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Abstract—The majority of influence maximization (IM) stud-
ies focus on targeting influential seeders to trigger substantial
information spread in social networks. In this paper, we consider
a new and complementary problem of how to further increase
the influence spread of given seeders. Our study is motivated
by the observation that direct incentives could ‘“boost” users
so that they are more likely to be influenced by friends. We
study the k-boosting problem which aims to find £ users to boost
so that the final “boosted” influence spread is maximized. The
k-boosting problem is different from the IM problem because
boosted users behave differently from seeders: boosted users are
initially uninfluenced and we only increase their probability to be
influenced. Our work also complements the IM studies because
we focus on triggering larger influence spread on the basis of
given seeders. Both the NP-hardness of the problem and the
non-submodularity of the objective function pose challenges to
the k-boosting problem. To tackle the problem, we devise two
efficient algorithms with the data-dependent approximation ratio.
We conduct extensive experiments using real social networks
demonstrating the efficiency and effectiveness of our proposed
algorithms. We show that boosting solutions returned by our
algorithms achieves boosts of influence that are up to several
times higher than those achieved by boosting solutions returned
by intuitive baselines, which have no guarantee of solution
quality. We also explore the “budget allocation” problem in our
experiments. Compared with targeting seeders with all budget,
larger influence spread is achieved when we allocation the budget
to both seeders and boosted users. This also shows that our study
complements the IM studies.

I. INTRODUCTION

With the popularity of online social networks, viral mar-
keting, which is a marketing strategy to exploit online word-
of-mouth effects, has become a powerful tool for companies to
promote sales. In viral marketing campaigns, companies target
influential users by offering free products or services with
the hope of triggering a chain reaction of product adoption.
Initial adopters or seeds are often used interchangeably to refer
to these targeted users. Motivated by the need for effective
viral marketing strategies, influence maximization has become
a fundamental research problem in the past decade. Most
existing work on the influence maximization problems focused
on the selection of initial adopters. In these studies, the goal is
usually to maximize one’s influence spread [1-8], or to block
the influence spread of one’s competitors [9, 10].

In practical marketing campaigns, companies often need to
consider a mixture of multiple promotion strategies to make the
best use of the marketing budget. Targeting influential users as
initial adopters is one tactic, and we list some others as follows.
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o Customer incentive programs: Companies offer incentives
such as coupons, premiums, or product trials to attract
potential customers. Targeted customers are in general more
likely to be influenced or convinced by their friends.

e Social media advertising: Companies could reach intended
audiences via digital advertising. According to the Nielsen
Global Trust in advertising survey [11], owned online chan-
nels such as brand-managed sites are the second most trusted
advertising formats (completely or somewhat trusted by 70%
of global respondents), second only to recommendations
from friends and family. We believe that customers who
have been targeted by these advertisements are more likely
to follow their friends’ purchases.

® Referral marketing: Companies encourage customers to re-
fer others to use the product by offering rewards such as
cash back, special discounts, or gifts. In this case, targeted
customers are more likely to influence their friends.

As one can see, these marketing strategies are able to “boost”
the influence transferring through customers. Furthermore, for
companies, the cost of “boosting” a customer (e.g., the average
redemption and distribution cost per coupon, or the advertising
cost per customer) is much lower than the cost of nurturing an
influential user as an initial adopter and a product evangelist.
Although identifying influential initial adopters have been
actively studied, very little attention has been devoted to
studying how to utilize incentive programs or other strategies
to further increase the influence spread of initial adopters to a
new level.

In this paper, we study the algorithmic problem of finding
k boosted users so that when their friends adopt a product, they
are more likely to make the purchase and continue to influence
others. Motivated by the need for modeling boosted customers,
we propose a novel influence boosting model, extending the
Independent Cascade (IC) model. In the influence boosting
model, seed users generate influence same as in the IC model.
In addition, we introduce the boosted user as a new type of
special users. Boosted users represent customers with incen-
tives such as coupons. They are uninfluenced at the beginning
of the influence propagation process. However, they are more
likely to be influenced by their friends and further spread the
influence to others. In other words, they are able to “boost”
the influence transferring through them. Under the influence
boosting model, we study how to boost the influence spread
with initial adopters given. More precisely, given a set of initial
adopters, we are interested in identifying k users among other
users, so that the expected influence spread upon “boosting”



the identified users is maximized. Because of the essential
differences in behaviors between seed users and boosted users,
our work is very different from the influence maximization
studies focusing on selecting seeds.

Our work also complements the studies of influence max-
imization problems. First, compared with nurturing an ini-
tial adopter, boosting a potential customer usually incurs a
lower cost. For example, companies may need to offer free
products to initial adopters, but only need to offer incentives
such as discount coupons to boost potential customers. With
both our methods that identify users to boost and influence
maximization algorithms that select initial adopters, companies
have more flexibility in determining where to allocate their
marketing budgets. Second, initial adopters are sometimes
predetermined. For example, the initial adopters and evangelist
of a product may be advocates of a particular brand or
prominent bloggers in the area, In this case, our “boosting”
methodology suggests how to effectively utilize incentive
programs or similar marketing strategies to take the influence
spread to the next level.

Contributions. We study a novel problem of how to boost
the influence spread when the initial adopters are given. We
summarize our contributions as follows.

o We present the influence boosting model, which integrates
the idea of boosting into the Independent Cascade model.

e We formulate a k-boosting problem that asks how to max-
imize the boost of influence spread under the influence
boosting model. The k-boosting problem is NP-hard. Com-
puting the expected boost of influence spread is #P-hard.
Moreover, the boost of influence spread does not possess
the submodularity, meaning that the greedy algorithm may
not have any performance guarantee.

e We present efficient approximation algorithms PRR-Boost
and PRR-Boost-LB for the k-boosting problem.

e We conduct extensive experiments using real networks with
learned influence probabilities among users. Experimental
results show the efficiency and effectiveness of our pro-
posed algorithms, and demonstrate the superiority of our
algorithms over intuitive baselines.

Paper organization. Section II provides background and
related works. We describe the influence boosting model and
the k-boosting problem in Section III. We present building
blocks of PRR-Boost and PRR-Boost-LB for the k-boosting
problem in Section IV, and the detailed algorithm design
in Section V. We show experimental results in Section VI.
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide background information about
influence maximization problems and review related works.

Classical influence maximization problems. Kempe et al. [1]
first formulated the influence maximization problem. They
proposed the Independent Cascade (IC) model to describe the
influence diffusion process. Under the IC model, given a graph
G = (V, E), influence probabilities on edges and a set S C V'
of seeds, the influence propagates as follows. Initially, nodes
in S are activated. Each newly activated node wu influences
its neighbor v with probability p,,. The expected influence

spread of S is the expected number of nodes activated at
the end of the influence diffusion process. The influence
maximization problem is to select a set .S of k nodes so
that the expected influence spread is maximized. Under the IC
model, the influence maximization problem is NP-hard [1] and
computing the expected influence spread for a given S is #P-
hard [4]. A series of studies have been done to approximate the
influence maximization problem under the IC model or other
diffusion models [3, 4, 6-8, 12-15].

Boost the influence spread. To boost the influence spread,
several works studied how to recommend friends or inject links
into social networks [16-21]. Lu et al. [22] studied how to
maximize the expected number of adoptions by targeting initial
adopters of a complementing product. Chen et al. [23] consid-
ered the amphibious influence maximization. They studied how
to select a subset of seed content providers and a subset of seed
customers so that the expected number of influenced customers
is maximized. Their model differs from ours in that they only
consider influence originators selected from content providers,
which are separated from the social network, and influence
boost is only from content providers to consumers in the social
network. Yang et al. [21] studied how to offer discounts under
an assumption different from ours. They assumed that the
probability of a customer being an initial adopter is a known
function of the discounts offered to him. They studied how to
offer discounts to customers with a limited budget so that the
influence cascades triggered is maximized. Different from the
above studies, we study how to boost the spread of influence
when seeds are given. We assume that we can give incentives
to some users (i.e., “boost” some users) so that they are more
likely to be influenced by their friends, but they themselves
would not become adopters without friend influence.

III. MODEL AND PROBLEM DEFINITION

In this section, we first present the influence boosting model
and define the k-boosting problem. Then, we highlight the
challenges associated with solving the proposed problem.

A. Model and Problem Definition

Traditional studies of the influence maximization problem
focus on how to identify a set of k influential users (or seeds)
who can trigger the largest influence diffusion. In this paper,
we aim to boost the influence propagation assuming that seeds
are given. We first define the influence boosting model.

Definition 1 (Influence Boosting Model). Suppose we are
given a directed graph G =(V, E) with n nodes and m edges,
two influence probabilities p,, and p.,, (with pl, > puy) on
each edge ey, a set S C V of seeds, and a set B C V of
boosted nodes. The influence propagates in discrete time steps
as follows. If v is not boosted, each of its newly-activated in-
neighbor u influences v with probability p..,. If v is a boosted
node, each of its newly-activated in-neighbor u influences v
with probability p),,,.

In Definition 1, we assume that “boosted” users are more
likely to be influenced. It is important to note that our
study can be easily adapt to the case where boosted users
are more influential: if a newly-activated user u is boosted,
she influences her neighbors with probability p/,, instead of



Duv- To simplify the presentation, we focus on the influence
boosting model in Definition 1.
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Fig. 1: Example of the influence boosting model (S ={s}).

Let 05(B) be the expected influence spread of seeds in S
upon boosting nodes in B. We refer to og(B) as the boosted
influence spread. Let Ag(B) = og(B) — og5(()). We refer to
Ag(B) as the boost of influence spread of B, or simply the
boost of B. To illustrate, consider the example in Figure 1. We
have og() = 1.22, which is essentially the influence spread
of S = {s} in the IC model. When we boost node vy, we
have og({vo}) = 1+ 0.4+ 0.04 = 1.44, and As({vo}) =
1.44—1.22 = 0.22. We now formulate the k-boosting problem.

Definition 2 (k-Boosting Problem). Given a directed graph
G = (V, E), influence probabilities p,, and p.,,’s on ever
edges ey, and a set S C V of seed nodes, find a boost set
B C V with k nodes, such that the boost of influence spread
of B is maximized. That is, determine B* C V such that

B* :argmaXBgv"BISk AS(B). (1)

Remarks. By definition, one can see that the k-boosting
problem is very different from the classical influence maxi-
mization problem. In addition, we observe that boosting nodes
that significantly increase the influence spread when used as
additional seeds could be extremely inefficient. For example,
consider the example in Figure 1. If we are allowed to select
one more seed, node vy is the optimal choice. However, if we
can boost a node, boosting v is much better than boosting v .
Section VI provides more experimental results.

B. Challenges of the Boosting Problem

In this part, we analyze several key properties of the k-
boosting problem and show the challenges we face. Theorem 1
indicates the hardness of the k-boosting problem.

Theorem 1 (Hardness). The k-boosting problem is NP-hard.
The computation of Ag(B) given S and B is #P-hard.

Proof outline: The NP-hardness is proved by a reduction from
the NP-complete Set Cover problem [24]. The #P-hardness of
the computation is proved by a reduction from the #P-complete
counting problem of s-t connectedness in directed graphs [25].
The full analysis can be found in our technical report [26]. W

Non-submodularity of the boosted influence. Because of the
above hardness results, we explore approximation algorithms
to tackle the k-boosting problem. In most influence maximiza-
tion problems, the expected influence of the seed set S (i.e.,
the objective function) is a monotone and submodular function
of S.! Thus, a natural greedy algorithm returns a solution with

I A set function f is monotone if f(S) < f(T) for all S C T it is
submodular if f(SU{v}) — f(S) > f(TU{v})— f(T) for all S C T and
v ¢ T, and it is supermodular if — f is submodular.

an approximation guarantee [1, 6-8, 15, 27]. However, the ob-
jective function Ag(B) in our problem is neither submodular
nor supermodular on the set B of boosted nodes. On one hand,
when we boost several nodes on different parallel paths from
seed nodes, their overall boosting effect exhibits a submodular
behavior. On the other hand, when we boost several nodes on
a path starting from a seed node, their boosting effects can
be cumulated along the path, generating a larger overall effect
than the sum of their individual boosting effect. This is in fact
a supermodular behavior. To illustrate, consider the graph in
Figure 1, we have Ag({vo,v1}) —Ag({vo}) = 0.04, which is
larger than Ag({v1})—Ag(d) = 0.02. In general, the boosted
influence has a complicated interaction between supermodular
and submodular behaviors when the boost set grows, and is
neither supermodular nor submodular. The non-submodularity
of Ag(+) indicates that the boosting set returned by the greedy
algorithm may not have the (1—1/e)-approximation guarantee.
Therefore, besides the NP-hardness of the problem and the #P-
hardness of computing Ag(-), the non-submodularity of the
objective function poses an additional challenge.

IV. BOOSTING ON GENERAL GRAPHS

In this section, we present three building blocks for solving
the k-boosting problem: (1) a state-of-the-art influence max-
imization framework, (2) the Potentially Reverse Reachable
Graph for estimating the boost of influence spread, and (3)
the Sandwich Approximation strategy [22] for maximizing non-
submodular functions. Our solutions to the k-boosting problem
integrate the three building blocks. We will present the detailed
algorithm design in the next section.

A. State-of-the-art influence maximization techniques

In influence maximization problems, we want to select
k seeds so that the expected influence spread is maximized.
One state-of-the-art method is the Influence Maximization via
Martingale (IMM) method [8] based on the idea of Reverse-
Reachable Sets (RR-sets) [6]. We use the IMM method in this
work, but it is important to note that the IMM method could be
replaced by other similar influence maximization frameworks
based on RR-sets (e.g., TIM/TIM' [7] or SSA/D-SSA [15]).

RR-sets. An RR-set for a node r is a random set R of nodes,
such that for any seed set S C V, the probability that RN.S # ()
equals the probability that r can be activated by S in a random
diffusion process. Node r may also be selected uniformly at
random from V/, and the RR-set will be generated accordingly
with the random node r. One key property of RR-sets is that
the expected influence of S equals to n-E[I(R N S # ()] for all
S C V, where I(+) is the indicator function and the expectation
is taken over the randomness of R.

General IMM algorithm. The IMM algorithm has two phases.
The sampling phase keeps generating random RR-sets until
a stopping criteria is met, indicating that the estimation of
the influence spread is “accurate enough”. The node selection
phase greedily selects k seed nodes based on the generated
RR-sets. Under a diffusion model where generating a random
RR-set takes time O(EPT), the IMM algorithm returns a (1 —
1/e—¢)-approximate solution with at least 1—n~* probability,
and runs in O(EZ5L - (k+ ¢)(n+m)logn/e*) expected time,
where OPT is the optimal expected influence.



B. Potentially Reverse Reachable Graphs

We now describe how we estimate the boost of influence,
which is our objective function in the k-boosting problem. The
estimation is based on the concept of the Potentially Reverse
Reachable Graph (PRR-graph), which is defined as follows.

Definition 3 (Potentially Reverse Reachable Graph). Let r be
a node in G. A Potentially Reverse Reachable Graph (PRR-
graph) R for a node r is a random graph generated as
follows. We first sample a deterministic copy g of G. In the
deterministic graph g, each edge ey, in graph G is “live”
in g with probability p.., “live-upon-boost” with probability
Phy — Puvs and “blocked” with probability 1 —p!,, . The PRR-
graph R is the minimum subgraph of g containing all paths
from seed nodes to r through non-blocked edges in g. We refer
to r as the “root node”. When r is also selected from V
uniformly at random, we simply refer to the generated PRR-
graph as a random PRR-graph (for a random root).

PRR-graph R

: | e Estimating the boost

! | o fr(0) =0

: | o frR{vi}) =1
i o fr({vs}) =1
! AN o fr({vz,vs}) =1
|

|

........... o Critical nodes

h o Cr = {v1,vs}

i e Estimating the lower bound
o u(B) =1(BNCr # 0)

Fig. 2: Example of a Potentially Reverse Reachable Graph.

Figure 2 shows an example of a PRR-graph R. The directed
graph G contains 12 nodes and 16 edges. Node r is the root
node. Shaded nodes are seed nodes. Solid, dashed and dotted
arrows with crosses represent live, live-upon-boost and blocked
edges, respectively. The PRR-graph for r is the subgraph in
the dashed box. Nodes and edges outside the dashed box do
not belong to the PRR-graph. It is easy to check that nodes and
edges outside the dashed box are not on any paths from seed
nodes to r that only contain non-blocked edges. By definition,
a PRR-graph may contain loops. For example, the PRR-graph
in Figure 2 contains a loop among nodes v;, vs, and vs.

Estimating the boost of influence. Let R be a given PRR-
graph with root r. By definition, every edge in R is either live
or live-upon-boost. Given a path in R, we say that it is live if
and only if it contains only live edges. Given a path in R and a
set of boosted nodes B C V, we say that the path is live upon
boosting B if and only if the path is not a live one, but every
edge ey, on it is either live or live-upon-boost with v € B. For
example, in Figure 2, the path from v3 to r is live, and the
path from v7 to r via vy and vy is live upon boosting {v1}.
Define fr(B):2Y —{0,1} as: fr(B) = 1 if and only if, in
R, (1) there is no live path from seed nodes to r; and (2) a path
from a seed node to 7 is live upon boosting B. Intuitively, in
the deterministic graph R, fr(B) = 1 if and only if the root
node is inactive without boosting, and active upon boosting
nodes in B. In Figure 2, if B = (), there is no live path from
the seed node v; to r upon boosting B. Therefore, we have
fr(D) = 0. There is a live path from the seed node v7 to r that
is live upon boosting {v1}, and thus we have fr({v1}) = 1.

Similarly, we have fr({vs}) = fr({v2,v5}) = 1. Based on
the above definition of fr(-), we have the following lemma.

Lemma 1. For any B CV, we have n-E[fr(B)] = Ag(B),
where the expectation is taken over the randomness of R.

Proof: For a random PRR-graph R whose root node is
randomly selected, Pr[fr(B) = 1] equals the difference
between probabilities that a random node in G is activated
given that we boost B and we do not boost. [ |

Let R be a set of independent random PRR-graphs, define

Ar( Z fr(B
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Based on the Chernoff bound, Ax(B) closely estimates
Ag(B) for any B C V if |R]| is sufficiently large.

C. Sandwich Approximation Strategy

To tackle the non-submodularity of function Ag(:), we
apply the Sandwich Approximation (SA) strategy [22]. Using
notations of our k-boosting problem, the SA strategy [22]
works as follows. First, we find submodular lower and upper
bound functions of Ag, denoted by i and v. Then, we select
node sets Ba, B, and B, by greedily maximizing Ag, u
and v under the cardinality constraint of k. Ideally, we return
By, = argmaxpe(p, p, B,y As(B) as the final solution. Let
the optimal solution ‘of the k; -boosting problem be B* and let
OPT = Ag(B*). Suppose B,, and B, are (1 —1/e — ¢)-
approximate solutions for maximizing w and v, we have

As(Byg) > B

> X gy (- em90PT. ()
As(By) > AVZ(BB;) (1-1/e—¢)-OPT. (4

Therefore, to obtain a good approximation guarantee, at least
one of p and v should be close to Ag. In this work, we
derive a submodular lower bound p of Ag using the definition
of PRR-graphs. Because p is significantly closer to Ag than
any submodular upper bound we have tested, we only use the
lower bound function p and the “lower-bound side” of the SA
strategy with approximation guarantee shown in Ineq. (3).

Submodular lower bound. We now derive a submodular
lower bound of Ag. Let R be a PRR-graph with the root
node r. Let Cr = {v|fr({v}) = 1}. We refer to nodes in Cr
as critical nodes of R. Intuitively, the root node r becomes
activated if we boost any node in C'i. For any node set B C V/,
define f(B) = I(BNCRg #0). By definition of Cr and
fr (), we have fr(B) < fr(B) for all B C V. Moreover,
because the value of f (B) is based on whether the node set B
intersects with a fixed set C'r, f (B) is a submodular function
on B. For any B C V, define p(B) = n - E[f; (B)] where
the expectation is taken over the randomness of R. Lemma 2
shows the properties of the function u.

Lemma 2. We have u(B) < Ag(B) for all B C V. Moreover,
w(B) is a submodular function of B.

Proof: For all B C V, we have u(B) < Ag(B) because
fr (B) < fr(B) holds for any PRR-graph R. Moreover, j(B)



is submodular on B because f (B) is a submodular function
of B for any PRR-graph R. [ ]

Our experiments show that p is close to Ag, especially for
small values of k, say less than a thousand. Define

fir ( ZfR

ReER

),VB C V.

Because fj (B) is submodular on B for any PRR-graph R,
fir(B) is submodular on B. Moreover, by Chernoff bound,
fir (B) is close to u(B) when |R] is sufficiently large.

Remarks on function ;(B). Function p(B) does correspond
to some physical diffusion model. Roughly speaking, u(B) is
the influence spread in a diffusion model with the boost set
B, and the constraint that at most one edge on the influence
path from a seed node to an activated node can be boosted.
Due to space limit, we omit the precise description of the
corresponding diffusion model here and include it in [26].
Compared with the convoluted diffusion model corresponding
to u(B), the PRR-graph description of p(B) is more direct
and is easier to analyze. Our insight is that by fixing the
randomness in the original diffusion model, it may be easier
to derive submodular lower-bound or upper-bound functions.

V. ALGORITHM DESIGN

In this section, we first present how we generate random
PRR-graphs. Then we obtain overall algorithms for the k-
boosting problem by integrating the general IMM algorithm
with PRR-graphs and the Sandwich Approximation strategy.

A. Generating PRR-graphs

We classify PRR-graphs into three categories. Let R be a
PRR-graph with root node r. (1) Activated: If there is a live
path from a seed node to r; (2) Hopeless: If there is no seeds
in R, or there is no path from seeds to r with at most k non-
live edges; (3) “Boostable”: not the above two categories. If
R is not boostable (i.e. case (1) or (2)), we have fr(B) =
fr(B) = 0 for all B C V. Therefore, for “non-boostable”
PRR-graphs, we only count their occurrences and we terminate
the generation of them once we know they are not boostable.
Algorithm 1 depicts how we generate a random PRR-graph.
The generation contains two phases. The first phase (Lines 1-
19) generates a PRR-graph R. If R is boostable, the second
phase compresses R to reduce its size. Figure 3 shows the
results of two phases, given that the status sampled for every
edge is same as that in Figure 2.

Phase I: Generating a PRR-graph. Let r be a random node.
In this phase, a backward Breadth-First Search (BFS) from
r makes sure that all non-blocked paths from seed nodes to
r with at most k live-upon-boost edges are included in R.
The status of each edge (i.e., live, live-upon-boost, blocked) is
sampled when we first process it. The detailed backward BFS
is as follows. Define the distance of a path from u to v as
the number of live-upon-boost edges on it. Then, the shortest
distance from v to r is the minimum number of nodes we
have to boost so that at least a path from v to r becomes live.
For example, in Figure 3a, the shortest distance from v7 to r
is one. During the generation of R, we use d,.[-] to maintain
the shortest distances from nodes to the root node r. Initially,

./‘\._. !«m

Super-seed
{va,v7}
(a) Results of phase I (b) Results of phase II
Fig. 3: Generation of a PRR-Graph. (Solid and dashed ar-
rows represent live and live-upon-boost edges respectively.)

Algorithm 1: Generating a random PRR-graph (G, S, k)

1 Select a random node r as the root node

2 if r € S then return R is activated

3 Create a graph R with a singleton node r

4 Create a double-ended queue @ with (r,0)

s Initialize d,[r] < 0 and d,.[v] <= 400,Yv # 1

6 while Q is not empty do

7 | (u,dyr) < Q.dequeue_front()

8 | if dy, > d,[u] then continue  // we’ve processed u
9 | for each non-blocked incoming edge e, of u do

10 dyr < (eyy is live-upon-boost) + dy;

11 if d,, > k then continue // pruning
12 Add e, to R

13 if d, < d,[v] then

14 d,[v] < dyr

15 if v € S then

16 | if d,[v] = O then return R is activated

17 else if d,. =d,,, then Q.enqueue_front((v, d,,))
18 else Q.enqueue_back((v, dy;))

19 if there is no seed in R then return R is hopeless
20 Compress the boostable R to reduce its size
21 return a compressed boostable R

we have d,[r] = 0 and we enqueue (r,0) into a double-ended
queue (). We repeatedly dequeue and process a node-distance
pair (u, d,,-) from the head of (), until the queue is empty. Note
that the distance d,, in a pair (u,d,,) is the shortest known
distance from u to r when the pair was enqueued. Thus we
may find d,, > d,[u] in Line 8. Pairs (u, d,,) in @ are in the
ascending order of the distance d,,,. and there are at most two
different values of distance in ). Therefore, we process nodes
in the ascending order of their shortest distances to . When we
process a node u, for each of its non-blocked incoming edge
€yu, We let d,, be the shortest distance from v to r via w. If
dyyr > k, all paths from v to r via u are impossible to become
live upon boosting at most k nodes, therefore we ignore e,
safely in Line 11. This is in fact a “pruning” strategy, because
it may reduce unnecessary costs in the generation step. The
pruning strategy is effective for small values of k. For large
values of k, only a small number of paths need to be pruned
due to the small-world property of real social networks. If
dy. < k, we insert e,, into R, update d,.[v] and enqueue
(v, dyy) if necessary. During the generation, if we visit a seed
node s and its shortest distance to r is zero, we know R is



activated and we terminate the generation (Line 16). If we
do not visit any seed node during the backward BFS, R is
hopeless and we terminate the generation (Line 19).

Remarks on Phase 1. At the end of phase I, R may include
nodes and edges not belonging to it (e.g., non-blocked edges
not on any non-blocked paths from seeds to the root). These
extra nodes and edges will be removed in the compression
phase. For example, Figure 3a shows the results of the first
phase, given that we are constructing a PRR-graph R according
to the root node r and sampled edge status shown in Figure 2.
At the end of the first phase, we also include the extra edge
from vg to v in R, and they will be removed in the next phase.

Phase II: Compressing the PRR-graph. When we reach
Line 20, R is boostable. In practice, we observe that we can
remove and merge a significant fraction of nodes and edges
from R (i.e., compress R), while keeping values of fr(B) and
fr (B) for all | B| < k same as before. Therefore, we compress
all boostable PRR-graphs to prevent the memory usage from
becoming a bottleneck. Figure 3b shows the compressed result
of Figure 3a. First, we merge nodes vy and vy into a single
“super-seed” node, because they are activated without boosting
any node. Then, we remove node vg and its incident edges,
because they are not on any paths from the super-seed node to
the root node r. Similarly, we remove the extra node vg and
the extra edge from vg to ve. Next, observing that there are
live paths from nodes vy, vy, v2 and v3 to root r, we remove
all outgoing edges of them, and add a direct live edge from
each of these nodes to r. After doing so, we remove node v
because it is not on any path from the super-seed node to r.
Now, we describe the compression phase in detail.

The first part of the compression merges nodes into the
super-seed node. We run a forward BFS from seeds in R to
the root node r. For every node v, we compute the shortest
distance dg[v] from seeds to v. If dg[v] = 0 for a node v,
there is a live path from a seed node to v in R. Let X =
{v|dg[v] = 0}, whether we boost any subset of X has nothing
to do with whether the root node of R is activated. Thus, we
have fr(B) = fr(B\X) for all B C V. To compress R, we
merge all nodes in X as a single super-seed node: we insert a
super-seed node z into R; for every node v in X, we remove
its incoming edges and redirect every of its outgoing edge e,.,
to ey, . Finally, we clean up nodes and edges not on any paths
from the super-seed node to the root node r.

In the second part, we add live edges so that nodes
connected to 7 through live paths are directly linked to . We
also clean up nodes and edges that are not necessary for later
computation. For a node v, let d/.[v] be the shortest distance
from v to r without going through the super-seed. If a node v
satisfies d].[v] + dg[v] > k, every path going through v cannot
be live with at most £ nodes boosted, therefore we remove v
and its adjacent edges. If a non-root node v satisfies d..[v] = 0,
we remove its outgoing edges and add a live edge from v to
r. In fact, in a boostable R, if a node v satisfies d,.[v] = 0, we
must have d,.[v] = 0 in the first phase. In our implementation,
if a node v satisfies d,.[v] = 0, we in fact clear outgoing edges
of v and add the live edge e, to R in the first phase. Finally,
we remove “non-super-seed” nodes with no incoming edges.

Time complexity. The cost for the first phase of the PRR-graph
generation is linear to the number of edges visited during the

generation. The compression phase runs linear to the number
of uncompressed edges generated in the generation phase.
Section VI shows the average number of uncompressed edges
in boostable PRR-graphs in several social networks.

B. PRR-Boost Algorithm

We obtain our algorithm, PRR-Boost, by integrating PRR-
graphs, the IMM algorithm and the Sandwich Approximation
strategy. Algorithm 2 depicts PRR-Boost.

Algorithm 2: PRR-Boost(G, S, k, €, {)

0'=1¢-(1+1og3/logn)

R < SamplingLB(G, S, k,¢,¢') // sampling in general
IMM [8], using the PRR-graph generation of Algo. 1

[S I

3 B, < NodeSelectionLB(R,k) // maximize
4 Ba + NodeSelection(R, k) // maximize Ag
s By = argmaxperp, p,} Ar(B)

6 return B,

Lines 1-3 utilize the IMM algorithm [8] with the PRR-graph
generation given in Algorithm 1 to maximize the lower bound
1 of Ag under the cardinality constraint of k. Line 4 greedily
selects a set Bo of nodes with the goal of maximizing Ag,
and we reuse PRR-graphs in R to estimate Ag(-). Finally,
between B, and B, we return the set with a larger estimated
boost of influence as the final solution.

Approximate ratio. Let B, be the optimal solution for
maximizing g under the cardinality constraint of &, and let
OPT,, = ju(B},). By the analysis of the IMM method, we have
the following lemma about Algorithm 2.

Lemma 3. Define €, = % where a=+/{'logn+log?2,
and = \/(1 —1/e) - (log (}) + ¢’ logn + log 2). With a

probability of at least 1 — n=t
generated in Line 2 satisfies

Rl > (2—2/e)-n-log ((}) ~2n£/)
T (e—(1—1/e)-€e1)*-OPT,

Given that Ineq. (5) holds, with a probability of at least 1 —
n=t, the set B,, returned by Line 3 satisfies

n-fr(By) > (1= 1/e)(1 —e1) - OPT, (Th.1 in [8]). (6)

, the number of PRR-graphs

(Th.2 in [8]). (5)

Ideally, while applying the Sandwich Approximation strat-
egy, we should select By =argmaxpge(p, g} As(B). How-
ever, Theorem 1 have stated the #P-hardness of computing
Ag(B) for a given B. In Line 5, we select By, from B,, and
B with the larger estimated boost of influence. The following
lemma shows that boosting Bs, leads to a large expected boost.

Lemma 4. Give/n that Ineq. (5)-(6) hold, with a probability of
at least 1 —n=", we have

Ag(By) > (1—1/e—¢€)-OPT, > (1 —1/e—¢) - u(B).

Proof outline: Let B be a boost set with £ nodes, we say
that B is a bad set if Ag(B) < (1 —1/e —¢€) - OPT,. Let
B be an arpitrary badA set with k nodes. If we return B, we
must have Ag(B) > Ag(B,,). Therefore, the probability that



B is returned is upper bounded by Pr[Ag(B) > Ar(B,)].
Moreover, we can prove that Pr[Ag(B) > Ag(B,)] <
Prln - Ag(B)—As(B) > e - OPT,] < n''/(}), where
€a = € — (1 — 1/e) - €1. Here, the first inequality can be proved
by Ineq. (6) and the definition of the bad set. The second
inequality holds from the Chernoff bound and Ineq. (5). Be-

cause there are at most (Z) bad sets with k& nodes, PRR-Boost
returns a bad solution with probability at most n~"". Moreover,
because OPT,, > u(B*), the probability that Ag(Bs,) <
(1 —1/e — €)-u(B*) is also upper bounded by n~*". The
full proof can be found in the appendix. ]

Complexity. Lines 1-3 of PRR-Boost are essentially the IMM
method with the goal of maximizing p. Let EPT be the
expected number of edges explored for generating a random
PRR-graph, generating a random PRR-graph runs in O(EPT)
expected time. Denote the number of edges in a PRR-graph
as the size of R, the expected size of a random PRR-graph
is at most K PT. In the analysis, we also refer to the total
size of PRR-graphs in R as the size of R. By the analysis
of the general IMM method, both the expected complexity
of the sampling step in Line 2 and the size of R are
O(glfz?b -(k+¢)(n+m)logn/e®). The node selection step in
Line 3 that maximizes w corresponds to the greedy algorithm
for maximum coverage, thus runs in time linear to the size of
R. Now, we analyze the node selection step in Line 4. After we
insert a node into B, updating Az (BU{v}) for all v ¢ BUS
takes time linear to the size of R. Therefore, Line 4 runs in

O( ngTTH k(k+€)(n+m)logn/e®) expected time.

From Lemma 3-4, with a probability of at least 1—3n~¢ =
1 —n~" we have Ag(By) > (1 —1/e—¢) - u(B*). Together
with the above complexity analysis, we have the following
theorem about PRR-Boost in Algorithm 2.

Theorem 2. With a probability of at least 1—n""*, PRR-Boost

returns a (1—1 / e—e)- A"é(BB*) ) -approximate solution. Moreover,

it runs in O((])Egﬂ k- (k+0)(n+m)logn/e?) expected time.

The approximation ratio given in Theorem 2 depends on
the ratio of %, which should be close to one if the lower
bound function p(B) is close to the actual boost of influence
Ag(B), when Ag(B) is large. Section VI demonstrates that

w1(B) is indeed close to Ag(B) in real datasets.

C. The PRR-Boost-LB Algorithm

PRR-Boost-LB is a simplification of PRR-Boost where
we return the node set B, as the final solution. Recall
that the estimation of p only relies on the critical node set
Cgr of each boostable PRR-graph R. In the first phase of
the PRR-graph generation, if we only need to obtain Cg,
there is no need to explore incoming edges of a node v if
d,[v] > 1. Moreover, in the compression phase, we can obtain
Cr right after computing dg[-] and we can terminate the
compression earlier. The sampling phase of PRR-Boost-LB
usually runs faster than that of PRR-Boost, because we only
need to generate C'r for each boostable PRR-graph R. In
addition, the memory usage is significantly lower than that for
PRR-Boost, because the averaged number of “critical nodes”
in a random boostable PRR-graph is small in practice. In
summary, compared with PRR-Boost, PRR-Boost-LB has the

same approximation factor of (1 — 1/e — ¢) - %};2), but
runs faster than PRR-Boost. We will compare PRR-Boost and

PRR-Boost-LB by experiments in Section VI.

D. Discussion: The Budget Allocation Problem

A question one may raise is what is the best strategy if
companies could freely decide how to allocation budget on
both seeding and boosting. A heuristic method combing influ-
ence maximization algorithms and PRR-Boost is as follows.
We could test different budget allocation strategy. For each
allocation, we first identify seeds using any influence maxi-
mization algorithm, then we find boosted user by PRR-Boost.
Finally, we could choose the budget allocation strategy leading
to the largest boosted influence spread among all tested ones.
In fact, the budget allocation problem could be much harder
than the k-boosting problem itself, and its full treatment is
beyond the scope of this study and is left as a future work.

VI. EXPERIMENTS

We conduct extensive experiments using real social net-
works to test PRR-Boost and PRR-Boost-LB. Experimental
results demonstrate their efficiency and effectiveness, and
show their superiority over intuitive baselines. All experi-
ments were conduct on a Linux machine with an Intel Xeon
E5620@2.4GHz CPU and 30 GB memory. In PRR-Boost
and PRR-Boost-LB, the generation of PRR-graphs and the
estimation of objective functions are parallelized with OpenMP
and executed using eight threads.

Table 1: Statistics of datasets and seeds (all directed)

Description Digg  Flixster  Twitter Flickr
number of nodes (n) 28K 96 K 323K 1.45M
number of edges (m) 200K 485 K 2.14M 2.15M
average influence probability 0.239 0.228 0.608 0.013
influence of 50 influential seeds 25K 20.4K 85.3K 2.3K
influence of 500 random seeds 1.8K 125K 61.8K 0.8K

Datasets. We use four real social networks: Flixster [28],
Digg [29], Twitter [30], and Flickr [31]. All dataset have both
directed social connections among its users, and actions of
users with timestamps (e.g., rating movies, voting for stories,
re-tweeting URLs, marking favorite photos). For all datasets,
we learn the influence probabilities on edges using a widely
accepted method proposed by Goyal et al. [32], remove edges
with zero influence probability, and keep the largest weakly
connected component. Table 1 summaries our datasets.

Boosted influence probabilities. To the best of our knowl-
edge, no existing work quantitatively studies how influence
among people changes respect to different kinds of “boost-
ing strategies”. Therefore, we assign the boosted influence
probabilities as follows. For every edge e,, with an influence
probability of p,,,, let the boosted influence probability p!,, be
1-(1- puv)ﬁ (8 > 1). We refer to § as the boosting param-
eter. Due to the large number of combinations of parameters,
we fix 8 = 2 unless otherwise specified. Intuitively, = 2
indicates that every activated neighbor of a boosted node v
has two independent chances to activate v. We also provide
experiments showing the impacts of f3.



Seed selection. We select seeds in two ways. (i) We use the
IMM method [8] to select 50 influential nodes. In practice,
the selected seeds typically correspond to highly influential
customers selected with great care. Table 1 summaries the
expected influence spread of selected seeds. (ii) We randomly
select five sets of 500 seeds. The setting maps to the situation
where some users become seeds spontaneously. Table 1 shows
the average expected influence of five sets of selected seeds.

Baselines. As far as we know, no existing algorithm is applica-
ble to the k-boosting problem. Thus, we compare our proposed
algorithms with several heuristic baselines, as listed below.

o HighDegreeGlobal: Starting from an empty set B, HighDe-
greeGlobal iteratively adds a node with the highest weighted
degree to B, until k£ nodes are selected. We use four
different definitions of the weighted degree. Suppose we
have selected a set of nodes B, four definitions of the
weighted degree of a node u ¢ (S U B) are as follows.
(1) the sum of influence probabilities on outgoing edges
(.e., Zew Puv); (2) the “discounted” sum of influence
probabilities on outgoing edges (i.e., Zew,ug B Puw); (3)
the sum of the boost of influence probabilities on incoming
edges (i.e., > . [Py, — Poul); (4) the “discounted” sum
of the boost of influence probabilities on incoming edges
(e, 3¢, v¢B!Pou—Puu))- Each definition outperforms the
others in some experiments. We report the maximum boost
of influence among four solutions as the result.

e HighDegreeLocal: The difference between HighDegreeLo-
cal and HighDegreeGlobal is that, we first consider nodes
close to seeds. We first try to select k nodes among
neighbors of seeds. If there is not enough nodes to select,
we continue to select among nodes that are two-hops away
from seeds, and we repeat until k£ nodes are selected. We
report the maximum boost of influence among four solutions
selected using four definitions of the weighted degree.

e PageRank: We use the PageRank baseline for influence
maximization problems [4]. When a node u has influence
on v, it implies that node v “votes” for the rank of u. The
transition probability on edge e, is py./p(u), where p(u)
is the summation of influence probabilities on all incoming
edges of u. The restart probability is 0.15. We compute the
PageRank iteratively until two consecutive iteration differ
for at most 10~% in L; norm.

e MoreSeeds: Given seed nodes and an integer k, we adapt
the IMM framework to select £ more seeds with the goal of
maximizing the increase of the expected influence spread.
We return the selected k seeds as the boosted nodes.

We do not compare our algorithms to the greedy algorithm
with Monte-Carlo simulations. Because it has been shown to
be extremely computationally expensive even for the classical
influence maximization problem [1, 7].

Settings. For PRR-Boost and PRR-Boost-LB, we let ¢ :*0.5
and ¢ = 1 so that both algorithms return (1—1/e—¢)- AHS(?BE)

approximate solution with probability at least 1 — 1/n. To
enforce fair comparison, for all algorithms, we evaluate the

boost of influence spread by 20, 000 Monte-Carlo simulations.

A. Influential seeds

In this part, we report results where the seeds are 50
influential nodes. The setting here maps to the real-world
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situation where the initial adopters are highly influential users
selected with great care. We run each experiment five times
and report the average results.

Quality of solution. Let B be the solution returned by an
algorithm, the quality of solution or the quality of boosted
nodes is the boost of the influence spread upon boosting B.
Figure 4 compares the quality of solutions returned by different
algorithms. PRR-Boost always return solutions with the high-
est quality, and PRR-Boost-LB returns solutions with slightly
lower but comparable quality. Moreover, both PRR-Boost
and PRR-Boost-LB outperform other baselines. In addition,
we observe that MoreSeeds returns solutions with the lowest
quality. This is because nodes selected by MoreSeeds are
typically in the part of graph not covered by the existing
seeds so that they could generate larger marginal influence. In
contrast, boosting nodes should be selected close to existing
seeds to make the boosting result more effective. Thus, our
empirical result further demonstrates that k-boosting problem
differs significantly from the influence maximization problem.

Running time. Figure 5 shows the running time of PRR-Boost
and PRR-Boost-LB. For each dataset, the running time of both
algorithm increases when k increases. This is mainly because
the number of random PRR-graphs we have to generate
increases when k increases. Figure 5 also shows that the
running time is in general proportional to the number of nodes
and edges for Digg, Flixster and Twitter, but not for Flickr.
We observe that this is mainly because of the significantly
smaller average influence probabilities on Flickr as shown in
Table 1, and the accordingly significantly lower expected cost
for generating a random PRR-graph (i.e., EPT) as we will
show shortly in Table 3. In Figure 5, we also label the speedup
of PRR-Boost-LB compared with PRR-Boost. PRR-Boost-LB
is consistently faster than PRR-Boost in all our experiments.
Together with Figure 4, we can see that PRR-Boost-LB is
both efficient and effective. It returns solutions with quality
comparable to PRR-Boost but runs faster. Because our ap-
proximation algorithms consistently outperform all heuristic
methods with no performance guarantee in all tested cases,



we do not compare the running time of our algorithms with
heuristic methods to avoid cluttering the results.
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Fig. 5: Running time (influential seeds).

Effectiveness of the compression phase. Table 2 shows the
“compression ratio” of PRR-graphs and memory usages of
PRR-Boost and PRR-Boost-LB, demonstrating the impor-
tance of compressing PRR-graphs. The compression ratio is
the ratio between the average number of uncompressed edges
and average number of edges after compression in boostable
PRR-graphs. Besides the total memory usage, we also show
in parenthesis the memory usage for storing boostable PRR-
graphs, which is measured as the additional memory usage
starting from the generation of the first PRR-graph. For ex-
ample, for the Digg dataset and k = 100, for boostable PRR-
graphs, the average number of uncompressed edges is 1810.32,
the average number of compressed edges is 2.41, and the
compression ratio is 751.59. Moreover, the total memory usage
of PRR-Boost is 0.07GB with around 0.01GB being used to
storing “boostable” PRR-graphs. The compression ratio is high
for two reasons. First, in practice, many nodes visited in the
first phase cannot be reached by seed nodes. Second, among the
remaining nodes, many of them can be merged into the super-
seed node, and most non-super-seed nodes will be removed be-
cause they are not on any paths to the root node without going
through the super-seed node. The high compression ratio and
the memory used for storing compressed PRR-graphs show
that the compression phase is an indispensable constituent of
the generation of random PRR-graphs. For PRR-Boost-LB,
the memory usage is much lower compared with PRR-Boost,
because we only store “critical nodes” of boostable PRR-
graphs. In our experiments with § = 2, on average, each
boostable PRR-graph only has a few critical nodes, which
explains the low memory usage of PRR-Boost-LB. If one is
indifferent about the slightly difference between the quality
of solutions returned by PRR-Boost-LB and PRR-Boost, we
suggest to use PRR-Boost-LB because of its lower running
time and lower memory usage.

Approximation factors in the Sandwich Approxima-
tion. Recall that the approximate ratio of PRR-Boost and
PRR-Boost-LB depends on the ratio A“S(fBE). The closer to
one the ratio is, the better the approximation guarantee is. With
B* being unknown due to the NP-hardness of the problem,
we show the ratio when the boost is relatively large. To obtain
different boost sets with relatively large boosts, we generate
300 sets of k boosted nodes. The sets are constructed by
replacing a random number of nodes in By, by other non-
seed nodes, where By, is the solution returned by PRR-Boost.
For a given B, we use PRR-graphs generated for finding B,

Table 2: Memory usage and compression ratio (influential
seeds). Numbers in parentheses are additional memory
usage for boostable PRR-graphs.

k Dataset PRR-Boost PRR-Boost-LB
Compression Ratio Memory (GB) Memory (GB)
Digg 1810.32/2.41 =751.79 0.07 (0.01) 0.06 (0.00)
100 Flixster ~ 3254.91/3.67 = 886.90 0.23 (0.05) 0.19 (0.01)
Twitter 14343.31/4.62 =3104.61 0.74 (0.07) 0.69 (0.02)
Flickr 189.61/6.86 = 27.66 0.54 (0.07) 0.48 (0.01)
Digg 1821.21/2.41 =755.06 0.09 (0.03) 0.07 (0.01)
5000 Flixster ~ 3255.42/3.67 = 886.07 0.32(0.14) 0.21 (0.03)
Twitter 14420.47 /1 4.61 = 3125.37 0.89 (0.22) 0.73 (0.06)
Flickr 189.08 / 6.84 = 27.64 0.65 (0.18) 0.50 (0.03)
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Fig. 6: Sandwich Approximation: % (influential seeds).

to estimate %. Figure 6 shows the ratios for generated

sets B as a function of Ag(B) for k € {100,1000,5000}.
Because we intend to show the ratio when the boost of
influence is large, we do not show points corresponding to
sets whose boost of influence is less than 50% of Ag(Bsq).
For all four datasets, the ratio is above 0.94, 0.83 and 0.74
for £k = 100, 1000, 5000, respectively. For every dataset, we
observe that the ratio is closer to one when k is smaller, and
we now explain this. In practice, most boostable PRR-graphs
have “critical nodes”. When k is small, say 100, to utilize the
limited budget k efficiently, PRR-Boost and PRR-Boost-LB
tend to return node sets B so that every node in B is a critical
node in many boostable PRR-graphs. For example, for Twitter,
when k& = 100, among PRR-graphs that have critical nodes and
are activated upon boosting B,,, above 98% of them have
their critical nodes boosted (i.e., in Bg,). Meanwhile, many
root node r of PRR-graphs without critical nodes may stay
inactive. For a given PRR-graph R, if B contains critical nodes
of R or if the root node of R stays inactive upon boosting B,
fr (B) does not underestimate fr(B). Therefore, when k is

smaller, the ratio of L\“‘S(fB)) = [FE[[{‘?Z ((g))]] tends to be closer to

one. When k increases, we can boost more nodes, and root
nodes of PRR-graphs without critical nodes may be activated,
thus the approximation ratio tends to decrease. For example,
for Twitter, when k increases from 100 to 5000, among PRR-
graphs whose root nodes are activated upon boosting By, the
fraction of them having critical nodes decreases from around
98% to 88%. Accordingly, the ratio of u(Bss)/Ag(Bsa)
decreased by around 9% when k increases from 100 to 5000.

Effects of the boosted influence probabilities. In our experi-
ments, we use the boosting parameter 3 to control the boosted
influence probabilities on edges. The larger § is, the larger the
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boosted influence probabilities on edges are. Figure 7 shows
the effects of 3 on the boost of influence and the running time,
when k£ = 1000. For other values of k, the results are similar.
In Figure 7a, the optimal boost increases when 3 increases.
When (3 increases, for Flixster and Flickr, PRR-Boost-LB
returns solution with quality comparable to those returned
by PRR-Boost. For Twitter, we consider the slightly de-
generated performance of PRR-Boost-LB acceptable because
PRR-Boost-LB runs significantly faster. Figure 7b shows
the running time for PRR-Boost and PRR-Boost-LB. When
[ increases, the running time of PRR-Boost increases ac-
cordingly, but the running time of PRR-Boost-LB remains
almost unchanged. Therefore, compared with PRR-Boost,
PRR-Boost-LB is more scalable to larger boosted influence
probabilities on edges. In fact, when [ increases, a random
PRR-graph tends to include more nodes and edges. The run-
ning time of PRR-Boost increases mainly because the cost for
PRR-graph generation increases. However, when /3 increases,
we observe that the cost for obtaining “critical nodes” for a
random PRR-graph does not change much, thus the running
time of PRR-Boost-LB remains almost unchanged. Figure 8
shows the approximation ratio of the sandwich approximation
strategy with varying boosting parameters. We observe that, for
every dataset, when we increase the boosting parameter, the
ratio of A“S(ﬁ;) for large Ag(B) remains almost the same. This
suggests that both our proposed algorithms remain effective
when we increase the boosted influence probabilities on edges.

B. Random seeds

In this part, we select five sets of 500 random nodes as
seeds for each dataset. The setting here maps to the real
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Fig. 10: Running time (random seeds).

situation where some users become seeds spontaneously. All
experiments are conducted on five sets of random seeds, and
we report the average results.

Quality of solution. We select up to 5000 nodes and compare
our algorithms with baselines. From Figure 9, we can draw
conclusions similar to those drawn from Figure 4 where the
seeds are highly influential users. Both PRR-Boost and
PRR-Boost-LB outperform all baselines.

Running time. Figure 10 shows the running time of
PRR-Boost and PRR-Boost-LB, and the speedup of
PRR-Boost-LB compared with PRR-Boost. Figure 10b shows
that PRR-Boost-LB runs up to three times faster than
PRR-Boost. Together with Figure 9, PRR-Boost-LB is in fact
both efficient and effective given randomly selected seeds.

Effectiveness of the compression phase. Table 3 shows
the compression ratio of PRR-Boost, and the memory usage
of both proposed algorithms. Given randomly selected seed
nodes, the compression step of PRR-graphs is also very
effective. Together with Table 2, we can conclude that the
compression phase is an indispensable step for both cases
where the seeds are highly influence users or random users.

Approximation factors in the Sandwich Approximation. The
approximate ratio of PRR-Boost and PRR-Boost-LB depends

on the ratio A"S(fBE). We use the same method to generate




Table 3: Memory usage and compression ratio (random
seeds).

k Dataset PRR-Boost PRR-Boost-LB
Compression Ratio Memory (GB) Memory (GB)
Digg 3069.15/5.61 = 547.28 0.07 (0.01) 0.06 (0.00)
100 Flixster ~ 3754.43/25.83 = 145.37 0.24 (0.06) 0.19 (0.01)
Twitter 16960.51 / 56.35 = 300.96 0.78 (0.11) 0.68 (0.01)
Flickr 701.84 /18.12 =38.73 0.56 (0.09) 0.48 (0.01)
Digg 3040.94 /5.59 = 544.19 0.12 (0.06) 0.07 (0.01)
5000 Flixster ~ 3748.74 /25.86 = 144.94 0.71 (0.53) 0.21 (0.03)
Twitter 16884.86/57.29 =294.72 1.51 (0.84) 0.72 (0.05)
Flickr 701.37/18.10 = 38.75 1.00 (0.53) 0.50 (0.03)

different sets of boosted nodes B as in the previous sets of
experiments. Figure 11 shows the ratios for generated sets
B as a function of Ag(B) for k € {100, 1000,5000}. For
all four datasets, the ratio is above 0.76, 0.62 and 0.47 for
k = 100, 1000, 5000, respectively. As from Figure 6, the ratio
is closer to one when k is smaller. Compared with Figure 6, we
observe that the ratios in Figure 11 are lower. The main reason
is that, along with many PRR-graphs with critical nodes,
many PRR-graphs without critical nodes are also boosted. For
example, for Twitter, when k = 5000, among PRR-graphs
whose root nodes are activated upon boosting Bg,, around 25%
of them do not have critical nodes, and around 3% of them
have critical nodes but their critical nodes are not in By, . Note
that, although the approximation guarantee of our proposed
algorithms decreases as k increases, Figure 9 shows that our
proposed algorithms still outperform all other baselines.
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As(B

C. Budget allocation between seeding and boosting

In this part, we vary both the number of seeders and the
number of boosted nodes. Under the context of viral marketing,
this corresponds to the situation where a company can decide
both the number of free samples and the number of coupons
they offer. Intuitively, targeting a user as a seeder (e.g., offering
a free product and rewarding for writing positive opinions)
must cost more than boosting a user (e.g., offering a discount
or displaying ads). In the experiments, we assume that we can
target 100 users as seed nodes with all the budget. Moreover,
we assume that targeting a seeder costs 100 to 800 times as
much as boosting a user. For example, suppose targeting a
seeder costs 100 times as much as boosting a user: we can
choose to spend 20% of our budget on targeting initial adopters
(i.e., finding 20 seed users and boosting 8000 users); or, we
can spend 80% of the budget on targeting initial adopters (i.e,

finding 80 seeds and boosting 2000 users). We explore how
the expected influence spread changes, when we decrease the
number of seed users and increase the number of boosted users.
Given the budget allocation (i.e., the number of seeds and the
number boosted users), we first identify a set of influential
seeds using the IMM method, then we use PRR-Boost to select
the set of nodes we boost. Finally, we use 20, 000 Monte-Carlo
simulations to estimate the expected boosted influence spread.
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c c
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(b) Flickr
Fig. 12: Budget allocation between seeding and boosting.

(a) Flixster

Figure 12 shows the results for Flixster and Flickr. We
observe that the boosted influence spread with a mixed budget
among initial adopters and boosting users achieves higher
final influence spread than spending all budget on initial
adopters. For example, for cost ratio of 800 between seeding
and boosting, if we choose 80% budget for seeding and 20%
for boosting, we would achieve around 20% and 92% higher
influence spread than pure seeding, for Flixster and Flickr
respectively. Moreover, the best budget mix is different for
different networks and different cost ratio, suggesting the need
for specific tuning and analysis for each case.

VII. CONCLUSION

In this work, we address a novel k-boosting problem
that asks how to boost the influence spread by offering k
users incentives so that they are more likely to be influenced
by friends. We develop efficient approximation algorithms,
PRR-Boost and PRR-Boost-LB, that have data-dependent ap-
proximation factors. Both PRR-Boost and PRR-Boost-LB are
delicate integration of Potentially Reverse Reachable Graphs
and the state-of-the-art techniques for influence maximization
problems. We conduct extensive experiments on real datasets
using our proposed algorithms. In our experiments, we
consider both the case where the seeds are highly influential
users, and the case where the seeds are randomly selected
users. Results demonstrate the superiority of our proposed al-
gorithms over intuitive baselines. Compared with PRR-Boost,
experimental results show that PRR-Boost-LB returns solution
with comparable quality but has significantly lower computa-
tional costs. In our experiments, we also explore the scenario
where we are allowed to determine how to spend the limited
budget on both targeting initial adopters and boosting users.
Experimental results demonstrate the importance of studying
the problem of targeting initial adopters and boosting users
with a mixed strategy. We leave the full exploration of this
topic as our future work.
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APPENDIX
Lemma 4. Given that Ineq. (5)-(6) hold, with a probability of
at least 1 —n=t, we have

Ag(By)>(1—1/e—¢€)-OPT, > (1 —1/e —¢€) - u(B*).

Proof: Let B be a boost set with k£ nodes, we say that B is a
bad set if Ag(B) < (1—1/e—¢)-OPT,. To prove Lemma 4,
we first show that each bad boost set with &k nodes is returned
by Algorithm 2 with a probability of at most (1 —n=%)/(}).
Let B be an arbitrary bad set with k nodes, we have
As(B) < (1—1/e—€)-OPT,. %)
If we return B as the B,,, we must have A (B) > Az (B,,).
Therefore, the probability that B is returned is upper bounded
by Pr[Ag(B) > Ag(B,)]. From Ineq. (6)-(7), we have
n-fig(By) — Ag(B)
>(1—-1/e)-(1—€)-OPT,—(1—-1/e—¢€)-OPT,
=(e—(1—1/e)-€1)-OPT,.
Let eg = ¢ — (1 —1/e) - €1, we have
Pr{Ar(B) > Ar(B,)] < Pr{Ar(B) > jin(B,)
<Pr[n-Ar(B) = Ag(B) > n- ir(B.) — As(B)]
<Pr[n-Ag(B) — As(B) > e3 - OPT,).
Let p = Ag(B)/n, we know p = E[fr(B)] from Lemma 1.
Recall that 0=|R| and A (B)=(Y_pcr fr(B))/0, we have

Pr [n “Ag(B) = Ag(B) > e - OPT#]

€s - OPT,
=Pr Z fr(B)—6p>2"—"""I ¢p
RER n
Let 6 = %, by Chernoff bound, we have
e - OPT,
Pr[z fR(B)_9p>%'9p}
ReR P
5? €2 - OPT?
< ——— . fp) = _ © ]
_eXp( 2+(5 p) exp( 2n2p+€2'0PTN'TL )
2 2
e-OPT}
Sexp |- 0) (Ineq. (7
_exp( 2n(1-1/e—€)-OPT,+€e-OPT,n ) (Ineg. (7))

(e—(1—1/e)-€1)* - OPT,
n-(2-2/e) "9)

<exp ( —log ((7) - (2n"))) (Ineg. (5))

<=/ (}).

Because there are at most (}) bad sets B with k nodes,
by union bound, the probability that Algorithm 2 returns a
bad solution is at most n~*. Because OPT,, > u(B*),
the probability that Algorithm 2 returns a solution so that

Ag(Bsa) < (1—1/e —€) - u(B*) is also at most n~*". W

<exp (-
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