
deep feature mapping, and semantic comprehension. Specifically,
word-level embedding is used for learning textual information,
while the other two stages aim at learning higher level semantic
features for each title.

In the first stage, the textual description in natural language
is embedded word-by-word as word vectors using FastText [25].
This method provides a scalable solution to generate pre-trained
word vectors on infrequent text by using sub-word vectors. Each
incident title is then encoded as a numerical matrix of dimension
L × D where L is the number of effective words in the description,

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao, Y. Kang, F. Gao, Z. Xu, D. Zhang

and D is the length of the vector for each word, which is also the
dimension we want to preserve in this encoding stage.

In the second stage, multiple 1-D convolutional kernels and a
max-over-time pooling layer are applied on the matrix obtained
from the first stage. With the application of multiple convolution
kernels of different sizes, we can get multiple feature maps extract-
ing the correlation among the words in different lengths of n-grams.
The max-over-time pooling layer selects the most representative n-
grams in each channel, and thus provides a succinct representation
for all the meaningful n-grams of the description.

In the third stage, a neural network with fully-connected layers
is adopted to learn the useful relations among the representative
n-grams, and outputs the learned representative vector for the
description of each incident.

To learn the matching degree between the descriptions of inci-
dents, this encoding module is trained based on a Siamese neural
network [20], which is a state-of-the-art method for learning entity
matching tasks. It consists of two twin neural networks, one for
each link description in a pair of incidents with known relation.
These two neural networks are identical in structure, sharing the
same configuration with the same parameters and weights [18].
This kind of structure focuses on learning embeddings in deep layer
that places the same descriptions closer, and can learn underlying
semantics. With the help of such a Siamese neural network, the en-
coding schemes are well-learned in a supervised fashion according
to the incident link labels.

3.3 Modeling Component Dependency
The component dependency structure is learned by treating the
components and their dependency as a network. Historical links
are used to inspect component relations, and these components
are then learned to be represented by a low dimensional vector
retaining their structural information in the dependency network.

3.3.1 Construction of Component Dependency Network. In large
online service systems, a component is usually responsible for a
certain kind of incidents. For example, the database component is
likely to encounter incidents such as running out of memory, no
response to query, etc. To some extent, component information
provides strong hints on possible links over the incidents.

The component dependency network is constructed in the fol-
lowing way: For all the historical incident links up to a specific time
point, we find all the corresponding components of the involved
incidents. Then for each pair of different components, connect them
with an edge if they each have at least one incident linked to each
other. A component dependency network G = (V,E) is thus con-
structed with V = {vi } representing the set of components, and E
representing the set of existence of historical incident links between
every two components.

3.3.2 Encoding Component Dependency Network. The component
dependency will be encoded into a network representation, which
is in essence a mapping function from all the component V in the
component dependency network G to a continuous d−dimensional
feature space д. The primary challenge in this domain is finding a
way to represent, or encode, the network structure so that it can
be easily exploited by machine learning models. Here we utilize

node2vec [14], an algorithmic framework for learning continuous
feature representations for nodes in networks. Based on the estab-
lished component dependency network, we first adopt the 2-nd
order random walk sampling strategy in node2vec and obtain se-
quences of components. Then, the skip-gram representation learn-
ing framework [26] is adopted to encode components as dense
low-dimensional representations.

Finally, the distance (or similarity) between two given compo-
nents in the dependency network can be easily calculated based on
the output of the component representation learning module.

3.4 Combining Structural and Textual
Information

Both the textual embedding and the component representation
learningwill output its own vector representation for different types
of information. Based on these learned representations, we can
calculate the linkage confidence score s(i, j) for any two incidents i
and j:

s(i, j) = α ∗ scomp(i, j) + (1 − α) ∗ stext(i, j) (1)

where scomp and stext represent the similarity calculated using the
vector representations from the component representation learning
module and the textual embedding module respectively. Here the
similarity score scomp and stext is calculated by the cosine distance
in corresponding semantic space. The larger s(i, j) is, the more likely
that there exists a link between incidents i and j. In practice, we
can identify links ℓ(i, j) by a threshold γ cutting the score s into a
binary response:

ℓ(i, j) =

{
1 if s > γ
0 otherwise.

(2)

This threshold parameter γ in (2) and the weight parameter α in
(1) can be chosen according to the prediction performance on a
separate validation set. The validation set is selected as 5% incident
links from the training set.

4 EXPERIMENTS
4.1 Dataset and Setup
4.1.1 Dataset. Our proposed incident linking framework is eval-
uated in the large online service system investigated in Section 2.
We collect all the linked incidents from 465 different services, in-
cluding 1100 components in the evaluated IcM system. We split
the training and testing set by the reported time of incident links.
More specifically, we build the training set with incident links from
January 01, 2017 to August 31, 2018 and the testing set with links
from September 01, 2018 to October 31, 2018.

4.1.2 Setup. In the component representation learningmodule, the
component dependency network is established using only training
data. We set the embedded dimension dC = 64, walks per node
r = 10, walk length l = 20, and walking parameters p = 2.3,q = 1.
In the textual embedding module, the convolutional layer uses
three sets of convolution kernels with 3 different widths (3, 4 and
5), each of which has 100 kernels. The preserved word embedding
dimension is 300, and the number of training epochs is 30.

Identifying Linked Incidents in Large-Scale Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 3: Link identification results

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

DWEN
F1 0.9271 0.7288 0.7963 0.9922 0.6745 0.6455 0.9314 0.7372 0.6133 0.8765

Precision 0.9145 0.7500 0.7679 0.9958 0.5115 0.6171 0.9392 0.6914 0.7617 0.8899
Recall 0.9400 0.7087 0.8269 0.9886 0.9899 0.6766 0.9237 0.7894 0.5133 0.8635

DBTM
F1 0.9660 0.7201 0.7869 0.9468 0.9816 0.4472 0.9217 0.7754 0.2854 0.9398

Precision 0.9948 0.9441 0.8215 0.9992 0.9947 0.7940 0.9852 0.9768 0.9209 0.9610
Recall 0.9388 0.5802 0.7551 0.8996 0.9947 0.3112 0.8658 0.6428 0.1688 0.9195

Simple
F1 0.8164 0.6944 0.7806 0.8202 0.5854 0.5268 0.8091 0.8077 0.6755 0.8036

Precision 0.8474 0.8026 0.7246 0.8826 0.7273 0.6778 0.7749 0.7434 0.5466 0.7763
Recall 0.7876 0.6119 0.8460 0.7660 0.4898 0.4308 0.8465 0.8842 0.8839 0.8329

LiDAR-T
F1 0.9417 0.8031 0.9378 0.9958 0.9735 0.6756 0.9697 0.9168 0.6838 0.9350

Precision 0.9408 0.7365 0.9229 0.9993 0.9892 0.5411 0.9923 0.9377 0.6045 0.9756
Recall 0.9426 0.8829 0.9532 0.9923 0.9583 0.8991 0.9481 0.8968 0.7870 0.8976

LiDAR-C
F1 0.9888 0.9334 0.9153 0.9986 0.7253 0.8772 0.9848 0.9795 0.7677 0.9166

Precision 0.9951 0.9272 0.8735 0.9982 0.5690 0.7815 0.9806 0.9738 0.6583 0.8503
Recal 0.9826 0.9397 0.9613 0.9990 0.9998 0.9996 0.9890 0.9852 0.9207 0.9941

LiDAR
F1 0.9890 0.9495 0.9512 0.9988 0.9924 0.8877 0.9877 0.9820 0.7698 0.9397

Precision 0.9995 0.9647 0.9528 0.9988 0.9849 0.8725 0.9858 0.9773 0.6646 0.9553
Recall 0.9787 0.9348 0.9496 0.9988 0.9999 0.9034 0.9896 0.9867 0.9145 0.9246

Our study is conducted on Ubuntu 16.04 with 24-core Dual-Intel
Xeon E5-2690 v3 CPU (2.60GHz),220 GB memory, and a single
NVIDIA Tesla K80 GPU accelerator.

4.2 Incident Linkage
To evaluate the performance of the proposed incident linkage
method, LiDAR, we test our method on ten (P1, P2, ..., P10) applica-
tions in Microsoft, and adopt several classical metrics for evaluating
classification tasks.

In the experiment, LiDAR is compared with the following state-
of-the-art and baseline methods:

(1) DWEN[3]: a deep learning based duplicate bug report detec-
tion method, which extracts text features from bug reports
and builds a neural network model for predicting whether
or not two bug reports are duplicate.

(2) DBTM[27]: an information retrieval based duplicate bug
report detection method, which models a bug report as a
textual document describing certain technical issue(s), and
models duplicate bug reports as the ones about the same tech-
nical issue(s). It takes advantage of both IR-based features
and topic-based features.

(3) Simple: a naive approach which uses the historical linked
components for identifyingwhether two incidents belongs to
the same component, if they belong to the same component
then these two incidents are linked.

(4) LiDAR-T: This is the textual part of our proposed method.
Only textual information is used for prediction.

(5) LiDAR-C: This is the structure part of our proposed method,
only component representation information is used for pre-
diction.

(6) LiDAR: This is our proposed method.

The comparison results are shown in Table 3. The ten subject
applications are labeled as P1, P2, ..., P10 in the table. It is evident
that our method can outperform other state-of-the-art duplicate
bug detection methods in the incident linkage task among all ten
applications. Moreover, except for LiDAR, DWEN has obtained the
highest precision among all other comparing methods in all ten
different applications we tested. The information retrieval based
method DBTM has low recall values compared with other meth-
ods. This is mainly because reports for the same incident could use
different descriptions in our IcM system, but the DBTM method is
mostly text based. If some linked incidents do not have the same
words in their descriptions, the text-based methods could fail to
detect them. Meanwhile, comparing to other baseline methods,
alternative methods LiDAR-T and LiDAR-C can obtain a signifi-
cant performance improvements in all subject applications. We
can further find that the overall performance of LiDAR is better
than LiDAR-T and LiDAR-C, because combining the component
information and textual information can compensate each other
and provide better performance.

4.3 Human-Machine Incident Linkage
An IcM system contains incidents reports from two sources: human
and machine. Incidents from different sources use quite different
writing styles.

Although most of the reported links are between machine re-
ported incidents (machine-machine links), practitioners pay great
attention to investigating links between human reported incidents
and machine reported ones (human-machine links) to improve the
system [6]. Many text-based duplicate bug report detection meth-
ods, such as DBTM [27], fail to deal with this scenario. Our proposed

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao, Y. Kang, F. Gao, Z. Xu, D. Zhang

Table 4: Results on human-machine and machine-machine
links. (H-M Links represent human-machine links, M-M
Links represent machine-machine links.)

Link Type F1 Precision

DWEN H-M Links 0.6043 0.8370
M-M Links 0.9756 0.9986

LiDAR H-M Links 0.7584 0.8022
M-M Links 0.9981 0.9975

Figure 6: Visualization of embedded component vectors
from 7 services.

approach is capable of identifying both types of links by incorpo-
rating different sources of information.

To evaluate the performance for human-machine links, we ran-
domly select 10,000 human-machine links from our IcM system.
Meanwhile, we select 10,000 machine-machine links in comparison.
The results are listed in Table 4. As confirmed by previous empir-
ical studies [7], deep learning based methods can obtain the best
performance among all other methods. Here we list both LiDAR
and DWEN’s performance for human-machine link prediction task.
Due to the space limit, we only listed the DWEN baseline results in
Table 4. According to Table 4, both LiDAR and DWEN can obtain
good performance in machine reported incident linkages, over 97
percent to be specific. This is because machine reported incidents
share almost the same template and descriptive patterns, which can
easily be learned by both models. However, for the human reported
incidents, it is hard to learn the descriptive patterns. The LiDAR
method is able to understand the semantics of incident descrip-
tions other than the textual information, and thus can help link
the human reported incidents better. As a result, LiDAR obtains a
significant performance improvement comparing to DWEN in the
human-machine link prediction task.

4.4 Effectiveness of Component
Representation Learning

Apart from the performance evaluation we have shown in Table 3,
we have also investigated the effectiveness of component represen-
tation learning. Ideally, the encoded component vector should give
a good representation of the component. One way to check the
effectiveness of learned representation is to investigate whether the
component vectors from the same service can be grouped together.

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.5

0.6

0.7

0.8

0.9

1.0

sc
or
e

Figure 7: Sensitivity over hyper-parameter α .

Figure 6 visualizes multiple embedded component vectors with
dimension dC = 64 from the following 7 services: Data Analytics
Service, Database Service, Database Query Service, Extension Ser-
vice, Networking Service, Support Service and Storage Service. To
visualize these 64-d vectors, we apply the t-SNE (t-distributed sto-
chastic neighbor embedding) method [24] to transform the vector
from the high-dimensional space into a two-dimensional space. In
Figure 6, components from the same service are presented in the
same colour. By looking at the spatial distribution of components,
we can find that our embedding method can cluster the components
from the same service together in the latent space. This observation
reflects the effectiveness of component representation learning:
similar components (from the same service) have similar encoded
vectors and are more likely to have incident links.

4.5 Parameter Sensitivity
In our proposed approach, the combination of textual embedding
model and component representation learning model is conducted
by an ensemble step with the parameter α in Equation (1). To
investigate the sensitivity of model performance on the value of
this parameter, we examine the performance of our proposed model
under different α values.

Figure 7 records the values of three performance metrics (i.e.,
precision, recall and F-1 score) obtained in the link identification
task with the value of α varying from 0 to 1. We can see that all of
these three evaluation metrics remain stable under different param-
eter settings. Therefore, we can conclude that LiDAR is parameter
insensitive from this experiment, and thus it is easy to use without
huge effort in tuning the weight parameter.

4.6 Case Study
To evaluate the effectiveness of LiDAR in practice, an extensive
case study is conducted. It turns out that the proposed method can
discover the links between incidents in the large online service
system we discussed in Section 2. A virtual machine reboot case
is chosen for illustration. One day, a population of customers had
experienced the virtual machine reboot issue in the CN area. Ac-
cording to the diagnosis records in the IcM system, this incident

Identifying Linked Incidents in Large-Scale Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 5: A list of candidate incidents that would be potentially linked to an incident happened in CN area

Ranking Component Incident Title Correctness
1 Cloud Service Cache CN component is unhealthy based on on-call testing ✓

2 Service Near Real Time Alerting Detected Error: Suspicious Application A Enumberate
3 Storage Engineering Customer impacted in the CN area for the Storage issues ✓

4 Cloud Service Cache Highlight: CN area is unhelthy because ignored storage alerts ✓

5 Storage Triage CN component is unhealthy based on on-call testing ✓

6 Cloud Service Cache cluster is unhealthy, and runners and organic counters are having issues ✓

7 Storage Triage Hit limit for overall Bandwidth/TPS stamp Throttling on some cluster
8 Storage Triage Storage Roles Quorum Check failed Severely from cluster ✓

9 Cloud Service Cache CN component is unhealthy based on on-call testing. ✓

10 Storage Auto Trouble Shooting Partition does not seem to have been loaded from Primary cluster
11 Cloud Service Cache CN component is unhealthy based on on-call testing ✓

12 Service Near Real Time Alerting Application Credential or Service Principal changed
13 Storage Triage Storage staffs check failed from a CMCluster. ✓

14 Storage Database Table IOM has detected customer impacting incident for Storage in CM Region ✓

15 Storage Triage Storage Roles Quorum Check failed Severely from CMCluster ✓

16 Cloud Service Cache CN component is unhealthy based on on-call testing. ✓

is caused by a network failure. To investigate which incidents are
related to this incident, we collect hundreds of incidents happened
around the reported time of this investigated incident.

The results of identified incidents that are likely to be linked to
the investigated one is shown in Table 5. We list the top 16 most
probable candidates ordered by the calculated linking score using
LiDAR. Having checked with on-call engineers, we find that 12 out
of these 16 incident candidates have links with the investigated
incident (related to the virtual machine rebooting issue). As shown
in the table, top incidents happened at the Cloud Service Cache
and Storage components. These components are recognized to be
commonly affected by network issues: the Cloud Service Cache
depends heavily on network errors, while the performance of stor-
age is largely influenced by the network as well. As previously
shown, the root cause of the investigated incident is a network
failure. Thus, it is quite reasonable to find that incidents from both
the Cloud Service Cache component and Storage component are
more likely to be linked with the investigated incident.

Meanwhile, incidents’ textual descriptions imply rich informa-
tion. Many incidents that are linked to the investigated incident
contain the keyword CN area. This keyword gives the occurring lo-
cation information of the incident, which is obviously an important
indicator of possible links. Therefore, our model can automatically
capture this important textual information for link identification.
Another keyword that many linked incidents have is ‘Storage’. This
observation is consistent with the findings in the above paragraph
that the Storage component plays an important role.

5 LESSONS LEARNED
Modeling semantics information for incidents. In our investi-
gated system, incidents are reported by both engineers and auto-
mated monitors. Different incident formatting patterns from human
and machine lead to different textual distribution in the incident
titles, although the semantic information they try to convey is quite
similar. To learn the linking patterns from diverse textual sources,
we adopt the siamese network based on textual convolutional neural

network (TextCNN), which is proved practical for mining semantics
of natural language [18]. By virtue of the TextCNN framework, our
model can not only learn links between incidents that are similar
in textual descriptions, but also those incidents with different tex-
tual descriptions but the same semantic meaning, i.e., the duplicate
incidents from different sources.
Effectiveness of Components Representation. The underlying
component dependency structure of online service systems is ex-
tremely complex. Although a complete component structure can be
obtained by piecing up the designed system architecture, the actual
functional dependency and common error propagation structure
can hardly be derived purely from these system architectures. There-
fore, we choose a data-driven approach to establish such a compo-
nent dependency graph from an incident perspective. The learned
component dependency graph is therefore more appropriate for
analysis and diagnosis of incidents, and can help us understand
such a large complex system better.
Fusing information from different sources.As explained, both
the textual description and the component structure contain key
information about different aspects of incident links, which moti-
vates us to combine these two sources together in our model. The
TextCNN module can well capture the underlying semantic infor-
mation in the incident title, and the siamese network is capable
of learning to match incidents of all types of links. Moreover, the
learned component representation naturally benefits the identifica-
tion of links across components, including most duplicate links and
related links, and thus can supplement and improve the incident
linking model. By integrating different data types and different
information sources, our proposed model sees a great improvement
in the incident linking task.

6 RELATEDWORK
6.1 Duplicate Bug Retrieval
There have been a number of work in literature investigating the
problem of duplicate bug detection and retrieval. Techniques from

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin, J. Chen, P. Zhao, Y. Kang, F. Gao, Z. Xu, D. Zhang

information retrieval were adopted in early days, focusing on mea-
suring the similarity between newly reported bugs and existing
bug reports. Nature language processing methods have been used
to capture the textual information in the bug reports.

[29] evaluated the feasibility of using Natural Language Process-
ing techniques to help with automate detection of duplicate defect
reports. However, this approach did not consider other categorical
information of bugs such as component and priority. [34] combined
execution info with natural language info to detect duplicate bug
reports. [33] leveraged support vector machines (SVM) to train a dis-
criminative model for duplicate bug report retrieval. [32] extended
a textual similarity measure called BM25F for lengthy structured
reports, and proposed a retrieval function to measure the similarity
between two bug reports. [19] extended previous work by introduc-
ing a range of metrics based on the topic distribution of the issue
reports. [38] combined a traditional information retrieval technique
and a word embedding technique for duplicate bug detection, taking
bug titles, descriptions, as well as bug product/component infor-
mation into consideration. [27] modeled a bug report as a textual
document describing certain technical issue(s) and duplicate bug
reports as the ones about the same technical issue(s), and used this
model to detect duplicate bugs. [15] investigated how contextual in-
formation about software-quality attributes, software-architecture
terms, and system-development topics can be exploited to improve
bug de-duplication. This work replicated the method in [32] and
extended it by adding contextual comparison, through the addition
of contextual features to the bug reports. [41] identified textual
and statistical features of bug reports and applied learning to rank
techniques to detect duplicate bug reports.

Recently, deep learning models have shown superior perfor-
mance to classical machine learning approaches in many tasks.
Therefore, some works have applied deep learning techniques to
improve the accuracy of duplicate/similar bug detection tasks [37].
[11] proposed a retrieval and classification model using Siamese
Convolutional Neural Networks (CNN) and Long Short Term Mem-
ory (LSTM) for accurate detection and retrieval of duplicate/similar
bugs. [3] trained a deep neural network with word embedding for
duplicate bug report detection in software repositories. [4] com-
bined Latent Dirichlet Allocation (LDA) and word embedding for
duplicate bug report detection.

6.2 Fault Diagnosis of Software-Intensive
Systems

Our approach for incident linking could largely help with the pro-
cess of root cause analysis, which is also a well-studied topic in
literature. Root cause analysis, also referred to as fault localization,
fault isolation, or alarm/event correlation, is the process of inferring
the set of faults that generate a given set of symptoms [17]. It is
the key procedure of troubleshooting in large systems [2], and is
widely applied in a number of different areas, such as computer
networks [12, 22], software [1, 35], industrial systems [5, 13] and
so on. Understanding the root cause of observed symptoms can
largely help the healing and improvement of large online systems.
[31] reviewed different techniques in the literature and how they
satisfy performance and scalability requirements. It also listed sev-
eral types of challenges with regard to system-level RCA, including
the combination of both domain knowledge and system knowledge.

There are also works on failure prediction for a system with
inter-connected components [39, 42, 43] in literature, but few work
has focused on predicting the potential links among the numerous
incidents. [36] proposed an approach towards automated repair of
software-defined networks (SDN), using the causal graph (called
meta provenance). However, this kind of approach cannot be di-
rectly applied to complex online systems for two reasons: first, the
incidents/failures in SDN applications are restricted in smaller do-
mains, while in large online systems the incidents come from much
more types of sources; second, the incidents in SDN applications
can form a much denser causal graph, but the incidents in large
online systems tend to spread into many different components,
making their relations quite sparse in terms of an incident graph.

7 CONCLUSION
The identification of linked incidents is important for building an
intelligent IcM system for large online service systems. Correctly
identifying linked incidents can not only help mitigate the incidents,
but also analyze the root causes to prevent recurrence of similar
incidents. In this paper, we investigate the linked incidents in a
large online service system, and find two important indicators for
identifying potential links among numerous incidents: the compo-
nent dependency learned from past incident links and the textual
description of incidents. Starting from this observation, LiDAR,
a deep learning based framework integrating two representation
learning modules (for the component dependency and the textual
descriptions), is designed to discover potential links among numer-
ous incidents. Extensive experiments and studies have shown the
effectiveness and applicability of our proposed method. We believe
our work can greatly facilitate incident management for large-scale
online systems.

Despite the superior performance of LiDAR, there are limitations
in current implementation. First, the component dependency net-
work is established using historical links, thus it does not consider
new components that have not appeared in the historical incidents.
Moreover, the training phase of current implementation is done
offline, so it does not update in a real-time manner.

In the future, more effort can be devoted to the following direc-
tions: 1) Improving the link identification performance by incorpo-
rating more data sources, such as the time and location of incident
occurrence, severity of incidents; 2) Developing an online learning
scheme based on the current work so that any new signals on inci-
dent linkage can be integrated into the model in time; 3) Extending
the current work to combine with other adjacent processes such as
the triage phase and the root cause analysis process to make the
IcM system more intelligent.

ACKNOWLEDGMENTS
We thank our colleagues at Microsoft Azure groups who developed
the incident management system and helped us learn the system:
Feng Gao, Jeffery Sun, Pochian Lee, Li Yang, Zhangwei Xu. This
work is supported by the National Natural Science Foundation of
China (NSFC) under Grant No. 61702107. Hongyu Zhang’s work is
supported by Australian Research Council (ARC) DP200102940.

Identifying Linked Incidents in Large-Scale Online Service Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES
[1] Pragya Agarwal and Arun Prakash Agrawal. 2014. Fault-localization techniques

for software systems: A literature review. ACM SIGSOFT Software Engineering
Notes 39, 5 (2014), 1–8.

[2] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating Root-
Cause Diagnosis of Performance Anomalies in Production Software.. In OSDI,
Vol. 12. 307–320.

[3] Amar Budhiraja, Kartik Dutta, Raghu Reddy, and Manish Shrivastava. 2018.
DWEN: deep word embedding network for duplicate bug report detection in soft-
ware repositories. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. ACM, 193–194.

[4] Amar Budhiraja, Raghu Reddy, and Manish Shrivastava. 2018. LWE: LDA refined
word embeddings for duplicate bug report detection. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings. ACM,
165–166.

[5] Carlo Cecati. 2015. A survey of fault diagnosis and fault-tolerant techniquesâĂŤ-
Part II: Fault diagnosis with knowledge-based and hybrid/active approaches. IEEE
Transactions on Industrial Electronics (2015).

[6] Ajay Chandramouly, Big Data Domain Owner, IT Ravindra Narkhede, IT Vijay
Mungara, IT Guillermo Rueda, and IT Asoka Diggs. 2013. Reducing Client
Incidents through Big Data Predictive Analytics. Intel IT Big Data Predictive
Analytics,(December) (2013).

[7] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng
Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An Empirical
Investigation of Incident Triage for Online Service Systems. In Proceedings of
the 41st International Conference on Software Engineering: Software Engineering
in Practice (Montreal, Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, 111–120.
https://doi.org/10.1109/ICSE-SEIP.2019.00020

[8] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous incident
triage for large-scale online service systems. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 364–375.

[9] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. Static duplicate bug-report identification for compilers. SCIENTIA
SINICA Informationis 49, 10 (2019), 1283–1298.

[10] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Yu
Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020. How
Incidental are the Incidents? Characterizing and Prioritizing Incidents for Large-
Scale Online Service Systems. In The 35th IEEE/ACM International Conference on
Automated Software Engineering. to appear.

[11] J. Deshmukh, A. K. M, S. Podder, S. Sengupta, and N. Dubash. 2017. Towards
Accurate Duplicate Bug Retrieval Using Deep Learning Techniques. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 115–124.
https://doi.org/10.1109/ICSME.2017.69

[12] Lv Feng, Li Xiang, and Wang Xiu-qing. 2013. A survey of intelligent network
fault diagnosis technology. In Control and Decision Conference (CCDC), 2013 25th
Chinese. IEEE, 4874–4879.

[13] Zhiwei Gao, Carlo Cecati, and Steven X Ding. 2015. A survey of fault diagnosis
and fault-tolerant techniquesâĂŤPart I: Fault diagnosis with model-based and
signal-based approaches. IEEE Transactions on Industrial Electronics 62, 6 (2015),
3757–3767.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[15] Abram Hindle, Anahita Alipour, and Eleni Stroulia. 2016. A Contextual Approach
Towards More Accurate Duplicate Bug Report Detection and Ranking. Empirical
Softw. Engg. 21, 2 (April 2016), 368–410. https://doi.org/10.1007/s10664-015-
9387-3

[16] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei
Zhang. 2020. How to Mitigate the Incident? An Effective Troubleshooting Guide
Recommendation Technique for Online Service Systems. In The 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Industry track. to appear.

[17] Soila P Kavulya, Kaustubh Joshi, Felicita Di Giandomenico, and Priya Narasimhan.
2012. Failure diagnosis of complex systems. In Resilience assessment and evaluation
of computing systems. Springer, 239–261.

[18] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP.

[19] Nathan Klein, Christopher S Corley, and Nicholas A Kraft. 2014. New features for
duplicate bug detection. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 324–327.

[20] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop, Vol. 2.
Lille.

[21] Ahmed Lamkanfi, Javier Pérez, and Serge Demeyer. 2013. The eclipse and mozilla
defect tracking dataset: a genuine dataset for mining bug information. In 2013

10th Working Conference on Mining Software Repositories (MSR). IEEE, 203–206.
[22] Ma łgorzata Steinder and Adarshpal S Sethi. 2004. A survey of fault localization

techniques in computer networks. Science of computer programming 53, 2 (2004),
165–194.

[23] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao
Xie. 2013. Software analytics for incident management of online services: An
experience report. In Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering. IEEE Press, 475–485.

[24] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[25] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-
mand Joulin. 2017. Advances in pre-training distributed word representations.
arXiv preprint arXiv:1712.09405 (2017).

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[27] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, David Lo, and Cheng-
nian Sun. 2012. Duplicate Bug Report Detection with a Combination of Infor-
mation Retrieval and Topic Modeling. In Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering (Essen, Germany) (ASE
2012). ACM, New York, NY, USA, 70–79. https://doi.org/10.1145/2351676.2351687

[28] Mohamed Sami Rakha, Cor-Paul Bezemer, and Ahmed E Hassan. 2018. Revisiting
the performance evaluation of automated approaches for the retrieval of duplicate
issue reports. IEEE Transactions on Software Engineering 44, 12 (2018), 1245–1268.

[29] P. Runeson, M. Alexandersson, and O. Nyholm. 2007. Detection of Duplicate De-
fect Reports Using Natural Language Processing. In 29th International Conference
on Software Engineering (ICSE’07). 499–510. https://doi.org/10.1109/ICSE.2007.32

[30] Robert J. Sandusky, Les Gasser, and Gabriel Ripoche. 2004. Bug Report Networks:
Varieties, Strategies, and Impacts in a F/OSS Development Community. In Pro-
ceedings of the 1st International Workshop on Mining Software Repositories (MSR
2004). 80–84.

[31] Marc Solé, Victor Muntés-Mulero, Annie Ibrahim Rana, and Giovani Estrada.
2017. Survey on models and techniques for root-cause analysis. arXiv preprint
arXiv:1701.08546 (2017).

[32] C. Sun, D. Lo, S. Khoo, and J. Jiang. 2011. Towards more accurate retrieval
of duplicate bug reports. In 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011). 253–262. https://doi.org/10.1109/
ASE.2011.6100061

[33] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo.
2010. A discriminative model approach for accurate duplicate bug report re-
trieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 45–54.

[34] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. 2008. An approach to detecting
duplicate bug reports using natural language and execution information. In
2008 ACM/IEEE 30th International Conference on Software Engineering. 461–470.
https://doi.org/10.1145/1368088.1368151

[35] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[36] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2017. Automated Bug Removal for Software-Defined Networks.. In NSDI. 719–
733.

[37] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li.
2016. Predicting semantically linkable knowledge in developer online forums via
convolutional neural network. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 51–62.

[38] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun. 2016. Combining Word Embedding
with Information Retrieval to Recommend Similar Bug Reports. In 2016 IEEE 27th
International Symposium on Software Reliability Engineering (ISSRE). 127–137.
https://doi.org/10.1109/ISSRE.2016.33

[39] Yiwen Yang, Jun Ai, and Fei Wang. 2018. Defect Prediction Based on the Charac-
teristics of Multilayer Structure of Software Network. In 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE,
27–34.

[40] Xin Ye, Razvan Bunescu, and Chang Liu. 2016. Mapping bug reports to relevant
files: A ranking model, a fine-grained benchmark, and feature evaluation. IEEE
Transactions on Software Engineering 42, 4 (2016), 379–402.

[41] Jian Zhou and Hongyu Zhang. 2012. Learning to Rank Duplicate Bug Reports. In
Proceedings of the 21st ACM International Conference on Information and Knowl-
edge Management (Maui, Hawaii, USA) (CIKM’12). Association for Computing
Machinery, New York, NY, USA, 852âĂŞ861.

[42] Thomas Zimmermann and Nachiappan Nagappan. 2007. Predicting Subsystem
Failures Using Dependency Graph Complexities. In Proceedings of the The 18th
IEEE International Symposium on Software Reliability (ISSRE ’07). IEEE Computer
Society, Washington, DC, USA, 227–236. https://doi.org/10.1109/ISSRE.2007.19

[43] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects using
network analysis on dependency graphs. In Proceedings of the 30th international
conference on Software engineering. ACM, 531–540.

https://doi.org/10.1109/ICSE-SEIP.2019.00020
https://doi.org/10.1109/ICSME.2017.69
https://doi.org/10.1007/s10664-015-9387-3
https://doi.org/10.1007/s10664-015-9387-3
https://doi.org/10.1145/2351676.2351687
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1109/ISSRE.2016.33
https://doi.org/10.1109/ISSRE.2007.19

	Abstract
	1 Introduction
	2 Overview of Linked Incidents in an IcM System
	2.1 The Incident Management System in Microsoft
	2.2 Incident Links
	2.3 Cross-Component Links

	3 Proposed Approach
	3.1 An Overview
	3.2 Modeling Textual Description
	3.3 Modeling Component Dependency
	3.4 Combining Structural and Textual Information

	4 Experiments
	4.1 Dataset and Setup
	4.2 Incident Linkage
	4.3 Human-Machine Incident Linkage
	4.4 Effectiveness of Component Representation Learning
	4.5 Parameter Sensitivity
	4.6 Case Study

	5 Lessons Learned
	6 Related Work
	6.1 Duplicate Bug Retrieval
	6.2 Fault Diagnosis of Software-Intensive Systems

	7 Conclusion
	Acknowledgments
	References

