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Abstract

Continuous influence maximization (CIM) generalizes the
original influence maximization by incorporating general
marketing strategies: a marketing strategy mix is a vector
x = (x1, . . . , xd) such that for each node v in a social net-
work, v could be activated as a seed of diffusion with probabil-
ity hv(x), where hv is a strategy activation function satisfying
DR-submodularity. CIM is the task of selecting a strategy mix
x with constraint

∑
i xi ≤ k where k is a budget constraint,

such that the total number of activated nodes after the diffusion
process, called influence spread and denoted as g(x), is maxi-
mized. In this paper, we extend CIM to consider budget saving,
that is, each strategy mix x has a cost c(x) where c is a con-
vex cost function, and we want to maximize the balanced sum
g(x) + λ(k − c(x)) where λ is a balance parameter, subject
to the constraint of c(x) ≤ k. We denote this problem as CIM-
BS. The objective function of CIM-BS is neither monotone,
nor DR-submodular or concave, and thus neither the greedy
algorithm nor the standard result on gradient method could
be directly applied. Our key innovation is the combination of
the gradient method with reverse influence sampling to design
algorithms that solve CIM-BS: For the general case, we give
an algorithm that achieves

(
1
2
− ε
)
-approximation, and for

the case of independent strategy activations, we present an
algorithm that achieves

(
1− 1

e
− ε
)

approximation.

1 Introduction
Influence maximization is the task of selecting a small num-
ber of seed nodes in a social network such that the influence
spread from the seeds when following an influence diffusion
model is maximized. It models the viral marketing scenario
and has been extensively studied (cf. (Kempe, Kleinberg,
and Tardos 2015; Chen, Lakshmanan, and Castillo 2013;
Li et al. 2018)). Continuous influence maximization (CIM)
generalizes the original influence maximization by incorpo-
rating general marketing strategies: a marketing strategy mix
is a vector x = (x1, . . . , xd) such that for each node v in
a social network, v could be activated as a seed of diffu-
sion with probability hv(x), where hv is a strategy activa-
tion function satisfying monotonicity and DR-submodularity.
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CIM is the task of selecting a strategy mix x with constraint∑
i xi ≤ k where k is a budget constraint, such that the

total number of activated nodes after the diffusion process,
called influence spread and denoted as g(x), is maximized.
CIM is proposed in (Kempe, Kleinberg, and Tardos 2015),
and recently followed up by a few studies (Yang et al. 2016;
Chen, Wu, and Yu 2019).

In this paper, we extend CIM to consider budget saving:
each strategy mix x has a cost c(x) where c is a convex
cost function, and we want to maximize the balanced sum
g(x) + λ(k − c(x)) where λ is a balance parameter, subject
to the constraint of c(x) ≤ k. We denote this problem as
CIM-BS. The objective reflects the realistic consideration of
balancing between increasing influence spread and saving
marketing budget. In general we have g(x) monotone (in-
creasing) and DR-submodular (diminishing return property
formally defined in Section 2), but λ(k − c(x)) is concave
and likely to be monotonically decreasing, and thus the ob-
jective function g(x) + λ(k − c(x)) is neither monotone,
nor DR-submodular or concave, and thus neither the greedy
algorithm nor the standard result on gradient method could
be directly applied for a theoretical guarantee.

In this paper, we apply the gradient method (Nesterov
2013; Parikh, Boyd, and others 2014) to solve CIM-BS with
theoretical approximation guarantees. This is the only case
we know of that the gradient method is applied to influence
maximization with a theoretical guarantee while the greedy
method cannot. The gradient method may be applied to the
original objective function g(x) + λ(k − c(x)), but g(x) is
a complicated combinatorial function and its exact gradient
is infeasible to compute. We could use stochastic gradient
instead, but it results in large variance and very slow con-
vergence. Instead, we integrate the gradient method with the
reverse influence sampling (RIS) approach (Borgs et al. 2014;
Tang, Xiao, and Shi 2014; Tang, Shi, and Xiao 2015), which
is the main technical innovation in our paper. RIS is proposed
for improving the efficiency of the influence maximization
task, but when integrating with the gradient method, it brings
two additional benefits: (a) it allows the efficient computation
of the exact gradient of an estimator function of g(x), which
avoids slow convergence caused by the large variance in the
stochastic gradient, and (b) for a class of independent strat-



egy activation functions hv where each strategy dimension
independently attempts to activate node v, the new objective
function is in the form of coverage functions (Karimi et al.
2017b), which allows a tight concave upper bound function
and leads to a better approximation ratio.

For the general case, we apply the proximal gradient
method originally designed for concave functions to work
with RIS and achieve an approximation of

(
1
2 − ε

)
(Theo-

rem 3). This requires an adaptation of the proximal gradient
method for the functions of the form f1(x) + f2(x) where
f1 is non-negative, monotone and DR-submodular and f2

is non-negative and concave, and the result of this adaption
(Theorem 2) may be of independent interest. For the indepen-
dent strategy activation case, we apply the projected subgra-
dient method on a tight concave upper bound of the objective
function and achieve a

(
1− 1

e − ε
)

approximation (Theo-
rem 4). We test our algorithms on a real-world dataset and
validate its effectiveness comparing with other algorithms.

In summary, our contributions include: (a) we propose
the study of CIM-BS problem to balance influence spread
with budget saving; and (b) we integrate the gradient method
with reverse influence sampling and provide two algorithms
with theoretical approximation guarantees, on the objective
function that is neither monotone, nor DR-submodular or
concave. Our study is one of the first studies that introduce the
gradient method to influence maximization, and hopefully it
will enrich the scope of the influence maximization research.

Due to the space constraint, detailed proofs and full exper-
iment results are moved to the full technical report (Chen,
Zhang, and Zhao 2019).
Related works. Influence maximization was first proposed
by Kempe et al. (Kempe, Kleinberg, and Tardos 2015) as
a discrete optimization problem, and has been extensively
studied since (cf. (Chen, Lakshmanan, and Castillo 2013;
Li et al. 2018)). CIM is also proposed in (Kempe, Kleinberg,
and Tardos 2015). Yang et al. (Yang et al. 2016) propose
heuristic algorithms to solve CIM more efficiently, while Wu
et al. (Chen, Wu, and Yu 2019) consider discrete version of
CIM and apply RIS to solve it efficiently. Profit maximization
in (Lu and Lakshmanan 2012; Tang, Tang, and Yuan 2016)
introduces linear cost with no budget constraint to influence
maximization. Our CIM-BS problem is new and more general
than both CIM and profit maximization studied before. The
RIS approach is originally proposed in (Borgs et al. 2014),
and is further improved in (Tang, Xiao, and Shi 2014; Tang,
Shi, and Xiao 2015; Nguyen, Thai, and Dinh 2016).

Recently, a number of studies have applied gradient meth-
ods to DR-submodular maximization: Bian et al. (Bian et al.
2017) apply the Frank-Wolfe algorithm to achieve 1− 1/e
approximation for down-closed sets; Hassani et al. (Hassani,
Soltanolkotabi, and Karbasi 2017) apply stochastic projected
gradient descent to achieve 1/2 approximation; Karimi et
al. (Karimi et al. 2017a) achieve 1− 1/e approximation for
coverage functions, which we adopt for the independent strat-
egy activation case; Mokhtari et al. (Mokhtari, Hassani, and
Karbasi 2018) apply more complicated conditional gradi-
ent method to achieve 1− 1/e approximation. Our study is
not a simple adoption of such methods to CIM-BS, because
our objective function is not DR-submodular, and gradient

computation cannot be treated as an oracle —- we have to
provide exact gradient computation and an end-to-end inte-
gration with the RIS approach.

2 Preliminary and Model
In this paper, we focus on the triggering model for influence
maximization problem. We use a directed graph G = (V,E)
to represent a social network, where V is the set of nodes
representing individuals, and E is the set of directed edges
with edge (u, v) representing that u could directly influence
v. Let n = |V | and m = |E|. In the diffusion process, each
node is either active or inactive, and a node will stay active
if it is activated. In the triggering model, every node v ∈
V has a distribution Dv on the subsets of v’s in-neighbors
N−(v) = {u|(u, v) ∈ E}. Before the diffusion starts, each
node v ∈ V samples a triggering set Tv ⊆ N−(v) from the
distribution Dv , denoted Tv ∼ Dv . At time t = 0, the nodes
in a pre-determined seed set S are activated. For any time
t = 1, 2, . . ., the node v is activated if at least one of nodes
in its triggering set Tv is activated at time t− 1. The whole
propagation stops when no new node is activated in a step.
An important quantity is the influence spread of the seed set
S, denoted as σ(S), which is defined as the expected number
of the final activated nodes with seed set S. The classical
influence maximization problem is to maximize σ(S) such
that |S| ≤ k for some given budget k.

A generalization of the classical influence maximization
problem is the continuous influence maximization (CIM)
problem with general marketing strategies (Kempe, Klein-
berg, and Tardos 2015). A mix of marketing strategies is rep-
resented by a d-dimensional vector x = (x1, x2, . . . , xd) ∈
Rd+, where R+ is the set of non-negative real numbers. In
the general case, we consider strategy mix x in a general
convex set D ⊆ Rd+, but most commonly we consider
D = Rd+ or D has an upper bound in each dimension, e.g.
D = [0, 1]d. Given the strategy x, each node v ∈ V is inde-
pendently activated as a seed with probability hv(x), where
hv : Rd+ → [0, 1] is referred to as a strategy activation func-
tion. Once a set of seeds S is activated by a marketing strategy
mix x, the influence propagates from seeds in S following
the triggering model. Then we define the influence spread
of strategy mix x, g(x), as the expected number of nodes
activated by x, and formally,

g(x) = ES [σ(S)]

=
∑
S⊆V

σ(S) ·
∏
u∈S

hu(x) ·
∏
v/∈S

(1− hv(x)). (1)

The above formula means that we enumerate through all
possible seed sets S, and due to independent seed activation
by x the probability of S being the seed set is

∏
u∈S hu(x) ·∏

v/∈S(1− hv(x)) and its influence spread is σ(S).
In many situations, each strategy dimension in x activates

each node independently. That is, for each node v and each
strategy j ∈ [d], there is a function qv,j such that strategy j
with amount xj activates node v with probability qv,j(xj).
Then we have hv(x) = 1 −

∏
j∈[d](1 − qv,j(xj)). We call

this case independent strategy activation. Independent strat-



egy activation models many scenarios such as personalized
marketing and event marketing (Chen, Wu, and Yu 2019).

In this paper, we focus on an extension of the continu-
ous influence maximization problem — continuous influence
maximization with budget saving (CIM-BS). We have a total
budge k, and for every strategy mix x, there is a cost c(x).
We do not want the cost to exceed the budget, and we want
to maximize the budget balanced influence spread: a combi-
nation of the expected influence spread and the remaining
budget. More formally, we have the following definition.

Definition 1 (Continuous Influence Maximization with Bud-
get Saving). The continuous influence maximization with
budget saving (CIM-BS) is the problem of given (a) a social
network G = (V,E) and the triggering model {Dv}v∈V
on G, (b) strategy activation functions {hv}v∈V , (c) cost
function c, total budget k, and a balance parameter λ ≥ 0,
finding a strategy mix x∗ ∈ Rd+ to maximize its balanced
sum of influence spread and budget savings, i.e., find x∗ such
that x∗ ∈ argmaxx∈D,c(x)≤k (g(x) + λ(k − c(x))).

Note that when λ = 0 and c(x) =
∑
i∈[d] xi, the CIM-BS

problem falls back to the CIM problem defined in (Kempe,
Kleinberg, and Tardos 2015), and also appears in (Yang et
al. 2016; Chen, Wu, and Yu 2019). When c(x) is a linear
function and the budget constraint c(x) ≤ k is dropped, the
problem resembles the profit maximization studied in (Lu and
Lakshmanan 2012; Tang, Tang, and Yuan 2016). However,
the general version of the problem as defined here with λ > 0,
a general cost function c(x) and constraint c(x) ≤ k together
is new. Henceforth, let s(x) = λ(k − c(x)). Intuitively,
s(x) is the budget-saving part of the objective. The overall
objective of g(x)+s(x) is trying to find the balance between
maximizing influence and saving budget. We call g(x)+s(x)
the budget-balanced influence spread. For convenience, we
denote P = {x | x ∈ D, c(x) ≤ k}.

We say that a vector function f : D → R is DR-
submodular if for any x,y ∈ D with x ≤ y (coordinate-
wise), for any unit vector ei with the i-th dimension 1
and all other dimensions 0, and for any δ > 0, we have
f(x+δ·ei)−b(x) ≥ f(y+δ·ei)−f(y). DR-submodularity
characterizes the diminishing marginal return on function f
as vector x increases, hence the name. We also say that f is
monotone if for any x,y ∈ D with x ≤ y, f(x) ≤ f(y); f
is convex if for any x,y ∈ D, any λ ∈ [0, 1], f(λx + (1−
λ)y) ≤ λf(x) + (1 − λ)f(y); f is L-Lipschitz if for any
x,y ∈ D, |f(x)− f(y)| ≤ L · ||x−y||2, where || · ||2 is the
vector 2-norm; f is β-smooth if it has gradients everywhere
and for any x,y ∈ D, ||∇f(x) −∇f(y)||2 ≤ β||x − y||2.
Note that when the gradients exist, the L-Lipschitz condition
is equivalent to ||∇f(x)||2 ≤ L for all x ∈ D.

In this paper, we assume that the strategy activation func-
tion hv is monotone and DR-submodular, which implies that
the influence spread function g is also monotone and DR-
submodular, same as assumed in (Kempe, Kleinberg, and
Tardos 2015; Chen, Wu, and Yu 2019). It is reasonable in
that, with more marketing effort, the probability of seed acti-
vation would increase (monotonicity) but the marginal effect
may be decreasing. For the case of independent strategy ac-
tivation (hv(x) = 1 −

∏
j∈[d](1 − qv,j(xj))), we assume

qv,j is non-decreasing and concave, which implies that hv
is monotone and DR-submodular (Chen, Wu, and Yu 2019).
In term of the cost function c, we assume that c is convex
and Lc-Lipschitz. The most common function is the simple
summation (or 1-norm of x): c(x) =

∑
i∈[d] xi, but more

general convex functions are also common in the economics
literature (e.g. (Mankiw 2014)), for example c(x) = ||x||2.

An important remark is now in order. When hv’s are mono-
tone and DR-submodular and c is convex, g is monotone and
DR-submodular and s is concave, and as a result g + s may
be neither monotone nor DR-submodular. This means the
greedy hill-climbing algorithm of (Kempe, Kleinberg, and
Tardos 2015; Chen, Wu, and Yu 2019) no longer has theoreti-
cal approximation guarantee for the CIM-BS problem. This
motivates us to apply the gradient method to solve CIM-BS.

3 Gradient Method with Reverse Influence
Sampling

Gradient method has been applied to many continuous op-
timization problems. For our CIM-BS problem, a natural
option is to apply the gradient method directly on the objec-
tive function g + s. However, the influence spread function g
is a complicated combinatorial function, such that its gradient
∇g is too complex to compute in practice. We could apply
stochastic gradient on g (see Appendix D in (Chen, Zhang,
and Zhao 2019)) but it has very large variance due to the sig-
nificant amount of randomness from both strategies activating
seeds and influence propagation from seeds, which leads to
very slow convergence of the method. Instead, in this section,
we propose a novel integration of the gradient method with
the reverse influence sampling (RIS) approach (Borgs et al.
2014) for CIM-BS. The key insight is that RIS allows the
efficient computation of the exact gradient of an alternative
objective function ĝR + s while maintaining an approxi-
mation guarantee of 1/2− ε. Moreover, when independent
strategy activation is satisfied by the model, the alternative
objective enables a tight concave upper bound, which leads
to a 1− 1/e− ε approximation.

In Section 3.1, we first review existing results on RIS
with the continuous domain. Then in Sections 3.2 and 3.3,
we present the gradient method, its integration with RIS,
and its theoretical analysis, which are our main technical
contribution.

3.1 Properties of the Reverse Reachable Sets
The central concept in the RIS approach is the reverse reach-
able set, as defined below.
Definition 2 (Reverse Reachable Set). Under the triggering
model, a reverse reachable (RR) set with a root node v, de-
noted Rv, is the random set of nodes that v reaches in one
reverse propagation: sample all triggering sets Tu, u ∈ V ,
such that edges {(w, u)|u ∈ V,w ∈ Tu} together with nodes
V form a live-edge graph, and Rv is the set of nodes that can
reach v (or v can reach reversely) in this live-edge graph. An
RR set R without specifying a root is one with root v selected
uniformly at random from V .

An RR set Rv includes nodes that would activate v in
one sample propagation. Then, the key insight is that for a



Algorithm 1 Grad-RIS: Gradient-RIS Meta-Algorithm for
CIM-BS.
Input: Directed graph G, triggering model {Dv}v∈V , do-

main P , strategy activation functions {hv}v∈V , cost
function c, budget k, balance parameter λ, Lipschitz
constants L1, L2 for the functions g + s and ĝR + s,
approximation parameter ε, confidence parameter `, gra-
dient algorithm A with the approximation guarantee α

Output: A strategy mix x
1: R,LB ← Sampling(all parameters received)
2: x ← A(R, ĝR + s, εLB) /* ĝR defined in Eq. (2),
s(x) = λ(k − c(x)) */

3: return x

collection of RR sets, if some node u appears in many of
these RR sets, it means u is likely to activate many nodes,
and thus has high influence. Technically, RR sets connect
with the influence spread of a seed set S with the follow-
ing equation (Borgs et al. 2014; Tang, Shi, and Xiao 2015):
σ(S) = ER[Pr{S ∩ R 6= ∅}]. For CIM-BS, we have the
following connection as given in (Chen, Wu, and Yu 2019):

Lemma 1 ((Chen, Wu, and Yu 2019)). For any strategy
x ∈ P , we have g(x) = n · ER

[
1−

∏
u∈R(1− hu(x))

]
.

Intuitively, the above lemma means that a node u ∈ R
would activate R’s root if u itself is activated, which happens
with probability hu(x), and thus strategy mix successfully
activate R’s root with probability 1−

∏
u∈R(1−hu(x)). We

can generate θ independent RR-setsR = {R1, . . . , Rθ}, and
take the average among them as defined below:

ĝR(x) =
n

θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))

)
. (2)

We can see that ĝR(x) is an unbiased estimator of g(x). If θ
is large enough, then ĝR(x) should be close to g(x) at every
x ∈ P . We also have the following lemma from (Chen, Wu,
and Yu 2019).

Lemma 2 ((Chen, Wu, and Yu 2019)). If hv is monotone
and DR-submodular for all v ∈ V , then g and ĝR are also
monotone and DR-submodular.

3.2 Algorithmic Framework Integrating
Gradient Method with RIS

We first introduce the general algorithmic framework that
integrates any gradient algorithm with the RIS approach. We
assume a generic gradient algorithm A that takes a set of
RR sets R = {R1, . . . , Rθ}, an objective function ĝR + s,
and an additive error ε as input, and return a solution x̂ that
guarantees (ĝR+s)(x̂) ≥ α·maxy∈P(ĝR+s)(y)−ε, in time
T = poly( 1

ε ), where α is some constant approximation ratio.
We call such an A an (α, ε)-approximate gradient algorithm.

Algorithm 1 gives the meta-algorithm. It first calls the
Sampling procedure to sample enough RR setsR, together
with an estimated lower bound LB of the optimal solution.
Then it calls the gradient algorithm A withR, using ĝR + s
as the objective function and εLB as the additive error.

Algorithm 2 Sampling Procedure.

Input: Same as in Algorithm 1
Output: The RR-setsR and an estimated lower bound LB

1: LB ← 1,R0 ← φ, θ0 = 0, ε′ ←
√

2ε/3
2: for i = 1, 2, . . . , blog2(n+ λk)− 1c do
3: xi ← (n+ λk)/2i

4: θi ←
⌈
n
(
2 + 2

3ε
′) ·

5:
lnN (P, ε/3

L2
xi)+` lnn+ln 2+ln log2 (n+λk)

ε′2xi

⌉
6: Generate θi − θi−1 independent RR-setsR′
7: Ri ← R′ ∪Ri−1

8: yi ← A(Ri, ĝRi
+ s, εxi/3)

9: if (ĝRi
+ s)(yi) ≥ (1 + ε′ + ε/3) · xi then

10: LB ← (ĝRi
+s)(yi)

1+ε′+ε/3 ; θ ← θi
11: break
12: end if
13: end for
14: θ(1) =

8n·ln(4n`)
LB·(α−ε/3)2ε2/9

15: θ(2) =
2α′·n·ln

(
4n`N (P, ε/3

L1+L2
LB)

)
(ε/3− 1

4 (α−ε/3)2ε/3)2LB

16: θ̃ ← max{θ(1), θ(2)}.
17: Generate θ̃ independent RR-sets R1, . . . , Rθ̃, R ←
{R1, . . . , Rθ̃}

18: return (R,LB )

The Sampling procedure is to sample enough RR sets for
the theoretical guarantee. We adapt the sampling procedure
of the IMM algorithm (Tang, Shi, and Xiao 2015), as shown
in Algorithm 2. We use the IMM sampling procedure mainly
because of its clarity in analysis and theoretical guarantee,
while other sampling procedures (e.g. (Nguyen, Thai, and
Dinh 2016)) could be adapted too. The main structure of
the sampling procedure is the same as in IMM, where we
repeatedly halving the guess xi of the lower bound LB of
the optimal budget-balanced influence spread to find a good
lower bound estimate, and then use LB to estimate the final
number of RR sets needed and regenerate these RR sets (the
regeneration is the workaround 1 proposed in (Chen 2019)
to fix a bug in the original IMM). There are two important
differences worth to mention. First, in line 8, we call the
gradient algorithm A to find an approximate solution yi,
which replaces the original greedy algorithm in IMM. Second,
and more importantly, the original IMM algorithm works on
a finite solution space — at most

(
n
k

)
feasible seed sets of

size k, and
(
n
k

)
is used to bound the number of RR sets

needed. However, in CIM-BS, we are working on an infinite
solution space, and thus we cannot directly have such a bound.
To tackle this problem, we utilize the concept of ε-net and
covering number to turn the infinite solution space into a
finite space:
Definition 3 (ε-Net and Covering Number). A finite set N is
called an ε-net for P if for every x ∈ P , there exists π(x) ∈
N such that ||x − π(x)||2 ≤ ε. The smallest cardinality of
an ε-net for P is called the covering number: N (P, ε) =
inf{|N | : N is an ε-net of P}.



As a concrete example, suppose we have 1-norm or 2-
norm cost function c(x) = ||x||1or ||x||2. With budget k,
we know that P is bounded by the ball B1(k) or B2(k) with
radius k. Then, As shown in (van Handel 2014), the covering
number satisfiesN (P, ε) ≤ N (B1(k), ε) ≤ N (B2(k), ε) ≤
(3k/ε)

d.
Besides the ε-net, we also need to have the upper bounds

L1 and L2 on the Lipschitz constants of functions g + s
and ĝR + s. We defer the discussion on L1 and L2 to the
next subsection. Covering number and L1, L2 together are
used to bound the number of RR sets needed, as used in
lines 4 and 15 of Algorithm 2. We denote Algorithms 1 and 2
together as Grad-RIS, and we show that Grad-RIS achieves
the following approximation guarantee:

Theorem 1. For any ε, `, α > 0, for any (α, ε/3)-
approximate gradient algorithm A for ĝR + s, with prob-
ability at least 1− 1

n` , Grad-RIS outputs a solution x that is
an (α− ε)-approximation of the optimal solution OPTg+s of
CIM-BS, i.e. (g + s)(x) ≥ (α− ε)OPTg+s.

The proof of the above theorem follows the proof structure
of IMM (Tang, Shi, and Xiao 2015), where the number of
the RR sets needed is carefully adapted to accommodate the
covering number of the ε-net, and the Lipschitz constants of
the objective functions.

3.3 Gradient Algorithms

In this subsection, we will show two gradient algorithms
that approximately maximize the function ĝR(x) + s(x).
They are the instantiations of the generic algorithm A in
Section 3.2: the first one works on the general model and uses
proximal gradient to achieve ( 1

2 , ε)-approximation, while the
second one works on the special case of independent strategy
activation and uses gradient on a concave upper bound to
achieve (1− 1

e , ε)-approximation.
General Case: ProxGrad-RIS. We first consider the gen-
eral case where the strategy activation functions hv’s are
monotone, DR-submodular, Lh-Lipschitz and βh-smooth,
and the cost function c is convex and Lc-Lipschitz. In
this case, we have that g and ĝR are monotone and DR-
submodular (Lemma 2), and budget-saving function s is
concave. To solve this problem, we adapt the (stochastic)
proximal gradient algorithm (Parikh, Boyd, and others 2014;
Nitanda 2014) to provide a 1

2 -approximate solution to the
following problem: given a convex set P , a β-smooth, non-
negative, monotone, and DR-submodular function f1(x) on
P and a non-negative and concave function f2(x) on P , find
a solution in P maximizing f1(x) + f2(x). The original
proximal gradient is for the case when both f1 and f2 are
concave, and we adapt it to the case when f1 is monotone
and DR-submodular to provide an approximate solution. The
reason we use proximal gradient is that our budget-saving
function s may not be smooth (e.g. when the cost function is
the 2-norm function). We present the general solution first,
since it may be of independent interest. The following is
the iteration procedure for the stochastic proximal gradient

algorithm.
x(t+1) = prox−ηtf2

(x(t) + ηtv
(t)),

where E[v(t)] = ∇f1(x(t)),
proxφ(x) := argminy∈P(φ(y) + 1

2 ||x− y||22),
for any convex function φ,

(3)

where ηt ≤ 1
β is the step size and v(t) is the stochastic

gradient at x(t) . We use ∆ to denote an upper bound of the
diameter of P , i.e. ∆ ≥ maxx,y∈P ||x−y||2. The following
is the main result for the above stochastic proximal gradient
algorithm, with its proof adapted from the original proof.
Theorem 2. Suppose that P is a convex set, function f1(x)
is β-smooth, non-negative, monotone, and DR-submodular
on P , f2(x) is non-negative and concave on P . Let x∗ be
the point that maximizes f1(x) + f2(x). Suppose that for
some σ > 0, the stochastic gradient v(t) satisfies E||v(t) −
∇f1(x(t))||22 ≤ σ2 for all t, then for all T > 0, if we set
ηt = η = 1/(β + σ

∆

√
2T ), and iterate as shown in (3)

starting from x(0) ∈ P , we have

E
[

max
t=0,1,2,...,T

(f1 + f2)(x(t))

]
≥ 1

2
(f1 + f2)(x∗)− β∆2

4T
− σ∆√

2T
.

Note that if we use exact gradient instead of the stochastic
gradient, we simply set σ = 0 in the above theorem. To
apply the proximal gradient algorithm and Theorem 2 to
maximize ĝR + s, we compute the exact gradient of ĝR
and also derive the Lipschitz and smoothness constants, as
shown below. For RR set sequence R = {R1, . . . , Rθ}, let
ν(1)(R) =

∑
R∈R |R|/θ be the average RR set size in R,

ν(2)(R) =
∑
R∈R |R|2/θ be the average squared size inR,

and ν(3)(R) =
∑
R∈R |R|3/θ be the average cubed size.

Lemma 3. If functions hv(x)’s are Lh-Lipschitz, then func-
tion ĝR(x) is (ν(1)(R)nLh)-Lipschitz, and function g(x) is
(n2Lh)-Lipschitz. If functions hv(x)’s are βh-smooth, then
function ĝR(x) is (ν(1)(R)nβh+ν(2)(R)nL2

h)-smooth. The
gradient of function ĝR(x) is

∇ĝR(x) =
n

θ

∑
R∈R,v′∈R

∇hv′(x)
∏

v∈R,v 6=v′
(1− hv(x)).

(4)
With Lemma 3 and Theorem 2, we can conclude the

gradient algorithm A working with Grad-RIS with the fol-
lowing settings: (a) we use the proximal gradient iteration
given in Eq. (3), with stochastic gradient v(t) replaced with
the exact gradient ∇ĝR(x(t)) as given in Eq. (4); (b) we
set step size ηt = 1/(ν(1)(R)nβh + ν(2)(R)nL2

h) when
calling the algorithm with R; (c) we set number of steps
T = 3(ν(1)(R)nβh + ν(2)(R)nL2

h) · ∆2/4ε; (d) we use
L1 = L2 = n2Lh + λLc (since n ≥ ν(1)(R)) as parameters
in Grad-RIS. We refer to the full algorithm with the above
setting as ProxGrad-RIS. The following theorem summarizes
the approximation guarantee of ProxGrad-RIS.



Theorem 3. For any ε, ` > 0, with probability at least 1−
1
n` , ProxGrad-RIS outputs a solution x that is a ( 1

2 − ε)-
approximation of the optimal solution OPTg+s of CIM-BS,
i.e. (g + s)(x) ≥ ( 1

2 − ε)OPTg+s.
We remark that the actual computation of the proximal

step prox−ηtf2
(·) in Eq.(3) depends on domain D and cost

function c. When D = Rd+ and c is 1-norm or 2-norm func-
tion, we can derive efficient algorithm for the proximal step,
as summarized below.
Lemma 4. When c(x) = ||x||1 and D = Rd+, the proximal
step can be done in time O(d log d). When c(x) = ||x||2 and
D = Rd+, the proximal step can be done in O(d).
Independent Strategy Activation Case: UpperGrad-RIS.
Next, we introduce an

(
1− 1

e

)
-approximation for maximiz-

ing ĝR + s under the case of independent strategy activation.
Recall that in the independent strategy activation case, each
function hv(x) = 1−

∏
j∈[d](1− qv,j(xj)), where qv,j(xj)

is monotone and concave in xj . In this case, we can write
ĝ(x) into the following form.

ĝR(x) =
n

θ

∑
R∈R

(
1−

∏
v∈R

(1− hv(x))

)

=
n

θ

∑
R∈R

1−
∏
v∈R

(
∏
j∈[d]

(1− qv,j(x))

 .

The above form makes ĝR(x) belong to coverage functions,
which has the following concave upper and lower bounds
((Karimi et al. 2017a)):
Proposition 1 ((Karimi et al. 2017a)). For any x ∈ [0, 1]l,
let α(x) = 1−

∏l
i=1(1−xi) and β(x) = min{1,

∑l
i=1 xi},

we have (1− 1/e)β(x) ≤ α(x) ≤ β(x).
By Proposition 1, we can optimize ḡR + s where ḡR(x)

is the upper bound of ĝR(x) defined as:

ḡR(x) :=
n

θ

∑
R∈R

min{1,
∑

j∈[d],v∈R

qv,j(x)}. (5)

Since the function gR(x) is non-smooth, we use the
projected subgradient method to maximize the function
ḡR + s (Nesterov 2013), as summarized by the following
lemma.
Lemma 5. In the case of independent strategy activation,
suppose that ḡR + s is Lḡ+s-Lipschitz. If we use projected
subgradient descent to optimize the function (ḡR + s)(x)
with step size ηt = ∆

Lḡ+s

√
t

and let y denote the output where

(ḡR+s)(y) ≥ maxx∈P(ḡR+s)(x)−ε. Then (ĝR+s)(y) ≥(
1− 1

e

)
maxx∈P(ĝR + s)(x) − ε, and y can be solved in

(∆Lḡ+s)2

ε2 iterations.
The following lemma presents the Lipschitz constants and

subgradients needed in Lemma 5.
Lemma 6. Suppose that functions qv,j(xj)’s are Lq-
Lipschitz, then function g(x) is n2

√
dLq-Lipschitz, and func-

tions ĝR(x) and ḡR(x) are ν(1)(R)n
√
dLq-Lipschitz. The

subgradient of the function ḡR(x) is

n

θ

∑
R∈R


0, if

∑
j∈[d],v∈R

qv,j(xj) ≥ 1,

∑
v∈R,j∈[d]

∇qv,j(xj), if
∑

j∈[d],v∈R

qv,j(xj) < 1.

(6)
Combining Lemma 6 with Lemma 5, we can conclude

our subgradient algorithm based on the upper bound func-
tion ḡR + s: (a) we use the projected subgradient algo-
rithm with the subgradient of ḡR given in Eq.(6); (b) we
set step size ηt = ∆/(ν(1)(R)n

√
dLq
√
t); (c) we use

T = 9(∆ν(1)(R)n
√
dLq + λLc)

2/ε2 iterations to get ε
accuracy; and (d) we set L1 = L2 = n2

√
dLq + λLc in

Grad-RIS. We refer to the full algorithm with the above set-
ting as UpperGrad-RIS. The following theorem summarizes
the approximation guarantee of UpperGrad-RIS.
Theorem 4. For any ε, ` > 0, with probability at least 1− 1

n` ,
UpperGrad-RIS outputs a solution x that is an (1−1/e−ε)-
approximation of the optimal solution OPTg+s of CIM-BS,
i.e. (g + s)(x) ≥ (1− 1/e− ε)OPTg+s.
Total Time Complexity. For the time complexity of
ProxGrad-RIS and UpperGrad-RIS, we make the following
reasonable assumptions: (1) the time for sampling a trig-
ger set Tv ∼ Dv is proportional to the in-degree of v; (2)
the optimal influence spread maxx∈P g(x) among strategy
mixes is at least the optimal single node influence spread
maxv∈V σ({v}); and (3) λk ≤ n, otherwise the budget sav-
ing is more important than influencing the entire network,
and CIM-BS problem no longer makes much sense. The fol-
lowing theorem summarizes the time complexity result when
D = Rd+ and c(x) = ||x||1 or c(x) = ||x||2. The more
general result is given in (Chen, Zhang, and Zhao 2019).
Notation Õ(·) ignores poly-logarithmic factors.
Theorem 5. Suppose that D = Rd+ and c(x) =
||x||1 or ||x||2, hv(x)’s are Lh-Lipschitz and βh-smooth.
If ∇hv(x) can be computed in time Th, the ex-
pected running time of ProxGrad-RIS is bounded by
Õ
(
βhn

2+L2
hn

3

ε · Th(m+n)·(d+`)
ε2

)
. Under independent strat-

egy activation, if qv,j(xj)’s are Lq-Lipschitz and the gradient
and function value of qv,l(xj) can be computed in time Tq,
the expected running time of UpperGrad-RIS is bounded by

Õ
(
n4dL2

q

ε2 · Tq(m+n)·(d+`)
ε2

)
.

From the time complexity result, we can see that the two
gradient algorithms still have high-order dependency on the
graph size. This is mainly because we need the conservative
bounds on the number of gradient algorithm iterations for

the theoretical guarantee (terms βhn
2+L2

hn
3

ε and
n4dL2

q

ε2 ). In
our actual algorithms, we already use ν(1)(R) and ν(2)(R)
instead of n and n2 in the upper bound of the gradient de-
cent steps for ĝR + s, so our actual performance would be
reduced by corresponding factors. For details, please see
(Chen, Zhang, and Zhao 2019) for the results and discussions
on using the moments of RR set size in the time complexity
bounds.



(a) c(x) = ||x||1, λ = 5 (b) c(x) = ||x||1, k = 50 (c) c(x) = ||x||2, λ = 50 (d) c(x) = ||x||2, k = 5

Figure 1: Budget-balanced influence spread results for the personalized marketing scenario. Legends in (a) apply to all figures.

(a) c(x) = ||x||1, λ = 5 (b) c(x) = ||x||1, k = 50 (c) c(x) = ||x||2, λ = 50 (d) c(x) = ||x||2, k = 5

Figure 2: Budget-balanced influence spread results for the segment marketing scenario. Legends in (a) apply to all figures.

4 Experiments
Experiment setup. We test on the DM network, which is a
network of data mining researchers extracted from the Arnet-
Miner archive (arnetminer.org), with 679 nodes and 3, 374
edges, and edge weights are learned from a topic affinity
model and obtained from the authors (Tang et al. 2009).

Besides our ProxGrad-RIS and UpperGrad-RIS algo-
rithms, we test two more algorithms: (a) ProxGrad-Org:
stochastic proximal gradient algorithm on the original ob-
jective function (see Appendix D in (Chen, Zhang, and Zhao
2019)); (b) Greedy-RIS: simply replace the gradient algo-
rithm A in Grad-RIS with the greedy algorithm for the objec-
tive ĝR(x) + s(x) on generated RR setsR, and the greedy
algorithm stops either when the budget is exhausted or the
marginal gain is negative. For the three gradient-based algo-
rithms ProxGrad-RIS, UpperGrad-RIS, and ProxGrad-Org,
we further test their heuristic versions that may lead to faster
running time: instead of using a conservative number of it-
eration steps for theoretical guarantees, we heuristically ter-
minate the gradient iteration if the difference in the objective
function values for two consecutive iterations is within a
small value of 0.3 (we justify the choice of this parameter in
our full report). We put suffix HEU for the three versions of
the heuristic gradient termination algorithms.

For parameter settings, we set ε = 0.1 and ` = 1 for all
algorithms. For Greedy-RIS, we set the greedy step size to
be 0.1 on each dimension. For 1-norm cost function (c(x) =
||x||1), we test (a) vary k from 5 to 50 while keeping λ = 5,
and (b) vary λ from 0 to 10 while keeping k = 50. For 2-
norm cost function (c(x) = ||x||2), we test (c) varying vary k

from 1 to 10 while keeping λ = 50, and (d) vary λ from 0 to
100 while keeping k = 5. The reason we use a smaller budget
k for 2-norm cost function is because ||x||2 ≤ ||x||1/

√
d,

and thus we need a significantly small budget for 2-norm
in order to have a similar feasible region. Parameter λ is
adjusted accordingly so that λ · k is at the same scale as the
influence spread, otherwise either influence spread or budget
saving is dominant, and the problem is degenerated. We test
two cases: the personalized marketing case and the segment
marketing case (Yang et al. 2016; Chen, Wu, and Yu 2019).
Experimental results. Figure 1 and 2 show the budget-
balanced influence spread results of the personalized market-
ing and the segment marketing scenarios respectively. Each
data point on an curve is the average of five solutions of five
runs of the same algorithm, and the influence spread of each
solution is an average of 1000 simulation runs. In all cases,
UpperGrad-RIS/UpperGrad-RISHEU have the best per-
formance, followed by ProxGrad-RIS/ProxGrad-RISHEU,
which coincides with our theoretical analysis that
UpperGrad-RIS has a better theoretical guarantee. Both algo-
rithms outperform two base lines in most cases, especially
when λ is getting large, indicating that our algorithms han-
dle the balance between budget saving and influence spread
better.

Table 1 shows the running time of the personalized mar-
keting scenario. Each running time number is the aver-
age of five runs. The result shows that ProxGrad-RIS and
UpperGrad-RIS are 30+ times faster than ProxGrad-Org.
This is mainly due to the high variance in the stochastic gradi-
ent for the original objective function, as we discussed before.



Table 1: Running time results for the personalized marketing
scenario (in seconds).

c(x) = ||x||1, c(x) = ||x||2,
k = 50 and λ = 5 k = 5 and λ = 50

ProxGrad-RIS 33.2 27.3
ProxGrad-RISHEU 6.5 5.5
UpperGrad-RIS 81.8 72.3
UpperGrad-RISHEU 13.2 13.9
Greedy-RIS 10.2 8.7
ProxGrad-Org 1043.9 1021.6
ProxGrad-OrgHEU 243.4 187.8

Moreover, ProxGrad-RIS and UpperGrad-RIS is slower than
Greedy-RIS. This is mainly because our conservative bounds
on the number of gradient iterations make ProxGrad-RIS
and UpperGrad-RIS slow, while Greedy-RIS only use the
heuristic greedy approach with step size 0.1 without any
theoretical guarantee. But when we apply heuristic termi-
nation, UpperGrad-RISHEU is close to Greedy-RIS while
ProxGrad-RISHEU becomes faster than Greedy-RIS. There-
fore, our gradient-based algorithms could achieve faster run-
ning time with heuristic termination while still providing
better influence spread quality than the greedy heuristic. Run-
ning time result on the segment marketing scenario is similar.

Due to the space constraint, more detailed experiment
setup and results including a new dataset are reported in the
full technical report (Chen, Zhang, and Zhao 2019).

5 Conclusion and Further Work
In this paper, we tackle the new problem of continuous in-
fluence maximization with budget saving (CIM-BS), whose
objective function is neither monotone, nor DR-submodular
or concave. We use the gradient method to solve CIM-BS,
and provide innovative integration with the reverse influence
sampling method to achieve theoretical approximation guar-
antees. One important direction of future study is to make
the gradient method more scalable, which requires more de-
tailed study of convergence behavior and properties of the
gradient method in the influence maximization domain. An-
other direction is to investigate if the gradient method can
be applied to other influence maximization settings such as
competitive influence maximization. Gradient method is a
rich and powerful approach that has been already applied to
many application domains, and thus we hope our work could
inspire more studies incorporating the gradient method into
the influence maximization research.
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