
An Algorithmic Framework for Geo-Distributed
Analytics

Srikanth Kandula, Ishai Menache, Joseph (Seffi) Naor, Erez Timnat
Microsoft Research and Technion – Israel Institute of Technology
{srikanth, ishai}@microsoft.com, {naor, ereztimn}@cs.technion.ac.il

Abstract Large scale cloud enterprises operate tens to hundreds of datacenters, run-
ning a variety of services that produce enormous amounts of data, such as search
clicks and infrastructure operation logs. A recent research direction in both academia
and industry is to attempt to process the “big data” in multiple datacenters, as the
alternative of centralized processing might be too slow and costly (e.g., due to trans-
ferring all the data to a single location). Running such geo-distributed analytics jobs
at scale gives rise to key resource management decisions: Where should each of
the computations take place? Accordingly, which data should be moved to which
location, and when? Which network paths should be used for moving the data, etc.
These decisions are complicated not only because they involve the scheduling of mul-
tiple types of resources (e.g., compute and network), but also due to the complicated
internal data flow of the jobs – typically structured as a DAG of tens of stages, each
of which with up to thousands of tasks. Recent work [17, 22, 25] has dealt with the
resource management problem by abstracting away certain aspects of the problem,
such as the physical network connecting the datacenters, the DAG structure of the
jobs and/or the compute capacity constraints at the (possibly heterogeneous) datacen-
ters. In this paper, we provide the first analytical model that includes all aspects of the
problem, with the objective of minimizing the makespan of multiple geo-distributed
jobs. We provide exact and approximate algorithms for certain practical scenarios,
and suggest principled heuristics for other scenarios of interest.

1 Introduction

Many enterprises have data and computation clusters spread across the world. Due
to efficiency or privacy considerations, the data may only be available in distributed
locations. For example, datacenter server logs [1, 19, 23] and surveillance videos [2,
18] are massive datasets that are accessed infrequently. It is efficient to store such
datasets in-place, that is at or close to where the data is generated. As another

1



2 S.Kandula, I. Menache, J. Naor and E. Timnat

example, due to privacy considerations, the EU and China now require user and
enterprise data to be stored within their borders. Our goal in this paper is to consider
algorithmic questions that arise in executing data-parallel queries [10, 24, 26] on
such geographically distributed datasets.

We identify three key aspects of this problem. First, distributed sites where data is
generated have limited amount of compute and storage capacity (e.g., a Starbucks
store recording video). Hence, it may not be efficient to run all of the computation at
the site having the data. Further, capacities can vary across sites by several orders
of magnitude; an organization may have rented hundreds of VMs at Azure or EC2
locations and have thousands or more servers at various on-premise locations.

Second, when large amounts of data have to be analyzed, data-parallel queries can
exhaust the network bandwidth available to-and-from the various sites. Hence, task
scheduling has to more carefully account for network usage. However, the topology
of the physical network that interconnects the various sites is complex: (a) when
data is present at off-net locations such as Starbucks stores or airports, the network
paths cross many ISPs leading to capacity bottlenecks within the network; and (b)
even when data is distributed among on-net sites, such as datacenters connected with
a private wide-area network [15, 20], there can be bottlenecks within the network.
Furthermore, the round trip delays in the wide-area network can be several orders of
magnitude larger than those within a cluster; the delays and the available capacity on
the network paths can also vary over time.

Third, the queries that need to be supported are not necessarily a single map
stage followed by a single reduce stage. Rather, decision support queries tend to
be quite complex. For example, the benchmarks in TPC-H [3] and TPC-DS [4]
lead to directed acyclic graphs (DAGs) containing many stages, in various popular
frameworks such as Hive [24], Spark-SQL [8] or SCOPE [10]. Furthermore, most
production systems have a cadence that offers a predictable set of recurring queries.
Such queries can, for example, digest raw logs and video streams into structured
datasets so as to speed up the processing of subsequent user queries.

We are unaware of any prior work that takes into account these three aspects.
Many systems ignore all three issues. For example, Iridium [22] supports map-reduce
queries (i.e. DAG of depth 2), assumes that the only network bottlenecks are at the
in- and out-links of sites (“congestion-free core”) and does not account for limits on
compute capacity. Many other works such as SWAG [17], Tetrium [16], Carbyne [14]
make identical assumptions. Geode [25] supports more general queries, but only
considers minimizing the total amount of data crossing sites; a measure that may or
may not translate to fast query execution.

The reason behind these rather inadequate solutions is that the underlying al-
gorithmic problem – how to schedule a DAG of stages (each consisting of many
tasks) across a network of sites – is difficult. Scheduling a dependent set of tasks
on a pool of processors is itself challenging [13] and has received attention in the
scheduling literature, e.g., [12, 21, 9] and references therein. In addition, the problem
at hand has to also route the network traffic resulting from task placement. That is,
the demands on the network depend on task placement. Furthermore, the way that the
network routes these demands affects the finish time of the tasks. Many prior works



An Algorithmic Framework for Geo-Distributed Analytics 3

model less general versions of the problem described above [22, 25, 14, 16, 17] and
motivate their heuristics by arguing that the general problem is impractical to solve.

1.1 Our Results

The primary contribution of our paper is a rigorous algorithmic model for studying the
geo-distributed analytics scheduling problem, which captures the aspects highlighted
above: (1) a general directed acyclic graph (DAG) of dependencies between stages,
(2) compute capacity and other limits per site and (3) a general topology for the
physical network. In our model, we are given a DAG representing the jobs and their
inter-stage dependencies. Our goal is to minimize the time to complete all of the jobs,
i.e., the makespan. We consider different types of dependencies between stages (of
a job), both of which arise in practice: soft-precedence and strict-precedence. With
strict-precedences, each stage has to wait for all stages preceding it in the dependency
DAG to complete their work entirely, before it can start its processing. With soft-
precedences, dependent stages can overlap in execution, though the advancement
of a stage is bounded by the advancement of the stages on which it depends. We
also model different dependency types between any pair of stages u and v: all-to-all,
where all tasks in u communicate with all tasks in v, and scatter-gather, a much
sparser and targeted communication pattern (see §2.2). We choose these precedences
and dependency types because they effectively capture practice (see §2).

We make several important modeling decisions allowing us to formulate the
problem in a tractable way. In particular, we operate at a stage granularity, which
makes the problem-size orders of magnitude smaller, and allows us to bypass excess
rounding of variables. After defining the general model (§2), we derive exact and
approximate algorithms for several scenarios of interest. In particular, we present
an optimal solution for soft-precedence with scatter-gather dependency (§3). This
solution is achieved using a linear programming formulation. Appealingly, the linear
program for soft-precedence directly dictates a feasible schedule. For the strict-
precedence case, we formulate a different linear program, that unfortunately does
not directly imply a schedule. However, it does indicate where to execute every
stage, but not when to do that. Thus, we apply an algorithm on top of the LP
solution to construct a practical schedule. We show an ω-approximation for strict-
precedence with all-to-all dependency, under a bus network topology, where ω is
the width of the logical DAG (§4). We note that this result implies, as an important
special case, an optimal algorithm for a single geo-distributed map-reduce [11]
job. For the remaining practical scenarios, we have designed principled heuristics
(§5) – all-to-all dependencies with both soft- and strict-precedence, under a general
network topology. Notably, we show how to address the multiplicative constraints
that arise when modeling all-to-all dependencies by heuristically linearizing them
using Taylor expansion. The linear programs are solved iteratively, using values from
previous iterations as the points around which we expand the Taylor series. Our



4 S.Kandula, I. Menache, J. Naor and E. Timnat

simulations show that this heuristic is nearly-optimal, offering a practical solution
for the remaining scenarios, although we do not have formal guarantees for it.

2 The Model

In this section, we present the geo-distributed analytics model. In §2.1, we describe
the basic properties and assumptions of the model. In §2.2 and §2.3, we define the
dependency types and the precedence models across stages, respectively. Finally,
in §2.4, we describe the different network topologies that we consider.

2.1 Preliminaries

We are given a set of jobs. Each job is modeled as a DAG whose nodes correspond to
stages; a stage consists of tasks that perform similar computation on different subsets
of the data in parallel. An edge (u,v) in the DAG indicates that stage v depends on
stage u, in the sense that it needs some data from u to complete its own computation.
We will often use the terminology “logical” edge for (u,v), to distinguish such edges
from the “physical” links that connect datacenters.
Stages and tasks. Each stage v contains nv tasks. We assume that nv is large which
lets us use the fractional output of a Linear Program (LP) and incur small error. E.g.,
a fraction 0.1 of a stage translates to 10% of its tasks; we convert this to an integer
and handle the (small) rounding errors with heuristics. In an examined data-parallel
cluster at Microsoft consisting of tens of thousands of servers that ran SCOPE [10]
jobs, the median stage had 50 tasks and 25% of the stages had over 250 tasks.
Data flow. We assume that each task reads (writes) some fraction of the input (output)
of the stage. We make a simplifying assumption that these fractions are equal for
tasks within a stage. For every stage v, we denote the ratio between the size of the
output and the size of the input by sv (its selectivity). Most stages output less data
than their input; however about 10% generate up to 10× more output [6]. Also given
is cv, the progress rate of a stage per core, per unit time. We assume that the progress
rate is linearly proportional to the number of cores that the stage is given, up to
a limit. For every edge e = (u,v), we denote by De the total amount of data to be
transferred between the stages u and v. For every stage v, we denote by DIN,v the
total amount of input data for that stage; its total output data DOUT,v equals sv×DIN,v.
Further, DIN,v = ∑uv∈E Duv, and DOUT,u = ∑uv∈E Duv.
Compute datacenters. We assume that there are n datacenters numbered 1,2,3...,n.
For datacenter (DC) i, we denote the compute capacity by Ci, i.e., the number of cores.
The DCs are connected via a physical network for which we will consider different
possible topologies and link capacities in §2.4. Since the number of machines in a
DC is large, we ignore potential machine fragmentation issues.



An Algorithmic Framework for Geo-Distributed Analytics 5

Dataset locations. For every source stage v ∈ V , its input data can be distributed
across different DCs. The amount of input data for the stage v at DC i is denoted by
Ii,v. For every sink node v ∈V , it may be required that its output data be distributed
across DCs. The amount of output data of node v that should reside in DC i is denoted
by Oi,v, and is part of the input to the problem.

2.2 Stage dependency types

Consider two stages u and v connected via a logical edge e = (u,v). Each stage is
composed of many tasks. The modeling question is which tasks of stage v receive
input data from which tasks of stage u. We define two types of dependencies: all-to-all
and scatter-gather. The same DAG can have both types of dependencies.

Fig. 1: We illustrate here two DAG jobs. The left job has four stages with an all-to-all
dependency type between u1 and v1. The right job is a chain of three stages with a
scatter-gather dependency type between stages u2 and v2.

all-to-all scatter-gather

𝑢1

tasks 
of 𝑣2

𝑣1 𝑢2 𝑣2

tasks 
of 𝑢1

All-to-all dependency. A logical edge e = (u,v) means that every task of stage u
sends data to every task of stage v (see left part of Figure 1 for an illustration).
Moreover, we assume that the same amount of data is sent between each pair of
tasks (i.e., De/nunv per pair of tasks). This dependency typically arises during a
shuffle; for example, in map-reduce, each task in the reduce stage is responsible for a
partition and receives data corresponding to keys in that partition from every map
task. In the examined production cluster, roughly 50% of the edges are all-to-all.
Scatter-gather dependency. A logical edge e = (u,v) means that each task in stage
u sends input to exactly one task in stage v or vice-versa (see right part of Figure 1).
The former happens when nu ≤ nv and the latter happens when nu > nv. Note that this
generalizes the One-to-One dependency. This dependency occurs when aggregations
or joins are performed over partitioned data. In the examined production cluster, 50%
of the edges are scatter-gather; about 16% are one-to-one.



6 S.Kandula, I. Menache, J. Naor and E. Timnat

2.3 Precedence models

Another important modeling aspect relates to the precedence between tasks in stages
connected by an edge. We offer two models: soft-precedence and strict-precedence.
Soft-precedence. Here, we assume that each task can make fractional progress (say
1%) as long as every input-generating parent of that task has made at least an equiva-
lent amount (1%) of progress. Such dependent tasks can execute simultaneously.
Strict-precedence. Here, we assume that a task can make no progress until all of its
input-generating parent tasks in the DAG have finished completely.

We consider the above two models since they are extreme points of the design
space. Note that a solution under the strict-precedence model is also valid under
the soft-precedence model but the converse case does not hold. A typical setting in
Hadoop launches reduce tasks after 80% of the map tasks have finished. In general,
data-parallel frameworks allow overlapping to pipeline network transfers with task
execution; however, overlapping adds to cost since both tasks simultaneously hold
resources, such as memory.

2.4 Network topologies

In this work, we consider two types of network topologies.
General network topology. The most general topology can be modeled as follows.
The n DCs are connected via a physical network of m nodes, where m≥ n. Nodes
numbered n+ 1 . . .m are relay nodes. Edges in the physical network (k, `) have a
corresponding maximum data transfer rate denoted by Bk,`. We assume that intra-DC
transfer rate is unlimited, thus Bk,k = ∞.
Bus (or star) topology. Here, all of the DCs are connected to a bus (or to one
hypothetical relay node). The bus has unbounded capacity and the bottlenecks are
only in uploading and downloading data from a DC to the bus. For DC i, we denote
the maximum upload and download data transfer rates by ui and di respectively. With
the advent of full-bisection datacenter backplanes [5, 7], this topology matches the
network within a DC; the only bottlenecks are at the servers or in and out of racks
of servers while the core is congestion-free. On the wide-area network, it remains a
useful simplification; for example an actual physical topology can be approximated
by choosing appropriate values for {ui,di}.

3 Algorithms for Soft-Precedence Constraints

In this section we construct an LP representing the soft-precedence model. Then, we
obtain an optimal solution for soft-precedence with scatter-gather stage dependency.
Finally, we add multiplicative constraints to incorporate all-to-all stage dependency.
In Section 5 we show a heuristic approach for dealing with these constraints. Given a



An Algorithmic Framework for Geo-Distributed Analytics 7

value of time T as input, the LP examines whether the problem can complete within
time T . The optimal value of T can be found, e.g., via binary search. The number of
variables in the LP depends on T . To have data flow from input locations to the DCs
where the first computation stages execute, we pad the graph with dummy stages for
the input and for the output; we omit the specific details due to lack of space.

3.1 Computation and logical flow constraints

We define variables xi,u,t to denote the number of cores given to stage u on DC i,
during time frame [t, t+1). Since DC i has Ci cores, we have the following constraint:
∀i ∈ [n], t ∈ [T ] : ∑u∈V xi,u,t ≤Ci. Note that the tasks in a stage may be constrained if
needed by the maximum number of cores that they can use: ∀i ∈ [n], t ∈ [T ] : xi,u,t ≤
Cu.

We define variables ri, j,e,t to represent the rate of data transfer from DC i to DC j,
on edge e = (u,v) during time frame [t, t +1). Note that this definition refers to the
logical traffic demand on the network due to a logical edge between stages; the data
can transferred using any routes on the physical network.

We define variables IN j,v,t to be the total amount of input data for stage v that
reached DC j by time t. This amount is equal to the sum of all input data for v that
was transferred into DC j by time t, including all logical edges entering v, which are
denoted by In(v). Data transfers should also include data transfers from the DC j to
itself - if stage u finished on DC j, it can transfer its data to itself for processing stage
v on the same data center j. These data transfers are unlimited in rate, B j, j = ∞, but
they should still be accounted for. As for the data that originates at j, it is denoted by
I j,v. So the total input data IN j,v,t is given by:

∀ j ∈ [n],v ∈V, t ∈ [T ] : IN j,v,t = ∑
i∈[n],e∈In(v),t ′≤t

ri, j,e,t ′ .

We define variables COMPi,v,t to be the total amount of output data for stage v that
was computed in DC i by time t. This value is obtained by summing over all cores in
i given to stage v over time:

∀i ∈ [n],v ∈V, t ∈ [T ] : COMPi,v,t = ∑
t ′≤t

xi,v,t ′ × cv.

We define variables OUTi,v,t to be the total amount of output data for stage v that
was transferred away from DC i to the required destinations by time t, including all
logical edges outgoing from v, which are denoted by Out(v). This constraint is:

∀i ∈ [n],v ∈V, t ∈ [T ] : OUTi,v,t = ∑
j∈[n],e∈Out(v),t ′≤t

ri, j,e,t ′ .

As mentioned earlier, for every stage v, DC i, time t - the amount of data computed
and output COMP cannot exceed the amount of input data that has become available



8 S.Kandula, I. Menache, J. Naor and E. Timnat

IN. For instance, if only half of the input of a task has arrived by that time, then no
more than half of the data could have been computed. More generally, the amount of
data computed and output by v is bounded by the amount of input data that is available
by time t times the selectivity of that stage (ratio of output to input), which is sv.
The constraint is therefore ∀i ∈ [n],v ∈V, t ∈ [T ] : COMPi,v,t ≤ INi,v,t × sv. Similarly,
the amount of output data sent from the stage is bounded by the amount of data
computed, yielding the constraint ∀i ∈ [n],v ∈V, t ∈ [T ] : OUTi,v,t ≤ COMPi,v,t . We
also demand that for every logical edge e = (u,v), all necessary data be transferred.
That is, the total amount of data transfers over time will be equal to De, yielding the
constraint: ∀e ∈ E : ∑i, j∈[n],t∈[T ] ri, j,e,t = De.

3.2 Physical flow constraints for general topology

We define variables fi, j,e,k,l,t to represent the physical rate of data transfer from
physical node k to physical node ` during time frame [t, t+1), to fulfill the demand of
the logical flow ri, j,e,t . That is, the physical flow is a way to transfer the logical traffic
demands on the physical network, given network capacity constraints. Obviously,
the two plans have to match. Every logical demand ri, j,e,t should equal the sum of
the physical flows going out of i that implement it and to the sum of physical flows
going into j, leading to the following constraints:

∀i, j ∈ [n],e ∈ E, t ∈ [T ] : ri, j,e,t = ∑
l∈[m]

fi, j,e,i,l,t = ∑
k∈[m]

fi, j,e,k, j,t .

Additionally, corresponding to a logical flow from i to j, there should be no physical
flow leaving j or entering i. The corresponding constraints are:

∀i, j ∈ [n],k ∈ [m],e ∈ E, t ∈ [T ] : fi, j,e,k,i,t = fi, j,e, j,k,t = 0.

The last constraints do not apply for i = j = k, in which case the only physical flow
is from the DC to itself which we do allow.

For any physical node k, other than i, j, flow conservation dictates that the incom-
ing flow to node k is equal to the outgoing flow from it. This is true for every high
level flow ri, j,e,t separately. This leads us to the following constraints:

∀i, j ∈ [n],k ∈ [m]/{i, j},e ∈ E, t ∈ [T ] : ∑
`∈[m]

fi, j,e,k,`,t = ∑
`∈[m]

fi, j,e,`,k,t .

Data transfer is also required to meet the maximum data transfer rate for every
physical link Bk,`. This requirement implies the following constraint:

∀k, ` ∈ [m], t ∈ [T ] : ∑
i, j∈[n],e∈E

fi, j,e,k,`,t ≤ Bk,`.



An Algorithmic Framework for Geo-Distributed Analytics 9

3.3 Optimal solution for scatter-gather dependency

We now show that a solution to the LP implies an optimal schedule.

Theorem 1. Consider the LP described in Sections 3.1–3.2 with the objective to
minimize the total time. A solution to this LP is a near-optimal solution for the
scatter-gather dependency model.

Proof. We observe that any solution to the problem also defines a feasible solution to
the LP, and thus the value achieved by the LP is a lower bound on the optimal value.
Conversely, a solution to the LP can be translated into a solution for the problem; the
only concern with this solution is the rounding errors; the impact of rounding errors
can be minimized through a simple heuristic (we omit the details for brevity) and
it is typically small since the number of tasks is very large. Hence, this solution is
nearly optimal.

3.4 All-to-all dependency

We now show the multiplicative constraints needed for all-to-all stage dependency.
We later present a heuristic approach for solving the program with these non-convex
constraints. Consider a logical edge e = (u,v). Say half of stage u is computed on
DC i and the second half on j. Additionally, assume half of stage v is computed on
DC k and half on `. In this case, we need exactly 25% of the data to flow from each
DC in {i, j} to a DC in {k, l}. In general, the flow from i,u to k,v is proportional to
the product OUTi,u,T · IN j,v,T . Naively, the constraint should be:

∀i, j ∈ [n],e = (u,v) ∈ E : ∑
t≤T

ri, j,e,t = De
OUTi,u,T

DOUT,u
·

IN j,v,T

DIN,v
.

Note that De
DOUT,uDIN,v

is a constant, but the product OUTi,u,T · IN j,v,T contains two vari-
ables, and is thus non-convex. We use a first-order Taylor expansion to approximate
this product. While this approach falls short of guaranteeing performance bounds, it
obtains good results in practice. See Section 5 for details and a simulation study.

All-to-all dependency leads to one more complication: the progress of a stage
may be limited by its slowest parent. Consider a logical edge e = (u,v). Assume that
stage u was scheduled half each on DC i, and DC j; it has completed 50% of its work
at i but only 30% of its work at j. Then, stage v can complete no more than 30% of
its work at any DC. This leads us to the following constraint:

∀i, j ∈ [n],e = (u,v) ∈ E, t ∈ [T ] :
∑t ′≤t ri, j,e,t ′

∑t ′≤T ri, j,e,t ′
≥

COMP j,v,t

COMP j,v,T
.

That is, the fraction of the data sent is an upper bound for the fraction of the data
computed of v, so that if only 30% was sent by time t, no more than 30% of v will



10 S.Kandula, I. Menache, J. Naor and E. Timnat

be computed by time t. Multiplying both sides of the inequality by COMP j,v,T ×
∑t ′≤T ri, j,e,t ′ , we obtain yet another multiplication of variables. This product can also
be approximated similarly with first-order Taylor expansion, see Sec. 5 for details.

4 Strict-Precedence

We now proceed to study the case of strict precedence constraints, which requires
a different LP formulation. The solution to the new LP does not induce a schedule
as in previous section, rather we need to construct a feasible schedule (satisfying
strict precedences) from this solution. We present an approximation algorithm for
all-to-all stage dependency, under a bus network topology. We conclude this section
by highlighting the additional constraints needed for general network topology.
These constraints contain multiplicative constraints that require a heuristic approach
for solving them, which we describe in Sec. 5. We now present the LP for strict-
precedence constraints. In this LP, the total makespan T is a variable, and the objective
function is to minimize T .

4.1 Physical flow constraints for bus topology

For simplicity of exposition, we present the physical flow constraints for a bus
topology. The constraints required for a general network topology are highlighted
in 4.4. We define variables di, j,e for e = (u,v) to denote the total amount of data
which we transfer from stage u on data center i to stage v on DC j. We define
variables ti, j,e to denote the total amount of time it takes us to transfer that data.
We define variables ri, j,e,c to denote the total amount of time in which we dedicate
exactly c Mbps for the data transfer di, j,e. The total amount of data transferred is:
∀i 6= j ∈ [n],e ∈ E : di, j,e = ∑c∈[min{ui,d j}] c∗ ri, j,e,c.

As for the total transfer time ti, j,e - it will be the sum of times at different transfer
speeds: ∀i 6= j ∈ [n],e ∈ E : ti, j,e = ∑c∈[min{ui,d j}] ri, j,e,c.

We denote the time it takes to complete every logical edge e by te. We know that the
time to complete every logical edge is lower bounded by the time it takes to transfer
its data for any pair of DCs (i, j): ∀i, j ∈ [n],e ∈ E : te ≥ ti, j,e. If edge e takes time te
then the total amount of data sent within that time frame from DC i cannot exceed
uite. This leads us to the constraint: ∀i ∈ [n],e ∈ E : ∑ j 6=i,c∈[min{ui,d j}] c∗ ri, j,e,c ≤ uite.

Similarly, the total amount of data sent to DC j within te time cannot exceed d jte.
This leads us to the constraint: ∀ j ∈ [n],e ∈ E : ∑i6= j,c∈[min{ui,d j}] cri, j,e,c ≤ d jte.



An Algorithmic Framework for Geo-Distributed Analytics 11

4.2 Computation and logical flow constraints

We define variables xi,u,c to denote the amount of time for which we dedicate exactly
c cores of DC i to the computation of stage u. We define variables di,u to denote the
amount of output data of stage u to be found on DC i. With cu being the output size
per core per time unit, for stage u. The total amount of output data for stage u on DC
i, di,u, is the sum of matching computations: ∀i ∈ [n],u ∈V : di,u = ∑c∈[Ci] ccuxi,u,c.

This amount is equal to the total amount of outgoing data, plus the amount of data
there to be used as output. The corresponding constraint is: ∀i ∈ [n],u ∈V : di,u =

∑ j∈[n],e∈Out(u) di, j,e +Oi,u. We used Out(u) to denote the outgoing edges of u.
Similarly, the amount of data there, over the output to input ratio su, is equal to the

amount of incoming data, plus the amount of data that was part of the job input there.
The corresponding constraint is: ∀ j ∈ [n],v ∈V : d j,v/sv = ∑i∈[n],e∈In(v) di, j,e + I j,v.
We used In(v) to denote the incoming edges of v.

We define variables ti,u to denote the time it takes to compute stage u on DC i, and
variables tu to denote the total time it takes to compute the stage u over all DCs. It
follows that: ∀i ∈ [n],u ∈V : ti,u = ∑c∈[Ci] xi,u,c, and ∀i ∈ [n],u ∈V : ti,u ≤ tu. With
these constraints, tu is the maximum time between all values ti,u.

We also require that all computations is fully completed. Assume stage u requires
a total of DOUT,u/cu cores×time, then: ∀u ∈V : ∑i∈[n] di,u = Du/cu. Similarly, we
require that all data is indeed transferred. Assume edge e requires De data to be
transferred, then ∀e ∈ E : ∑i, j∈[n] di, j,e = De.

For every logical chain, i.e. sequence of edges C ∈ G - we demand that the total
computation and data transfer time of the chain, does not exceed T . This leads us to:
s.t.∀C ∈ G : ∑u∈C tu +∑e∈C te ≤ T .

Note that for a general DAG, the number of chains can be exponential. However,
these constraints can be rewritten in a way that their number becomes polynomial. In
a nutshell, we can do so by introducing new variables STARTu,ENDu for the start
and end time of every stage u; we omit the details for brevity. We also demand that
the total cores×hours on every DC would not exceed its computation limits, that is:
∀i ∈ [n] : ∑u∈V ∑c∈[Ci] c∗ xi,u,c ≤ TCi.

Additionally, we demand that if Ii,u input data arrives at DC i for stage u, it will all
be transferred out of it: ∀i ∈ [n],u ∈V : ∑ j∈[n],e∈Out(u) di, j,e = Ii,usu, where we used
Out(u) to denote the outgoing edges of u. Similarly, if O j,v output data is demanded
for stage v on DC j, then: ∀ j ∈ [n],v ∈V : ∑i∈[n],e∈In(v) di, j,e = O j,v, where we used
In(v) to denote the incoming edges of v.

4.3 The Algorithm

We now show how to turn the solution of the LP into an actual feasible schedule. We
emphasize that the algorithm holds for general topology, although we can guarantee
an approximation ratio only for bus topology, as we show later.



12 S.Kandula, I. Menache, J. Naor and E. Timnat

We say a stage u is available if all incoming data transfers for stage u have
already completed. We say a logical edge e = (u,v) is available if stage u has already
completed. We use the LP variables di,u to dictate the amount of data of stage u to
be calculated on DC i. At every point in time, we denote by kout,i the number of
logical edges currently available to be transferred from DC i, and by kin, j the number
of logical edges currently available to be transferred into DC j. The algorithm is as
follows:

1. While some stage has not completed:
2. For every DC i, denote by k the number of different stages currently available,

having di,u > 0. Start running each of these stages on Ci
k of the cores of DC i.

3. For every pair of DCs i, j, logical edge e = (u,v), denote di, j,e = di,u ·d j,v.
4. For every pair of DCs i, j, logical edge e, denote cout,i, j,e =

ui
kout,i

di, j,e
∑ j′ di, j′,e

.

5. For every pair of DCs i, j, logical edge e, denote cin,i, j,e =
d j

kin, j

di, j,e
∑i′ di′, j,e

.

6. Start using min(cout,i, j,e,cin,i, j,e) Mbps for sending data from i to j associated
with the logical edge e.

7. Continue running until some stage or data transfer completes, and then go back
to step 1.

It follows directly from the definition of the algorithm that the solution produced
is feasible; we omit a formal proof due to lack of space.
Analysis for bus topology. We now analyze the approximation factor of the algo-
rithm with all-to-all stage dependency, under a bus network topology. For a general
DAG, we define the width ω as the maximum between the maximum number of
stages that can run in parallel (i.e., independent of each other), and the maximum
number of edges that can run in parallel. We will show that our algorithm is within
ω times of optimal. For the special case of a single chain DAG, ω = 1; this includes
the case of all map-reduce job DAGs; hence our algorithm is optimal for map-reduce
jobs on a bus network– the predominant case considered by prior work (e.g., [22]).

Theorem 2. The algorithm is an ω-approximation for the strict-precedence model,
with all-to-all stage dependencies, under a bus topology.

Proof. Since every feasible solution to the problem is also a feasible solution for the
LP, we know that T is a lower bound on the optimal execution time. We show that
ωT is an upper bound for the execution time of our solution, and from this obtain
the desired approximation factor.

In a general DAG of width ω , we might have up to ω stages executing in parallel,
in the worst case. This means that ω stages are competing over the same DC i. Thus,
each will get at least Ci

ω
cores, and will complete within at most ωti,u time. Therefore,

every stage u will complete within at most ωtu.
We know from the LP that ∀i ∈ [n],e ∈ E : ∑ j 6=i,c∈[min{ui,d j}] c∗ ri, j,e,c ≤ uite, and

that ∀ j ∈ [n],e ∈ E : ∑i6= j,c∈[min{ui,d j}] c∗ ri, j,e,c ≤ d jte. For every logical edge e we
assume at least one of these constraints is tight, otherwise we can lower the value of
te. Assume w.l.o.g. that this constraint is for an upload link, and some DC i. The total
data that needs to be transferred from DC i, regarding e is: uite. We know there are at



An Algorithmic Framework for Geo-Distributed Analytics 13

Fig. 2: Performance of the iterative approximation heuristic.

(a) Convergence of values of two variables.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Iteration

V
al

ue
OUT1,1,T

OUT1,2,T

(b) Makespan with(out) mult. constraints.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Bandwidth for (i, j), where i > j.

M
ak

es
pa

n

Without multiplicative constraints
With multiplicative constraints

most ω logical edges that run in parallel with e, and thus kout,i ≤ ω . Since we give a
total of ui

kout,i
≥ ui

ω
to the edge e, we know it will complete within at most ωte time.

We know from the LP that ∀C ∈ G : ∑u∈C tu +∑e∈C te ≤ T . The total execution
time for every chain C ∈ G will not exceed ∑u∈C ωtu +∑e∈C ωte ≤ ωT . Since every
chain completes within ωT time, the entire DAG finishes in ωT time. Hence, for a
general DAG, we guarantee an approximation factor of ω .

4.4 Physical flow constraints for a general network topology

For a general network topology, we need to apply different physical constraints.
In an all-to-all scenario, these constraints also include multiplicative constraints.
In a bus topology we were able to avoid this issue, but in a general topology, the
flow has different paths, and we need the LP to know exactly how much flow goes
between every pair of DCs i, j. In the full version of the paper we define the full
set of constraints. These constraints, together with the previous ones lead to an LP
formulation. This LP is then solved iteratively as described in Section 5. The LP
solution allows us to use the algorithm presented in Section 4.3 as a heuristic solution
to the general network model.



14 S.Kandula, I. Menache, J. Naor and E. Timnat

5 Heuristics

In this section, we first describe how we deal with the non-convex constraints which
we obtain for the All-to-All dependency model. We then perform basic simulations
to demonstrate that “linearizing” these constraints works well in practice.
Linearizing multiplicative constraints. Recall that our multiplicative constraints
are of the form: ∀i, j ∈ [n],e = (u,v) ∈ E : ∑t≤T ri, j,e,t = De

OUTi,u,T
DOUT,u

· IN j,v,T
DIN,v

.

The Taylor series is expanded around estimated values for OUTi,u,T and IN j,v,T ,
denoted ÔUTi,u,T and ÎN j,v,T respectively. We solve the LP iteratively, and use the
values that the LP found for the variables in the previous iteration as the estimated
values for the next iteration. The stopping condition for this procedure is when the
difference in consecutive values is smaller than a configurable parameter (or when
exceeding a maximal number of iterations). This iterative procedure is described
in detail in Appendix 6. We next show empirically that the estimations converge
quickly, and further that the corresponding values lead to adequate performance.
Simulations. Our goal is twofold: (i) demonstrate that the iterative approach for
approximating the multiplication constraints indeed converges quickly to a feasible
solution. (ii) show that the obtained solution is “good”. In particular, albeit using
approximations, we would like to demonstrate convergence to near-optimal values.
Setting. In our simulations, we use a chain DAG, consisting of ten stages with
different initial data distribution and computation requirements. We assume soft-
precedence between stages, and all-to-all dependency. The network topology is a
clique, i.e., there is a link between every two datacenters. In each run, we vary the
bandwidths of the links, as we elaborate below.
Convergence. Figure 2a shows the convergence of the variables OUTi,u,T for i = 1
and u = 1,2. As can be seen, we obtain rather stable values after 15 iterations. We
note that we obtain similar convergence behavior for other variables, and also for
other DAGs that we have tested. The significance of convergence is that our scheme
stabilizes, and we can rely on the obtained values for the multiplication of two
variables. This does not imply that we converge to “good” values of the variables.
We next address the quality of the approximation.
Quality of the approximation. We check the obtained makespan with and without
the multiplicative constraints. Any feasible solution to the actual problem must
satisfy all the constraints, including the multiplicative constraints. Accordingly, the
optimal solution that satisfies the constraints excluding the multiplicative ones, is
obviously a lower bound for the optimum. We next show empirically that the value
of the execution time with the multiplicative constraints is indeed very close to the
value without them, thus close to the optimal value. We again use a chain DAG
with ten stages. The physical network is a clique. For each link (i, j), we assign a
bandwidth of one if i < j, and for each run, choose a different value out of the set
{1,2,3,4,5,10} for the remaining links (i.e., (i, j) s.t. i > j). Figure 2b shows that
the execution time without the multiplicative constraints is always 12 time units.
Adding the multiplicative constraints increased the execution time to 13−14 units
in all of the runs (i.e., an 8−17% increase in the makespan). This indicates that the



An Algorithmic Framework for Geo-Distributed Analytics 15

potential loss due to the approximation of multiplications is not substantial. Note that
the makespan of our algorithm is non necessarily monotone in the bandwidth assigned
to the i > j links – indicating that our approximation is sub-optimal. However, what
matters most here is that the obtained makespan is close to optimal.

References

1. Hadoop YARN Project. http://bit.ly/1iS8xvP.
2. Seattle department of transportation live traffic videos. http://web6.seattle.gov/

travelers/.
3. TPC-H Benchmark. http://bit.ly/1KRK5gl.
4. TPC-DS Benchmark. http://bit.ly/1J6uDap, 2012.
5. A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.

VL2: A Scalable and Flexible Data Center Network. In SIGCOMM, 2009.
6. Sameer Agarwal, Srikanth Kandula, Nico Burno, Ming-Chuan Wu, Ion Stoica, and Jingren

Zhou. Re-optimizing data parallel computing. In NSDI, 2012.
7. Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data

center network architecture. In SIGCOMM, 2008.
8. Michael Armbrust et al. Spark sql: Relational data processing in spark. In SIGMOD, 2015.
9. Peter Bodı́k, Ishai Menache, Joseph Seffi Naor, and Jonathan Yaniv. Brief announcement:

deadline-aware scheduling of big-data processing jobs. In SPAA, pages 211–213, 2014.
10. Ronnie Chaiken et al. SCOPE: Easy and Efficient Parallel Processing of Massive Datasets. In

VLDB, 2008.
11. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.

In OSDI, 2004.
12. Pierre-François Dutot, Grégory Mounié, and Denis Trystram. Scheduling parallel tasks ap-

proximation algorithms. In Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. 2004.

13. Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 1969.

14. Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Ananthanarayanan. Altruistic
scheduling in multi-resource clusters. In OSDI, 2016.

15. Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri,
and Roger Wattenhofer. Achieving high utilization with software-driven wan. In SIGCOMM,
2013.

16. Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu, and Mingyang
Zhang. Wide-area analytics with multiple resources. In EuroSys, 2018.

17. Chien-Chun Hung, Leana Golubchik, and Minlan Yu. Scheduling jobs across geo-distributed
datacenters. In SOCC, 2015.

18. IDC. Network video surveillance: Addressing storage challenges. http://bit.ly/
1OGOtzA, 2012.

19. Michael Isard. Autopilot: Automatic Data Center Management. OSR, 41(2), 2007.
20. Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,

Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experience with a globally-
deployed software defined wan. In SIGCOMM, 2013.

21. Klaus Jansen and Hu Zhang. Scheduling malleable tasks with precedence constraints. J.
Comput. Syst. Sci., 78(1):245–259, 2012.

22. Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella, Paramvir
Bahl, and Ion Stoica. Low latency geo-distributed analytics. In SIGCOMM, 2015.

23. Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega:
Flexible, scalable schedulers for large compute clusters. In EuroSys, 2013.

http://bit.ly/1iS8xvP
http://web6.seattle.gov/travelers/
http://web6.seattle.gov/travelers/
http://bit.ly/1KRK5gl
http://bit.ly/1J6uDap
http://bit.ly/1OGOtzA
http://bit.ly/1OGOtzA


16 S.Kandula, I. Menache, J. Naor and E. Timnat

24. Ashish Thusoo et al. Hive- a warehousing solution over a map-reduce framework. In VLDB,
2009.

25. Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey, Thomas Jungblut, Jitu Padhye, and George
Varghese. Global analytics in the face of bandwidth and regulatory constraints. In NSDI, 2015.

26. M. Zaharia et al. Spark: Cluster computing with working sets. Technical Report UCB/EECS-
2010-53, EECS Department, University of California, Berkeley, 2010.

6 Appendix: Linearizing Multiplicative Constraints

Recall that our multiplicative constraints are of the form

∀i, j ∈ [n],e = (u,v) ∈ E : ∑
t≤T

ri, j,e,t = De
OUTi,u,T

DOUT,u
·

IN j,v,T

DIN,v

The Taylor series is expanded around the estimated values ÔUT i,u,T , ÎN j,v,T . We
solve the LP iteratively, and use the values the LP found for the variables in the
previous iteration as the estimated values. After several iterations the values converge
to their true value, and thus the multiplications become more accurate.

Recall that the first-order Taylor expansion for the multiplication x · y, expanded
around the point (x̂, ŷ) is: x · y ' x̂ · ŷ+(x− x̂) · ŷ+(y− ŷ) · x̂. Dividing both sides
by the constant De

DOUT,uDIN,v
, and approximating the multiplication using first-order

Taylor, we obtain ∀i, j ∈ [n],e = (u,v) ∈ E:

DOUT,uDIN,v

De
∑
t≤T

ri, j,e,t ≥ ÔUT i,u,T · ÎN j,v,T

+(OUTi,u,T − ÔUT i,u,T ) · ÎN j,v,T +(IN j,v,T − ÎN j,v,T ) · ÔUT i,u,T .

Note that we have turned this equality constraint into a non-equality, since we
have other constraints for the total flow from previous sections. Our multiplication
evaluating the flow might be slightly more or less than the true multiplication value.
In case it is more than the true value - we simply send less flow, and no constraints
are violated. In case it is less than the true value - we need to send more data than
planned - which might violate capacity constraints. In this case - we simply use
a little more time for the entire flow to be sent. As long as the approximation is
reasonable - this extra-time will be small.

To obtain relatively accurate values for ÔUT i,u,T , ÎN j,v,T , we solve the LP iter-
atively, and use the previous values as our approximation. For the first iteration
only we use ÔUT i,u,T = 0, ÎN j,v,T = 0. We use the same approach for our second
set of multiplicative constraints (see Section 3.4) ∀i, j ∈ [n],e = (u,v) ∈ E, t ∈ [T ] :
∑t′≤t ri, j,e,t′
∑t′≤T ri, j,e,t′

≥ COMPj,v,t
COMPj,v,T

; details omitted for brevity. The resulting LP is then solved
iteratively, as described, to obtain a nearly feasible solution. The small infeasibility
translates into some extra-time required for completing flows that are larger than
anticipated by the LP.


	An Algorithmic Framework for Geo-Distributed Analytics
	Srikanth Kandula, Ishai Menache, Joseph (Seffi) Naor, Erez Timnat Microsoft Research and Technion – Israel Institute of Technology {srikanth, ishai}@microsoft.com, {naor, ereztimn}@cs.technion.ac.il
	Introduction
	Our Results

	The Model
	Preliminaries
	Stage dependency types
	Precedence models
	Network topologies

	Algorithms for Soft-Precedence Constraints
	Computation and logical flow constraints
	Physical flow constraints for general topology
	Optimal solution for scatter-gather dependency
	All-to-all dependency

	Strict-Precedence
	Physical flow constraints for bus topology
	Computation and logical flow constraints
	The Algorithm
	Physical flow constraints for a general network topology

	Heuristics
	References
	Appendix: Linearizing Multiplicative Constraints



