In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18)

Graviton: Trusted Execution Environments on GPUs

Stavros Volos
Microsoft Research

Kapil Vaswani

Abstract

We propose Graviton, an architecture for supporting
trusted execution environments on GPUs. Graviton en-
ables applications to offload security- and performance-
sensitive kernels and data to a GPU, and execute kernels
in isolation from other code running on the GPU and all
software on the host, including the device driver, the op-
erating system, and the hypervisor. Graviton can be in-
tegrated into existing GPUs with relatively low hardware
complexity; all changes are restricted to peripheral com-
ponents, such as the GPU’s command processor, with
no changes to existing CPUs, GPU cores, or the GPU’s
MMU and memory controller. We also propose exten-
sions to the CUDA runtime for securely copying data
and executing kernels on the GPU. We have implemented
Graviton on off-the-shelf NVIDIA GPUs, using emula-
tion for new hardware features. Our evaluation shows
that overheads are low (17-33%) with encryption and de-
cryption of traffic to and from the GPU being the main
source of overheads.

1 Introduction

Recent trends such as the explosion in volume of data
being collected and processed, declining yields from
Moore’s Law [[16], growing use of cloud computing,
and applications, such as deep learning have fueled the
widespread use of accelerators such as GPUs, FPGAs
[37], and TPUs [20]. In a few years, it is expected that a
majority of compute cycles in public clouds will be con-
tributed by accelerators.

At the same time, the increasing frequency and so-
phistication of data breaches has led to a realization that
we need stronger security mechanisms to protect sensi-
tive code and data. To address this concern, hardware
manufacturers have started integrating trusted hardware
in CPUs in the form of trusted execution environments
(TEE). A TEE, such as Intel SGX [28]] and ARM Trust-
zone [, protects sensitive code and data from system
administrators and from attackers who may exploit ker-
nel vulnerabilities and control the entire software stack,
including the operating system and the hypervisor. How-
ever, existing TEESs are restricted to CPUs and cannot be
used in applications that offload computation to accelera-

Microsoft Research

Rodrigo Bruno
INESC-ID / IST, University of Lisbon

tors. This limitation gives rise to an undesirable trade-off
between security and performance.

There are several reasons why adding TEE support
to accelerators is challenging. With most accelerators,
a device driver is responsible for managing device re-
sources (e.g., device memory) and has complete control
over the device. Furthermore, high-throughput accelera-
tors (e.g., GPUs) achieve high performance by integrat-
ing a large number of cores, and using high bandwidth
memory to satisfy their massive bandwidth requirements
[4,11]. Any major change in the cores, memory man-
agement unit, or the memory controller can result in
unacceptably large overheads. For instance, providing
memory confidentiality and integrity via an encryption
engine and Merkle tree will significantly impact avail-
able memory capacity and bandwidth, already a precious
commodity on accelerators. Similarly, enforcing mem-
ory isolation through SGX-like checks during address
translation would severely under-utilize accelerators due
to their sensitivity to address translation latency [35]].

In this paper, we investigate the problem of supporting
TEEs on GPUs. We characterize the attack surface of
applications that offload computation to GPUs, and find
that delegating resource management to a device driver
creates a large attack surface [26} |36] leading to attacks
as page aliasing that are hard to defend without hardware
support. Interestingly, we also find that architectural dif-
ferences between GPUs and CPUs reduce the attack sur-
face in some dimensions. For instance, all recent server-
class GPUs use 3D-IC designs with stacked memory
connected to GPU cores via silicon interposers [4, [11].
Unlike off-package memory connected to the CPU using
copper-based traces on the PCB, which are easy to snoop
and tamper, it is extremely hard for an attacker to open
a GPU package and snoop on the silicon interconnect
between GPU and stacked memory, even with physical
access to the GPU. Thus, it is a reasonable assumption to
include on-package memory within the trust boundary.

Based on these insights, we propose Graviton, an ar-
chitecture for supporting TEEs on GPUs. In Graviton,
a TEE takes the form of a secure context, a collec-
tion of GPU resources (e.g., device memory, command
queues, registers) that are cryptographically bound to a
public/private key pair and isolated from untrusted soft-
ware on the host (including the driver) and all other GPU



contexts. Graviton guarantees that once a secure context
has been created, its resources can only be accessed by a
user application/runtime in possession of the correspond-
ing private key. As long as the key is protected from the
adversary (e.g., the key is hosted in a CPU TEE), the ad-
versary cannot access the context’s address space. Gravi-
ton supports two additional primitives: measurement for
generating remotely verifiable summaries of a context’s
state and the platform, and secure memory allocation and
deallocation for letting a device driver dynamically allo-
cate and free memory without compromising security.

Graviton achieves strong security by redefining the
interface between the GPU driver and the hardware.
Specifically, we prevent the driver from directly access-
ing security sensitive resources, such as page directories,
page tables, and other memory containing sensitive code
and data. Instead, we require that the driver route all re-
source allocation requests through the GPU’s command
processor. The command processor tracks ownership of
resources, and ensures that no resource owned by a se-
cure context can be accessed by the adversary. The com-
mand processor also ensures that the resources are cor-
rectly initialized on allocation to a secure context, and
cleaned up on destruction, preventing attacks that exploit
improper initialization [23\ 36} 152].

Our design has several key attributes including low
hardware complexity, low performance overheads and
crypto-agility. Graviton requires no changes to the GPU
cores, MMU, or the memory controller. All changes
are limited to peripheral components, such as the GPU
command processor and the PCle control engine; this is
largely due to the assumption that on-package memory
can be trusted. Graviton places no restrictions on the
instruction set available within the TEE. We also show
that a GPU runtime can use Graviton to build secure ver-
sions of higher-level APIs, such as memory copy, kernel
launch, and streams, which can be used to build applica-
tions with end-to-end confidentiality and integrity.

We have evaluated our design on NVIDIA Titan
GPUs, gdev [21], an open-source CUDA runtime, and
nouveau [29], an open source GPU driver. In the ab-
sence of hardware that implements the proposed exten-
sions, we implement and emulate the extensions using
interrupts delivered to the host. Our evaluation using a
set of representative machine learning benchmarks sug-
gests that the overheads of running compute-bound GPU
applications using secure contexts are low (17-33%) for
the level of security we provide. The overheads are dom-
inated by the cost of authenticated encryption/decryption
of kernel launch commands and user data.

In summary, we make the following contributions.

e We propose Graviton, an architecture for supporting
TEEs on accelerators, such as GPUs. Graviton pro-
vides strong security properties even against an ad-

User application

User runtime

GPU driver

Host OS Code & data {

Command Compute :
Processor Engine
(channel engine) ([Copy Enginel

Internal Bus

Hypervisor

T ) I

p-ctrl. firmware

PCI Ctrl.

[Mem ctrl.]

Figure 1: System stack (left) and hardware stack (right).

versary that might control the entire software stack
on the host, including the accelerator driver.

e We define a threat model that places trust in the
GPU hardware, including on-package memory.

e We propose a minimal set of extensions to the GPU
hardware for implementing Graviton and show how
these extensions can be used to design applications
with end-to-end security guarantees. The design
requires no changes to the GPU cores, MMU, or
memory controller, resulting in low hardware com-
plexity and low performance overheads.

2 Background

2.1 GPU

We review the NVIDIA GPU architecture and the CUDA
programming model to illustrate how a compute task is
offloaded and executed on the GPU. We focus on the se-
curity critical parts of the architecture.

Software stack. A user-space application uses an API
provided by the user-space GPU runtime (e.g., CUDA
runtime), to program the GPU execution units with a
piece of code known as the kernel, and transfer data be-
tween host and device memory. The GPU runtime con-
verts each API call to a set of GPU commands for con-
figuring the device and controlling kernel launches and
data transfers. A GPU driver is responsible for submit-
ting these commands to the GPU via the PCI bus and for
managing device memory.

Hardware. The GPU (Figure[I)) interfaces with the host
CPU via the PCI control engine, which is connected with
the rest of the GPU components via an internal bus. The
key components are a command processor, compute and
copy (DMA) engines, and the memory system, including
the memory controller and memory chips.

The PCI control engine consists of (a) a PCI controller
that receives incoming and outgoing PCI transactions,
and (b) a master control engine, which exposes a set of
memory-mapped-IO (MMIO) registers that are accessed
by the host CPU to enable and disable the GPU engines.



User-space Kernel-space

>
2 T DMA Buffer |
-

[} GRS

s Data 2g )

= 20 Command Ring

3 v} Buffer Buffer

T

> 3

: - z
58 PGD 2

] Data < = &

E o) Q.
o S} c

= & PGTs £

85 o

Figure 2: Host memory and GPU memory spaces.

The command processor (aka channel engine) receives
commands submitted by the device driver over as set of
command queues known as channels and forwards them
to the corresponding engines once they are idle. Chan-
nels are configured through a set of memory locations
known as the channel control area which is mapped over
the MMIO and serviced by the command processor.

The compute engine consists of a set of graph pro-
cessing clusters (GPCs) and a shared L2 cache. Each
GPC consists of a number of streaming multiproces-
sors (SMs), which are used to run GPU kernels. Each
SM consists of multiple cores and a private memory
hierarchy, including a read-only cache, L1 cache, and
application-managed memory. GPU kernels specify the
number of threads to be created, organized into thread
blocks and grids. Thread blocks are divided into warps,
where each warp is a unit of scheduling on each SM.
Threads belonging to the same thread block share the
caches and the application-managed memory.

Modern GPUs support virtual memory via a mem-
ory controller with page table walkers for address trans-
action, and a hierarchy of TLBs. For example, in the
NVIDIA Volta, the L1 cache is virtually addressed and
the L2 is physically addressed. The GPU has a shared
two-level TLB used while accessing the L2 cache [19].

Context and channel management. Execution on
GPUs is context-based. A CUDA context represent the
collection of resources and state (memory, data, etc.) that
are required to execute a CUDA kernel. Resources are
allocated to contexts to run a compute task and are freed
when a context is destroyed. Each context has its own
address space. GPUs use channels to isolate a context’s
address space from other contexts. A channel is the only
way to submit commands to the GPU. Therefore, every
GPU context allocates at least one GPU channel.

To create a channel, the device driver allocates a
channel descriptor and multi-level page tables in device
memory (Figure 2] and [3). For example, a simple two-
level page table consists of the page directory (PGD) and
a number of leaf page tables (PGT). The driver writes the
channel descriptor address to the channel control area,

Channel
control area

Channel Page Page
descriptors  directory tables

el
—

Figure 3: Channel-level address space management.

Memory

A 4
A4

Memory-mapped
Command user command buffer

pusher

Ring buffer

Command group

size

Command group

size offset offset I

-~

Figure 4: GPU command submission.

and the page directory address in the channel descrip-
tor. The page directory consists of entries that point to
leaf page tables, and leaf page tables contain virtual-to-
physical mappings. Page tables typically support small
(4KB) and big pages (128KB). The device driver updates
all these data structures over the PCI bus via BARs.

Once the channel has been created, the device driver
allocates device memory for a few channel-specific data
structures, including (a) the internal context of the chan-
nel and compute engines, (b) a fence buffer used for syn-
chronization between the host CPU and GPU, and (c) an
interrupt buffer for notifying the host with interrupts gen-
erated by the GPU engines.

Command submission. The command processor is re-
sponsible for fetching commands submitted by the soft-
ware stack and relaying them to the appropriate GPU en-
gines. Figure [] shows the data structures used for com-
mand submission. The driver allocates two buffers in
kernel space, a command and a ring buffer. The com-
mand buffer is memory-mapped to the user space. The
runtime pushes groups of commands to the command
buffer, updates the channel’s ring buffer with the size
and offset of each group, and then updates over MMIO
a register called the PUT register with a pointer to the
command group. When the PUT register is updated, the
command processor fetches a command group from the
buffers, and updates the GET register to notify the run-
time that the commands have been fetched.

Programming model. Next, we present an overview of

the main stages of dispatching kernels to the GPU.
Initialization. An application wishing to use the GPU

first creates a CUDA context. During context creation,



the runtime allocates a DMA buffer for data transfers be-
tween host memory and device memory (Figure[2). Sub-
sequently, the application loads one or more CUDA mod-
ules into the context. For each kernel defined in the mod-
ule, the runtime creates a corresponding kernel object on
the GPU by allocating device memory for (a) the ker-
nel’s code, (b) constant memory used by the kernel, and
(c) local memory used by each thread associated with the
kernel. The runtime then copies code and constant mem-
ory to device memory via DMA.

Memory allocation. The application allocates device
memory for storing inputs and outputs of a kernel using
a memory allocation API (cudaMalloc and cudaFree).
Memory allocations are serviced by the driver, which up-
dates the page directory and page tables.

Host-GPU transfers. When the application issues
a host-to-device copy, the runtime pushes a command
group to the context’s channel, passing the virtual ad-
dresses of source and destination to the copy engine.
Once the engine is configured, it translates virtual ad-
dresses to physical ones and initiates DMA transfers.

Kernel dispatch. When the application executes a ker-
nel, the runtime passes a command group to the com-
mand processor that includes the kernel’s context, the
base address of the code segment, the entry program
counter, the grid configuration, and the kernel’s environ-
ment, which includes the stack and parameters values.
The command processor uses these parameters to initial-
ize compute engines, which in turn initialize and sched-
ule the computation on GPU cores.

Sharing. A GPU can be used to execute multiple kernels
from multiple host processes using techniques such as
pre-emptive multi-tasking [33}42], spatial multi-tasking
[2 34]], simultaneous execution [47], multi-process ser-
vice [30], or virtualization [25]. In such scenarios, it
is the responsibility of the host (driver) to isolate ker-
nels using the channel abstraction and virtual memory.
While spatial multi-tasking advocates for SM partition-
ing, it still shares memory resources and relies on vir-
tual memory for isolation. Even in devices that support
SR-IOV and partition resources in hardware (e.g., AMD
MxGPU), system software is still responsible for assign-
ing virtual devices to virtual machines.

2.2 Intel SGX

Trusted execution environments, or enclaves (e.g., In-
tel SGX) protect code and data from all other software
in a system. With OS support, an untrusted hosting
application can create an enclave in its virtual address
space. Once an enclave has been initialized, code and
data within the enclave is isolated from the rest of the
system, including privileged software.

Intel SGX enforces isolation by storing enclave code
and data in a data structure called the Enclave Page

Cache (EPC), which resides in a pre-configured por-
tion of DRAM called the Processor Reserved Memory
(PRM). The processor ensures that any software out-
side the enclave cannot access the PRM. However, code
hosted inside an enclave can access both non-PRM mem-
ory and PRM memory that belongs to the enclave. SGX
includes a memory encryption engine that encrypts and
authenticates enclave data evicted to memory, and en-
sures integrity and freshness.

In addition to isolation, enclaves also support remote
attestation. Remote attestation allows a remote chal-
lenger to establish trust in an enclave. In Intel SGX, code
hosted in an enclave can request a guote, which contains
a number of enclave attributes including a measurement
of the enclave’s initial state. The quote is signed by a
processor-specific attestation key. A remote challenger
can use Intel’s attestation verification service to verify
that a given quote has been signed by a valid attestation
key. The challenger can also verify that the enclave has
been initialized in an expected state. Once an enclave has
been verified, the challenger can set up a secure channel
with the enclave (using a secure key exchange protocol)
and provision secrets such as encrypted code or data en-
cryption keys to the enclave.

3 Threat Model

We consider a strong adversary who controls the entire
system software, including the device drivers, the guest
operating system, and the hypervisor, and has physi-
cal access to all server hardware, including the GPU.
Clearly, such an adversary can read and tamper with
code or data of any victim process. The adversary can
also access or tamper with user data in DMA buffers or
with commands submitted by the victim application to
the GPU. This gives the adversary control over attributes,
such as the address of kernels being executed and param-
eters passed to the kernel. The adversary may also access
device memory directly over MMIO, or map a user’s
GPU context memory space to a channel controlled by
the adversary. In multi-tasking GPUs, malicious kernels
can be dispatched to the GPU, thereby accessing mem-
ory belonging to a victim’s context. These attacks are
possible even in a virtualized environment (e.g., even if a
device supports SR-IOV) because the mapping between
VMs and virtual devices is controlled by the hypervisor.

An adversary with physical access to the server can
mount snooping attacks on the host memory bus and the
PCle bus. However, we do trust the GPU and CPU pack-
ages and firmware, and assume that the adversary can-
not extract secrets or corrupt state within the packages.
This implies that we trust CPUs to protect code and data
hosted inside TEEs. Side-channel attacks (e.g., based on
speculative execution, access patterns and timing) and



denial-of-service attacks are also outside the scope of this
paper. Side channels are a serious concern with trusted
hardware [10} 12} 22} 38 145} 150] and building efficient
counter measures remains an open problem. In Gravi-
ton, we use TEEs to host the user application and the
GPU runtime.

Unlike host memory, which is untrusted, we trust on-
package GPU memory as GPU cores are attached to
memory using silicon interposers, which make it ex-
tremely difficult for an attacker to mount snooping or
tampering attacks. There is an emerging class of at-
tacks on stacked integrated circuits (ICs), such as attacks
where the package assembler inserts a trojan die between
the GPU and memory dies [49]. Developing mitigations
for these attacks is ongoing work [3] and outside the
scope of this paper.

Even under this threat model, we wish to guaran-
tee confidentiality and integrity for applications that use
GPUs. Specifically, we wish to guarantee that the adver-
sary cannot observe or tamper with code, data, and com-
mands transferred to/from the GPU by a trusted applica-
tion that runs in a CPU TEE or an on-premise machine.
Finally, we wish to guarantee that the GPU computation
proceeds without interference from the adversary.

4 Overview

Consider a CUDA application (Figure [5) that performs
matrix multiplication, which is a key building block in
machine learning algorithms. The application creates a
new CUDA context (implicitly on the first CUDA API
call), allocates memory for input and output matrices
in host and device memory, populates the matrices, and
then invokes the matrix multiplication kernel on the GPU
(not shown), passing pointers to device memory and
other kernel’s parameters. After the kernel has com-
pleted, the application copies the results into host mem-
ory and releases memory allocated on the GPU.

As described earlier, an attacker with privileged ac-
cess to the server can easily recover the contents of the
matrices and the result even if this application is hosted
in a CPU enclave. We can harden this application against
such attacks simply by linking it against Graviton’s ver-
sion of the CUDA runtime. Graviton’s version of the
runtime creates a secure context (instead of a default con-
text) on a Graviton-enabled GPU. In this process, the
runtime authenticates the GPU and establishes a secure
session with the GPU’s command processor, with session
keys stored in CPU enclave memory.

The runtime also provides a custom implementation
of cudaMalloc, which invokes the device driver to allo-
cate GPU memory and additionally verifies that allocated
memory is not accessible from any other context or from
the host. The secure implementation of cudaMemcpy en-

int main() {

float* h_A = malloc(M*N*sizeof (float));
float* h_B = malloc (N*K*sizeof (float));
float* h_C = malloc(M*K*sizeof (float));
float* d_A, d_B, d_C;

cudaMalloc ((void**)&d_A, M*xNxsizeof (float)
);

populate_matrices(h_A, h_B);

cudaMemcpy (d_A, h_A, M*xN*sizeof (float),
cudaMemcpyHostToDevice) ;

cudaMemcpy (d_B, h_B, N*K*sizeof (float),
cudaMemcpyHostToDevice) ;

matrixMul <<<grid,threads>>>(d_C,d_A,d_B,M,
N,K);

cudaMemcpy (d_C, h_C, M*K#*sizeof (float),
cudaMemcpyDeviceToHost) ;
cudaFree (d_A);

Figure 5: Sample CUDA application.

sures that all transfers between host and the GPU, in-
cluding code and data, are encrypted and authenticated
using keys inaccessible to the attacker. The implementa-
tion of cudaLaunch sends encrypted launch commands
to the GPU’s command processor over a secure session.
Finally, the implementation of cudaFree authorizes the
GPU’s command processor to unmap previously allo-
cated pages from page tables, and scrubs their content,
enabling the driver to reuse the pages without leaking
sensitive data.

5 Graviton Architecture

In this section, we describe extensions to existing GPU
architectures for supporting secure contexts.

5.1 Remote Attestation

A Graviton-enabled GPU supports remote attestation for
establishing trust between a secure context and a remote
challenger. Hardware support for attestation is similar
to TPMs; we require (a) a secret, known as the root en-
dorsement key (EK), to be burned into the device’s e-
fuses during manufacturing and (b) a cryptographic en-
gine for asymmetric key generation and signing. The EK
is the root of trust for attestation and never leaves the
GPU package. During boot, the GPU generates a fresh
attestation key (AK) pair and stores the private key se-
curely within the command processor. The GPU also
signs the public part of the AK with the EK and makes
it available to the device driver, which in turn sends the



signed AK to a trusted CA. The CA validates the signa-
ture using a repository of public endorsement keys pro-
visioned by the manufacturer and generates a signed AK
certificate. The certificate is stored by the device driver
and used during secure context creation to prove to a
challenger that the GPU holds and protects the private
attestation key.

5.2 Secure Context Management

In Graviton, a secure context consists of one or more se-
cure channels. We extend the GPU’s command proces-
sor with new commands for creation, management, and
destruction of secure channels (Figure [6).

A secure channel is created using the command
CH_CREATE, which requires as parameters a channel
identifier and a public key UK ;. On receiving the re-
quest, the command processor generates a fresh channel
encryption key (CEK) for encrypting commands posted
to this channel. The public key UK,,;, CEK, and a
counter are stored in a region of device memory accessi-
ble only to the command processor. CH_.CREATE may be
used to create multiple channels associated with the same
secure context by passing the same UK ,,,;,, in which case
all such channels will use the same CEK.

After generating the CEK, the command processor es-
tablishes a session by securely transferring the CEK to
the trusted user-space runtime. The command proces-
sor encrypts the CEK with UK, and generates a guote
containing the encrypted CEK and a hash of UK ;5. The
quote contains the channel identifier and security criti-
cal platform-specific attributes, such as the firmware ver-
sion, and flags indicating whether preemption and debug-
ging are enabled. The quote is signed using AK. The
device driver passes this quote and the AK certificate
(obtained during initialization) to the user-space runtime.
The runtime authenticates the response by (a) verifying
the AK certificate, (b) verifying the quote using the pub-
lic AK embedded in the certificate, and (c) checking that
the public key in the quote matches UK j,,,,. The runtime
can then decrypt the CEK and use it for encrypting all
commands sent to the GPU.

Once a session has been established, the command
processor authenticates and decrypts all commands it re-
ceives over the channel using the CEK. This guarantees
that only the user in possession of the CEK can execute
tasks that access the context’s address space. We use au-
thenticated encryption (AES in GCM mode) and the per-
channel counter as IV to protect commands from drop-
ping, replay, and re-ordering attacks. This ensures that
all commands generated by the GPU runtime are deliv-
ered to the command processor without tampering.

5.3 Secure Context Isolation

In existing GPUs, the responsibility of managing re-
sources (e.g., device memory) lies with the device driver.
For example, when allocating memory for an applica-
tion object, the driver determines the virtual address at
which to allocate the object, then determines physical
pages to map to the virtual pages, and finally updates
virtual-physical mappings in the channel’s page tables
over MMIO. This mechanism creates a large attack vec-
tor. A compromised driver can easily violate channel-
level isolation—e.g., by mapping a victim’s page to the
address space of a malicious channel.

One way of preventing such attacks and achieving
isolation is to statically partition resources in hardware
between channels. However, this will lead to under-
utilization of resources. Moreover, it prohibits low-cost
sharing of resources between channels, which is required
to implement features, such as streams. Instead, Gravi-
ton guarantees isolation by imposing a strict ownership
discipline over resources in hardware, while allowing the
driver to dynamically partition resources.

More formally, consider a physical page P that is
mapped to a secure channel associated with a secure
context C and a channel encryption key CEK, and
contains sensitive data. We consider any object (code
and data) allocated by the application in a secure context
and all address space management structures (i.e.,
channel descriptor, page directory and page tables) of
all channels as sensitive. We propose hardware changes
to a GPU that enforce the following invariants, which
together imply isolation.

Invariant 5.1 P cannot be mapped to a channel associ-
ated with a context C' # C.

Invariant 5.2 P cannot be unmapped without authoriza-
tion from the user in possession of CEK.

Invariant 5.3 P is not accessible over MMIO to un-
trusted software on the host CPU.

Invariant 5.4 P is cleared before being mapped to an-
other channel associated with a context C' # C.

In the rest of this section, we describe hardware ex-
tensions for enforcing these invariants, and discuss their
implications on the driver-GPU interface.

Memory regions. Our first extension is to partition de-
vice memory into three regions: unprotected, protected
and hidden, each with different access permissions.

The unprotected region is a region in memory that is
both visible from and accessible by the host via PCI BAR



Description

Sets page directory address within channel descriptor
Returns quote for secure channels

Unsets channel descriptor and page directory
Expects a keyed MAC of command for secure channels

Sets page table address in a page directory entry

Sets VA-PA mapping in page table entry
Expects keyed MAC for user-authorized deallocation
Returns a summary along with a MAC for secure allocations

Command Attributes
Protected Memory
® CH_CREATE chid, pgd_address, public_key
- quote
GPU driver > I:i:lh Desc.
MMIO A
CH_DESTROY chid, MAC
PGD
CH_PDE chid, pgd_index, PDE
PeTs hid, pgd_ind ind i
chid, pgd_index, pgt_index, size,
5 CH_PTE PTE[], MAC — summary, MAC
Bootstrap channel Command CH_MEASURE chid, address, size —
command submission processor measurement, MAC

Returns a measurement of a range of virtual addresses
mapped in a secure channel along with a MAC

Figure 6: Commands for configuring a channel’s address space and measuring the address space. PDE and PTE refer
to page directory and page table entries respectively, and a MAC is a keyed message authentication code.

registers. The driver can use this region to allocate non-
sensitive memory objects (e.g., synchronization and in-
terrupt buffers) that are accessed over MMIO. This re-
gion can also be accessed from the GPU engines.

The protected region is visible to but not accessible
from the host. The driver can allocate objects within
the region (by creating page mappings), but cannot ac-
cess the region directly over MMIO. Thus, this region
can only be accessed from the GPU engines.

The hidden region is not visible or accessible to host
CPU or to the GPU engines. Memory in this region are
not accessible over PCI and are not mapped into any
channel’s virtual address space. This region is exclu-
sively reserved for use by the command processor for
maintaining metadata, such as ownership state of pro-
tected memory pages and per-channel encryption keys.

Regions can be implemented using simple range
checks on MMIO accesses in the PCI controller and on
commands that update address-space management struc-
tures in the command processor. The size of each region
can be configured during initialization by untrusted host
software. The size does not affect security; only avail-
ability as the system administrator could block creation
of secure contexts by allocating a small protected region.

Address-space management. The next set of exten-
sions are designed to enforce Invariant [5.1] and Invari-
ant[5.2] We achieve this by decoupling the task of al-
locating and deallocating virtual and physical memory
from the task of managing device-memory-resident ad-
dress translation data structures (i.e., page directories and
page tables) and delegating the latter to the GPU’s com-
mand processor. In particular, we allow the driver to de-
cide where in virtual and physical memory an object will
reside, but require that the driver route requests to update
page directories and page tables through the command
processor using the API described in Figure[6]

The implementation of the API in the command pro-
cessor enforces these invariants by tracking ownership of

physical pages in the protected region in a data structure
called the Protected Memory Metadata (PMM). We first
describe PMM and then the commands.

Tracking ownership. The PMM is a data structure lo-
cated in hidden memory, making it invisible to the host.
It is indexed using the physical address of a memory
page. Pages are tracked at the granularity of a small page
(i.e., 4 KB). The PMM maintains the following attributes
for each physical page.

o The attribute owner_id is the identifier of the chan-
nel that owns the page.

o The attribute state € {FREE,MAPPED} represents
whether the page is free or already mapped to some
channel. The initial value is FREE.

o The attribute refcnt tracks the number of channels
a physical page has been mapped to.

e The attribute lock € {UNLOCKED,LOCKED} repre-
sents whether the page requires explicit authoriza-
tion to be unmapped.

e The attribute pgd_index is an index into the page
directory that points to the page table containing
the mapping for the current page. Using this at-
tribute, the command processor can reconstruct the
virtual address of a physical page. In that sense, the
PMM acts as an inverted page table for the protected
region—i.e., stores PA — VA mappings.

e The attribute pgt_entrycnt is a 2-byte value that
tracks the number of pages table entries allocated
within a page table. Using this attribute, the com-
mand processor can know if a locked page table is
empty and hence may be unmapped.

Assuming each PMM entry requires 64-bits, the total
size of the PMM for a GPU with 6GB of physical mem-
ory is 12MB, which is ~ 0.2% of total memory.



Commands. The new commands for context and ad-
dress space management use the PMM to enforce Invari-
ant[3.1]and Invariant[5.2] as follows:

CH_CREATE. This command takes as a parameter the
address of the page directory (pgd-address) for the
newly created channel chid. It checks whether the chan-
nel descriptor and page directory are allocated on pages
in the protected region, and that the pages are FREE. The
former constraint ensures that after channel creation, the
driver does not bypass the API and access the channel
descriptor and page directory directly over MMIO.

If the checks succeed, the pages become MAPPED and
the owner_id attribute of the pages is updated to the iden-
tifier of the channel being created. If a secure channel
is being created (using a public key), the pages become
LOCKED. The command processor then updates the ad-
dress of the page directory in the channel descriptor, and
clears the contents of pages storing the page directory
to prevent an attacker from injecting stale translations.
CH_CREATE fails if any of the pages containing the chan-
nel descriptor or the page directory is already LOCKED or
MAPPED to an existing channel.

CH_PDE. This command unmaps an existing page ta-
ble if one exists and maps a new page table at the index
pgd_index in the page directory of the channel.

Before unmapping, the command checks if the phys-
ical pages of the page table are UNLOCKED or the
pgt _entrycnt attribute is zero. In either case, the com-
mand decrements refcnt. If refcnt reaches zero, the
pages become FREE. The command fails if the driver at-
tempts to unmap a LOCKED page table or a page table
with valid entries.

Before mapping a new page table, the command
checks whether the page table is allocated on FREE pages
in the protected region. If the checks succeed, the pages
become MAPPED. Additionally, if the channel is secure,
the pages become LOCKED. However, if these pages are
already MAPPED, the command checks if the channel that
owns the page (the current owner_id) and the channel
that the page table is being mapped to belong to the
same context by comparing the corresponding public key
hashes. If the hashes match, the page’s reference count is
incremented. This allows physical page tables and hence
physical pages to be shared between channels as long as
they share the same context; this is required for support-
ing features such as CUDA streams [31]. If either of the
checks succeed, the command creates a new entry in the
page directory and clears the contents of the pages stor-
ing the page table. The command fails if the page table is
mapped to a channel associated with a different context.

CH_PTE. This command removes existing mappings
and creates new mappings (specified by PTE) for a con-

tiguous range of virtual addresses of size size starting
at VA, where VA is the virtual address mapped at in-
dex pgt_index by the page table at index pgd_index in
the channel chid’s page directory. Before clearing exist-
ing page table entries, the command checks if the physi-
cal pages are LOCKED. To remove mappings for LOCKED
physical pages, the command requires explicit authoriza-
tion by the user runtime in the form of a MAC over the
tuple {chid,VA,size} using the CEK and a per-channel
counter as the initialization vector (IV). The unforgeabil-
ity of the MAC coupled with the use of a counter for IV
ensures that a malicious driver cannot forge a command
that unmaps physical pages allocated to secure channels,
and then remapping them to other channels. If the checks
and MAC verification succeed, the pages transition to
FREE, and the page table entries are cleared.

Similarly, before creating new mappings, the com-
mand checks if the pages are FREE. Additionally, if the
channel is secure, the command checks if the pages are
located in the protected region (for sensitive code and
data, discussed in Section @ If the checks succeed, the
page become MAPPED and if the page is being mapped
to a secure channel, the pages become LOCKEDE]If pages
are already MAPPED, the command checks if the chan-
nel that owns the page (the current owner_id) and the
channel that the page is being mapped to belong to the
same context by comparing the corresponding public
key hashes. On success, the command increments the
pgt_entrycnt of the page table, updates the page table,
and issues a TLB flush to remove any stale translations.
While conventionally the latter is the responsibility of the
device driver, in our design, the flush is implicit. The
command fails if any of the pages are mapped to a chan-
nel associated with a different context.

When the command succeeds, it generates a summary
structure, which encodes all VA — PA mappings created
during the invocation of CH_PTE. The summary is a tu-
ple {chid,VA,n,k, HASH(p_1, ..., p_n)}, where VA is the
starting virtual address of the memory being allocated, n
is the number of pages allocated in the protected region,
k is the number of total pages allocated, and p_1,...p_n
are addresses of protected physical pages. The command
processor also generates a keyed MAC over this sum-
mary using the CEK. As described later, this summary is
used by the runtime to verify that sensitive code and data
are allocated in protected region.

CH_DESTROY. This command frees memory allocated
to a channel by walking the page directory, finding phys-
ical pages owned by the channel, and resetting their en-

Note that CH_PTE also permits pages in the unprotected region
to be mapped to a secure channel; these pages can be accessed over
MMIO and are used to store objects, such as fence buffers required by
the driver for synchronization.



tries in the PMM. It then unmaps physical pages of the
channel descriptor and the page directory, decrements
refcnt for pages used for page tables, and pages be-
come FREE if their refcnt reduces to 0.

For secure channels, the command requires explicit
authorization in the form of a MAC over chid using
the CEK and a per-channel counter as IV. However, the
command processor also accepts unauthorized instances
of this command; this enables the device driver to re-
claim resources in scenarios where the user runtime is
no longer able to issue an authorized command—e.g.,
due to a process crash.

In such a scenario, the command processor walks
PMM to find physical pages mapped exclusively to the
channel’s address space, unmaps them, decrements their
refcnt and clears their contents if their refcnt reduces
to 0. The command processor also flushes all caches be-
cause memory accesses of the command processor do not
go through the memory hierarchy of compute engines.

A malicious driver may misuse this mechanism to re-
claim resources of a channel which is still in use, result-
ing in denial of service; there is not violation of confi-
dentiality or integrity as pages containing sensitive infor-
mation, including the channel descriptor, are scrubbed.

CH_MEASURE We extend the command processor with
a command CH_MEASURE for generating a verifiable ar-
tifact that summarizes the contents of a secure channel.
The artifact can be used to prove to a challenger (e.g., a
GPU runtime) that a channel exists in a certain state on
hardware that guarantees channel isolation. In our im-
plementation, CH_MEASURE takes as parameters a range
of virtual pages that should be included in the measure-
ment. It generates a measurement, which contains a
digest (HMAC) of the content of pages within the re-
quested range, and a keyed MAC of the measurement
using the CEK.

Bootstrapping. Introducing a command-based API for
address-space management raises the following issue:
How does the driver send commands for managing the
address space of secure channels without having access
to the channel-specific CEK? We overcome this by re-
quiring the driver to use separate channels, which we re-
fer to as bootstrap channels, for routing address-space
management commands for all other channels. We allow
the driver to create and configure one or more bootstrap
channels over MMIO and allocate their address-space
management structures in the unprotected region.

The command processor identifies a channel as a boot-
strap channel by intercepting MMIO writes to the chan-
nel descriptor attribute in the channel control area. If
the address being written to this attribute is in the unpro-
tected region, the corresponding channel is marked as a
bootstrap channel.

To ensure that the driver does not use a bootstrap
channel to violate isolation of secure channels, the com-
mand processor prohibits a bootstrap channel from issu-
ing commands to the copy and compute engines since
such commands can be used to access sensitive state.
The command processor also checks that all commands
executed from a bootstrap channel are used to configure
non-bootstrap channels. This prevents an adversary from
allocating protected memory pages of a secure context as
page directory and/or page tables for a bootstrap channel
and then leveraging the CH_.PDE and CH_.PTE commands
to tamper with the memory of the secure context.

Big page support. The virtual memory subsystem on
modern GPUs employ multiple page sizes. For example,
in NVIDIA GPUs, each page directory entry consists of
two entries, one pointing to a small page (4KB) table,
and another to a big page (128KB) table. Our design re-
quires minor extensions to support large pages. In the
PMM, we continue to track page metadata at the small
page granularity, but we add a bit to each entry to indi-
cate if the corresponding physical page was mapped to a
small or big virtual page. In addition, we require an addi-
tional parameter in the CH_PDE and CH_PTE commands to
specify whether the updates are to a small or big page ta-
ble. Finally, these commands check that the same virtual
page is not mapped to two different physical pages.

Error handling. When a command fails, the command
processor writes the error in an SRAM register that is ac-
cessible by the device driver over MMIO. This allows the
device driver to take necessary actions so as to guarantee
consistent view of a channel’s address space between the
command processor and the device driver.

6 Software Stack

We now describe new CUDA primitives supported by the
Graviton runtime that use secure contexts and enable de-
sign of applications with strong security properties.

Secure memory management. The Graviton run-
time supports two primitives cudaSecureMalloc and
cudaSecureFree for allocating and deallocating device
memory in the protected region.

cudaSecureMalloc guarantees that allocated GPU
memory is owned by the current context (Invari-
ant [5.1) and lies within the protected region (Invariant
[5.3). Much like the implementation of cudaMalloc,
cudaSecureMalloc relies on the device driver to iden-
tify unused virtual memory and physical pages in de-
vice memory, and update page directory and page tables
using the commands CH_PDE and CH_PTE. As described
above, these commands implement checks to enforce In-
variant[5.1] The runtime enforces Invariant[5.3|using the



Module Load Memory Copy
CPU L |
3 £ B S Y
[T —_ H o
=} (] H = =
Scl gl Ui g s g
L g&’ c £ T 8 S
2 So g! 1 = c
= 0 c ! ~ 3 Q T ] ©
5= L= o C 2 > 9 © < S
© o 55| 51 o3 S Qo [T i) oo ©
ze| 28| B S= S8 ®S| 8T Y s
55| 35| 3 ¥ S S3 g3 Z 3
O o =0l =2 o = 5 < B
: > 22 2> S >
H [o} = £ = O 1] o
o = S c < D
O I I3 o] o
GPUy _ w i N ) 2 vl vl v

Figure 7: Secure memory copy protocol. The kernel is
copied to the GPU during module creation.

summary structure generated by the CH_PTE command.
In particular, the runtime uses the CEK and channel-
specific counter to authenticate the summary structure(s)
returned by the driver. The driver may return multiple
summary structures in case the allocation spans multiple
page tables. After authentication, the runtime can ver-
ify that memory objects are allocated in protected region
using the attribute » in the summary.

cudaSecureFree first clears all allocated pages us-
ing a memset kernel. It then generates a MAC over the
starting virtual address and size of the object using the
CEK, and passes the MAC to the driver, which gener-
ates CH_PTE commands to remove entries from the page
table. The MAC serves as an authorization to remove
entries from the page table (Invariant [5.2). In the case
where an object spans multiple page tables, the runtime
generates one MAC per page table.

An implication of the redefined interface between the
driver and the hardware is the inability of the driver to
compact pages allocated to secure channels. Conven-
tionally, the driver is responsible for compacting live
objects and reducing fragmentation in the physical ad-
dress space. However, Graviton prohibits the driver from
accessing these objects. This can cause fragmentation
in the protected region. We leave hardware support for
compaction for future work.

Secure memory copy. The Graviton runtime supports
the primitive cudaSecureMemcpy for securely copying
code and data from the host TEE to device memory and
vice versa. The protocol (Figure[7) works as follows.

1. After a secure context is created, the runtime al-
locates device memory using cudaSecureMalloc
and copies a kernel that performs authenticated de-
cryption (in clear text) into allocated memory, re-
ferred to as AuthDec. To ensure that the kernel
was copied correctly without tampering, the run-
time measures the region in device memory that
contains the kernel (using CH_.MEASURE), and checks
the the returned digest matches the digest of the ker-
nel computed inside the host TEE.

10

. The implementation of cudaSecureMemcpy first
encrypts data to be copied using a fresh symmet-
ric key within the host TEE, and copies encrypted
data to untrusted memory.

3. The runtime initiates a DMA to transfer encrypted
data to target memory region. The command group
that initiates the DMA is encrypted and integrity
protected using the CEK.

. The runtime uses the AuthDec kernel to decrypt data
in device memory. It issues a command group to
launch the kernel, passing the data’s virtual address,
the data encryption key, and the expected authenti-
cation tag as the kernel’s parameters.

5. AuthDec authenticates encrypted data and generates
an authentication tag which is checked against the
expected authentication tag. If the check succeeds,
the kernel decrypts the data in device memory, over-
writing the encrypted data in the process.

A key attribute of secure memory copy is crypto-
agility. Since the primitive is implemented fully in soft-
ware, the runtime may support various encryption and
authentication schemes without hardware changes.

Secure kernel launch. cudaSecureKernellLaunch
uses secure memory copy to transfer the kernel’s code
and constant memory to the GPU, and then issues a com-
mand group to launch the kernel.

Recent GPUs have introduced preemption at in-
struction and/or thread-block boundaries. Extending
our design to support preemption at the boundary of
thread blocks is relatively straightforward because thread
blocks are independent units of computation [42] and all
ephemeral state, such as registers, application-managed
memory, caches and TLBs can be flushed on preemp-
tion. Instruction-level preemption can also be supported
by saving and restoring ephemeral state to and from a
part of hidden memory reserved for each channel.

Secure streams. CUDA streams is a primitive used
to overlap host and GPU computation, and I/O trans-
fers. Each stream is assigned a separate chan-
nel, with each channel sharing the same address
space, to enable concurrent and asynchronous submis-
sion of independent tasks. Our design supports se-
cure streams (cudaSecureStreamCreate) by allowing
channels within the same context to share page tables
and pages. In particular, the runtime can remap a mem-
ory object to the stream’s address space. Much like
allocation requests, the driver uses CH_.PTE command
to update page tables. The runtime verifies that the
HASH (p_1,...,p_n) generated by the CH_PTE command
matches with the hash of the requested memory object.



7 Evaluation

7.1 Implementation

We implemented Graviton using an open-source GPU
stack consisting of ocelot, an implementation of the
CUDA runtime API [14], gdev, which implements the
CUDA driver API [21]], and libdrm and nouveau, which
implement the user- and kernel-space GPU device driver
[29]. Due to gdev’s limitations (e.g., inability to use
textures), we could not use some operations in cuBLAS
(NVIDIA’s linear algebra library) such as matrix-matrix
(GEMM) and matrix-vector multiply (GEMV). Instead,
we used implementations from Magma, an open-source
implementation of cuBLAS with competitive perfor-
mance [43]. Our implementation does not yet use
SGX for hosting the user application and GPU run-
time—porting the stack to SGX can be achieved using
SGX-specific containers [} |39} 44, and is outside the
scope of this work.

Command-based API emulation. Since command
processors in modern GPUs are not programmable, we
emulate the proposed commands in software. Our em-
ulator consists of (a) a runtime component which trans-
lates each new command and its parameters into a se-
quence of existing commands that triggers interrupts dur-
ing execution, and (b) a kernel component, which han-
dles interrupts, reconstructs the original command in the
interrupt handler, and implements the command’s se-
mantics. The emulator uses the following commands:
REFCNT sets the value of a 32-bit register in the channel
control area which is readable from the host, SERIALIZE
waits until previous commands are executed, NOP and
NOTIFY triggers an interrupt when a subsequent NOP
command completes.

Figure[§]shows the pseudo-code of the emulator along
with an example for the CH_.CREATE command. When
a command is submitted, the runtime invokes the func-
tion cmd_emu, which translates each 32-bit value v in
the command’s original bit stream into the following se-
quence of commands: REFCNT with v as the parameter,
SERIALIZE, NOTIFY, and NOP. This sequence is pushed
into the ring buffer (using push_ring_emu), from where it
is read by the command processor. When the command
processor executes this sequence, it raises an interrupt,
and an interrupt handler (interrupt _handler) is called on
the host. The handler implements a state machine that
reads the register in the channel control area and recon-
structs the original command one value at a time. After
reconstructing the entire command, the emulator imple-
ments its semantics (in this case using chcreate_emu) us-
ing reads and writes to device memory over MMIO (not
shown in the figure).

We choose this emulation strategy because it allows us

11

u32* ring_buf;

void push_ring(val) {
*ring_buf=val;
ring_buf ++;

}

void push_ring_emu(u32 value) {
push_ring (REF_CNT) ;
push_ring(value);
push_ring (SERIALIZE);
push_ring(interrupt_buffer_addr >> 32);
push_ring(interrupt_buffer_addr);
push_ring (NOTIFY);
push_ring (NOP) ;

}

void cmd_emu (u32 cmd, u32 size)

{

u32 paraml[],

push_ring_emu(cmd);
for (int i=0; i<size; i++)
push_ring_emu(param[il);

}

u32 chcreate(ctx_t *ctx, void *chan_base,
void *pgd, u8 *pub_key) {

cmd_emu (CMD_CHCREATE, param, 6);
}
void interrupt_handler (device_t *dev) {

u32 val = mmio_rd32(dev);
|

if (val !'= 0 || dev->cmd != 0) {

if (dev->cmd == 0)

dev->cmd = val;
else {

dev->param[dev->size++] = val;

switch (dev->cmd) {

case CMD_CHCREATE: {
if (dev->size == 6) {

chcreate_emu(dev);
dev->size = 0;
dev->cmd = 0;
}
} break;

Figure 8: Pseudo code for command emulation.

to run the software stack as if we had hardware support.
Furthermore, it gives us a conservative approximation of
performance because every command processor access
to the PMM and memory mapping data structures in de-
vice memory translates into an access from the host to
device memory over PCle.

Command group authentication emulation. We also
emulate the command processor logic for authenticated
decryption of command groups. Our emulator intercepts
encrypted command groups before they are copied to de-



vice memory and decrypts them. As we show later, this
gives us a conservative approximation of performance
since we decrypt command groups in software (aided by
AES-NI) instead of a hardware encryption engine.

To estimate performance that can be achieved using
a hardware encryption engine, we added a mode in our
emulator which encrypts command groups on the host,
but sends command groups in cleartext to the device,
and adds a delay equal to the latency of decrypting the
command group using a hardware engine. We compute
the latency of decryption using the published latency of
decrypting a block in hardware [40] and the size of the
command group (in blocks).

Secure memory copy. Our implementation of secure
memory copy combines AES and SHA-3 for authen-
ticated encryption. We choose SHA-3 as its parallel
tree-based hashing scheme is a good fit for GPUs. It
also provides means for configuration (e.g., the num-
ber of rounds) allowing developers to explore different
performance-security trade-offs [6, [7].

7.2 Performance Overheads

Testbed setup. For our evaluation, we used an Intel
Xeon E5-1620-v3 server with 8 cores operating at 3.5
GHz, and two different NVIDIA GPUs: GTX 780 with
2304 CUDA cores operating at 863 MHz and GTX Ti-
tan Black with 2880 CUDA cores operating at 889 MHz.
The general performance trends were similar with both
GPUs. Therefore, we present results only for Titan
Black. The host CPU runs Linux kernel 4.11 and uses
CUDA toolkit v5.0 for GPU kernel compilation.

Command-based API. First, we quantify the over-
head of using the command-based API using a matrix-
matrix addition microbenchmark. Table[Tlshows a break-
down of latency of command execution into five com-
ponents: Base, which is the cumulative latency of all
MMIO operations performed during command execu-
tion without any security extensions; Inv. which is the
additional latency of invariant checks including PMM
maintenance; Init which is the latency for initialization
of page directory and page tables; Crypto which in-
cludes all required cryptographic operations; and inter-
rupt handling, labeled as Intr. Note that the measured la-
tency is obtained based on emulation, and therefore over-
estimates the latency that can be achieved with dedicated
hardware support.

We find that the latency of CH_.CREATE is dominated
by the cost of initializing the page directory, and that
of CH_.DESTROY is dominated by the cost of walking the
page directory to remove pages of locked page tables
from PMM. For CH_PDE, we measure the latency for al-
locating a page directory entry for a small and big page
tables. Allocating an entry for a small page table incurs

12

Table 1: Command execution latency (is)

Command Base Inv. Init Crypto Intr
CH_CREATE 2 13 2246 11 58
CH_DESTROY 1 10592 N/A 23 68
CH_PDE (S) 1 104 3783 N/A 62
CH_PDE (B) 1 62 57 N/A 63
CH_PTE (S-8) 8 14 N/A 21 82
CH_PTE (B-8) 8 297 N/A 21 78
256 P’
A AES256/ParallelHash256 *
o 64 ® AES256/Marsupilami14 Py
$ & AES128/Kangaroo12 *
£ 16
~ $
c 4 $
2
3 1 $
é ¢ ¢
0.25
A A6 oA 250 \QzA AQQG «633A 65536

Transfer size (KB)

Figure 9: Secure memory copy performance for various
sizes and configurations.

a higher latency because the command needs to reset a
larger number of entries. Finally, we measure the la-
tency of CH_PTE for allocating an object spanning eight
entries of a small page table or a big page table. Here,
the latency is higher for big page tables because a larger
number of invariant checks using the PMM, which tracks
ownership at small page granularity.

Secure memory copy. Figure[9|plots the latency of se-
cure copy for three AES/SHA3 variants and transfer sizes.
The variants ParallelHash256 and Marsupilamil4
provide 256-bit hashing strength while Kangaroo12 pro-
vides 128-bit hashing strength. We find that latency re-
mains flat for small transfer sizes and scales almost lin-
early for larger transfer sizes. Unless stated otherwise,
we utilize the AES256/Marsupilamil4 configuration
for the rest of the evaluation.

Table shows a breakdown of the latency for
AES256/Marsupilamil4 configuration. Base refers to
the latency of normal (insecure) copy, and the other four
components refer to the latency of executing AES and
SHA-3 on the CPU and GPU. We find that as the trans-
fer size increases, SHA3-CPU and AES-GPU account for
a majority of the overheads (over 75% of the latency
for 64MB transfers). For small data sizes, the AES-GPU
phase, which is compute bound, under-utilizes the GPU
cores and hence the execution time remains flat. In con-
trast, the SHA3-GPU kernel scales better due to lower al-
gorithmic complexity. More generally, we attribute both



Table 2: Secure memory copy breakdown for
AES256/Marsupilamil4. Latency is reported in ms.

Size 4KB 64KB 256KB 4MB 64MB
Base 0.02 0.03 0.08 1.07 11.056
AES-CPU 0.01 0.05 0.10 1.46 25.45
SHA3-CPU 0.02 0.11 0.34 3.19 51.79
SHA3-GPU 0.12 0.13 0.12 0.31 0.58
AES-GPU 0.31 0.38 0.79 6.54 87.98
Total 0.46 0.70 1.43 12.57 176.87
Table 3: CUDA driver API latency (ms)
API Normal Secure
cuCtxCreate 77.65 252.63
cuCtxDestroy 17.00 29.43
cuModuleLoad 1.72 85.27
cuMemAlloc (S|B) 0.02]/0.03 0.19]/0.43
cuMemFree (S|B) 0.03/0.05 0.28]0.66

these costs to the lack of ISA support for SHA-3 on the
CPU and for AES on the GPU.

CUDA driver API. Our implementation of secure ex-
tensions to the CUDA runtime API are based on exten-
sions to the CUDA driver API. Table [ shows the im-
pact of adding security on latency of these APIs. As ex-
pected, all driver APIs incur higher latencies. The rela-
tively high latency of secure version of context creation
cuCtxCreate is dominated by the latency of creating
an RSA key (75% of latency). The secure version of
module load cuModuleLoad is more expensive because
it (a) bootstraps secure copy, which measures the au-
thenticated encryption kernels and (b) uses secure copy
to transfer the application kernels to device memory.
These APIs are typically used infrequently, and there-
fore these latencies do not have a large impact on overall
execution time in most applications. On the other hand,
cuMemAlloc and cuMemFree can be on the critical path
for applications that use a large number of short-lived
objects. The increased latency of these operations is pre-
dominantly due to emulation (interrupts and MMIO ac-
cesses). We expect an actual implementation of these op-
erations on real Graviton hardware to incur much lower
overheads with no involved interrupts and reduced mem-
ory access latency.

7.3 Applications

Finally, we quantify the impact of using secure CUDA
APIs on end-to-end application performance using a set
of GPU benchmarks. We use two benchmarks with dif-
ferent characteristics, namely Caffe, a framework for

13

@Baseline @lsolation DOSecure Copy

T

w/o HW w/ HW w/o HW w/ HW w/o HW w/ HW

Time (sec)
'S

N

Init Testing Training

Figure 10: Cifar-10 performance. For training, time is
reported for 25 batches averaged across all epochs. HW
refers to a hypothetical hardware encryption engine used
for command group authenticated decryption.

training and inference of artificial neural networks [18]],
and BlackScholes, an option pricing application [8].

Cifar-10. We use Caffe to train a convolutional neural
network on the Cifar-10 dataset, which consists of 60000
32x32 images spanning 10 classes. The network con-
sists of 11 layers: 3 layers of convolution, pooling, recti-
fied linear unit non-linearities (RELU) followed by local
contrast normalization and a linear classifier. We run 40
epochs (each epoch is a sweep over 50000 images) with
a batch size of 200 and test the model at the end of ev-
ery epoch using 10000 images with a batch size of 400.
Both the baseline system and Graviton achieve the same
training accuracy.

Figure [T0] shows Graviton’s impact on execution time
for three phases of execution—i.e. initialization, test-
ing (which is similar to inference), and training. For
training, execution time is reported for 25 batches aver-
aged across all epochs. We also breakdown the overhead
into two buckets, isolation (i.e., using the secure CUDA
driver API and command group authentication) and se-
cure memory copy. In the emulated environment, our
security extensions cause a slowdown of 73%, 57% and
53% respectively in each of these phases.

The overheads during initialization are due to secure
context and module creation (22% of the overhead), se-
cure copy of the model and data used for the initial
test (31%), and command authentication during an ini-
tial testing phase (47%).

A breakdown of testing and training overheads shows
that that command group authentication accounts for
66% and 77% of the overhead, respectively. This is be-
cause this workload executes a large number of relatively
short kernels (one for each batch and layer). We pro-
filed the time spent on kernel launches, and find that a
large fraction of the overhead is due to the cost of em-
ulating authenticated decryption of commands. In par-



BBaseline @lsolation OSecure Copy
150%

125%

100%

75%

50%

25%

System performance

0%

Cifar10

MNIST BlackScholes

Figure 11: System performance for various benchmarks.

ticular, each secure kernel launch incurs a 9.2us latency,
with 0.8us on encryption in the runtime, and 3.0us on
decryption in the emulator.

The figure also shows the estimated overhead assum-
ing we extend the command processor with a hardware
encryption engine. The overhead reduces from 35-41%
to 5-7% for testing and training phases due to a reduc-
tion in time spent on authenticated decryption from 3us
to around 30ns. Adding a hardware encryption engine
reduces the overall overhead to 17% (Figure[TT).

MNIST. We use Caffe to train an autoencoder on the
MNIST dataset, which consists of 60000 28x28 hand-
written digits. The network consists of six encoding lay-
ers and six decoding layers. We run 10000 batches (with
a batch size of 128) and test the model every 500 batches
using 8192 images with a batch size of 256. Both base-
line and Graviton achieve same accuracy.

As shown in Figure [TT} Graviton introduces 33% per-
formance overhead. The overhead is higher than in Cifar-
10 as the complexity of encoding and decoding layers is
lower than convolutional layers, and hence each iteration
spends higher fraction time on secure memory copy.

BlackScholes. We run BlackScholes with 10 batches
of four million options and 2500 iterations each. As
shown in Figure [T1] the overall overhead is 26%. Un-
like Cifar-10, command authentication is not a factor in
BlackScholes as it executes one long-running kernel per
batch; thus, the overhead for enforcing isolation is at-
tributed mainly to secure context and module creation.

8 Related Work

Trusted hardware. There is a history of work [9} |13}
15,117, 241, 127, 132}, 41, 48] on trusted hardware that iso-
lates code and data from the rest of the system. Intel
SGX [28] is the latest in this line of work, but stands
out because it provides comprehensive protection and is
already available in client CPUs and public cloud plat-
forms. Graviton effectively extends the trust boundary
of TEEs on the CPU to rich devices, such as GPUs.

14

Trusted execution on GPUs. A number of researchers
have identified the need for mechanisms that allow an ap-
plication hosted in a TEE to securely communicate with
I/O devices over a trusted path. Yu et al. [S1] propose an
approach for using the trusted path approach for GPUs.
Their approach relies on a privileged host component to
enforce isolation between virtual machines and display,
whereas our attacker model precludes trust in any host
component.

PixelVault proposed an architecture for securely of-
floading cryptographic operations to a GPU [46]. Sub-
sequent work has demonstrated that such design suffers
from security vulnerabilities due to lack of page initial-
ization upon allocations and module creation, lack of
kernel-level isolation, and information leakage of reg-
isters by either attaching a debugger to a running ker-
nel (and the GPU runtime) or invoking a kernel on
the same channel [23||52]]. In contrast, Graviton en-
ables a general-purpose trusted execution environment
on GPUs. Information leakage via kernel debugging is
prevented as the user hosts its GPU runtime inside a
CPU TEE, guaranteeing that debugging cannot be en-
abled during execution.

9 Conclusion

Unlike recent CPUs, GPUs provide no support for
trusted execution environments (TEE), creating a trade-
off between security and performance. In this paper,
we introduce Graviton, an architecture for supporting
TEEs on GPUs. Our proof-of-concept on NVIDIA GPUs
shows that hardware complexity and performance over-
heads of the proposed architecture are low.

An interesting avenue for future work is to extend
Graviton to secure kernel execution and communication
across multiple GPUs and to investigate support for ad-
vanced features, such as on-demand paging and dynamic
thread creation. In addition, we would like to investigate
whether it is possible to remove the dependency on CPU
TEE:s, such as Intel SGX, and if so to quantify the impli-
cations on system performance. Finally, we would like
to validate whether the proposed architecture extends to
other accelerators, such as FPGAs.

Acknowledgements

We would like to thank our shepherd, Andrew Warfield,
and the anonymous reviewers for their insightful com-
ments and feedback on our work. Istvan Haller provided
input during the early stages of this work. We thank
Dushyanth Narayanan and Jay Lorch for comments on
earlier drafts of the work.



References

(1]

(2]

3

—

(4]

(5

—

(6]

(7]

[8

—_—

[9

—

(10]

(11]

(12]

(13]

(14]

(15]

Security on ARM Trustzone. https://www.arm.com/
products/security-on-arm/trustzone,

J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte.
The case for GPGPU spatial multitasking.
tional Symposium on High Performance Computer Archi-
tecture, 2012.

S. Alhelaly, J. Dworak, T. Manikas, P. Gui, K. Nepal, and
A. L. Crouch. Detecting a trojan die in 3D stacked inte-
grated circuits. In 2017 IEEE North Atlantic Test Work-
shop, 2017.

AMD. AMD Radeon RX 300 series. https://en.
wikipedia.org/wiki/AMD_Radeon_Rx_300_series|

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Mar-
tin, C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe,
M. Stillwell, D. Goltzsche, D. M. Eyer, R. Kapitza, P. R.
Pietzuch, and C. Fetzer. SCONE: Secure Linux contain-
ers with Intel SGX. In USENIX Symposium on Operating
Systems Design and Implementation, 2016.

G. Bertoni, J. Daemenl, M. Peeters, G. V. Asschel, and
R. V. Keer. Keccak and the SHA-3 standardization.
https://keccak.team/index.html.

G. Bertoni, J. Daemenl, M. Peeters, G. V. Asschel, R. V.
Keer, and B. Viguier. KangarooTwelve: Fast hashing
based on Keccak-p . In Cryptology ePrint Archive: Re-
port 2016/770.

F. Black and M. Scholes. The pricing of options and cor-
porate liabilities. Journal of Political Economy, 81:637—
654, 1973.

R. Boivie. SecureBlue++: CPU support for secure execu-
tion. In IBM Research Report RC25287, 2012.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi. Software Grand Exposure:
SGX cache attacks are practical. CoRR, abs/1702.07521,
2017.

I. Buck. NVIDIAs next-gen Pascal GPU architecture to
provide 10X speedup for deep learning apps. https://
blogs.nvidia.com/blog/20156/03/17/pascal.

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detect-
ing privileged side-channel attacks in shielded execution
with DéJa Vu. In ACM Asia Conference on Computer and
Communications Security, 2017.

V. Costan, I. A. Lebedeyv, and S. Devadas. Sanctum: Min-
imal hardware extensions for strong software isolation. In
USENIX Security Symposium, 2016.

G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark.
Ocelot: A dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In
International Conference on Parallel Architectures and
Compilation Techniques, 2010.

D. Evtyushkin, J. Elwell, M. Ozsoy, D. V. Ponomareyv,
N. B. Abu-Ghazaleh, and R. Riley. Iso-X: A flexible ar-
chitecture for hardware-managed isolated execution. In
International Symposium on Microarchitecture, 2014.

In Interan-

15

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31:6-15,
2011.

O. S. Hofmann, S. M. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: Secure applications on an untrusted
operating system. In International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, 2013.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-
volutional architecture for fast feature embedding. In In-
ternational Conference on Multimedia, 2014.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza.
Dissecting the NVIDIA Volta GPU architecture via mi-
crobenchmarking. CoRR, abs/1804.06826, 2018.

N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-1. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snel-
ham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thor-
son, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter
performance analysis of a tensor processing unit. In /n-
ternational Symposium on Computer Architecture, 2017.

S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev:
First-class GPU resource management in the operating
system. In USENIX Conference on Annual Technical
Conference, 2012.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom. Spectre attacks: Exploiting speculative execu-
tion. arXiv preprint arXiv:1801.01203, 2018.

S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing webpages
rendered on your browser by exploiting GPU vulnerabil-
ities. In IEEE Symposium on Security and Privacy, 2014.

D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. C. Mitchell, and M. Horowitz. Architectural
support for copy and tamper resistant software. In In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2000.

B. Madden. NVIDIA, AMD, and In-
tel: How they do their GPU virtualization.
http://www.brianmadden.com/opinion/
NVIDIA-AMD-and-Intel-How-they-do-their-GPU-
virtualization.

C. Maurice, C. Neumann, and A. Heen, Olivier andFran-
cillon. Confidentiality issues on a GPU in a virtualized
environment. In Financial Cryptography, 2014.


https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://en.wikipedia.org/wiki/AMD_Radeon_Rx_300_series
https://en.wikipedia.org/wiki/AMD_Radeon_Rx_300_series
https://keccak.team/index.html
https://blogs.nvidia.com/blog/2015/03/17/pascal
https://blogs.nvidia.com/blog/2015/03/17/pascal
http://www.brianmadden.com/opinion/NVIDIA
http://www.brianmadden.com/opinion/NVIDIA
-AMD-and-Intel-How-they-do-their-GPU
virtualization

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

J. M. McCune, N. Qu, Y. Li, A. Datta, V. D. Gligor, and
A. Perrig. Efficient TCB reduction and attestation. In
IEEE Symposium on Security and Privacy, 2009.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Inno-
vative instructions and software model for isolated execu-
tion. In International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, 2013.

Nouveau. Accelerated open source driver for NVIDIA
cards. https://nouveau.freedesktop.org/wiki.

NVIDIA. CUDA multi process service overview.
https://docs.nvidia.com/deploy/pdf/CUDA_
Multi_Process_Service_QOverview.pdf.

NVIDIA. Cuda streams. http://on-demand.
gputechconf . com/gtc/2014/presentations/
S4158-cuda-streams-best-practices-common-
pitfalls.pdf.

E. Owusu, J. Guajardo, J. M. McCune, J. Newsome,
A. Perrig, and A. Vasudevan. OASIS: On achieving
a sanctuary for integrity and secrecy on untrusted plat-
forms. In ACM Conference on Computer and Communi-
cations Security, 2013.

J. J. K. Park, Y. Park, and S. Mahkle. Chimera: Col-
laborative preemption for multitasking on a shared GPU.
In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2015.

J. J. K. Park, Y. Park, and S. Mahkle. Dynamic resource
management for efcient utilization of multitasking GPUs.
In International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017.

B. Pichai, L. Hsu, and A. Bhattacharjee. Architec-
tural support for address translation on GPUs: Designing
memory management units for CPU/GPUs with unified
address spaces. In International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, 2014.

R. D. Pietro, F. Lombardi, and A. Villani. CUDA Leaks:
A detailed hack for CUDA and a (partial) fix. ACM Trans-
actions on Embedded Computing Systems, 15(1), 2016.

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-
ers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger.
A reconfigurable fabric for accelerating large-scale data-
center services. In International Symposium on Computer
Architecuture, 2014.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Pre-
venting page faults from telling your secrets. In ACM Asia
Conference on Computer and Communications Security,
2016.

S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply:
Low-TCB Linux applications with SGX enclaves. In Net-
work and Distributed System Security Symposium, 2017.

16

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Synopsys. DesignWare pipelined AES-GCM/CTR
core. https://www.synopsys.com/dw/ipdir.php?
ds=security-aes-gcm-ctr.

R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: Mak-
ing trust between applications and operating systems con-
figurable. In USENIX Symposium on Operating Systems
Design and Implementation, 2006.

1. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro,
and M. Valero. Enabling preemptive multiprogramming
on GPUs. In International Symposium on Computer Ar-
chitecture, 2014.

S. Tomov, J. Dongarra, I. Yamazaki, A. Haidar, M. Gates,
S. Donfack, P. Luszczek, A. Yarkhan, J. Kurzak,
H. Anzt, and T. Dong. MAGMA: Development of high-
performance linear algebra for GPUs. In GPU Technol-
ogy Conference, 2014.

C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A
practical library os for unmodified applications on SGX.
In USENIX Annual Technical Conference, 2017.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-order
execution. In USENIX Security Symposium, 2018.

G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis. PixelVault: Using GPUs for securing cryp-
tographic operations. In ACM Conference on Computer
and Communications Security, 2014.

Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and
M. Guo. Simultaneous multikernel GPU: Multi-tasking
throughput processors via fine-grained sharing. In Inter-
national Conference on High-Performance Computer Ar-
chitecture, 2016.

S. Weiser and M. Werner. SGXIO: Generic trusted I/O
path for Intel SGX. In ACM Conference on Data and
Application Security and Privacy, 2017.

E.  Worthman. Designing  for
https://www.semiengineering.com/

designing-for-security-2.

security.

Y. Xu, W. Cui, and M. Peinado. Controlled-Channel At-
tacks: Deterministic side channels for untrusted operating
systems. In IEEE Symposium on Security and Privacy,
2015.

M. Yu, V. D. Gligor, and Z. Zhou. Trusted display on
untrusted commodity platforms. In ACM Conference on
Computer and Communications Security, 2015.

Z. Zhu, S. Kim, Y. Rozhanski, Y. Hu, E. Witchel, and
M. Silberstein. Understanding the security of discrete
GPUs. In Workshop on General Purpose GPUs, 2017.


https://nouveau.freedesktop.org/wiki
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/
http://on-demand.gputechconf.com/gtc/2014/presentations/
S4158-cuda-streams-best-practices-common
pitfalls.pdf
https://www.synopsys.com/dw/ipdir.php?ds=security-aes-gcm-ctr
https://www.synopsys.com/dw/ipdir.php?ds=security-aes-gcm-ctr
https://www.semiengineering.com/designing-for-security-2
https://www.semiengineering.com/designing-for-security-2

