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Abstract Most studies on influence maximization focus on one-shot propagation, i.e., the influence is

propagated from seed users only once following a probabilistic diffusion model and users’ activation are

determined via single cascade. In reality it is often the case that a user needs to be cumulatively impacted by

receiving enough pieces of information propagated to her before she makes the final purchase decision. In this

paper we model such cumulative activation as the following process: first multiple pieces of information are

propagated independently in the social network following the classical independent cascade model, then the

user will be activated (and adopt the product) if the cumulative pieces of information she received reaches

her cumulative activation threshold. Two optimization problems are investigated under this framework: seed

minimization with cumulative activation (SM-CA), which asks how to select a seed set with minimum size

such that the number of cumulatively active nodes reaches a given requirement η; influence maximization

with cumulative activation (IM-CA), which asks how to choose a seed set with fixed budget to maximize

the number of cumulatively active nodes. For SM-CA problem, we design a greedy algorithm that yields

a bicriteria O(lnn)-approximation when η = n, where n is the number of nodes in the network. For both

SM-CA problem with η < n and IM-CA problem, we prove strong inapproximability results. Despite the

hardness results, we propose two efficient heuristic algorithms for SM-CA and IM-CA respectively based on

the reverse reachable set approach. Experimental results on different real-world social networks show that

our algorithms significantly outperform baseline algorithms.
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1 Introduction

With the wide popularity of social media and social network sites such as Facebook, Twitter, WeChat,

etc., social networks have become a powerful platform for spreading information, ideas and products

among individuals. In particular, product marketing through social networks can attract large number

of customers.

Motivated by this background, influence diffusion in social networks has been extensively studied

(confer [1–3]). However, most of previous studies only consider the influence after one-shot propagation

— influence propagates from the seed users only once and user activation or adoption is fully determined

after this single cascade. In contrast, in the real world, people often make decisions after they have
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Figure 1 (Color online) Illustration of multiple cascades. (a) T = 0; (b) T = 1; (c) T = 2; (d) T = 3.

cumulated many pieces of information about a new technology, new product, etc., and these different

pieces of information are propagated in the network independently as different information cascades.

Consider the following scenario: A company is going to launch a new version (named as V11 for

convenience) of their product with many new features, but most people are not familiar with these new

features. Thus, it is often beneficial that the company conduct a series of advertisement and marketing

campaigns covering different features of the product. An effective way of marketing in a social network is

to select influential users as seeds to initiate the information cascades of these campaigns. From potential

customers’ perspective, when they receive the first piece of information about V11 from their friends, they

may find it interesting and forward it to their friends. But this may not necessarily lead to their purchase

actions. Later they may receive and be impacted by further information about V11, and when they are

impacted by enough pieces of information cascades, they may finally decide to buy a new product.

We illustrate the process of multiple cascades in Figure 1. Suppose there are three diffusions and the

seed set is {a} in each diffusion. We observe the state of node b in these diffusions. Suppose b will decide

to buy a product only if b can receive at least two pieces of information about this product. The dynamic

state of node b is as follows: non-active (Figure 1(a)), active (Figure 1(b)), non-active (Figure 1(c)),

active (Figure 1(d)). During these three times diffusion, b is activated two times, that is to say, b receives

two pieces of information. Thus, we believe b will buy the product.

We model the above behavior by an integrated process consisting of two phases: (a) repeated infor-

mation cascades, and (b) threshold-based user adoptions. First, there are multiple information cascades

about multiple pieces of production information in the network. We model information cascades by the

classical independent cascade (IC) model proposed in [3]: A social network is modeled as a weighted di-

rected graph, with an influence probability as the weight on every edge. Initially, some nodes are selected

as seeds and become active, and all other nodes are inactive. At each step, newly activated nodes have

a chance to influence each of their inactive out-neighbors with the success probability given on the edge.

Independent cascade model is suitable to model simple contagions [1, 4] such as virus and information

propagation, and thus we adopt it to model information cascades in the first phase. We consider multiple

pieces of production information propagates independently following the IC model. For the second phase,

we assume that there is a threshold for each user, who will adopt the product if the amount of informa-
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tion that she receives in the first phase exceeds her threshold. We measure the amount of information

a user received as the fraction of information cascades that reaches the user, which is equivalent to the

probability of the user being activated in an information cascade. A node is cumulatively activated if

this probability exceeds the threshold. We refer to this model as the cumulative activation (CA) model.

Given the above cumulative activation model, the company may face one of the following two objectives:

either the company has a fixed budget to activate the seed nodes, and wants to maximize the number

of cumulative active nodes, or the company needs to reach a predetermined number of cumulative active

nodes, and wants to minimize the number of seeds.

We formulate the above scenarios as the following two optimization problems: Seed minimization with

cumulative activation (SM-CA) and influence maximization with cumulative activation (IM-CA). Given

a directed graph with a probability on each edge and a threshold for each node, an activation requirement

η and a budget k, the SM-CA problem is to find a seed set with minimum size such that the number of

cumulatively activated nodes is at least η. The IM-CA problem is to find a seed set with k nodes such

that the number of cumulatively activated nodes is maximum.

Let ρ(S) denote the number of cumulative activated nodes given seed set S. We first show that set

function ρ(·) is not submodular, which means unlike most of the current studies, we cannot guarantee

the approximation ratio by using the greedy algorithm directly.

For SM-CA problem, we consider the case η = n and η < n separately, where n is the number of

nodes in the network and η is the activation requirement. The complexity results of these two cases

are quite different. When η = n, we show while it is NP-hard to approximate SM-CA problem within

factor (1 − ε) lnn for any ε > 0, we can achieve a bicriteria O(lnn)-approximation. Our technique is to

replace the nonsubmodular ρ(S) with a submodular surrogate function f(S), and show that the set of

feasible solutions to the original SM-CA problem with constraint η = n is exactly the same as the set of

feasible solutions for f(S) to assume its maximum value. And then we can apply the greedy algorithm

to the surrogate f(S) instead of ρ(S) to provide the theoretical guarantee. When η < n, we construct

a reduction from the densest k-subgraph problem to SM-CA problem and show that SM-CA problem

cannot be approximated within 1√
6
n1/2poly(log log n), unless the exponential time hypothesis is false.

For IM-CA problem, we construct a reduction from the set cover problem and prove that it is NP-hard

to approximate IM-CA problem within a factor of n1−ε for any ε > 0.

Despite the approximation hardness on the SM-CA problem with η < n and the IM-CA problem, we

may still need practical solutions for them. For this purpose, we propose some heuristic algorithms, which

utilize the state-of-the-art approach in influence maximization, namely the Reverse Reachable Set (RR

set) approach [5–8], to improve the efficiency of the algorithms comparing to the old greedy algorithms

based on naive Monte Carlo simulations.

Finally, we conduct experiments on three real-world social networks to test the performance of our

algorithms. Our results demonstrate that the heuristic algorithm proposed consistently out-performs all

other algorithms under comparison in all test cases and clearly stands out as the winning choice for both

the SM-CA and IM-CA problems.

To summarize, our contributions include: (a) We propose the seed minimization and influence maxi-

mization problem under cumulative activation (SM-CA problem and IM-CA problem, respectively), which

is a reasonable model for purchasing behavior of customers exposed to repeated information cascades;

(b) We design an O(lnn) approximate algorithm for SM-CA problem when η = n; (c) We show strong

hardness results for SM-CA problem with η < n and IM-CA problem; (d) We propose efficient heuristic

algorithms and validate them through extensive experiments on real-world datasets and conclude that

heuristic is the best choice for both SM-CA and IM-CA problems.

Related work. The classical influence maximization problem is to find a seed set of at most k

nodes to maximize the expected number of active nodes. It is first studied as an algorithmic problem

by Domingos and Richardson [2] and Richardson and Domingos [9]. Kempe et al. [3] first formulate

the problem as a discrete optimization problem. They summarize the independent cascade model and

the linear threshold model, and obtain approximation algorithms for influence maximization by applying

submodular function maximization. Extensive studies follow their approach and provide more efficient
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algorithms [10–12]. Leskovec et al. [12] present a “lazy-forward” optimization method in selecting new

seeds, which greatly reduces the number of influence spread evaluations. Chen et al. [10, 11] propose

scalable algorithms which are faster than the greedy algorithms proposed in [13]. Recently, Borgs et

al. [5], Tang et al. [7, 8] and Nguyen et al. [6] propose a series of more effective algorithms for influence

maximization in large social networks that both has theoretical guarantee and practical efficiency. The

approach is based on the “Reverse Reachable Set” idea first proposed in [5].

Another aspect of influence problem is seed set minimization, Chen [14] studies the seed minimization

problem under the fix threshold model and shows some strong negative results for this model. Long et

al. [15] also study independent cascade model and linear threshold model from a minimization perspective.

In [16], Goyal et al. study the problem of finding the minimum size of seed set such that the expected

number of active nodes reaches a given threshold, and provide a bicriteria approximation algorithm

for this problem. Zhang et al. [17] study the seed set minimization problem with probabilistic coverage

guarantee, and design an approximation algorithm for this problem. He et al. [18] study positive influence

model under single-step activation and propose an approximation algorithm. Note that, the work in [18]

is a special case of our work.

Beyond influence maximization and seed minimization, another interesting direction is the learning

of social influence over real online social network data set, e.g., influence learning in blogspace [19] and

academic collaboration network [20].

Most early studies on influence maximization and influence learning are summarized in the mono-

graph [1]. However, almost all the existing studies consider only node activation after a single information

or influence cascade. Our work differentiate with all these studies on this important aspect, as discussed

in the introduction.

Paper organization. We formally define the diffusion model and the optimization problems SM-CA

and IM-CA in Section 2. The approximation algorithms and hardness results of these two problems are

proposed in Section 3, including a greedy algorithm for SM-CA problem with η = n in Subsection 3.1.1,

the hardness result of SM-CA problem with η < n in Subsection 3.1.2 and the inapproximate result of

IM-CA problem in Subsection 3.2. In Section 4, we present two heuristic algorithms for SM-CA problem

and two heuristic algorithms for IM-CA problem. Section 5 shows our experimental results on real-world

datasets. We summarize the paper with some further directions in Section 6.

2 Model and problem definitions

Our social network is defined on a directed graph G = (V,E), where V is the set of nodes representing

individuals and E is the set of directed edges representing social ties between pairs of individuals. Each

edge e = (u, v) ∈ E is associated with an influence probability puv, which represents the probability that

u influences v.

The entire activation process consists of information diffusion process and node activation. The infor-

mation diffusion process follows the independent cascade (IC) model proposed by Kempe et al. [3]. In

the IC model, discrete time steps t = 0, 1, 2, . . . are used to model the diffusion process. Each node in

G has two states: inactive or active. At step 0, a subset S ⊆ V is selected as seed set and nodes in S

are active directly, while nodes not in S are inactive. For any step t > 1, if a node u is newly active at

step t − 1, then u has a single chance to influence each of its inactive out-neighbor v with independent

probability puv to make v active. Once a node becomes active, it will never return to the inactive state.

The diffusion process stops when there is no new active nodes at a time step.

The above basic IC model describe the diffusion of one piece of information, but actually there could

be many pieces of information about a product being propagated in the network, all following the same

IC model. Users’ final production adoption is based on cumulative information collected, which we refer

to as cumulative activation (CA) and is described below, and it is different from the user becoming active

for one piece of information specified above in the IC model. Let Pu(S) be the probability that u becomes

active after an information cascade starting from the seed set S. Since Pu(S) also represents the fraction
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of information accepted by u in multiple cascades, we use Pu(S) to define cumulative activation: Suppose

that each node u ∈ V has an activation threshold τu ∈ (0, 1], then u becomes cumulatively active if

Pu(S) > τu. Given a target set U ⊆ V and a seed set S, let ρU (S) be the number of cumulatively active

nodes in U from seed set S. When U = V , we omit the subscript U and use ρ(S) directly.

We consider two optimization problems under cumulative activation, seed minimization with cumula-

tive activation (SM-CA) and influence maximization with cumulative activation (IM-CA). SM-CA aims

at finding a seed set S with minimum size such that there are at least η (η 6 n) nodes in the target set

become cumulatively active. IM-CA is the problem of finding a seed set of size k to maximize the number

of cumulatively active nodes in the target set. The formal definitions are as follows.

Definition 1 (Seed minimization with cumulative activation). In the seed minimization with cumulative

activation (SM-CA) problem, the input includes a directed graph G = (V,E) with |V | = n, |E| = m,

an influence probability vector P = {puv : puv ∈ [0, 1], (u, v) ∈ E}, a target set U ⊆ V , an activation

threshold τu ∈ (0, 1] for each node u ∈ U and a coverage requirement η 6 |U |. Our goal is to find the

minimum size seed set S∗ ⊆ V such that at least η nodes in U can be cumulatively activated, that is,

S∗ = argmin
S:ρU (S)>η

|S|.

Definition 2 (Influence maximization with cumulative activation). In the influence maximization with

cumulative activation (IM-CA) problem, the input includes a directed graph G = (V,E) with |V | =

n, |E| = m, an influence probability vector P = {puv : puv ∈ [0, 1], (u, v) ∈ E}, a target set U ⊆ V , an

activation threshold τu ∈ (0, 1] for each node u and a size budget k 6 n. Our goal is to find a seed set

S∗ ⊆ V of size k such that the number of cumulatively active nodes in U is maximized, that is,

S∗ = argmax
S:|S|=k

ρU (S).

2.1 Equivalence to frequency-based definition

Suppose there are N diffusions, which lead to final cumulative activation. Intuitively, a node u ∈ V

becomes cumulative activated when the number of times that u becomes influenced in these N diffusions

is larger than a threshold. Formally, given a seed set S and a node u ∈ V , let X i
u be a random variable

defined as follows: X i
u(S) = 1 if u is influenced in the i-th diffusion and X i

u(S) = 0 otherwise. Thus,

Xu(S) =
∑N

i=1 X
i
u(S) denotes the number of times that u becomes influenced after N diffusions, and

Xu(S)/N is the influence frequency of u. By Hoeffding’s inequality, we show the relationship between

pu(S) > τu and Xu(S)/N > τu in Lemma 1.

Lemma 1. Given a seed set S, a node u ∈ V and a large enoughN , (a) if pu(S) > τu, then Pr(Xu(S)/N >

τu) = 1− o(1); and (b) if pu(S) < τu, then Pr(Xu(S)/N 6 τu) = 1− o(1), where o(1) is asymptotic to the

number of diffusions N .

Proof. It is obvious that the expectation of Xu(S) is E[Xu(S)] =
∑N

i=1 E[X i
u(S)] = Npu(S). When

Pu(S) < τu, by Hoeffding’s inequality, we have

Pr(Xu(S)/N > τu)

= Pr(Xu(S)− E[Xu(S)] > Nτu − E[Xu(S)])

6 exp(−2N(Nτu − E[Xu(S)])
2)

= exp(−2N3(τu − Pu(S))
2) = o(1).

Thus, when N is large enough, Xu(S)/N 6 τu is a high probability event if pu(S) < τu. Similarly,

Xu(S)/N > τu is a high probability event if pu(S) > τu.

Based on Lemma 1, the formal definition of cumulative activation is consistent with our motivation.



Shan X H, et al. Sci China Inf Sci May 2019 Vol. 62 052103:6

v1 v2

u3u1 u2

0.2

0.4

0.2

0.40.4

0.8

S
a

T

b c

U

u

(a) (c)(b)
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2.2 Comparison with IC and LT models

We first explain the differences between the CA model the IC model. CA model uses IC model as

information cascades in its first stage, and thus the main difference is at the determination of which

nodes are finally activated, or simply at the objective function. This is clearly illustrated by the simple

example in Figure 2(a), which shows a five-node graph with edge probabilities shown next to edges. In

the IC model, it is clear that the influence spread of v1 and v2 are the same: σ({v1}) = σ({v2}) = 2.2.

For the CA model, if every node has the activation threshold as 0.3, then ρ({v1}) = 2 and ρ({v2}) = 4,

because v1 can only activate itself and u1, while v2 can activate itself and u1, u2, u3. If the activation

threshold of every node is increased to 0.6, then ρ({v1}) = 2 and ρ({v2}) = 1. Therefore, if we want to

select one seed in the influence maximization task, for IC model either v1 or v2 is fine, but for the CA

model v1 or v2 is selected based on different threshold values. This means the influence maximization

task under CA model is different from the task under the IC model. The above example also provides the

intuition that the influence maximization task under the IC model focuses on the average effect of the

influence, while the task under the CA model may need to select either nodes that has wide but average

influence (e.g., v2) or nodes with concentrated influence (e.g., v1) based on the threshold setting.

We next distinguish our CA model with the popular linear threshold (LT) model proposed in [3]. In

the LT model, each edge (u, v) has a weight wuv ∈ [0, 1] with
∑

u wuv 6 1 (wuv = 0 if (u, v) is not

an edge). Each node v has a threshold θv, which is drawn from [0, 1] uniformly at random before the

propagation starts. Then, starting from the seed set S, an inactive node v becomes active at time t > 1 if

any only if the total weights from its active in-neighbors exceeds v’s threshold:
∑

u∈St−1
wuv > θv, where

St is the set of active nodes at time t with S0 = S.

Despite the superficial similarity on using thresholding to model user adoption behavior, the two models

are quite different. One key difference is that in the LT model what is being propagated are the user

adoption behavior, while in the CA model, what is being propagated are multiple pieces of information

about a product, and user’s adoption in the end is based on the information received. This is actually

the difference between CA and most other models on influence diffusion, as discussed in the introduction.

This further leads to a specific difference between LT and CA: the threshold in the LT model is on the

number of friends who already adopt a product, while the threshold in the CA model is on the fraction

of information cascades that reach a user. Finally, in LT the threshold θv is a random number in [0, 1],

making the influence spread objective function submodular, while in CA the threshold τv is fixed as an

input, causing the objective function ρ(S) not submodular, as discussed in the next section.

3 Algorithms and hardness results

In this section, we provide algorithmic as well as hardness results for SM-CA problem and IM-CA problem.

A set function f : 2V → R is monotone if f(S) 6 f(T ) for all S ⊆ T ⊆ V , and submodular if

f(S ∪ {w})− f(S) > f(T ∪ {w})− f(T ) for all S ⊆ T ⊆ V and w /∈ T . It is well known that monotone

submodular functions leads to a good approximation ratio by using the greedy algorithm [21], and indeed

most of the existing work on social influence takes advantage of this nature (e.g., [3, 5, 16, 22]).

Unfortunately, our objective function ρU (S) is monotone but not submodular in general as shown in

the example below, which makes our problems much harder.
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Example 1 (Figure 2(b)). Suppose G is a bipartite graph and the influence probability on each edge

is 1/2, the activation thresholds are τu = 7/8, τa = τb = τc = 1. Let U = {u}. Let S = {a} and

T = {a, b}, then ρU (S) = 0, ρU (T ) = 0, ρU (S ∪ {c}) = 0, ρU (T ∪ {c}) = 1. Thus, ρU (S ∪ {c})− ρU (S) =

0 < ρU (T ∪ {c})− ρU (T ) = 1, implying that ρU (S) is not submodular. We further remark that in this

example, if we set U = V , the function ρ(S) = ρV (S) is still not submodular.

In the rest parts of this section, we consider how to design approximation algorithms for SM-CA

problem and IM-CA problem as well as the computational complexity of them.

3.1 Seed minimization with cumulative activation (SM-CA) problem

In this section, we study SM-CA problem. We first show the hardness result of SM-CA problem in

Theorem 1.

Theorem 1. SM-CA problem is NP-hard. Moreover, SM-CA problem cannot be approximated within

(1− ε) ln η in polynomial time unless NP ⊆ DTIME(nO(log logn)), ∀ ε > 0.

Proof. We construct a reduction from the partial set cover (PSC) problem. An instance of PSC problem

IPSC = (U,S, η) consists of a ground set U and a family of subsets S ⊆ 2U and a coverage requirement

η 6 |U |. The objective is to find a subcollection C ⊆ S such that |
⋃

C| > η and |C| is minimized.

Given any instance of PSC problem IPSC = (U,S, η), we construct an instance of SM-CA problem

ISM-CA = (G, η) as follows. The PSC instance is reduced to a bipartite graph G = (V,W,E), in which

each node v ∈ V corresponds to a subset Cv ∈ S one to one, each node w ∈ W corresponds to an element

uw ∈ U one to one, there is an edge (v, w) ∈ E if and only if uw ∈ Cv. The target set is W , the influence

probability on each edge is 1, the activation threshold of each node in W is 1. The activation requirement

is η, which is the same with the coverage requirement in the PSC instance.

Based on the above construction, it is easy to check that the objective function values for any given S

in the instances ISM-CA and IPSC are always the same. Which means the two problems should have the

same approximation ratio. For the PSC problem, Feige showed that it cannot be approximated within

a factor of (1 − ε) ln η (∀ε > 0) in polynomial time unless NP ⊆ DTIME(nO(log logn)) [23]. Therefore,

SM-CA problem has the same computational complexity.

Based on the hardness result of SM-CA problem, our next goal is to design an algorithm with approx-

imation ratio close to ln η. Surprisely, it turns out that the results are quite different between “activating

all nodes” (η = n) and “partial activation” (η < n), as we discuss separately below.

3.1.1 SM-CA problem with η = n

When η = n, we can design an algorithm with a bicriteria O(lnn)-approximation, even though the

objective function is not submodular. The key idea to our solution is to find a submodular function f(S)

as the surrogate for the original nonsubmodular ρ(S), as the following lemma specifies.

Lemma 2. When η = n, a seed set S is a feasible solution to the SM-CA problem if and only if

f(S) =
∑

u∈V τu, where f(S) is a surrogate function defined as

f(S) =
∑

u∈V min{Pu(S), τu}.

Proof. If S is a feasible solution to SM-CA, that is, ρ(S) = n = η, then every node u satisfies

Pu(S) > τu, and thus f(S) =
∑

u∈V τu. The only-if part is also straightforward.

The above lemma implies that minimizing seed set size for the constraint of ρ(S) = n is the same

as minimizing the seed set size for the constraint of f(S) =
∑

u∈V τu. The reason we want to switch

the minimization problem on the surrogate function f(S) is because it is submodular, as pointed out

by Lemma 3. We remark that in [24], Farajtabar et al. study an objective function in the similar form

as f(S) in the continuous-time influence model, but the interpretation of τ is the cap on user activity

intensity in [24] rather than the activation threshold.

Lemma 3. The surrogate function f(S) is monotone and submodular.
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Proof. It is obvious that f(S) is monotone. For submodularity, following [3] we know that Pu(S) is

submodular. Then it is easy to check that the minium of a submodular function and a constant is still

submodular, and the simple summation of submodular functions is also submodular.

Having the submodularity, we can design a greedy algorithm guided by f(S). But like most work in the

IC model, we cannot avoid the problem of computing f(S). It has been shown that exactly computing

σ(S) in the IC model is #P-hard [10], where σ(S) =
∑

u∈V Pu(S) is the expected number of active nodes

given the seed set S. Thus, computing f(S) is also #P-hard since σ(S) =
∑

u∈V Pu(S) = f(S) if we set

τu = 1 for all u ∈ V . In this section, we use Monte Carlo simulation to estimate f(S). A more efficient

method will be discussed in Subsection 4.2.

Algorithm 1 shows the procedure of the Monte Carlo method. Given a seed set S and a node u,

Algorithm 1 simulates the diffusion process from S for R runs, and uses the frequency that u has been

influenced as the estimation of Pu(S). Then we can obtain the estimation of f(S) directly by a truncation

operation. The estimations of Pu(S) and f(S) are denoted by P̂u(S) and f̂(S) respectively.

Algorithm 1 Estimate f(S) by Monte Carlo

Input: G = (V, E), {puv}(u, v)∈E , {τu}u∈V , U, S, R;

Output: f̂(S): the estimation of f(S);

1: f̂(S) = 0;

2: P̂u(S) = 0; tu = 0 for all u ∈ V ;

3: for i = 1 to R do

4: Simulate IC diffusion from seed set S;

5: if u is activated then

6: tu = tu + 1;

7: end if

8: end for

9: for u ∈ U do

10: P̂u(S) = tu/R;

11: if P̂u(S) > τu then

12: f̂(S) = f̂(S) + τu;

13: else

14: f̂(S) = f̂(S) + P̂u(S);

15: end if

16: end for

17: return f̂(S).

The accuracy of the estimate f̂(S) depends on the number of simulation runs R, as rigorously specified

by the following lemma.

Lemma 4. For any seed set S, suppose f̂(S) is the estimate of f(S) output by Algorithm 1, then

∀ γ > 0, δ > 0, Pr(|f̂(S)− f(S)| 6 γ) > 1− 1/nδ if R > (n2 ln(2nδ+1))/2γ2.

Proof. For each node u, let Xu =
∑R

i=1 X
(i)
u , where X

(i)
u is a random variable defined as X

(i)
u = 1 if

u is influenced in the i-th simulation and X
(i)
u = 0 otherwise. Then Xu is the number of times that u is

active after R simulations. Thus, Xu = R · P̂u(S) and E[Xu] =
∑R

i=1 E[X
(i)
u ] = R ·Pu(S). By Hoeffding’s

inequality and the condition R > (n2 ln(2nδ+1))/2γ2, for any constant γ > 0 and δ > 0,

Pr(|P̂u(S)− Pu(S)| > γ/n) = Pr(|Xu − E[Xu]| > Rγ/n) 6 2 exp

(

−
2(Rγ

n )2

R

)

6
1

nδ+1
.

We next show that |f̂(S)− f(S)| 6
∑

u∈V |P̂u(S)− Pu(S)| always holds.

|f̂(S)− f(S)| =

∣

∣

∣

∣

∣

∑

u∈V

min{P̂u(S), τu} −
∑

u∈V

min{Pu(S), τu}

∣

∣

∣

∣

∣

6
∑

u∈V

∣

∣

∣
min{P̂u(S), τu} −min{Pu(S), τu}

∣

∣

∣
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6
∑

u∈V

|P̂u(S)− Pu(S)|.

Then, we have

Pr(|f̂(S)− f(S)| 6 γ) > Pr(
∑

u∈V

|P̂u(S)− Pu(S)| 6 γ)

> Pr(∀u ∈ V, |P̂u(S)− Pu(S)| 6 γ/n)

= 1− Pr(∃u ∈ V, |P̂u(S)− Pu(S)| > γ/n)

> 1−
∑

u∈V

Pr(|P̂u(S)− Pu(S)| > γ/n) > 1−
1

nδ
.

Having the estimation algorithm of f(S), we show our greedy algorithm for SM-CA problem with

η = n in Algorithm 2.

Algorithm 2 Greedy algorithm for SM-CA with η = n

Input: G = (V, E), {puv}(u, v)∈E , {τu}u∈V , U , ε;

Output: Seed set S

1: S = ∅, f̂(S) = 0;

2: while f̂(S) <
∑

u∈V τu − ε do

3: Choose v = argmaxu∈V \S [f̂(S ∪ {u})− f̂(S)];

4: S = S ∪ {v};

5: end while

6: return S.

Algorithm 2 starts from an empty seed set S. At each iteration, it adds one node v providing the

largest marginal increment to f̂(S) into S, i.e.,

v = argmax
u∈V

[f̂(S ∪ {u})− f̂(S)].

The algorithm ends when f̂(S) >
∑

u∈V τu − ε and outputs S as the selected seed set. Goyal et al. [16]

proved the performance guarantee for the greedy algorithm when f(S) is monotone and submodular.

Theorem 2 ( [16]). Let G = (V, E) be a social graph and f(·) be a nonnegative, monotone and

submodular function defined on 2V . Given a threshold 0 < η 6 f(V ), let S∗ ⊆ V be a subset with

minimum size such that f(S∗) > η, and S be the greedy solution using a (1 − γ)-approximate function

f̂(·) with the stopping criteria f̂(S) > η − ε. Then, there exists a γ such that for any ϕ > 0 and ε > 0,

|S| 6 |S∗|(1 + ϕ)(1 + ln(η/ε)) with high probability.

Now we can conclude the approximation ratio of Algorithm 2 based on Lemmas 2–4 and Theorem 2.

Theorem 3. When η = n, for any φ > 0, ε > 0, Algorithm 2 ends when f̂(S) >
∑

u∈V τu − ε and

approximates SM-CA problem within a factor of (1 + φ) · (1 + ln
∑

u∈V τu
ε ) with high probability.

3.1.2 SM-CA problem with η < n

When η < n, the surrogate function f(S) does not enjoy the property in Lemma 2 any more, and thus

the problem becomes more difficult. We use the following example to explain this phenomenon.

Example 2 (Figure 2(c)). Suppose the influence probability on each edge from S1 is 0.5 and each edge

from S2 is 1. The activation threshold of each node is 1, and η = 3. Then f(S1) = 5, f(S2) = 4, but

ρ(S1) = 2, ρ(S2) = 4. Thus, S1 is not a feasible solution even though f(S1) is large enough. This simple

example shows that too many “small active probability” nodes may mislead f(S) causing it to diverge

significantly from ρ(S).

Now we show the hardness result of SM-CA problem with η < n. Our analysis is based on the hardness

of the densest k-subgraph (DkS) problem [25]. An instance of DkS problem consists of an undirected
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graph G = (V,E) and a parameter k < n, where n = |V |. The objective is to find a subset V ′ ⊆ V of

cardinality k such that the number of edges with both endpoints in V ′ is maximized.

The first polynomial time approximation algorithm for DkS problem is given by Feige et al. [25] with

the approximation ratio O(n1/3). This result was improved to O(n1/4+ε) (for any ε > 0) by Bhaskara et

al. [26] and this is the currently the best known guarantee. For the hardness of DkS problem, Khot [27]

proved that the DkS problem does not admit PTAS under the assumption that NP problem does not

have sub-exponential time randomized algorithms. In [28], Manurangsi proves that DkS problem does

not admit an 1/npoly(log logn)-approximation in polynomial time unless the exponential time hypothesis

is false. Partially borrowing the idea in [29], we can prove a hardness result for SM-CA problem with

η < n based on the hardness of DkS problem.

Theorem 4. When η < n, SM-CA problem cannot be approximated within 1√
6
n1/2poly(log logn), unless

the exponential time hypothesis is false.

Proof. We prove this theorem by showing that, when η < n, SM-CA problem cannot be approximated

within 1√
6
nδ/2 if DkS problem cannot be approximated within nδ, for any δ > 0.

Suppose there is a polynomial time approximation algorithm A with performance ratio r for SM-CA

with η < n, we design an algorithm for DkS problem based on A, which has approximation ratio 6r2,

hence the theorem follows.

Given any instance of DkS problem on graph G = (V, E), construct an instance (denoted by SM-CA-I)

of SM-CA problem as follows. It is defined on a one-way bipartite graph G′ = (V ′ = V1 ∪ V2, E′), where

V1 = V, V2 = E, the directed edge set E′ = {(v, e) : ∀ v ∈ V1, e ∈ V2, and v is one of the endpoints of e

in E}. The probability on each edge e′ = (v, e) is pve = 1/2. The target set U = V1 ∪ V2, for each node

e ∈ V2, τe = 3/4 and for each node v ∈ V1, τv = 1. For any k, let η = η(k) be the maximum threshold

requirement for which A outputs a solution for SM-CA with k nodes. That is to say, A outputs a seed

set with k nodes if the threshold is η(k) and at least k + 1 nodes if the threshold is larger than η(k) 1).

It is clearly that, in SM-CA-I, nodes in V2 are no better than nodes in V1 as candidates of seed since

the target set is the set of all nodes, select a node in V2 can only activate itself, but a node in V1 may

help to activate nodes in V2. So here we assume that all seeds selected by algorithm A are from V1. Since

for each edge (v, e) ∈ E′, pve = 1/2 and for each node e ∈ V2, τe = 3/4, an easy probability calculation

implies that a node e ∈ V2 can be cumulatively activated if and only if both endpoints of e are selected

as seeds.

Suppose the seed set of SM-CA-I with parameter η = η(k) computed by algorithm A is S′, then we

can use the corresponding node set S in graph G as an approximate solution of the DkS problem. Indeed,

we have |S| = k. Since in SM-CA-I S′ cumulatively activates at least η nodes, only k of them are in

V1, so at least η − k nodes are cumulatively activated in V2. Therefore, in graph G the number of edges

induced by S is at least η − k.

Without loss of generality, we can assume η > k + ⌊k/2⌋, this is because we can easily choose k nodes

from V1 to cumulatively active ⌊k/2⌋ nodes in V2. It is easy to check that η − k > 1
3 (η − 2).

Suppose the optimal solution of DkS problem contains opt edges, then it is sufficient to show opt 6

2(η − 2)r2. Indeed, if we can prove opt 6 2(η − 2)r2, then we have opt 6 6(η − k)r2, which means there

is a 6r2-approximate algorithm for the DkS problem.

In SM-CA-I, based on the choice of η and the fact that A is a r-approximate algorithm, any seed set

with size ⌊k/r⌋ can cumulatively activate at most η nodes. Thus, at most η − ⌊k/r⌋ nodes in V2 can be

cumulatively activated by any ⌊k/r⌋ seeds in V1. This is equivalent to the fact that there are at most

η − ⌊k/r⌋ edges induced by any ⌊k/r⌋ vertexes in G. Thus, for any T ⊆ V with |T | = k, all possible

subset of
(

k
⌊k/r⌋

)

vertexes in T can induce at most (η − ⌊k/r⌋)
(

k
⌊k/r⌋

)

edges and each edge is counted

exactly
(

k−2
⌊k/r⌋−2

)

times. So, if k > 2r, the total number of edges induced by T is at most

(η−⌊k/r⌋)( k
⌊k/r⌋)

( k−2

⌊k/r⌋−2)
6 r2(η − ⌊k/r⌋)k−1

k−r < 2(η − 2)r2;

1) For any k, η(k) can be computed efficiently by using algorithm A and linear search.
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if k 6 2r, then opt 6
(

k
2

)

6 k2

2 6 2r2. By the arbitrary chosen of T , we have opt 6 2(η − 2)r2 and this

completes the proof.

We remark that when η = n, it corresponds to the case of k = n in the DkS problem, which has a

trivial solution and makes the theorem statement vacuously true. Thus we add η < n just to emphasize

that the theorem is only useful when η < n.

3.2 Influence maximization with cumulative activation (IM-CA) problem

In IM-CA problem, we prove a strong inapproximability result even when the base graph is a bipartite

graph.

Theorem 5. For any ε > 0, it is NP-hard to approximate IM-CA problem within a factor of N1−ε,

where N is the input size.

Proof. Similar to the proof of inapproximability result in [3], we construct a reduction from set cover

problem. The input of the set cover problem includes a ground set W = {w1, w2, . . . , wn}, a collection of

subsets S1, S2, . . . , Sm ⊂ W , and a positive integer k < m. The question is whether there exists k subsets

whose union is W .

Given an instance of the set cover problem, we construct an instance of IM-CA problem as follows:

There are three types of nodes, set nodes, element nodes, and dummy nodes. There is a set node u

corresponding to each set, an element node v corresponding to each element, and a directed edge (u, v)

with activation probability puv = 1 if the element represented by v is belong to the set represented by

u and puv = 0 otherwise. There are nc dummy nodes x1, x2, . . . , xnc (where c = 2⌈ 1
ǫ ⌉ + ⌈ logm

logn ⌉ + 1),

and there is a directed edge (v, x) for each v and x. The activation probability on (v, x) is pvx = 1/2.

The activation thresholds of set nodes, element nodes and dummy nodes are τu = τv = 1, τx = 1 − 1
2n ,

respectively. The budget of the size of a seed set is k and the target set is all nodes. Notice that the

input size of our IM-CA problem is N = nc + n+m, so N1−ǫ < 2nc

Nǫ 6 nc

n+k .

Under our construction, if there exists a collection of k sets covering all elements in W for set cover

problem, then in IM-CA problem, the node set corresponding to the collection denoted by C will cumu-

latively activate all element nodes and all dummy nodes. In total, there will be nc + n+ k nodes become

cumulatively active. On the other hand, let’s consider the case if there is no set cover of size k. Again

we can assume all the seeds are selected from set nodes, because as a candidate for seeds, set nodes are

more efficient than element nodes and dummy nodes. Thus, if there is no set cover of size k, then we

cannot find k seeds which activate all the element nodes, hence none of the dummy notes are activated.

Therefore, the total number of nodes cumulatively activated are no more than n + k. It follows that if

a polynomial algorithm can approximate IM-CA problem within N1−ǫ, then we can answer the decision

problem of the set cover problem in polynomial time, this is impossible under the assumption P 6= NP.

4 Efficient heuristic algorithms

In Section 3, we prove that both SM-CA with η < n and IM-CA are hard to approximate. Despite this

difficulty, in this section we present efficient heuristic algorithms based on the greedy strategy, in order

to tackle the problem in practice. We first show the outline of our greedy strategies in Subsection 4.1. In

Subsection 4.2, we adopt an efficient method to design scalability greedy algorithms.

4.1 Greedy strategies

In this section, we introduce two possible greedy strategies for SM-CA problem and IM-CA problem.

From Subsection 3.1.1, we know that greedy by the surrogate function f(S) =
∑

u∈V min{Pu(S), τu}

can guarantee good approximation ratio for SM-CA problem with η = n. Thus, intuitively we could

adopt f(S) as our surrogate objective even when η < n and apply the greedy strategy based on f(S).

However, our initial experiments demonstrate that directly adopting f(S) is less effective, especially

when seed set size is relative small. We believe that this is because greedy on f(S) would prefer larger
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increment of Pu(S) far below τu over smaller increment of Pu(S) close to τu, but the latter actually

provides new cumulative activations. To guide seed selection towards the latter case, we generalize f(S)

to F (S) =
∑

u∈V min{Pu(S), cτu} by introducing an additional parameter c.

A large c reduces the difficulty of lifting Pu(S) over the threshold τu when it is getting close to τu, but

it continuously rewards Pu(S) above τu, while a c close to 1 has the reverse effect. Essentially c balances

between the truncated surrogate f(S) (when c = 1) and the expected influence function σ(S) (when c is

large). Thus, our first greedy strategy is to use F (S) with a proper tuned c as the greedy objective, and

we call it the balanced truncation greedy (BTG) strategy.

The second strategy is to apply greedy on the objective function ρ(S) directly. That is, we select the

node with the largest increment to ρ(S) in each step. However, since ρ(S) is a discrete rounding function,

there could be many nodes having the same effect (or no effect at all) in any step. For tie-breaking,

we select nodes according to f(S), which is equal to σ(S) under this situation. In summary, the second

strategy preferentially selects nodes promoting ρ(S) most, then chooses the node contributing to f(S)

most among nodes having the same promotion to ρ(S). In this strategy, the objective function (i.e., ρ(S))

plays a dominant role in selecting seeds. We call it the activation dominance greedy (ADG) strategy.

During the process of greedy algorithms, we need to estimate Pu(S) for each node u ∈ V . It will be

very expensive if we do this estimation by Monte Carlo simulations. Specially, by Lemma 4, we need to

simulate O(n2 lnn) times to guarantee the accuracy, each simulation takes O(m) time in the worst case.

Thus, it takes O(n2m lnn) for each node u to estimate Pu(S). To improve the efficiency, we adopt a new

approach named reverse reachable set (RR set), as we describe in the next section.

4.2 Greedy algorithms based on RR set

In this section, we present our efficient algorithms based on RR set. We first introduce the background of

RR set. RR set was first proposed by Borgs et al. in [5] to provide the first near-linear-time algorithm for

the classical influence maximization problem in [3]. The approach is further optimized later in a series

of follow-up study [6–8]. The definition of RR set is as follows:

Definition 3 (Reverse reachable set). Let u be a node in G, and g be a random graph obtained by

independently removing each edge e = (v, w) in G with probability 1−pe. The reverse reachable set (RR

set) for u is the set of nodes in g that can reach u.

Borgs et al. established a crucial connection between RR set and the influence propagation process on

G. We restatement it in Lemma 5.

Lemma 5 ([5]). Let S be a seed set and u be a fixed node. Suppose Ru is an RR set for u generated

from G, then Pu(S) equals the probability that S overlaps with Ru, that is

Pu(S) = Pr(S ∩Ru 6= ∅).

Now we introduce our new method to estimate Pu(S) for each node u ∈ V . We first generate θ RR sets

for u independently. LetRu be the collection of all generated RR sets for u. For any node set S, let FRu(S)

be the fraction of RR sets in Ru overlapping with S. That is, FRu(S) , |{Ru ∈ Ru : Ru ∩ S 6= ∅}|/θ.

Then for any u ∈ V , we use FRu(S) as the estimation of Pu(S). It can be proved that we can bound the

estimation error if θ is large enough.

Lemma 6. For any ε > 0, if θ satisfies θ > ln(2n)/2ε2, then for each node u ∈ V ,

Pr[|FRu(S)− Pu(S)| > ε] 6 n−1.

Proof. Let X , θFRu(S), then X is the number of RR sets in Ru overlapping with S. Moreover,

X can be regarded as the sum of θ i.i.d. Bernoulli variables. Specifically, let X =
∑θ

i=1 Xi where

Xi = 1 if S overlaps with the i-th RR set in Ru and Xi = 0 otherwise. Based on Lemma 5, we have

E[X ] =
∑θ

i=1 E[Xi] = θPu(S). By the Hoeffding’s inequality and the condition θ > ln(2n)/2ε2, we have

Pr(|FRu(S)− Pu(S)| > ε) = Pr(|θFRu(S)− θPu(S)| > θε)

= Pr(|X − E[X ]| > θε) 6 2 exp(−2(θε)2/θ) 6 n−1.
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We now present our greedy algorithms. Recall that we use two greedy functions: F (S) =
∑

u∈V min{Pu(S), cτu} and ρ(S) =
∑

u∈V I{Pu(S) > τu}, where I is the indicator function. In order

to make it easier to understand, we describe the processes of selecting seeds in subprograms. We first

present the framework of the whole greedy algorithm for IM-CA problem in Algorithm 3.

Algorithm 3 Framework of greedy algorithm for IM-CA problem

Input: G = (V, E), {puv}(u, v)∈E , {τu}u∈V , k, θ;

Output: Seed set S;

1: Set S = ∅;

2: Generate θ RR sets for each node u ∈ V : {Ru}u∈V ;

3: Set req(u) = τuθ for each node u ∈ V ;

4: for j = 1 to k do

5: x = SS(G, {puv}(u,v)∈E, {req(u)}u∈V , {Ru}u∈V );

6: /*SS is a general term of SSBT and SSAD*/

7: S = S ∪ {x};

8: Remove all RR Sets containing x;

9: for each u in V do

10: rem(u): the number of RR Sets removed from Ru;

11: req(u) = req(u)− rem(u);

12: end for

13: end for

14: return S.

In Algorithm 3, we first initialize for the seed set S (line 1). Then we generate θ RR sets for each

node u in V . Let Ru be the collection of RR sets for u. In line 3, req(u) is the requirement of node

u ∈ V , which is the number of RR sets in Ru that needs to be hit by a seed set so that u can become

cumulatively active. We say a set S hits an RR set R if S ∩R 6= ∅. Based on Lemma 6, u is cumulatively

active only if there are at least θτu RR sets in Ru hit by the seed set. Thus, we set req(u) = τuθ for each

node in u ∈ V .

At each step, we add a new node x into the current seed set (line 5). After x is selected, we need to

remove all RR sets containing x and update the requirements for all nodes. The algorithm ends when

|S| = k.

Note that Algorithm 3 needs to call the seed selecting procedures (line 5). Here, SS(·) is a general term

for our two subprograms SSBT (selecting seeds via balanced truncation strategy) and SSAD (selecting

seeds via activation dominance strategy). Specifically, SSBT (Procedure 1) is the subprogram that selects

one node with the largest marginal increment to F (S) into the current seed set S. SSAD (Procedure 2)

is the subprogram selecting the node with the largest marginal increment to ρ(S), with tie-breaking on

f(S). The algorithm calling SSBT is named as BTG-IM-CA (balanced truncation greedy algorithm for

IM-CA problem) and the algorithm calling SSAD is named as ADG-IM-CA (activation dominance greedy

algorithm for IM-CA problem).

Now we describe our two subprograms SSBT and SSAD. We first introduce SSBT in Procedure 1.

Let inc(v) be the value of the marginal increment generated by any node v ∈ V , overlap(v,Ru) be the

number of RR sets in Ru overlapping with node v. In the main loop of SSBT, we select the node providing

Procedure 1 SSBT: selecting seeds via balanced truncation strategy

Input: G = (V, E), {puv}(u,v)∈E , {req(u)}u∈V , {Ru}u∈V ;

Output: a new seed;

1: Set inc(v) = 0 for all v ∈ V ;

2: for each node u ∈ V and req(u) > 0 do

3: for each node v ∈
⋃

Ru do

4: /*compute the marginal increment of v*/

5: inc(v) = inc(v) + min{overlap(v, Ru), c · req(u)};

6: end for

7: end for

8: Select x = argmaxv inc(v);

9: return x.
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Procedure 2 SSAD: selecting seeds via activation dominance strategy

Input: G = (V, E), {puv}(u,v)∈E , {req(u)}u∈V , {Ru}u∈V ;

Output: a new seed;

1: Set inc(v) = 0 for all v ∈ V ;

2: for each node u ∈ V and req(u) > 0 do

3: for v ∈
⋃

Ru do

4: /*compute the marginal increment of v*/

5: inc(v) = inc(v) + I{overlap(v, Ru) > req(u)};

6: end for

7: end for

8: /*select one better node from nodes with the largest marginal increment*/

9: for each node u ∈ V and req(u) > 0 do

10: for v ∈
⋃

Ru with the largest inc(v) values do

11: inc(v) = inc(v) + min{overlap(v, Ru), req(u)};

12: end for

13: end for

14: Select x = argmaxv inc(v);

15: return x.

the largest marginal increment to F (S). To this end, for each node v ∈ V , we compute the marginal

increment of v to all nodes which are not cumulatively active yet. Based on Lemma 5, the marginal

increment of a node v to node u can be measured by min{overlap(v, Ru), c · req(u)}. Summing up the

increments of v on all not-yet cumulatively active nodes, we can obtain inc(v) (see details in lines 2–7).

Then, we choose the node with the maximum inc(v).

Another greedy strategy is shown in SSAD (Procedure 2). In this procedure, we first find nodes

with the largest marginal increment to ρ(S). For any node v, the marginal increasing inc(v) can be

denoted by
∑

u: req(u)>0 I{overlap(v, Ru) > req(u)}.

There may be many nodes with the same value of inc(v) due to the truncation operation of ρ(S). To

break the tie, we choose the node with the maximum marginal increase to f(S) among all nodes with

the largest inc value (lines 9–13).

The framework of the whole greedy algorithm for SM-CA problem follows the same structure with

Algorithm 3. The only difference between these two algorithms is the stopping condition. For SM-CA,

the algorithm stops when the number of cumulatively active nodes is no less than η. The corresponding

algorithms of SM-CA problem are named as BTG-SM-CA (balanced truncation greedy algorithm for

SM-CA problem) and ADG-SM-CA (activation dominance greedy algorithm for SM-CA problem). Other

details of the algorithms are essentially the same as the algorithms for IM-CA and are thus omitted.

Time complexity. Now we analyze the time complexity of BTG-IM-CA and ADG-IM-CA. Let EPT

be the expected sum of in-degrees of all nodes in a random RR set, which is the same as the expected time

of generating an RR set. Thus, the total expected time of the generation is O(nθ · EPT). By Lemma 6,

θ = ln(2n)/2ε2 is enough for accuracy. Thus, the expected generation time is O(n lnn ·EPT/ε2). Besides

the generation time, the main time cost depends on SS(·) since other operations only take time O(n). For

each node u ∈ V , let EPTVu be the expected number of nodes in
⋃

Ru and EPTV = 1
n

∑

u∈V EPTVu.

Then, both SSBT and SSAD takes time O(n·EPTV ) in expectation. Hence, the expected time complexity

of both BTG-IM-CA and ADG-IM-CA is O(n(kEPTV + lnn · EPT/ε2)).

At each step of BTG-SM-CA and ADG-SM-CA, the number of cumulatively active nodes increases at

least 1 since the selected seed contributes 1 to ρ(·), which means the times of the outer loop is at most

η. Thus, the expected time cost of BTG-SM-CA and ADG-SM-CA is O(n(ηEPTV + lnn · EPT/ε2)).

5 Experiments

In order to test the performance of our heuristic algorithms, we conduct experiments on real social

networks. Our experiments are run on a machine with a 2.4 GHz Intel(R) Xeon(R) E5-2670 CPU,
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Table 1 Datasets

Name # Node #Edge Type AOD

Flixster 29 K 174 K Directed 6.0

NetPHY 37 K 348 K Undirected 18.8

DBLP 655 K 2 M Undirected 6.1

2 processors (16 cores), 64 GB memory and Red Hat Enterprise Linux Server release 6.3 (64 bit). All

algorithms tested in this paper are written in C++ and compiled with g++ 4.8.4.

5.1 Experiment setup

Datasets. We use three real-world networks in our experiments: Flixster, NetPHY and DBLP. Table 1

shows the datasets used in our experiments, in which AOD denotes the average out degree of a dataset.

The first network is Flixster, which is an American movie rating social site for discovering new movies.

In the Flixster graph, each node represents a user and a directed edge e = (u, v) represents that u and

v rate the same movie and v rates the movie shortly after u. We simply use one specific topic in this

network with 29357 nodes and 174939 directed edges. And we learn the active probabilities on edges by

using the Topic-aware Independent Cascade Model presented in [30]. The mean of edge probabilities is

0.118 and the standard deviation is 0.025.

The second one, called NetPHY, is the same as the one used in [10, 16, 31]. It is an academic collab-

oration network extracted from the “Physics” section from arXiv2). The nodes in NetPHY are authors

and undirected edges represent coauthorship relations. We use data from year 1991 to year 2003 which

includes 37154 nodes and 348322 edges. The influence probabilities on edges are assigned by weighted

cascade model [3]. Specifically, for each edge (u, v) ∈ E, we set puv = c(u, v)/d(v), where d(v) is the

number of published papers of author v and c(u, v) is the number of papers that u and v collaborated.

In this network, the mean of edge probabilities is 0.107 and the standard deviation is 0.025.

The last one is a larger collaboration network DBLP maintained by Michael Ley (654628 nodes and

2056186 edges). The method of generating edge probability is the same as that in NetPHY. We follow

the TRIVALENCY model [32] to assign edge probabilities: On every edge e = (u, v), we uniformly select

a probability from the set {0.1, 0.01, 0.001} at random, which corresponds to high, medium and low

influences. Under the above method, the mean of edge probabilities is 0.069 and the standard deviation

is 0.002.

Algorithms. We test our algorithms using both BTG and ATG strategies. For comparison, we use

the following baseline algorithms.

• TIM+. TIM+ is a greedy algorithm presented in [8]. The basic greedy rule is to choose the node

covers the maximum number of Random RR sets (see more details in [8]).

• High-degree. High-degree generates seed set sequence by the decreasing order of the out-degree of

nodes. It is popular to consider high degree nodes as influential nodes in social and other networks.

• PageRank. It is the popular algorithm used for ranking web pages [33]. The transition probability

on edge e = (v, u) is puv/
∑

w:(w,v)∈E pwv. In the PageRank algorithm, higher puv indicates u is more

influential to v and thus v should vote u higher. This is the reason we relate puv with the transition

probability of the reverse link (v, u), which is the same as in earlier studies such as [32]. We use 0.15 as

the restart probability and use the power method to compute the PageRank values. The stopping criteria

of computing PageRank values is when two consecutive iterations are different for at most 10−4 in L1

norm. We select seeds by decreasing order of the PageRank values.

• Random. As a trivial baseline, Random selects seeds sequence in random order.

For all the above algorithms, we use the same Monte Carlo method to compute the number of cumula-

tive active nodes. The stopping criteria of IM-CA problem and SM-CA problem are the number of seeds

is k and the number of cumulative active nodes exceeds η, respectively.

2) http://www.arXiv.org.
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c

I

Figure 3 (Color online) Results of c on Flixster.

Parameters. In our experiment, we take two simplified operations: First, we set parameters θ = 1000,

ε = 0.1 in Flixster and NetPHY, this setting is enough for the requirement in Lemma 6. In DBLP, we

set θ = 500, in practice, this is good enough for illustrating our results. We also suppose that all nodes

have the same activation threshold τ . In our experiments, τ ranges from 0.1 to 0.9.

In order to determine a proper value of parameter c for the BTG strategy, we fix k = 500 on Flixster,

then we implement BTG-IM-CA on different τ and c. Figure 3 shows the result. In order to present

more clearly, we set the ordinate as the number of cumulatively active nodes minus the corresponding

number under c = 1. In general, we can see that τ greater than 1 yields better result, and τ between 1.6

and 1.8 provides close-to-best results in all cases. In the rest, we choose c = 1.7 for all tests (except tests

on SM-CA, which involves a large number of seeds). Tests on other datasets yield similar results.

5.2 Experiment results

Experiment results on spreading performance of IM-CA problem. Figures 4–6 show the com-

parison of different algorithms on Flixster, NetPHY and DBLP respectively.

These figures reflect the spreading performances with different τ , varying k from 1 to 500.

Figures on these three datasets reflect some common features. Firstly, the performances of BTG-IM-

CA and TIM+ are similar when τ is large. This is because when c = 1.7, cτ > 1 if τ > 0.59. In this

case, BTG-IM-CA is exactly the same as TIM+. While τ is smaller, BTG-IM-CA is better than TIM+

sometimes. For example, on NetPHY with τ = 0.1 and k = 500 (Figure 5(a)) BTG-IM-CA cumulatively

activates nodes with size 7.6% more than those cumulatively activated by TIM+.

Secondly, ADG-IM-CA performs similar to TIM+ and BTG-IM-CA when τ is small. However, the

curves of ADG-IM-CA and TIM+ become separated with the increase of τ on all datasets. ADG-IM-CA

outperforms all other algorithms significantly when τ is large. In particular, on NetPHY with τ = 0.7

and k = 500 (Figure 5(d)), the number of nodes cumulatively activated by ADG-IM-CA is 90.8%

more than that by TIM+, 89.5% more than BTG-IM-CA, 88.8% more than PageRank, 190.2% more than

High-degree, 227.0% more than Random.

For the two million edges DBLP dataset, when τ = 0.7 and k = 500 (Figure 6(d)), ADG-IM-CA

cumulatively activates nodes with size 162.0% more than those cumulatively activated by TIM+, 162.0%

more than BTG-IM-CA, 157.0% more than PageRank, 246.7% more than High-degree, 801.1% more than

Random. We think this feature is mainly because the cumulative activation is easy when τ is small, thus,

the seed set generated by TIM+ is likely to cumulatively activate enough nodes. However, when τ is large,

most nodes are not easy to be cumulatively activated. In this case, selecting seeds directly contribute to

ρ(S) may be more effective.

Experiment results on the activation threshold τ . To see the change of cumulative activation

influence size with the increase of parameter τ , we also conduct experiments on different τ on NetPHY

(Figure 7).
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Figure 4 (Color online) Results of IM-CA on Flixster. (a) Flixster τ = 0.1; (b) Flixster τ = 0.3; (c) Flixster τ = 0.5;

(d) Flixster τ = 0.7.

# Seeds # Seeds

# Seeds # Seeds
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(d)

Figure 5 (Color online) Results of IM-CA on NetPHY. (a) NetPHY τ = 0.1; (b) NetPHY τ = 0.3; (c) NetPHY τ = 0.5;

(d) NetPHY τ = 0.7.

From these figures, we observe that ADG-IM-CA is the best algorithm for all settings of τ and seed

set size k. With the increase of τ , in all algorithms, the size of the cumulatively active nodes decreases

rapidly. This is consistent with the previous description.
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Figure 6 (Color online) Results of IM-CA on DBLP. (a) DBLP τ = 0.1; (b) DBLP τ = 0.3; (c) DBLP τ = 0.5; (d) DBLP

τ = 0.7.
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Figure 7 (Color online) Results of τ on NetPHY. (a) NetPHY k = 240; (b) NetPHY k = 500.

In previous experiments, we assume that all nodes have the same activation threshold. Now we add

some experiments on Flixster and NetPHY to show the result when activation threshold of each node is

selected from [0, 1] uniform randomly. The experiment result is shown in Figure 8 and it is consistent

with the case when all nodes have the same τ value.

Experiment results on spreading performance of SM-CA problem. For seed minimization

problem, algorithms Random, High-degree and PageRank will output a very large seed set to meet the

target requirement η and thus are very ineffective. This is already demonstrated in the previous test

results, and thus we only focus on the performance comparison of TIM+, BTG-SM-CA and ADG-SM-

CA for the SM-CA problem. We also clarify that when η is small, the results of SM-CA problem can

be reflected by the results of IM-CA problem since we adopt the same strategies for these two problems.

Thus, we only present the result on NetPHY with large enough values of η (Figure 9). Furthermore, for

large η, we notice that setting c > 1 for the BTG strategy is no longer beneficial, perhaps because with

a large number of seeds, the needs to penalize over-the-top influence (setting c = 1) out-weighs the need

of compensating near-the-top influence (setting c > 1). It also coincides with Theorem 3 for the case of
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Figure 8 (Color online) Results of random τ . (a) Flixster; (b) NetPHY.
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Figure 9 (Color online) Results of SM-CA on NetPHY. (a) NetPHY τ = 0.1; (b) NetPHY τ = 0.3; (c) NetPHY τ = 0.5;

(d) NetPHY τ = 0.7.

Table 2 Running time (τ = 0.3, k = 500) (s)

TIM+ ADG-IM-CA BTG-IM-CA

Flixster 39 87 138

NetPHY 54 112 142

DBLP 509 8865 8685

η = n, so we set c = 1 for this test. From Figure 9, we can see that ADG-SM-CA outperforms TIM+ and

BTG-SM-CA significantly.

Running time. We compare the running times of ADG-IM-CA, BTG-IM-CA and TIM+ in Table 2.

We set τ = 0.3 and k = 500 on all datasets. The results indicate that TIM+ runs faster than our ADG

and BTG strategies, although for the two relatively small datasets the gap is not that much. We believe

that this is because TIM+ employs an estimation for the optimal influence spread with k seeds for the

influence maximization task, but we are not able to do so for the IM-CA task because we need to estimate
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individual nodes active probability Pu(S). Nevertheless, our algorithm can still be scaled to the large

graph of DBLP with millions of edges. Further improving the efficiency while preserving the same level

of quality is a future work item.

Conclusion. From these experiment results, we conclude that ADG consistently provides the best

performance cross all test cases, and thus we propose ADG-IM-CA and ADG-SM-CA as our solution to

the IM-CA and SM-CA problems, respectively. The BTG strategy performs well in some cases (such as

small τ for IM-CA), but its performance is not stable, and it also requires tuning c for different cases,

and thus is less desirable than the ADG strategy. TIM+ has similar performance as the BTG strategy,

but is even more unstable across the tests, and thus is not competitive comparing to ADG for both the

SM-CA and IM-CA problems.

6 Conclusion and future work

In this paper, we propose the cumulative activation influence model to reflect realistic scenarios where

user adoption is based on repeated exposure to multiple information cascades in the network, which is

different from the most existing study where user adoption is only based on a single cascade. We study

both the seed minimization and influence maximization problems in the cumulative activation setting,

providing both theoretical hardness results and approximation algorithms, and further propose efficient

heuristic solutions despite the theoretical hardness result. Our experimental results demonstrate the

effectiveness of our proposed solutions.

Our current study focuses on dealing with multiple information cascades for product adoption, but

there are certainly many chances to further elaborate the model, such as mixing the information cascades

and adoption cascades and study the impact to the optimization problems. Another direction is to

circumvent the theoretical hardness for general graphs due to nonsubmodularity and develop efficient

algorithms with guarantees on the class of graphs that are closer to real-world graphs.
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