Visor: Privacy-Preserving Video Analytics as a Cloud Service

Rishabh Poddar!?, Ganesh Ananthanarayanan?, Srinath Setty?, Stavros Volos?, Raluca Ada Popa!

'UC Berkeley

<rishabhp, raluca>@eecs.berkeley.edu

Abstract

Video-analytics-as-a-service is becoming an important offer-
ing for cloud providers. A key concern in such services is
privacy of the videos being analyzed. While trusted execution
environments (TEEs) are promising options for preventing the
direct leakage of private video content, they remain vulnerable
to side-channel attacks.

We present Visor, a system that provides confidentiality
for the user’s video stream as well as the ML models in the
presence of a compromised cloud platform and untrusted
co-tenants. Visor executes video pipelines in a hybrid TEE
that spans both the CPU and GPU. It protects the pipeline
against side-channel attacks induced by data-dependent ac-
cess patterns of video modules, and also addresses leakage in
the CPU-GPU communication channel. Visor is up to 1000x
faster than naive oblivious solutions, and its overheads relative
to a non-oblivious baseline are limited to 2x—6X.

1 Introduction

Cameras are being deployed pervasively for the many appli-
cations they enable, such as traffic planning, retail experience,
and enterprise security [97, 104, 105]. Videos from the cam-
eras are streamed to the cloud, where they are processed using
video analytics pipelines [44,48, 115] composed of computer
vision techniques (e.g., OpenCV [77]) and convolutional neu-
ral networks (e.g., object detector CNNs [83]); as illustrated in
Figure 1. Indeed, “video-analytics-as-a-service” is becoming
an important offering for cloud providers [2,63].

Privacy of the video contents is of paramount concern in the
“video analytics-as-a-service” offerings. Videos often contain
sensitive information, such as users’ home interiors, people in
workspaces, or license plates of cars. For example, the Kuna
home monitoring service [51] transmits videos from users’
homes to the cloud, analyzes the videos, and notifies users
when it detects movement in areas of interest. For user privacy,
video streams must remain confidential and not be revealed
to the cloud provider or other co-tenants in the cloud.

Trusted execution environments (TEEs) [61, 107] are a nat-
ural fit for privacy-preserving video analytics in the cloud. In
contrast to cryptographic approaches, such as homomorphic
encryption, TEESs rely on the assumption that cloud tenants
also trust the hardware. The hardware provides the ability to
create secure “‘enclaves” that are protected against privileged
attackers. TEEs are more compelling than cryptographic tech-
niques since they are orders of magnitude faster. In fact, CPU
TEEs (e.g., Intel SGX [61]) lie at the heart of confidential

2Microsoft Research

<ga,srinath, svolos>@microsoft.com

cloud computing [39, 62]. Meanwhile, recent advancements
in GPU TEE:s [41, 107] enable the execution of ML models
(e.g., neural networks) with strong privacy guarantees as well.
CPU and GPU TEEs, thus, present an opportunity for building
privacy-preserving video analytics systems.

Unfortunately, TEEs (e.g., Intel SGX) are vulnerable to
a host of side-channel attacks (e.g., [12, 13,109, 111]). For
instance, in §2.3 we show that by observing just the mem-
ory access patterns of a widely used bounding box detection
OpenCV module, an attacker can infer the exact shapes and
positions of all moving objects in the video. In general, an
attacker can infer crucial information about the video being
processed, such as the times when there is activity, objects
that appear in the video frame, all of which when combined
with knowledge about the physical space being covered by
the camera, can lead to serious violations of confidentiality.

We present Visor, a system for privacy-preserving video
analytics services. Visor protects the confidentiality of the
videos being analyzed from the service provider and other
co-tenants. When tenants host their own CNN models in
the cloud, it also protects the model parameters and weights.
Visor protects against a powerful enclave attacker who can
compromise the software stack outside the enclave, as well
as observe any data-dependent accesses to network, disk, or
memory via side-channels (similar to prior work [75, 82]).

Visor makes two primary contributions, combining insights
from ML systems, security, computer vision, and algorithm
design. First, we present a privacy-preserving framework
for machine-learning-as-a-service (MLaaS), which supports
CNN-based ML applications spanning both CPU and GPU
resources. Our framework can potentially power applications
beyond video analytics, such as medical imaging, recommen-
dation systems, and financial forecasting. Second, we develop
novel data-oblivious algorithms with provable privacy guaran-
tees within our MLaaS framework, for commonly used vision
modules. The modules are efficient and can be composed to
construct many different video analytics pipelines. In design-
ing our algorithms, we formulate a set of design principles
that can be broadly applied to other vision modules as well.

1) Privacy-Preserving MLaaS Framework. Visor lever-
ages a hybrid TEE that spans CPU and GPU resources avail-
able in the cloud. Recent work has shown that scaling video
analytics pipelines requires judicious use of both CPUs and
GPUs [36, 80]. Some pipeline modules can run on CPUs at
the required frame rates (e.g., video decoding or vision algo-
rithms) while others (e.g., CNNs) require GPUs, as shown in

Figure 1. Thus, our solution spans both CPU and GPU TEEzs,
and combines them into a unified trust domain.

Visor systematically addresses access-pattern-based leak-
age across the components of the hybrid TEE, from video
ingestion to CPU-GPU communication to CNN processing.
In particular, we take the following steps:

a) Visor leverages a suite of data-oblivious primitives to
remove access pattern leakage from the CPU TEE. The
primitives enable the development of oblivious modules
with provable privacy guarantees, the access patterns of
which are always independent of private data.

b) Visor relies on a novel oblivious communication proto-
col to remove leakage from the CPU-GPU channel. As
the CPU modules serve as filters, the data flow in the
CPU-GPU channel (on which objects of each frame are
passed to the GPU) leaks information about the contents
of each frame, enabling attackers to infer the number of
moving objects in a frame. At a high level, Visor pads the
channel with dummy objects, leveraging the observation
that our application is not constrained by the CPU-GPU
bandwidth. To reduce GPU wastage, Visor intelligently
minimizes running the CNN on the dummy objects.

¢) Visor makes CNNs running in a GPU TEE oblivious by
leveraging branchless CUDA instructions to implement
conditional operations (e.g., ReLU and max pooling) in a
data-oblivious way.

2) Efficient Oblivious Vision Pipelines. Next, we design
novel data-oblivious algorithms for vision modules that are
foundational for video analytics, and implement them using
the oblivious primitives provided by the framework described
above. Vision algorithms are used in video analytics pipelines
to extract the moving foreground objects. These algorithms
(e.g., background subtraction, bounding box detection, object
cropping, and tracking) run on CPUs and serve as cheap filters
to discard frames instead of invoking expensive CNNs on the
GPU for each frame’s objects (more in §2.1). The modules
can be composed to construct various vision pipelines, such
as medical imaging and motion tracking.

As we demonstrate in §8, naive approaches for making
these algorithms data-oblivious, such that their operations
are independent of each pixel’s value, can slow down video
pipelines by several orders of magnitude. Instead, we care-
fully craft oblivious vision algorithms for each module in the
video analytics pipeline, including the popular VP8 video
decoder [5]. Our overarching goal is to transform each al-
gorithm into a pattern that processes each pixel identically.
To apply this design pattern efficiently, we devise a set of
algorithmic and systemic optimization strategies based on the
properties of vision modules, as follows. First, we employ
a divide-and conquer approach—i.e., we break down each
algorithm into independent subroutines based on their func-
tionality, and tailor each subroutine individually. Second, we
cast sequential algorithms into a form that scans input images
while performing identical operations on each pixel. Third,

GPU

1. Red car
2. White van
3. Tree

4.

CNN
Classification

(a) Pipeline with object classifier (e.g., ResNet).

- CPU
EDEE
| - -] s
: m / ¢ I !
n 3 iw)}

4 Video Background Bounding Object »

Client T gecoding | | subtraction | |box detection| | cropping
source |
i Cloud platform

Client *
source |
i Cloud platform

CNN object detection
and classification

(b) Pipeline with object detector (e.g., Yolo).

Figure 1: Video analytics pipelines. Pipeline (a) extracts the ob-
jects using vision algorithms and classifies the cropped objects
using a CNN classifier on the GPU. Pipeline (b) also uses the vi-
sion algorithms as a filter, but sends the entire frame to the CNN
detector. Both pipelines may optionally use object tracking.

identical pixel operations allow us to systemically amortize
the processing cost across groups of pixels in each algorithm.
For each vision module, we derive the operations applied per
pixel in conjunction with these design strategies. Collectively,
these strategies improve performance by up to 1000x over
naive oblivious solutions. We discuss our approach in more
detail in §5; nevertheless, we note that it can potentially help
inform the design of other oblivious vision modules as well,
beyond the ones we consider in Visor.

In addition, as shown by prior work, bitrate variations in
encrypted network traffic can also leak information about the
underlying video streams [88], beyond access pattern leakage
at the cloud. To prevent this leakage, we modify the video
encoder to carefully pad video streams at the source in a
way that optimizes the video decoder’s latency. Visor thus
provides an end-to-end solution for private video analytics.

Evaluation Highlights. We have implemented Visor on In-
tel SGX CPU enclaves [61] and Graviton GPU enclaves [107].
We evaluate Visor on commercial video streams of cities and
datacenter premises containing sensitive data. Our evaluation
shows that Visor’s vision components perform up to 1000x
better than naive oblivious solutions, and over 6 to 7 orders of
magnitude better than a state-of-the-art general-purpose sys-
tem for oblivious program execution. Against a non-oblivious
baseline, Visor’s overheads are limited to 2 x—6x which still
enables us to analyze multiple streams simultaneously in real-
time on our testbed. Visor is versatile and can accommodate
different combinations of vision components used in real-
world applications. Thus, Visor provides an efficient solution
for private video analytics.

2 Background and Motivation

2.1 Video Analytics as a Service

Figure 1 depicts the canonical pipelines for video analyt-
ics [36,48, 64,114, 115]. The client (e.g., a source camera)

feeds the video stream to the service hosted in the cloud,
which (a) decodes the video into frames, (b) extracts objects
from the frames using vision algorithms, and (c) classifies
the objects using a pre-trained convolutional neural network
(CNN). Cameras typically offer the ability to control the reso-
lution and frame rate at which the video streams are encoded.
Recent work demonstrates that scaling video analytics
pipelines requires judicious use of both CPUs and GPUs [36,
80]. In Visor, we follow the example of Microsoft’s Rocket
platform for video analytics [64,65]—we split the pipelines
by running video decoding and vision modules on the CPU,
while offloading the CNN to the GPU (as shown in Figure 1).
The vision modules process each frame to detect the moving
“foreground” objects in the video using background subtrac-
tion [9], compute each object’s bounding box [95], and crop
them from the frame for the CNN classifier. These vision
modules can sustain the typical frame rates of videos even
on CPUgs, thereby serving as vital “filters” to reduce the ex-
pensive CNN operations on the GPU [36,48], and are thus
widely used in practical deployments. For example, CNN
classification in Figure 1(a) is invoked only if moving objects
are detected in a region of interest in the frame. Optionally,
the moving objects are also tracked to infer directions (say,
cars turning left). The CNNs can either be object classifiers
(e.g., ResNet [35]) as in Figure 1(a); or object detectors (e.g.,
Yolo [83]) as in Figure 1(b), which take whole frames as
input. The choice of pipeline modules is application depen-
dent [36,44] and Visor targets confidentiality for all pipeline
modules, their different combinations, and vision CNNs.
While our description focuses on a multi-tenant cloud ser-
vice, our ideas equally apply to multi-tenant edge compute
systems, say, at cellular base stations [23]. Techniques for
lightweight programmability on the cameras to reduce net-
work traffic (e.g., using smart encoders [106] or dynamically
adapting frame rates [3]) are orthogonal to Visor’s techniques.

2.2 Trusted Execution Environments

Trusted execution environments, or enclaves, protect applica-
tion’s code and data from all other software in a system. Code
and data loaded in an enclave—CPU and GPU TEEs—can
be verified by clients using the remote attestation feature.
Intel SGX [61] enables TEEs on CPUs and enforces isolation
by storing enclave code and data in a protected memory region
called the Enclave Page Cache (EPC). The hardware ensures
that no software outside the enclave can access EPC contents.
Graviton [107] enables TEEs on GPUs in tandem with
trusted applications hosted in CPU TEEs. Graviton prevents
an adversary from observing or tampering with traffic (data
and commands) transferred to/from the GPU. A trusted GPU
runtime (e.g., CUDA runtime) hosted in a CPU TEE attests
that all code/data have been securely loaded onto the GPU.

2.3 Attacks based on Access Pattern Leakage

TEEs are vulnerable to leakage from side-channel attacks that
exploit micro-architectural side-channels [12,13,20,29,34,54,

CPU enclave &

Trace of accessed
addresses

detection Leaked image

Figure 2: Attacker obtains all the frame’s objects (right) using
access pattern leakage in the bounding box detection module.

67,89,90], software-based channels [14, 111], or application-
specific leakage, such as network and memory accesses.

A large subset of these attacks exploit data-dependent mem-
ory access patterns (e.g., branch-prediction, cache-timing, or
controlled page fault attacks). Xu et al. [111] show that by
simply observing the page access patterns of image decoders,
an attacker can reconstruct entire images. We ourselves an-
alyzed the impact of access pattern leakage at cache-line
granularity [12,29, 67, 90] on the bounding box detection
algorithm [95] (see Figure 1(a); §2.1). We simulated exist-
ing attacks by capturing the memory access trace during an
execution of the algorithm, and then examined the trace to
reverse-engineer the contents of the input frame. Since images
are laid out predictably in memory, we found that the attacker
is able to infer the locations of all the pixels touched during
execution, and thus, the shapes and positions of all objects
(as shown in Figure 2). Shapes and positions of objects are
the core content of any video, and allow the attacker to infer
sensitive information like times when patients are visiting
private medical centers or when residents are inside a house,
and even infer if the individuals are babies or on wheelchairs
based on their size and shapes. In fact, conversations with
customers of one of the largest public cloud providers indeed
confirm that privacy of the videos is among their top-two
concerns in signing up for the video analytics cloud service.

3 Threat Model and Security Guarantees

We describe the attacker’s capabilities and lay out the attacks
that are in scope and out of scope for our work.

3.1 Hardware Enclaves and Side-Channels

Our trusted computing base includes: (i) the GPU package
and its enclave implementation, (ii) the CPU package and its
enclave implementation, and (iif) the video analytics pipeline
implementation and GPU runtime hosted in the CPU enclave.

The design of Visor is not tied to any specific hardware
enclave; instead, Visor builds on top of an abstract model of
hardware enclaves where the attacker controls the server’s
software stack outside the enclave (including the OS), but
cannot perform any attacks to glean information from inside
the processor (including processor keys). The attacker can
additionally observe the contents and access patterns of all
(encrypted) pages in memory, for both data and code. We
assume that the attacker can observe the enclave’s memory
access patterns at cache line granularity [75]. Note that our
attacker model includes the cloud service provider as well as
other co-tenants.

We instantiate Visor with the widely-deployed Intel SGX
enclave. However, recent attacks show that SGX does not
quite satisfy the abstract enclave model that Visor requires.
For example, attackers may be able to distinguish intra cache
line memory accesses [68, 113]. In Visor, we mitigate these
attacks by disabling hyperthreading in the underlying system,
disallowing attackers from observing intra-core side-channels;
clients can verify that hyperthreading is disabled during re-
mote attestation [4]. One may also employ complementary
solutions for closing hyperthreading-based attacks [18,76].

Other attacks that violate our abstract enclave model are
out of scope: such as attacks based on timing analysis or
power consumption [69,96], DoS attacks [32,42], or rollback
attacks [78] (which have complementary solutions [10, 60]).
Transient execution attacks (e.g., [13,17,81,89, 101-103])
are also out of scope; these attacks violate the threat model
of SGX and are typically patched promptly by the vendor via
microcode updates. In the future, one could swap out Intel
SGX in our implementation for upcoming enclaves such as
MI6 [8] and Keystone [53] that address many of the above
drawbacks of SGX.

Visor provides protection against any channel of attack that
exploits data-dependent access patterns within our abstract
enclave model, which represent a large class of known attacks
on enclaves (e.g., cache attacks [12, 29, 34, 67, 90], branch
prediction [54], paging-based attacks [14,111], or memory bus
snooping [52]). We note that even if co-tenancy is disabled
(which comes at considerable expense), privileged software
such as the OS and hypervisor can still infer access patterns
(e.g., by monitoring page faults), thus still requiring data-
oblivious solutions.

Recent work has shown side-channel leakage on GPUs [45,
46,70,71] including the exploitation of data access patterns
out of the GPU. We expect similar attacks to be mounted on
GPU enclaves as video and ML workloads gain in popularity,
and our threat model applies to GPU enclaves as well.

3.2 Video Streams and CNN Model

Each client owns its video streams, and it expects to protect
its video from the cloud and co-tenants of the video analytics
service. The vision algorithms are assumed to be public.

We assume that the CNN model’s architecture is public,
but its weights are private and may be proprietary to either
the client or the cloud service. Visor protects the weights in
both scenarios within enclaves, in accordance with the threat
model and guarantees from §3.1; however, when the weights
are proprietary to the cloud service, the client may be able to
learn some information about the weights by analyzing the
results of the pipeline [25, 26, 99]. Such attacks are out of
scope for Visor.

Finally, recent work has shown that the camera’s encrypted
network traffic leaks the video’s bitrate variation to an attacker
observing the network [88], which may consequently leak
information about the video contents. Visor eliminates this

leakage by padding the video segments at the camera, in
such a way that optimizes the latency of decoding the padded
stream at the cloud (§6.1).

3.3 Provable Guarantees for Data-Obliviousness

Visor provides data-obliviousness within our abstract enclave
model from §3.1, which guarantees that the memory access
patterns of enclave code does not reveal any information about
sensitive data. We rely on the enclaves themselves to provide
integrity, along with authenticated encryption.

We formulate the guarantees of data-obliviousness using
the “simulation paradigm” [27]. First, we define a trace of
observations that the attacker sees in our threat model. Then,
we define the public information, i.e., information we do not
attempt to hide and is known to the attacker. Using these, we
argue that there exists a simulator, such that for all videos
V, when given only the public information (about V and the
video algorithms), the simulator can produce a trace that is
indistinguishable from the real trace visible to an attacker
who observes the access patterns during Visor’s processing of
V. By “indistinguishable”, we mean that no polynomial-time
attacker can distinguish between the simulated trace and the
real trace observed by the attacker. The fact that a simulator
can produce the same observations as seen by the attacker
even without knowing the private data in the video stream
implies that the attacker does not learn sensitive data about
the video.

In our attacker model, the trace of observations is the se-
quence of the addresses of memory references to code as well
as data, along with the accessed data (which is encrypted).
The public information is all of Visor’s algorithms, formatting
and sizing information, but not the video data. For efficiency,
Visor also takes as input some public parameters that rep-
resent various upper bounds on the properties of the video
streams, e.g., the maximum number of objects per frame, or
upper bounds on object dimensions.

We defer a formal treatment of Visor’s security guarantees—
including the definitions and proofs of security, along with
detailed pseudocode for each algorithm—to an extended ap-
pendix [79]. In summary, we show that Visor’s data-oblivious
algorithms (§6 and §7) follow an identical sequence of mem-
ory accesses that depend only on public information and are
independent of data content.

4 A Privacy-Preserving MLaaS Framework

In this section, we present a privacy-preserving framework for
machine-learning-as-a-service (MLaaS), that supports CNN-
based ML applications spanning both CPU and GPU re-
sources. Though Visor focuses on protecting video analyt-
ics pipelines, our framework can more broadly be used for a
range of MLaaS applications such as medical imaging, rec-
ommendation systems, and financial forecasting.

Our framework comprises three key features that collec-
tively enable data-oblivious execution of ML services. First,

CPU
CPU TEE (SGX) Host (untrusted) (CPU IE 3
Encrypted ioctls) Bravitor]
video streal o2 ; © GPU driver | || opjects
o[2 (8 g 210 0 5
o 3|82 = X <
! 8183I1a] | 2 | (cPU-GPU| | £
gloE|l2] |2 : PCle bus) | | S
S|® ol |© Circular 1
Z|E £ object buffer (&)
s Tesults
Cloud platform

Figure 3: Visor’s hybrid TEE architecture. Locks indicate en-
crypted data channels, and keys indicate decryption points.

it protects the computation in ML pipelines using a hybrid
TEE that spans both the CPU and GPU. Second, it provides
a secure CPU-GPU communication channel that addition-
ally prevents the leakage of information via traffic patterns
in the channel. Third, it prevents access-pattern-based leak-
age on the CPU and GPU by facilitating the development of
data-oblivious modules using a suite of optimized primitives.

4.1 Hybrid TEE Architecture

Figure 3 shows Visor’s architecture. Visor receives encrypted
video streams from the client’s camera, which are then fed to
the video processing pipeline. We refer to the architecture as
a hybrid TEE as it spans both the CPU and GPU TEEs, with
different modules of the video pipeline (§2.1) being placed
across these TEEs. We follow the example of prior work that
has shown that running the non-CNN modules of the pipeline
on the CPU, and the CNNs on the GPU [36, 64, 80], results
in efficient use of the expensive GPU resources while still
keeping up with the incoming frame rate of videos.

Regardless of the placement of modules across the CPU
and GPU, we note that attacks based on data access patterns
can be mounted on both CPU and GPU TEEzs, as explained in
§3.1. As such, our data-oblivious algorithms and techniques
are broadly applicable irrespective of the placement, though
our description is based on non-CNN modules running on the
CPU and the CNNs on the GPU.

CPU and GPU TEEs. We implement the CPU TEE using
Intel SGX enclaves, and the GPU TEE using Graviton secure
contexts [107]. The CPU TEE also runs Graviton’s trusted
GPU runtime, which enables Visor to securely bootstrap the
GPU TEE and establish a single trust domain across the TEEs.
The GPU runtime talks to the untrusted GPU driver (running
on the host outside the CPU TEE) to manage resources on the
GPU via ioctl calls. In Graviton, each ioctl call is trans-
lated to a sequence of commands submitted to the command
processor. Graviton ensures secure command submission (and
subsequently ioctl delivery) as follows: (i) for task submis-
sion, the runtime uses authenticated encryption to protect
commands from being dropped, replayed, or reordered, and
(i) for resource management, the runtime validates signed
summaries returned by the GPU upon completion. The GPU
runtime encrypts all inter-TEE communication.

We port the non-CNN video modules (Figure 1) to SGX
enclaves using the Graphene LibOS [100]. In doing so, we

instrument Graphene to support the ioctl calls that are used
by the runtime to communicate with the GPU driver.

Pipeline execution. The hybrid architecture requires us to
protect against attacks on the CPU TEE, GPU TEE, and the
CPU-GPU channel. As Figure 3 illustrates, Visor decrypts the
video stream inside the CPU TEE, and obliviously decodes
out each frame (in §6). Visor then processes the decoded
frames using oblivious vision algorithms to extract objects
from each frame (in §7). Visor extracts the same number of
objects of identical dimensions from each frame (some of
which are dummies, up to an upper-bound) and feeds them
into a circular buffer. This avoids leaking the actual number of
objects in each frame and their sizes; the attacker can observe
accesses to the buffer, even though objects are encrypted.
Objects are dequeued from the buffer and sent to the GPU
(§4.2) where they are decrypted and processed obliviously by
the CNN in the GPU TEE (§4.3).

4.2 CPU-GPU Communication

Although the CPU-GPU channel in Figure 3 transfers en-
crypted objects, Visor needs to ensure that its traffic patterns
are independent of the video content. Otherwise, an attacker
observing the channel can infer the processing rate of objects,
and hence the number (and size) of the detected objects in
each frame. To address this leakage, Visor ensures that (i) the
CPU TEE transfers the same number of objects to the GPU
per frame, and (if) CNN inference runs at a fixed rate (or
batch size) in the GPU TEE. Crucially, Visor ensures that
the CNN processes as few dummy objects as possible. While
our description focuses on Figure 1(a) to hide the processing
rate of objects of a frame on the GPU, our techniques directly
apply to the pipeline of Figure 1(b) to hide the processing rate
of complete frames using dummy frames.

Since the CPU TEE already extracts a fixed number of
objects per frame (say kpax) for obliviousness, we enforce an
inference rate of kyax for the CNN as well, regardless of the
number of actual objects in each frame (say k). The upper
bound kpay is easy to learn for each video stream in practice.
However, this leads to a wastage of GPU resources, which
must now also run inference on (kpax — k) dummy objects per
frame. To limit this wastage, we develop an oblivious protocol
that leads to processing as few dummy objects as possible.

Oblivious protocol. Visor runs CNN inference on k'(<<
kmax) objects per frame. Visor’s CPU pipeline extracts kpax
objects from each frame (extracting dummy objects if needed)
and pushes them into the head of the circular buffer (Figure 3).
At a fixed rate (e.g., once per frame, or every 33ms for a 30fps
video), kK’ objects are dequeued from the zail of the buffer and
sent to the GPU that runs inference on all k¥’ objects.

We reduce the number of dummy objects processed by the
GPU as follows. We sort the buffer using osort in ascending
order of “priority” values (dummy objects are assigned lower
priority), thus moving dummy objects to the head of the buffer
and actual objects to the rail. Dequeuing from the tail of the

buffer ensures that actual objects are processed first, and that
dummy objects at the head of the buffer are likely overwritten
before being sent to the GPU. The circular buffer’s size is set
large enough to avoid overwriting actual objects.

The consumption (or inference) rate k’ should be set relative
to the actual number of objects that occur in the frames of the
video stream. Too high a value of k' results in GPU wastage
due to dummy inferences, while too low a value leads to delay
in the processing of the objects in the frame (and potentially
overwriting them in the circular buffer). In our experiments,
we use a value of K’ =2 x kavg (kayg is the average number of
objects in a frame) that leads to little delay and wastage.

Bandwidth consumption. The increase in traffic on the
CPU-GPU PClIe bus (Figure 3) due to additional dummy ob-
jects for obliviousness is not an issue because the bus is not
bandwidth-constrained. Even with Visor’s oblivious video
pipelines, we measure the data rate to be <70 MB/s, in con-
trast to the several GB/s available in PCle interconnects.

4.3 CNN Classification on the GPU

The CNN processes identically-sized objects at a fixed rate
on the GPU. The vast majority of CNN operations, such as
matrix multiplications, have inherently input-independent ac-
cess patterns [30,75]. The operations that are not oblivious
can be categorized as conditional assignments. For instance,
the ReL.U function, when given an input x, replaces x with
max(0,x); likewise, the max-pooling layer replaces each value
within a square input array with its maximum value.
Oblivious implementation of the max operator may use
CUDA max/fmax intrinsics for integers/ floats, which get com-
piled to IMNMX/FMNMX instructions [74] that execute the max
operation branchlessly. This ensures that the code is free of
data-dependent accesses, making CNN inference oblivious.

4.4 Oblivious Modules on the CPU

After providing a data-oblivious CPU-GPU channel and CNN
execution on the GPU, we address the video modules (in Fig-
ure 1) that execute on the CPU. We carefully craft oblivious
versions of the video modules using novel efficient algorithms
(which we describe in the subsequent sections). To implement
our algorithms, we use a set of oblivious primitives which we
summarize below.

Oblivious primitives. We use three basic primitives, similar
to prior work [75, 82, 87]. Fundamental to these primitives is
the x86 CMOV instruction, which takes as input two registers—
a source and a destination—and moves the source to the
destination if a condition is true. Once the operands have been
loaded into registers, the instructions are immune to memory-
access-based pattern leakage because registers are private
to the processor, making any register-to-register operations
oblivious by default.

1) Oblivious assignment (oassign). The oassign primi-
tive is a wrapper around the CMOV instruction that condition-
ally assigns a value to the destination operand. This primitive

can be used for performing dummy write operations by simply
setting the input condition to false. We implement multiple
versions of this primitive for different integer sizes. We also
implement a vectorized version using SIMD instructions.

2) Oblivious sort (osort). The osort primitive oblivi-
ously sorts an array with the help of a bitonic sorting net-
work [6]. Given an input array of size n, the network sorts the
array by performing O(nlog?(n)) compare-and-swap opera-
tions, which can be implemented using the oassign primitive.
As the network layout is fixed given the input size n, execution
of each network has identical memory access patterns.

3) Oblivious array access (oaccess). The oaccess prim-
itive accesses the i-th element in an array, without leaking
the value of i. The simplest way of implementing oaccess is
to scan the entire array. However, as discussed in our threat
model (§3.1), hyperthreading is disabled, preventing any shar-
ing of intra-core resources (e.g., L1 cache) with an adversary,
and consequently mitigating known attacks [68, 113] that
can leak access patterns at sub-cache-line granularity using
shared intra-core resources. Therefore, we assume access pat-
tern leakage at the granularity of cache lines, and it suffices
for oaccess to scan the array at cache-line granularity for
obliviousness, instead of per element or byte.

5 Designing Oblivious Vision Modules

Naive approaches and generic tools for oblivious execution of
vision modules can lead to prohibitive performance overheads.
For instance, a naive approach for implementing oblivious
versions of CPU video analytics modules (as in Figure 1)
is to simply rewrite them using the oblivious primitives out-
lined in §4.4. Such an approach: (i) eliminates all branches
and replaces conditional statements with oassign operations
to prevent control flow leakage via access patterns to code,
(i) implements all array accesses via oaccess to prevent
leakage via memory accesses to data, and (iii) performs all
iterations for a fixed number of times while executing dummy
operations when needed. The simplicity of this approach, how-
ever, comes at the cost of high overheads: two to three orders
of magnitude. Furthermore, as we show in §8.3, generic tools
for executing programs obliviously such as Raccoon [82] and
Obfuscuro [1] also have massive overheads—six to seven
orders of magnitude.

Instead, we demonstrate that by carefully crafting oblivious
vision modules using the primitives outlined in §4.4, Visor im-
proves performance over naive approaches by several orders
of magnitude. In the remainder of this section, we present
an overview of our design strategy, before diving into the
detailed design of our algorithms in §6 and §7.

5.1 Design Strategy

Our overarching goal is to transform each algorithm into a
pattern that processes each pixel identically, regardless of
the pixel’s value. To apply this design pattern efficiently, we
devise a set of algorithmic and systemic optimization strate-

gies. These strategies are informed by the properties of vision
modules, as follows.

1) Divide-and-conquer for improving performance. We
break down each vision algorithm into independent subrou-
tines based on their functionality and make each subroutine
oblivious individually. Intuitively, this strategy improves per-
formance by (i) allowing us to tailor each subroutine sepa-
rately, and (ii) preventing the overheads of obliviousness from
getting compounded.

2) Scan-based sequential processing. Data-oblivious pro-
cessing of images demands that each pixel in the image be
indistinguishable from the others. This requirement presents
an opportunity to revisit the design of sequential image pro-
cessing algorithms. Instead of simply rewriting existing al-
gorithms using the data-oblivious primitives from §4.4, we
find that recasting the algorithm into a form that scans the
image, while applying the same functionality to each pixel,
yields superior performance. Intuitively, this is because any
non-sequential pixel access implicitly requires a scan of the
image for obliviousness (e.g., using oaccess); therefore, by
transforming the algorithm into a scan-based algorithm, we
get rid of such non-sequential accesses.

3) Amortize cost across groups of pixels. Processing each
pixel in an identical manner lends itself naturally to optimiza-
tion strategies that enable batched computation over pixels—
e.g., the use of data-parallel (SIMD) instructions.

In Visor, we follow the general strategy above to design obliv-
ious versions of popular vision modules that can be composed
and reused across diverse pipelines. However, our strategy can
potentially help inform the design of other oblivious vision
modules as well, beyond the ones we consider.

5.2 Input Parameters for Oblivious Algorithms

Our oblivious algorithms rely on a set of public input parame-
ters that need to be provided to Visor before the deployment
of the video pipelines. These parameters represent various
upper bounds on the properties of the video stream, such as
the maximum number of objects per frame, or the maximum
size of each object. Figure 4 summarizes the list of input
parameters across all the modules of the vision pipeline.
There are multiple ways by which these parameters may
be determined. (i) The model owner may obtain these param-
eters simultaneously while training the model on a public
dataset. (if) The client may perform offline empirical analysis
of their video streams and choose a reasonable set of param-
eters. (iii) Visor may also be augmented to compute these
parameters dynamically, based on historical data (though we
do not implement this). We note that providing these parame-
ters is not strictly necessary, but meaningful parameters can
significantly improve the performance of our algorithms.

6 Oblivious Video Decoding

Video encoding converts a sequence of raw images, called
frames, into a compressed bitstream. Frames are of two types:

Component
Video decoding (§6)

Input parameters

Number of bits used to encode each
(padded) row of blocks;

Background sub. (§7.1) | —

Bounding box detec- | (i) Maximum number of objects per
tion (§7.2) image; (i) Maximum number of dif-
ferent labels that can be assigned to
pixels (an object consists of all labels
that are adjacent to each other).
Upper bounds on object dimensions.
(i) An upper bound on the intermedi-
ate number of features; (ii) An upper
bound on the total number of features.
CNN Inference (§4.3) -

Object cropping (§7.3)
Object tracking (§7.4)

Figure 4: Public input parameters in Visor’s oblivious modules.

Transformed residue

2 3
Transform + Entropy
quantize encode

Figure 5: Flowchart of the encoding process.

Predicted block

Residual
block

Block _}7

Encoded bitstream

keyframes and interframes. Keyframes are encoded to only
exploit redundancy across pixels within the same frame. In-
terframes, on the other hand, use the prior frame as reference
(or the most recent keyframe), and thus can exploit temporal
redundancy in pixels across frames.

Encoding overview. We ground our discussion using the
VP8 encoder [5], but our techniques are broadly applicable.
A frame is decomposed into square arrays of pixels called
blocks, and then compressed using the following steps (see
Figure 5). @) An estimate of the block is first predicted using
reference pixels (in a previous frame if interframe or the
current frame if keyframe). The prediction is then subtracted
from the actual block to obtain a residue. e Each block in
the residue is transformed into the frequency domain (e.g.,
using a discrete cosine transform), and its coefficients are
quantized thus improving compression. @) Each (quantized)
block is compressed into a variable-sized bitstream using a
binary prefix tree and arithmetic encoding. Block prediction
modes, cosine transformation, and arithmetic encoding are
core to all video encoders (e.g., H264 [33], VP9 [108]) and
thus our oblivious techniques carry over to all popular codecs.

The decoder reverses the steps of the encoder: (i) the in-
coming video bitstream is entropy decoded (§6.2); (i) the
resulting coefficients are dequantized and inverse transformed
to obtain the residual block (§6.3); and (iii) previously de-
coded pixels are used as reference to obtain a prediction block,
which are then added to the residue (§6.4). Our explanation
here is simplified; we defer detailed pseudocode along with
security proofs to an extended appendix [79].

6.1 Video Encoder Padding

‘While the video stream is in transit, the bitrate variation of
each frame is visible to an attacker observing the network
even if the traffic is TLS-encrypted. This variability can be ex-
ploited for fingerprinting video streams [88] and understand-
ing its content. Overcoming this leakage requires changes to
the video encoder to “pad” each frame with dummy bits to
an upper bound before sending the stream to Visor.

We modify the video encoder to pad the encoded video
streams. However, instead of applying padding at the level
of frames, we pad each individual row of blocks within the
frames. Compared to frame-level padding, padding individual
rows of blocks significantly improves latency of oblivious
decoding, but at the cost of an increase in network bandwidth.

Padding the frames of the video stream, however, negates
the benefit of using interframes during encoding of the
raw video stream, which are typically much smaller than
keyframes. We therefore configure the encoder to encode all
raw video frames into keyframes, which eliminates the added
complexity of dealing with interframes, and consequently
simplifies the oblivious decoding procedure.

We note that it may not always be possible to modify legacy
cameras to incorporate padding. In such cases, potential solu-
tions include the deployment of a lightweight edge-compute
device that pads input camera feeds before streaming them to
the cloud. For completeness, we also discuss the impact of the
lack of padding in Appendix A, along with the accompanying
security-performance tradeoff.

6.2 Bitstream Decoding

The bitstream decoder reconstructs blocks with the help of
a prefix tree. At each node in the tree it decodes a single bit
from the compressed bitstream via arithmetic decoding, and
traverses the tree based on the value of the bit. While decoding
the bit, the decoder first checks whether any more bits can
be decoded at the current bitstream position, and if not, it
advances the bitstream pointer by two bytes. Once it reaches
a leaf node, it outputs a coefficient based on the position of
the leaf, and assigns the coefficient to the current pixel in the
block. This continues for all the coefficients in the frame.

Requirements for obliviousness. The above algorithm
leaks information about the compressed bitstream. First, the
traversal of the tree leaks the value of the parsed coefficient.
For obliviousness, we need to ensure that during traversal, the
identity of the current node being processed remains secret.
Second, not every position in the bitstream encodes the same
number of coefficients, and the bitstream pointer advances
variably during decoding. Hence, this leaks the number of
coefficients that are encoded per two-byte chunk (which may
convey their values). We design a solution that decouples the
parsing of coefficients, i.e., prefix tree traversal (§6.2.1), from
the assignment of the parsed coefficients to pixels (§6.2.2).

6.2.1 Oblivious prefix tree traversal

A simple way to make tree traversal oblivious is to represent

the prefix tree as an array. We can then obliviously fetch any

node in the tree using oaccess (§4.4). Though this hides
the identity of the fetched node, we need to also ensure that
processing of the nodes does not leak their identity.

In particular, we need to ensure that nodes are indistin-
guishable from each other by performing an identical set of
operations at each node. Unfortunately, this requirement is
complicated by the following facts. (1) Only leaf nodes in
the tree produce outputs (i.e., the parsed coefficients) and
not the intermediate nodes. (2) We do not know beforehand
which nodes in the tree will cause the bitstream pointer to be
advanced; at the same time, we need to ensure that the pointer
is advanced predictably and independent of the bitstream. To
solve these problems, we take the following steps.

1) We modify each node to output a coefficient regardless of
whether it is a leaf state or not. Leaves output the parsed
coefficient, while other states output a dummy value.

2) We introduce a dummy node into the prefix tree. While
traversing the tree, if no more bits can be decoded at the
current bitstream position, we transition to the dummy
node and perform a bounded number of dummy decodes.

These modifications ensure that while traversing the prefix

tree, all that an attacker sees is that at some node in the tree, a

single bit was decoded and a single value was outputted.

Note that in this phase, we do not assign coefficients to
pixels, and instead collect them in a list. If we were to assign
coefficients to pixels in this phase, then the decoder would
need to obliviously scan the entire frame (using oaccess) at
every node in the tree, in order to hide the pixel’s identity.
Instead, by decoupling parsing from assignment, we are able
to perform the assignment obliviously using a super-linear
number of accesses (instead of quadratic), as we explain next.

6.2.2 Oblivious coefficient assignment
At the end of §6.2.1, we have a list of actual and dummy
coefficients. The key idea is that if we can obliviously sort this
set of values using osort such that all the actual coefficients
are contiguously ordered while all dummies are pushed to the
front, then we can simply read the coefficients off the end of
the list sequentially and assign them to pixels one by one.
To enable such a sort, we modify the prefix tree traversal
to additionally output a tuple (flag, index) per coefficient;
flagis O for dummies and 1 otherwise; index is an increasing
counter as per the pixel’s index. Then, the desired sort can be
achieved by sorting the list based on the value of the tuple.
As the complexity of oblivious sort is super-linear in the
number of elements being sorted, an important optimization is
to decode and assign coefficients to pixels at the granularity of
rows of blocks rather than frames. While the number of bits per
row of blocks may be observed, the algorithm’s obliviousness
is not affected as each row of blocks in the video stream is
padded to an upper bound (§6.1); had we applied frame-level
padding, this optimization would have revealed the number of

a Original binary image e Step 1: assign labels e Step 2: merge
and bounding boxes bounding boxes

ABCDEFGH: ABCDEFGH : ABCDEFGH

1)1
1111
1
3[1]1

2 111

11101

1

[N N N I

11101

414 44

NN WN =
N O WN =
w
N O WN =

(a) CCL-based algorithm for bounding box detection

0 Divide image into stripes eDetect bounding boxes e Merge connected labels at
per stripe boundaries

ABCDEFGH ABCDEFGH ABCDEFGH

101 11
11
111

111 11
111
11

N wN =
NN =
A wN =

313]3|3]3 11111

N OO,
0N OO,
N O,

(b) Enhancement via parallelization

Figure 6: Oblivious bounding box detection

bits per row of blocks. In §8.1.1, we show that this technique
improves oblivious decoding latency by ~6x.

6.3 Dequantization and Inverse Transformation

The next step in the decoding process is to (i) dequantize the
coefficients decoded from the bitstream, followed by (ii) in-
verse transformation to obtain the residual blocks. Dequanti-
zation just multiplies each coefficient by a quantization factor.
The inverse transformation also performs a set of identical
arithmetic operations irrespective of the coefficient values.

6.4 Block Prediction

Prediction is the final stage in decoding. The residual block
obtained after §6.3 is added to a predicted block, obtained us-
ing a previously constructed block as reference, to obtain the
raw pixel values. In keyframes, each block is intra-predicted—
i.e., it uses a block in the same frame as referenced. We do not
discuss interframes because as described in §6.1, the padded
input video streams in Visor only contain keyframes.

Intra-predicted blocks are computed using one of several
modes. A mode to encode a block refers to a combination of
pixels on its top row and left column used as reference. Obliv-
iousness requires that the prediction mode remains private.
Otherwise, an attacker can identify the pixels that are most
similar to each other, thus revealing details about the frame.

We make intra-prediction oblivious by evaluating all pos-
sible predictions for the pixel and storing them in an array,
indexing each prediction by its mode. Then, we use oaccess
to obliviously select the correct prediction from the array.

7 Oblivious Image Processing

After obliviously decoding frames in §6, the next step as
shown in Figure 1 is to develop data-oblivious techniques for
background subtraction (§7.1), bounding box detection (§7.2),
object cropping (§7.3), and tracking (§7.4). We present the key
ideas here; detailed pseudocode and proofs of obliviousness
are available in an extended appendix [79]. Note that §7.1
and §7.4 modify popular algorithms to make them oblivious,
while §7.2 and §7.3 propose new oblivious algorithms.

7.1 Background Subtraction

The goal of background subtraction is to detect moving ob-
jects in a video. Specifically, it dynamically learns stationary
pixels that belong to the video’s background, and then sub-

tracts them from each frame, thus producing a binary image
with black background pixels and white foreground pixels.

Zivkovic et al. proposed a mechanism [116, 117] that is
widely used in practical deployments, that models each pixel
as a mixture of Gaussians [9]. The number of Gaussian com-
ponents M differs across pixels depending on their value (but
is no more than Mp,y, a pre-defined constant). As more data
arrives (with new frames), the algorithm updates each Gaus-
sian component along with their weights (1), and adds new
components if necessary.

To determine if a pixel X belongs to the background or not,
the algorithm uses the B Gaussian components with the largest
weights and outputs true if p(X) is larger than a threshold:

B
p()_c') = Z nmN(f | /_jm7zm)
=1

m—
where fi,, and X, are parameters of the Gaussian components,
and T, is the weight of the m-th Gaussian component.

This algorithm is not oblivious because it maintains a dif-
ferent number of Gaussian components per pixel, and thus
performs different steps while updating the mixture model per
pixel. These differences are visible via access patterns, and
these leakages reveal to an attacker how complex a pixel is in
relation to others—i.e., whether a pixel’s value stays stable
over time or changes frequently. This enables the attacker to
identify the positions of moving objects in the video.

For obliviousness, we need to perform an identical set of
operations per pixel (regardless of their value); we thus always
maintain My, Gaussian components for each pixel, of which
(Mpax — M) are dummy components and assigned a weight
7 = 0. When newer frames arrive, we use oassign operations
to make all the updates to the mixture model, making dummy
operations for the dummy components. Similarly, to select the
B largest components by weight, we use the osort primitive.

7.2 Bounding Box Detection

The output from §7.1 is a binary image with black back-
ground pixels where the foreground objects are white blobs
(Figure 6(a)). To find these objects, it suffices to find the edge
contours of all blobs. These are used to compute the bound-
ing rectangular box of each object. A standard approach for
finding the contours in a binary image is the border following
algorithm of Suzuki and Abe [95]. As the name suggests,
the algorithm works by scanning the image until it locates

o Scale ROI row-wise 9 Scale updated 9 Output: scaled ROI

m P P P ROI column-wise

o S) , T 1 & 2
___________ N AlB ! [A[B] N
ld --l ----------- JC] I__,I Q q C D Q Rx,y Q Jq a____l____g

p = ‘ P (]]

(a) Localizing objects.

(b) Bilinear interpolation.

(c) Improved Bilinear interpolation.

Figure 7: Oblivious object cropping

an edge pixel, and then follows the edge around a blob. As
Figure 2 in §2.3 illustrated, the memory access patterns of
this algorithm leak the details of all the objects in the frame.

A naive way to make this algorithm oblivious is to imple-
ment each pixel access using the oaccess primitive (along
with other minor modifications). However, we measure that
this approach slows down the algorithm by over ~1200x.

We devise a two-pass oblivious algorithm for computing
bounding boxes by adapting the classical technique of con-
nected component labeling (CCL) [85]. The algorithm’s main
steps are illustrated in Figure 6(a) (whose original binary im-
age contains two blobs). In the first pass, it scans the image
and assigns each pixel a temporary label if it is “‘connected”
to other pixels. In the second pass, it merges labels that are
part of a single object. Even though CCL on its own is less
efficient for detecting blobs than border following, it is far
more amenable to being adapted for obliviousness.

We make this algorithm oblivious as follows. First, we
perform identical operations regardless of whether the current
pixel is connected to other pixels. Second, for efficiency, we
restrict the maximum number of temporary labels (in the first
pass) to a parameter N provided as input to Visor (per §5.2,
Figure 4). Note that the value of the parameter may be much
lower than the worst case upper bound (which is the total
number of pixels), and thus is more efficient.

Enhancement via parallelization. We observe that the
oblivious algorithm can be parallelized using a divide-and-
conquer approach. We divide the frame into horizontal stripes
(o in Figure 6(b)) and process each stripe in parallel (e).
For objects that span stripe boundaries, each stripe outputs
only a partial bounding box containing the pixels within the
stripe. We combine the partial boxes by re-applying the obliv-
ious CCL algorithm to the boundaries of adjacent stripes (€))).
Given two adjacent stripes S; and S; 1 one below the other, we
compare each pixel in the top row of ;11 with its neighbors
in the bottom row of §;, and merge their labels as required.

7.3 Object Cropping

The next step after detecting bounding boxes of objects is to
crop them out of the frame to be sent for CNN classification
(Figure 1(a)). Visor needs to ensure that the cropping of ob-
jects does not leak (i) their positions, or (i) their dimensions.

7.3.1 Hiding object positions
A naive way of obliviously cropping an object of size p X ¢ is
to slide a window (of size p X ¢) horizontally in raster order,

and copy the window’s pixels if it aligns with the object’s
bounding box. Otherwise, perform a dummy copy. This, how-
ever, leads to a slow down of 4000 x, with the major reason
being redundant copies: while sliding the window forward by
one pixel results in a new position in the frame, a majority of
the pixels copied are the same as in the previous position.

We get rid of this redundancy by decoupling the algorithm
into multiple passes—one pass along each dimension of the
image—such that each pass performs only a subset of the
work. As Figure 7(a) shows, the first phase extracts the hori-
zontal strip containing the object; the second phase extracts
the object from the horizontal strip.

0 Instead of sliding a window (of size p X g) across the
frame (of size m X n), we use a horizontal strip of m x g that
has width m equal to that of the frame, and height g equal
to that of the object. We slide the strip vertically down the
frame row by row. If the top and bottom edges of the strip
are aligned with the object, we copy all pixels covered by the
strip into the buffer; otherwise, we perform dummy copies.

e We allocate a window of size p x g equal to the object’s
size and then slide it column by column across the extracted
strip in o If the left and right edges of the window are
aligned with the object’s bounding box, we copy the window’s
pixels into the buffer; if not, we perform dummy copies.

7.3.2 Hiding object dimensions

The algorithm in §7.3.1 leaks the dimensions p x g of the ob-
jects. To hide object dimensions, Visor takes as input parame-
ters P and Q representing upper bounds on object dimensions
(as described in §5.2, Figure 4), and instead of cropping out
the exact p X g object, we obliviously crop out a larger image
of size P x Q that subsumes the object. While the object sizes
vary depending on their position in the frame (e.g., near or
far from the camera), the maximum values (P and Q) can be
learned from profiling just a few sample minutes of the video,
and they tend to remain unchanged in our datasets.

This larger image now contains extraneous pixels surround-
ing the object, which might lead to errors during the CNN’s
object classification. We remove the extraneous pixels sur-
rounding the p X g object by obliviously scaling it up to fill
the P x Q buffer. Note that all objects we send to the CNN
across the CPU-GPU channel are of size P x Q (§4.2), and
recall from §4.1 that we extract the same number of objects
from each frame (by padding dummy objects, if needed).

We develop an oblivious routine for scaling up using bi-
linear interpolation [40]. Bilinear interpolation computes the

value of a pixel in the scaled up image using a linear com-
bination of a 2 x 2 array of pixels from the original image
(see Figure 7(b)). We once again use decoupling of the algo-
rithm into two passes to improve its efficiency (Figure 7(c))
by scaling up along a single dimension per pass.

Cache locality. Since the second pass of our (decoupled
bilinear interpolation) algorithm performs column-wise inter-
polations, each pixel access during the interpolation touches
a different cache line. To exploit cache locality, we transpose
the image before the second pass, and make the second pass
to also perform row-wise interpolations (as in the first pass).
This results in another order of magnitude speedup (§8.1.4).

7.4 Object Tracking

Object tracking consists of two main steps: feature detection
in each frame and feature matching across frames.

Feature detection. SIFT [57,58] is a popular algorithm for
extracting features for keypoints, i.e., pixels that are the most
“valuable” in the frame. In a nutshell, it generates candidate
keypoints, where each candidate is a local maxima/minima;
the candidates are then filtered to get the legitimate keypoints.

Based on the access patterns of the SIFT algorithm, an
attacker can infer the locations of all the keypoints in the
image, which in turn, can reveal the location of all object
“corners” in the image. A naive way of making the algorithm
oblivious is to treat each pixel as a keypoint, performing all
the above operations for each. However, the SIFT algorithm’s
performance depends critically on its ability to filter out a
small set of good keypoints from the frame.

To be oblivious and efficient, Visor takes as input two pa-
rameters Neemp and N (per Figure 4). The parameter Ntepp rep-
resents an upper bound on the number of candidate keypoints,
and N on the number of legitimate keypoints. These parame-
ters, coupled with oassign and osort, allow for efficient and
oblivious identification of keypoints. Finally, computing the
feature descriptors for each keypoint requires accessing the
pixels around it. For this, we use oblivious extraction (§7.3).

Feature matching. The next step after detecting features is
to match them across images. Feature matching computes a
distance metric between two sets of features, and identifies
features that are “nearest” to each other in the two sets. In
Visor, we simply perform brute-force matching of the two
sets, using oassign operations to select the closest features.

8 Evaluation

Implementation. We implement our oblivious video de-
coder atop FFmpeg’s VP8 decoder [24] and oblivious vision
algorithms atop OpenCV 3.2.0 [77]. We use Caffe [43] for
running CNNs. We encrypt data channels using AES-GCM.
We implement the oblivious primitives of §4.4 using inline
assembly code (as in [75, 82, 87]), and manually verified the
binary to ensure that compiler optimizations do not undo our
intent; one can also use tools such as Vale [7] to do the same.

Testbed. We evaluate Visor on Intel i7-8700K with 6 cores
running at 3.7 GHz, and an NVIDIA GTX 780 GPU with
2304 CUDA cores running at 863 MHz. We disable hyper-
threading for experiments with Visor (per §3), but retain hyper-
threading in the insecure baseline. Disabling hyperthreading
for security does not sacrifice the performance of Visor (due
to its heavy utilization of vector units) unlike the baseline
system that favors hyperthreading; see Appendix B for more
details. The server runs Linux v4.11; supports AVX2 and
SGX-vl1 instruction sets; and has 32 GB of memory, with
93.5 MB of enclave memory. The GPU has 3 GB of memory.

Datasets. We use four real-world video streams (obtained
with permission) in our experiments: streams 1 and 4 are from
traffic cameras in the city of Bellevue (resolution 1280 x 720)
while streams 2 and 3 are sourced from cameras surveilling
commercial datacenters (resolution 1024 x 768). All these
videos are privacy-sensitive as they involve government regu-
lations or business sensitivity. For experiments that evaluate
the cost of obliviousness across different resolutions and bi-
trates, we re-encode the videos accordingly. A recent body
of work [44,48, 115] has found that the accuracy of object
detection in video streams is not affected if the resolution is
decreased (while consuming significantly lesser resources),
and 720p videos suffice. We therefore chose to use streams
closer to 720p in resolution because we believe they would
be a more accurate representation of real performance.

Evaluation highlights. We summarize the key takeaways

of our evaluation.

1) Visor’s optimized oblivious algorithms (§6, §7) are up to
1000x faster than naive competing solutions. (§8.1)

2) End-to-end overhead of obliviousness for real-world video
pipelines with state-of-the-art CNNs are limited to 2x—6x
over a non-oblivious baseline. (§8.2)

3) Visor is generic and can accommodate multiple pipelines
(§2.1; Figure 1) that combine the different vision process-
ing algorithms and CNN:s. (§8.2)

4) Visor’s performance is over 6 to 7 orders of magnitude
better than a state-of-the-art general-purpose system for
oblivious program execution. (§8.3)

Overall, Visor’s use of properties of the video streams has no

impact on the accuracy of the analytics outputs.

8.1 Performance of Oblivious Components

We begin by studying the performance of Visor’s oblivious
modules: we quantify the raw overhead of our algorithms
(without enclaves) over non-oblivious baselines; we also mea-
sure the improvements over naive oblivious solutions.

8.1.1 Oblivious video decoding

Decoding of the compressed bitstream dominates decoding
latency, consuming up to ~90% of the total latency. Further,
this stage is dominated by the oblivious assignment subroutine
which sorts coefficients into the correct pixel positions using
osort, consuming up to ~83% of the decoding latency. Since
the complexity of oblivious sort is super-linear in the number

10MB+ 300+
: — Il Bascline 2.6x
. :ARaW frames 250+ 1280 x 720 —*— 640 x 360 151 mmm Oblivious
N o~ —0— 960 x 540 320 x 180 — L
w 1MB? E 200- E 12- [Oblivious w/ SIMD 8x
g] v Oblivious w, = 150 = S .
&] (keyframes) padd.cd rows 2 2 91 :
0 100K B ° = 100+ 5 6 8
2 i Oblivious w — —~ 2.8%
: 501 O
VP8 padded frames *,/*/‘*/* 3- ‘
* 2.61.8x
10KBL : : : 0-4 ‘ ; : — (. iz
0 1 10 100 1000 025 0.5 1 2 4 6 8 320 180 640 x 360 960 x 540 1280 x 720

Avg. decoding latency (ms)
Figure 8: Decoding latency vs. B/W.

of elements being sorted, our technique for decoding at the
granularity of rows of blocks rather than frames significantly
improves the latency of oblivious decoding.

Overheads. Figure 8 shows the bandwidth usage and decod-
ing latency for different oblivious decoding strategies (i.e.,
decoding at the level of frames, or at the level of row of blocks)
for a video stream of resolution 1280 x 720. We also include
two reference points: non-encoded frames and VP8 encoding.
The baseline latency of decoding VP8 encoded frames is 4—
5 ms. Non-encoded raw frames incur no decoding latency but
result in frames that are three orders of magnitude larger than
the VP8 average frame size (10s of kB) at a bitrate of 4 Mb/s.

Frame-level oblivious decoding introduces high latency
(~850ms), which is two orders of magnitude higher than
non-oblivious counterparts. Furthermore, padding each frame
to prevent leakage of the frame’s bitrate increases the average
frame size to ~95 kB. On the contrary, oblivious decoding at
the level of rows of blocks delivers ~140 ms, which is ~6x
lower than frame-level decoding. However, this comes with a
modest increase in network bandwidth as the encoder needs
to pad each row of blocks individually, rather than a frame. In
particular, the frame size increases from ~95 kB to ~140kB.

Apart from the granularity of decoding, the latency of the
oblivious sort is also governed by: (i) the frame’s resolution,
and (ii) the bitrate. The higher the frame’s resolution / bi-
trate, the more coefficients there are to be sorted. Figure 9
plots oblivious decoding latency at the granularity of rows
of blocks across video streams with different resolutions and
bitrates. The figure shows that lower resolution/bitrates intro-
duce lower decoding overheads. In many cases, lower image
qualities are adequate for video analytics as it does not impact
the accuracy of the object classification [44].

8.1.2 Background subtraction
We set the maximum number of Gaussian components per
pixel Mpax = 4, following prior work [116, 117]. Our changes
for obliviousness enable us to make use of SIMD instructions
for updating the Gaussian components in parallel. This is
because we now maintain the same number of components per
pixel, and update operations for each component are identical.
Figure 10 plots the overhead of obliviousness on back-
ground subtraction across different resolutions. The SIMD
implementation increases the latency of the routine only by
1.8 over the baseline non-oblivious routine. As the routine

Bitrate (Mbps)

Figure 9: Latency of oblivious decoding.

Frame resolution

Figure 10: Background subtraction.

| —@— 1stripe —k— 6 stripes i —@— 1 stripe —*— 6 stripes

2 —— 2 stripes 12 stripes - lK*; —— 2 stripes 12 stripes
< 5007 —A— 4 stripes 2 i —&— 4stripes
%= 400 . e
G 4 ~] -
° %100+
_é 300+ §
£ 200- 3 104
“ 100 i
[. . . 1% .
Q \] N Q \} Q N Q
+\cb f’b +"b(+/\q' +\% f’b +"b(+'0
Q Q S \} Q Q Q Q
SO A CUN G SRS

Frame resolution Frame resolution

Figure 11: Number of labels
for bounding box detection.

Figure 12: Latency of oblivi-
ous bounding box detection.

processes each pixel in the frame independent of the rest, its
latency increases linearly with the total number of pixels.

8.1.3 Bounding box detection

For non-oblivious bounding box detection, we use the border-
following algorithm of Suzuki and Abe [95] (per §7.2); this
algorithm is efficient, running in sub-millisecond latencies.

The performance of our oblivious bounding box detection
algorithm is governed by two parameters: (i) the number
of stripes used in the divide-and-conquer approach, which
controls the degree of parallelism, and (if) an upper bound L
on the maximum number of labels possible per stripe, which
determines the size of the algorithm’s data structures.

Figure 11 plots L for streams of different frame resolutions
while varying the number of stripes into which each frame
is divided. As expected, as the number of stripes increases,
the value of L required per stripe decreases. Similarly, lower
resolution frames require smaller values of L.

Figure 12 plots the latency of detecting all bounding boxes
in a frame based on the value of the parameter L, ranging
from a few milliseconds to hundreds of milliseconds. For
a given resolution, the latency decreases as the number of
stripes increase, due to two reasons: (i) increased parallelism,
and (i7) smaller sizes of L required per stripe. Overall, the
divide-and-conquer approach reduces latency by an order of
magnitude down to a handful of milliseconds.

8.1.4 Object cropping

We first evaluate oblivious object cropping while leaking ob-
ject sizes. We include three variants: the naive approach; the
two-phase approach; and a further optimization that advances
the sliding window forward multiple rows/columns at a time.
Figure 13 plots the cost of cropping variable-sized objects

10000 : - 1000- 1.9
000 i - ‘,_,,1\} . s = 100.0'; = 12\Ia1ve ~ 8001 B Bascline
E 2 Naive @] -pass 7 = -
’r’é\ o Phased é 10. 0 [2-pass (opt) E 600- Oblivious
< 100 + o Phased (opt.) é‘ § 400 1.6x
g Lo Gorwooos anen w0 g 2
2 E vees @9 = = 200- 1.5x
ki . PR 14 gl
1 L & P [0 S S o N
PN Q S
0.1 : . ; : : : m »oe oY \cﬂ' R &\ eﬁ uﬁ o a
0 10K 20K 30K 40K 50K 60K SO I R A A > & o >

Area (sq. pixels)
Figure 13: Oblivious object cropping.

from a 1280 x 720 frame, showing that the proposed refine-
ments reduce latency by three orders of magnitude .

Figure 14 plots the latency of obliviously resizing the target
ROI within a cropped image to hide the object’s size. While
the latency of naive bilinear interpolation is high (10s of mil-
liseconds) for large objects, the optimized two-pass approach
(that exploits cache locality by transposing the image before
the second pass; §7.3.2) reduces latency by two orders of
magnitude down to one millisecond for large objects.

8.1.5 Object tracking

Figure 15 plots the latency of object tracking with and without
obliviousness. We examine our sample streams at various res-
olutions to determine upper bounds on the maximum number
of features in frames. As the resolution increases, the over-
head of obliviousness increases as well because our algorithm
involves an oblivious sort of the intermediate set of detected
features, the cost of which is superlinear in the size of the set.
Overall, the overhead is < 2x.

8.1.6 CNN classification on GPU

Buffer. Figure 17 benchmarks the sorting cost as a function
of the object size and the buffer size. For buffer sizes smaller
than 50, the sorting cost remains under 5 ms.

Inference. We measure the performance of CNN object
classification on the GPU. As discussed in §4.3, oblivious
inference comes free of cost. Figure 16 lists the throughput of
different CNN models using the proprietary NVIDIA driver,
with CUDA version 9.2. Each model takes as input a batch
of 10 objects of size 224 x 224. Further, since GPU memory
is limited to 3 GB, we also list the maximum number of con-
current models that can run on our testbed. As we show in
§8.2, the latter has a direct bearing on the number of video
analytics pipelines that can be concurrently served.

8.2 System Performance

We now evaluate the end-to-end performance of the video
analytics pipeline using four real video streams. We present
the overheads of running Visor’s data-oblivious techniques
and hosting the pipeline in a hybrid enclave. We evaluate
the two example pipelines in Figure 1: pipeline 1 uses an
object classifier CNN; pipeline 2 uses an object detector CNN
(Yolo), and performs object tracking on the CPU.

Pipeline 1 configuration. We run inference on objects that
are larger than 1% of the frame size as smaller detected objects

Object dimensions

Figure 14: Oblivious object resizing.

Frame resolution

Figure 15: Oblivious object tracking.

do not represent any meaningful value. Across our videos,
the number of such objects per frame is small—no frame has
more than 5 objects, and 97-99% of frames have less than
2 to 3 objects. Therefore, we configure: (i) Visor’s object
detection stage to conservatively output 5 objects per frame
(including dummies) into the buffer, (ii) the consumption rate
of Visor’s CNN module to 2 or 3 objects per frame (depending
on the stream), and (iii) the buffer size to 50, which suffices
to prevent non-dummy objects from being overwritten.

Pipeline 2 configuration. The Yolo object detection CNN
ingests entire frames, instead of individual objects. In the
baseline, we filter frames that don’t contain any objects using
background subtraction. However, we forego this filtering in
the oblivious version since most frames contain foreground
objects in our sample streams. Additionally, Yolo expects the
frames to be of resolution 448 x 448. So we resize the input
video streams to be of the same resolution.

Cost of obliviousness. Figures 18 and 19 plot the overhead
of Visor on the CPU-side components of pipelines 1 and 2,
while varying the number of concurrent pipelines. Visor re-
duces peak CPU throughput by ~2.6x—6X across the two
pipelines, compared to the non-oblivious baseline. However,
the throughput of the system ultimately depends on the num-
ber of models that can fit in GPU memory.

Figure 20 plots Visor’s end-to-end performance for both
pipelines, across all four sample video streams. In the pres-
ence of CNN inference, Visor’s overheads depend on the
model complexity. Pipelines that utilize light models, such as
AlexNet and ResNet-18, are bottlenecked by the CPU. In such
cases, the overhead is determined by the cost of oblivious-
ness incurred by the CPU components. With heavier models
such as ResNet-50 and VGG, the performance bottleneck
shifts to the GPU. In this case, the overhead of Visor is gov-
erned by the amount of dummy objects processed by the GPU
(as described in §4.2). Overall, the cost of obliviousness re-
mains in the range of 2.2x-5.9x across video streams for
the first pipeline. In the second pipeline, the overhead is ~2x.
The GPU can fit only a single Yolo model. The overall per-
formance, however, is bottlenecked at the CPU because the
object tracking routine is relatively expensive.

Cost of enclaves. We measure the cost of running the
pipelines in CPU/GPU enclaves by replacing the NVIDIA
stack with Graviton’s stack, which comprises open-source

207 Z 180,
@ @0
CNN | Batches/s | Max no. of models —A— 64 x64 & enl U
£ 150 e ek
o157 —e— 128 x128 s .,_/.'__‘,*___-t———-*‘
AlexNet 40.3 7 E —— 192 %192 € 1201 Pl —#+— Stream |
%10 256 x 256 g e —e— Stream 2
ResNet-18 18.4 4 2 £ 9% & —— Oblivious
ResNet-50 8.2 1 5 5 g 60- g Baseline
VGG-16 | 54 ! E 30 pt—t———t—t—t——3
] =)
VGG-19 4.4 1 04 ‘ ‘ . . ‘ & gl
0 20 40 6 8 100 S 0 3 i 6 & 0
Yolo 3.9 1 Queue size No. of concurrent pipelines (w/o CNN)

Figure 16: CNN throughput (batch size 10).

Figure 17: Oblivious queue sort.

Figure 18: CPU throughput (pipeline 1).

@
?m) —&— Stream | —— Oblivious L e @256 256 1250 B Bascli / 1.
- % . 1
g 80+ —®— Stream2 ---- Baseline /.‘/.r * g 128 BN Bascline 128 asle 14ne Wenciaves
= kT 5 i — Il Oblivious w/enclaves
= P e 5] [Oblivious 2 10004
= 60 . *___‘.——‘* = 64 64 g 2.4x
2 -~] & 7501
5 £ 32 QS Ws i< b s Mo oo 32 g
= 401) o
o 16 16 = 500- 1.7x
= 2 ~
E 20 = 2.0x 250-
S E 8 8 50
& ‘ ‘ ‘ ‘ ‘ ‘ g 2.3x
© 2 4 6 8 10 12 4 AlexNet ResNet-18 ResNet-50 VGG-16 ~ VGG-19 4 Yolo OPipeline 1 Pip_eline 1 Pipeline 2
No. of concurrent pipelines (w/o CNN) CNN model used in pipeline 1 Pipeline 2 (1280 x 720) (320 x 180)

Figure 19: CPU throughput (pipeline 2).

CUDA runtime (Gdev [50]) and GPU driver (Nouveau [73]).

Figure 21 compares Visor against a non-oblivious base-
line when both systems are hosted in CPU/GPU enclaves. As
SGX’s EPC size is limited to 93.5 MB, workloads with large
memory footprints incur high overhead. For pipeline 1, and
for large frame resolutions, the latency of background sub-
traction increases from ~6 ms to 225 ms due to its working
set size being 132 MB. In Visor, the pipeline’s net latency
increases by 2.4 x (as SGX overheads mask some of Visor’s
overheads) while increasing the memory footprint to 190 MB.
When the pipeline operates on lower frame resolutions, such
that its memory footprint fits within current EPC, the latency
of the non-oblivious baseline tracks the latency of the inse-
cure baseline (a few milliseconds); the additional overhead of
obliviousness is 2.3 .

For pipeline 2, the limited EPC increases the latency of
object tracking from ~90 ms to ~240 ms. With Visor’s obliv-
iousness, the net latency increases by 1.7x.

8.3 Comparison against Prior Work

We conclude our evaluation by comparing Visor against Ob-
fuscuro [1], a state-of-the-art general-purpose system for
oblivious program execution.

The current implementation of Obfuscuro supports a lim-
ited set of instructions, and hence cannot run the entire video
analytics pipeline. On this note, we ported the OpenCV object
cropping module to Obfuscuro, which requires only simple
assignment operations. Cropping objects of size 128 x 128
and 16 x 16 (from a 1280 x 720 image) takes 8.5 hours and 8
minutes in Obfuscuro respectively, versus 800 us and 200 ps
in Visor; making Visor faster by over 6 to 7 orders of mag-
nitude. We note, however, that Obfuscuro targets stronger
guarantees than Visor as it also aims to obfuscate the pro-
grams; hence, it is not a strictly apples-to-apples comparison.

Figure 20: Overall pipeline throughput.

Figure 21: Cost of enclaves.

Nonetheless, the large gap in performance is hard to bridge,
and our experiments demonstrate the benefit of Visor’s cus-
tomized solutions.

Other tools for automatically synthesizing or executing
oblivious programs are either closed-source [82, 110], require
special hardware [55,59,72], or require custom language sup-
port [16]. However, we note that the authors of Raccoon [82]
(which provides similar levels of security as Visor) report up
to 1000 x overhead on toy programs; the overhead would ar-
guably be higher for complex programs like video analytics.

9 Discussion

Attacks on upper bounds. For efficiency, Visor extracts a
fixed number of objects per frame based on a user-specified
upper bound. However, this leaves Visor open to adversarial
inputs: an attacker who knows this upper bound can attempt
to confuse the analytics pipeline by operating many objects
in the frame at the same time.

To mitigate such attacks, we suggest two potential strate-
gies: (i) For frames containing >= N objects (as detected in
§7.2), process those frames off the critical path using worst—
case bounds (e.g., total number of pixels). While this approach
leaks which specific frames contain >= N objects, the leakage
may be acceptable considering these frames are suspicious.
(ii) Filter objects based on their properties like object size or
object location: e.g., for a traffic feed, only select objects at
the center of the traffic intersection. This limits the number of
valid objects possible per frame, raising the bar for mounting
such attacks. One can also apply richer filters on the pipeline
results and reprocess frames with suspicious content.

Oblivious-by-design encoding. Instead of designing oblivi-
ous versions of existing codecs, it may be possible to construct
an oblivious-by-design coding scheme that is (i) potentially
simpler, and (ii) performs better than Visor’s oblivious de-

coding. This alternate design point is an interesting direc-
tion for future work. We note, however, that any such codec
would need to produce a perfectly constant bitrate (CBR)
per frame to prevent bitrate leakage over the network. While
CBR codecs have been explored in the video literature, they
are inferior to variable bitrate schemes (VBR) such as VP8
because they are lossier. In other words, an oblivious CBR
scheme would consume greater bandwidth than VP8 to match
its video quality (and therefore, VP8 with padding), though it
may indeed be simpler. In Visor, we optimize for quality.

10 Related Work

To the best of our knowledge, Visor is the first system for the
secure execution of vision pipelines. We discuss prior work
related to various aspects of Visor.

Video processing systems. A wide range of optimizations
have been proposed to improve the efficiency of video ana-
lytic pipelines [36,44,48, 115]. These systems offer different
design points for enabling trade-offs between performance
and accuracy. Their techniques are complementary to Visor
which can benefit from their performance efficiency.

Data-oblivious techniques. Eppstein et al. [22] develop
data-oblivious algorithms for geometric computations. Ohri-
menko et al. [75] propose data-oblivious machine learning
algorithms running inside CPU TEEs. These works are simi-
lar in spirit to Visor, but are not applicable to our setting.

Oblivious RAM [28] is a general-purpose cryptographic
solution for eliminating access-pattern leakage. While recent
advancements have reduced its computational overhead [94],
it still remains several orders of magnitude more expensive
than customized solutions. Oblix [66] and Zerotrace [87] en-
able ORAM support for applications running within hardware
enclaves, but have similar limitations.

Various systems [1, 16, 55,59,72, 82,93, 110] also offer
generic solutions for hiding access patterns at different levels,
with the help of ORAM, specialized hardware, or compiler-
based techniques. Generic solutions, however, are less effi-
cient than customized solutions (such as Visor) which can
exploit algorithmic patterns for greater efficiency.

Side-channel defenses for TEEs. Visor provides systemic
protection against attacks that exploit access pattern leakage
in enclaves. Systems for data-oblivious execution (such as
Obfuscuro [1] and Raccoon [82]) provide similar levels of
security for general-purpose workloads, while Visor is tailored
to vision pipelines.

In contrast, a variety of defenses have also been proposed
to detect [19] or mitigate specific classes of access-pattern
leakage. For example, Cloak [31], Varys [76], and Hyper-
race [18] target cache-based attacks; while T-SGX [91] and
Shinde et al. [92] propose defenses for paging-based attacks.
DR.SGX [11] mitigates access pattern leakage by frequently
re-randomizing data locations, but can leak information if the
enclave program makes predictable memory accesses.

Telekine [37] mitigates side-channels in GPU TEEs in-
duced by CPU-GPU communication patterns, similar to Vi-
sor’s oblivious CPU-GPU communication protocol (though
the latter is specific to Visor’s use case).

Secure inference. Several recent works propose crypto-
graphic solutions for CNN inference [21,47,56,84,86] relying
on homomorphic encryption and/or secure multi-party com-
putation [112]. While cryptographic approaches avoid the
pitfalls of TEE-based CNN inference, the latter remains faster
by orders of magnitude [38,98].

11 Conclusion

We presented Visor, a system that enables privacy-preserving
video analytics services. Visor uses a hybrid TEE architec-
ture that spans both the CPU and the GPU, as well as novel
data-oblivious vision algorithms. Visor provides strong con-
fidentiality and integrity guarantees, for video streams and
models, in the presence of privileged attackers and malicious
co-tenants. Our implementation of Visor shows limited per-
formance overhead for the provided level of security.

Acknowledgments

We are grateful to Chia-Che Tsai for helping us instrument the
Graphene LibOS. We thank our shepherd, Kaveh Razavi, and
the anonymous reviewers for their insightful comments. We
also thank Stefan Saroiu, Yuanchao Shu, and members of the
RISELab at UC Berkeley for helpful feedback on the paper.
This work was supported in part by the NSF CISE Expeditions
Award CCF-1730628, and gifts from the Sloan Foundation,
Bakar Program, Alibaba, Amazon Web Services, Ant Finan-
cial, Capital One, Ericsson, Facebook, Futurewei, Google, In-
tel, Microsoft, Nvidia, Scotiabank, Splunk, and VMware.

References

[11 A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee. Obfuscuro:

A Commodity Obfuscation Engine on Intel SGX. In NDSS, 2019.
[2] Amazon Rekognition. https://aws.amazon.com/rekognition/.
[3] G. Ananthanarayanan, V. Bahl, P. Bodik, K. Chintalapudi,

M. Philipose, L. R. Sivalingam, and S. Sinha. Real-time Video
Analytics — the killer app for edge computing. IEEE Computer, 2017.

[4

[inam)

Attestation Service for Intel SGX. https://api.trustedservices.
intel.com/documents/sgx-attestation-api-spec.pdf.

J. Bankoski, P. Wilkins, and Y. Xu. Technical overview of VP8, an
open source video codec for the web. In ICME, 2011.

[5

—_

[6

[t

K. E. Batcher. Sorting Networks and Their Applications. In
Proceedings of the Spring Joint Computer Conference, 1968.

B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson. Vale: Verifying
High-Performance Cryptographic Assembly Code. In USENIX
Security, 2017.

T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and
S. Devadas. MI6: Secure Enclaves in a Speculative Out-of-Order
Processor. In MICRO, 2019.

[9] T. Bouwmans, F. E. Baf, and B. Vachon. Background Modeling
using Mixture of Gaussians for Foreground Detection — A Survey.
Recent Patents on Computer Science, 2008.

[7

—

[8

[t

https://aws.amazon.com/rekognition/
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza. Rollback
and Forking Detection for Trusted Execution Environments using
Lightweight Collective Memory. In DSN, 2017.

F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi. DR.SGX: Automated and Adjustable
Side-Channel Protection for SGX Using Data Location
Randomization. In ACSAC, 2019.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi. Software Grand Exposure: SGX Cache Attacks Are
Practical. In WOOT, 2017.

J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,

F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In USENIX Security, 2018.

J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling Your Secrets without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution. In USENIX Security, 2017.

C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom. Fallout: Leaking Data on Meltdown-resistant CPUs. In
CCS, 2019.

S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan. FaCT: A
DSL for Timing-Sensitive Computation. In PLDI, 2019.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves via
Speculative Execution. In EuroS&P, 2019.

G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, and T.-H.
L. D. Lin. Racing in Hyperspace: Closing Hyper-Threading Side
Channels on SGX with Contrived Data Races. In IEEE S&P, 2018.

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting Privileged
Side-Channel Attacks in Shielded Execution with DéJa Vu. In
AsiaCCS, 2017.

F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom. CacheQuote: Efficiently Recovering

Long-term Secrets of SGX EPID via Cache Attacks. In CHES, 2018.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In ICML, 2016.

D. Eppstein, M. T. Goodrich, and R. Tamassia. Privacy-preserving
Data-oblivious Geometric Algorithms for Geographic Data. In
Proceedings of the 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems (GIS), 2010.

ETSI White Paper No. 11. Mobile Edge Computing — A key
technology towards 5G.
https://www.etsi.org/images/files/ETSIWhitePapers/
etsi_wp11_mec_a_key_technology_towards_5g.pdf.

FFmpeg. https://ffmpeg.org/.

M. Fredrikson, S. Jha, and T. Ristenpart. Model Inversion Attacks
That Exploit Confidence Information and Basic Countermeasures. In
CCS, 2015.

M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart.
Privacy in Pharmacogenetics: An End-to-end Case Study of
Personalized Warfarin Dosing. In USENIX Security, 2014.

O. Goldreich. The Foundations of Cryptography - Volume 2: Basic
Techniques. Cambridge University Press, 2004.

0. Goldreich and R. Ostrovsky. Software Protection and Simulation
on Oblivious RAMs. J. ACM, 1996.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller. Cache Attacks on
Intel SGX. In EuroSec, 2017.

[30]

[31]

[32]

(33]
[34]

[35]

[36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]

[52]

[53]

K. Grover, S. Tople, S. Shinde, R. Bhagwan, and R. Ramjee. Privado:
Practical and secure DNN inference. arXiv:1810.00602, 2018.

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In USENIX Security, 2017.

D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom. Another Flip in the Wall
of Rowhammer Defenses. In IEEE S&P, 2017.

H264 Codec. https://www.itu.int/rec/T-REC-H.264.

M. Hihnel, W. Cui, and M. Peinado. High-Resolution Side Channels
for Untrusted Operating Systems. In ATC, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. In CVPR, 2016.

K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu. Focus: Querying Large
Video Datasets with Low Latency and Low Cost. In OSDI, 2018.

T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and
E. Witchel. Telekine: Secure Computing with Cloud GPUs. In NSDI,
2020.

T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel. Chiron:
Privacy-preserving Machine Learning as a Service.
arXiv:1803.05961, 2018.

IBM Cloud Data Shield.
https://www.ibm.com/cloud/data-shield.

A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall,
1989.

I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh.
Heterogeneous Isolated Execution for Commodity GPUs. In
ASPLOS, 2019.

Y. Jang, J. Lee, S. Lee, and T. Kim. SGX-Bomb: Locking Down the
Processor via Rowhammer Attack. In SysTEX, 2017.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional Architecture for
Fast Feature Embedding. In MM, 2014.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica.
Chameleon: Scalable Adaptation of Video Analytics. In SIGCOMM,
2018.

Z. H. Jiang, Y. Fei, and D. Kaeli. A Complete Key Recovery Timing
Attack on a GPU. In HPCA, 2016.

Z. H. Jiang, Y. Fei, and D. Kaeli. A Novel Side-Channel Timing
Attack on GPUs. In Proceedings of the on Great Lakes Symposium
on VLSI (GLSVLSI), 2017.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A
Low Latency Framework for Secure Neural Network Inference. In
USENIX Security, 2018.

D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.
NoScope: Optimizing Neural Network Queries over Video at Scale.
In VLDB, 2017.

1. Kash, G. O’Shea, and S. Volos. DC-DRF: Adaptive multi-resource
sharing at public cloud scale. In SOCC, 2018.

S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-class
GPU Resource Management in the Operating System. In ATC, 2012.

Kuna Al https://getkuna.com/pages/kuna-ai.

D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa. An Off-Chip
Attack on Hardware Enclaves via the Memory Bus. In USENIX
Security, 2020.

D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovic.
Keystone: An Open Framework for Architecting TEEs. In EuroSys,
2020.

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://ffmpeg.org/
https://www.itu.int/rec/T-REC-H.264
https://www.ibm.com/cloud/data-shield
https://getkuna.com/pages/kuna-ai

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security, 2017.

C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi.
GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation. In ASPLOS, 2015.

J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious Neural Network
Predictions via MiniONN Transformations. In CCS, 2017.

D. Lowe. Object Recognition from Local Scale-Invariant Features.
In ICCV, 1999.

D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
Int. J. Comput. Vision, 2004.

M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song. PHANTOM: Practical Oblivious
Computation in a Secure Processor. In CCS, 2013.

S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,

A. Gervais, A. Juels, and S. Capkun. ROTE: Rollback Protection for
Trusted Execution. In USENIX Security, 2017.

F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,

V. Shanbhogue, and U. Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In HASP, 2013.

Microsoft Azure Confidential Computing. https://azure.
microsoft.com/en-us/solutions/confidential-compute/.

Microsoft Azure Media Analytics. https://azure.microsoft.
com/en-us/services/media-services/media-analytics/.

Microsoft Project Rocket. https://aka.ms/Rocket.

Microsoft Rocket Video Analytics Platform. https://github.com/
microsoft/Microsoft-Rocket-Video-Analytics-Platform.

P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An
Efficient Oblivious Search Index. In IEEE S&P, 2018.

A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How SGX
amplifies the power of cache attacks. In CHES, 2017.

A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar. MemJam:
A False Dependency Attack Against Constant-Time Crypto
Implementations. In CT-RSA, 2018.

K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and

F. Piessens. Plundervolt: Software-based fault injection attacks
against intel sgx. In JEEE S&P, 2020.

H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh.
Constructing and Characterizing Covert Channels on GPGPUs. In
MICRO, 2017.

H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh.
Rendered Insecure: GPU Side Channel Attacks are Practical. In CCS,
2018.

K. Nayak, C. W. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi,
and V. Goyal. HOP: Hardware makes Obfuscation Practical. In
NDSS, 2017.

Nouveau: Accelerated open source driver for NVIDIA cards.
https://nouveau. freedesktop.org/wiki.

NVIDIA GPU Instruction Set Reference.
https://docs.nvidia.com/cuda/cuda-binary-utilities/
index.html#instruction-set-ref.

0. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,

K. Vaswani, and M. Costa. Oblivious Multi-Party Machine Learning
on Trusted Processors. In USENIX Security, 2016.

0. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer.
Varys: Protecting SGX Enclaves from Practical Side-Channel
Attacks. In ATC, 2018.

OpenCV. https://opencv.org/.

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

(911

[92]

[93]

[94]

[95]

[96]

[971

(98]

[99]

[100]

B. Parno, J. Lorch, J. Douceur, J. Mickens, and J. M. McCune.
Memoir: Practical State Continuity for Protected Modules. In IEEE
S&P,2011.

R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa.
Visor: Privacy-Preserving Video Analytics as a Cloud Service
(Extended version). arXiv:2006.09628, 2020.

A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian. Scanner:
Efficient Video Analysis at Scale. In SSIGGRAPH, 2018.

H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida.
CROSSTALK: Speculative Data Leaks Across Cores Are Real. In
IEEE S&P, 2021.

A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing Digital
Side-Channels through Obfuscated Execution. In USENIX Security,
2015.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. In CVPR, 2016.

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar. Chameleon: A Hybrid Secure Computation
Framework for Machine Learning Applications. In AsiaCCS, 2018.

A. Rosenfeld and J. L. Pfaltz. Sequential Operations in Digital
Picture Processing. J. ACM, 1966.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepsecure: Scalable
Provably-secure Deep Learning. In DAC, 2018.

S. Sasy, S. Gorbunov, and C. W. Fletcher. ZeroTrace : Oblivious
Memory Primitives from Intel SGX. In NDSS, 2018.

R. Schuster, V. Shmatikov, and E. Tromer. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. In USENIX
Security, 2017.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. ZombieLoad: Cross-Privilege-Boundary
Data Sampling. In CCS, 2019.

M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard.
Malware Guard Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs. In NDSS,
2017.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing Page
Faults from Telling Your Secrets. In AsiaCCS, 2016.

R. Sinha, S. Rajamani, and S. A. Seshia. A Compiler and Verifier for
Page Access Oblivious Computation. In FSE, 2017.

E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: An extremely simple oblivious RAM
protocol. In CCS, 2013.

S. Suzuki and K. Abe. Topological Structural Analysis of Digitized
Binary Images by Border Following. Comput. Vis. Graph. Image
Proc., 1985.

A. Tang, S. Sethumadhavan, and S. Stolfo. CLKSCREW: Exposing
the Perils of Security-Oblivious Energy Management. In USENIX
Security, 2017.

T. Telegraph. How retailers make shoppers stand out from the crowd.
https://www.telegraph.co.uk/business/open-economy/
how-retailers-make-shoppers-stand-out/.

F. Tramer and D. Boneh. Slalom: Fast, Verifiable and Private
Execution of Neural Networks in Trusted Hardware. In ICLR, 2019.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Stealing Machine Learning Models via Prediction APIs. In USENIX
Security, 2016.

C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In ATC, 2017.

https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/services/media-services/media-analytics/
https://azure.microsoft.com/en-us/services/media-services/media-analytics/
https://aka.ms/Rocket
https://github.com/microsoft/Microsoft-Rocket-Video-Analytics-Platform
https://github.com/microsoft/Microsoft-Rocket-Video-Analytics-Platform
https://nouveau.freedesktop.org/wiki
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://opencv.org/
https://www.telegraph.co.uk/business/open-economy/how-retailers-make-shoppers-stand-out/
https://www.telegraph.co.uk/business/open-economy/how-retailers-make-shoppers-stand-out/

[101] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:
Hijacking Transient Execution through Microarchitectural Load
Value Injection. In IEEE S&P, 2020.

[102] S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida. RIDL: Rogue In-flight Data
Load. In I[EEE S&P, 2019.

[103] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom.
CacheOut: Leaking data on Intel CPUs via cache evictions.
https://cacheoutattack.com/, 2020.

[104] Verkada. https://verkada.com.
[105] Vision Zero. https://visionzeronetwork.org.

[106] Vivotek. Smart Stream II.
https://www.vivotek.com/website/smart-stream-ii/.

[107] S. Volos, K. Vaswani, and R. Bruno. Graviton: Trusted Execution
Environments on GPUs. In OSDI, 2018.

[108] VP9 Codec. https://www.webmproject.org/vp9/.

[109] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter. Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX. In CCS,
2017.

[110] M. Wu, S. Guo, P. Schaumont, and C. Wang. Eliminating Timing
Side-Channel Leaks Using Program Repair. In ISSTA, 2018.

[111] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In
IEEE S&P, 2015.

[112] A.C. Yao. How to generate and exchange secrets (extended abstract).
In FOCS, 1986.

[113] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: a timing attack
on OpenSSL constant-time RSA. In CHES, 2016.

[114] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee.
AWStream: Adaptive Wide-area Streaming Analytics. In SIGCOMM,
2018.

[115] H.Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, V. Bahl, and
M. Freedman. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In NSDI, 2017.

[116] Z. Zivkovic. Improved Adaptive Gaussian Mixture Model for
Background Subtraction. In /CPR, 2004.

[117] Z.Zivkovic and F. van der Heijden. Efficient Adaptive Density
Estimation per Image Pixel for the Task of Background Subtraction.
Pattern Recognition Letters, 2006.

A Impact of Video Encoder Padding

In Visor, the source video streams are padded at the camera
to prevent information leakage due to variations in bitrate of
the encrypted network traffic. However, it may not always be
possible to modify legacy cameras to incorporate padding.
This security guarantee also comes at the cost of performance
and increased network bandwidth.

While we recommend padding the video streams for secu-
rity, we studied the impact of disabling video encoder padding
on Visor so as to aid practitioners in taking an informed deci-
sion between security and performance. Disabling padding
has two implications on Visor.

First, the encoded stream may also contain interframes in
addition to keyframes (see §6.1). Thus, we have devised an
oblivious routine for interframe prediction, which is described

in Appendix A.1. Second, the performance overhead of Visor
(~2x—6x) reduces to a range of ~1.6x-2.9x. This is due
to lower interframe decoding latency and smaller number of
decoded bits per row of blocks (which are obliviously sorted).

A.1 Inter-Prediction for Interframes

Inter-predicted blocks use previously decoded frames as refer-
ence (either the previous frame, or the most recent keyframe).
Obliviousness of inter-prediction requires that the reference
block (which frame, and block’s coordinates therein) remains
private during decoding. Otherwise, an attacker observing
access patterns during inter-prediction can discern the motion
of objects across frames. Furthermore, some blocks even in
interframes can be intra-predicted for coding efficiency, and
oblivious approaches need to conceal whether an interframe
block is inter- or intra-predicted. A naive, but inefficient, ap-
proach to achieve obliviousness is to access all blocks in
possible reference frames at least once—if any block is left
untouched, its location its leaked to the attacker.

We leverage properties of video streams to make our obliv-
ious solution efficient: (i) Most blocks in interframes are
inter-predicted (~99% blocks in our streams); and (ii) Co-
ordinates of reference blocks are close to the coordinates
of inter-predicted blocks (in a previous frame), e.g., 90% of
blocks are radially within 1 to 3 blocks. These properties
enable two optimizations. First, we assume every block in an
interframe is inter-predicted. Any error due to this assumption
on intra-predicted blocks is minor in practice. Second, instead
of scanning all blocks in prior frames, we only access blocks
within a small distance of the current block. If the reference
block is indeed within this distance, we fetch it obliviously
using oaccess; else, (in the rare cases) we use the block at
the same coordinates in the previous frame as reference.

B Impact of Disabling Hyperthreading

Visor requires hyperthreading to be disabled in the underlying
system for security (see §3). In contrast, in our evaluation,
the baseline system leveraged hyperthreading to maximize its
throughput.

We measured the impact of disabling hyperthreading on
Visor’s performance to be 5%. Visor heavily utilizes vector
units due to the increased data-level parallelism of oblivious
algorithms, leaving little space for performance improvement
when hyperthreading is enabled [49]. As such, the increased
security comes with negligible performance overhead.

Disabling hyperthreading in cloud VMs is considered to be
a good practice due to the reduced impact of microarchitec-
tural data-sampling vulnerabilities that affect commodity Intel
CPUs (not just Intel SGX) [15,89,102,103]. Our experiments
demonstrate that disabling hyperthreading in the baseline sys-
tem reduces its performance by 30%; bridging considerably
the performance gap between Visor and insecure baseline
systems in hyperthreading-disabled cloud deployments.

https://cacheoutattack.com/
https://verkada.com
https://visionzeronetwork.org
https://www.vivotek.com/website/smart-stream-ii/
https://www.webmproject.org/vp9/

	Introduction
	Background and Motivation
	Video Analytics as a Service
	Trusted Execution Environments
	Attacks based on Access Pattern Leakage

	Threat Model and Security Guarantees
	Hardware Enclaves and Side-Channels
	Video Streams and CNN Model
	Provable Guarantees for Data-Obliviousness

	A Privacy-Preserving MLaaS Framework
	Hybrid TEE Architecture
	CPU-GPU Communication
	CNN Classification on the GPU
	Oblivious Modules on the CPU

	Designing Oblivious Vision Modules
	Design Strategy
	Input Parameters for Oblivious Algorithms

	Oblivious Video Decoding
	Video Encoder Padding
	Bitstream Decoding
	Oblivious prefix tree traversal
	Oblivious coefficient assignment

	Dequantization and Inverse Transformation
	Block Prediction

	Oblivious Image Processing
	Background Subtraction
	Bounding Box Detection
	Object Cropping
	Hiding object positions
	Hiding object dimensions

	Object Tracking

	Evaluation
	Performance of Oblivious Components
	Oblivious video decoding
	Background subtraction
	Bounding box detection
	Object cropping
	Object tracking
	CNN classification on GPU

	System Performance
	Comparison against Prior Work

	Discussion
	Related Work
	Conclusion
	Impact of Video Encoder Padding
	Inter-Prediction for Interframes

	Impact of Disabling Hyperthreading

