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in social systems
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Historically, social scientists have sought out explanations of human and social
phenomena that provide interpretable causal mechanisms, while often ignoring their
predictive accuracy. We argue that the increasingly computational nature of social science is
beginning to reverse this traditional bias against prediction; however, it has also highlighted
three important issues that require resolution. First, current practices for evaluating
predictions must be better standardized. Second, theoretical limits to predictive accuracy in
complex social systems must be better characterized, thereby setting expectations for what
can be predicted or explained. Third, predictive accuracy and interpretability must be
recognized as complements, not substitutes, when evaluating explanations. Resolving these
three issues will lead to better, more replicable, and more useful social science.

or centuries, prediction has been consid-

ered an indispensable element of the sci-

entific method. Theories are evaluated on

the basis of their ability to make falsifiable

predictions about future observations—
observations that come either from the world at
large or from experiments designed specifically
to test the theory. Historically, this process of
prediction-driven explanation has proven un-
controversial in the physical sciences, especially
in cases where theories make relatively unam-
biguous predictions and data are plentiful. Social
scientists, in contrast, have generally deempha-
sized the importance of prediction relative to
explanation, which is often understood to mean
the identification of interpretable causal mech-
anisms. In part, this emphasis may reflect the
intrinsic complexity of human social systems
and the relative paucity of available data. But
it also partly reflects the widespread adoption
within the social and behavioral sciences of a
particular style of thinking that emphasizes un-
biased estimation of model parameters over pre-
dictive accuracy (I). Rather than asking whether
a given theory can predict some outcome of in-
terest, the accepted practice in social science in-
stead asks whether a particular coefficient in an
idealized model is statistically significant and in
the direction predicted by the theory.

Recently, this practice has come under increas-
ing criticism, in large part out of concern that an
unthinking “search for statistical significance” (2)
has resulted in the proliferation of nonreplicable
findings (3, 4). Concurrently, growing interest
among computational scientists in traditionally
social scientific topics, such as the evolution of
social networks (5), the diffusion of information
(6, 7), and the generation of inequality (8), along
with massive increases in the volume and type
of social data available to researchers (9), has
raised awareness of methods from machine
learning that evaluate performance largely in
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terms of predictive accuracy. We believe that
the confluence of these two trends presents an
opportune moment to revisit the historical sep-
aration of explanation and prediction in the so-
cial sciences, with productive lessons for both
points of view. On the one hand, social scien-
tists could benefit by paying more attention to
predictive accuracy as a measure of explanatory
power; on the other hand, computer scientists
could benefit by paying more attention to the
substantive relevance of their predictions, rather
than to predictive accuracy alone.

Standards for prediction

Predictive modeling has generated enormous
progress in artificial intelligence (AI) applications
(e.g., speech recognition, language translation, and
driverless vehicles), in part because Al researchers
have converged on simple-to-understand quan-
titative metrics that can be compared meaning-
fully across studies and over time. In light of this
history, it is perhaps surprising that applications
of similar methods in the social sciences often
fail to adhere to common reporting and eval-
uation standards, making progress impossible
to assess. The reason for this incoherence is that
prediction results depend on many of the same
“researcher degrees of freedom” that lead to
false positives in traditional hypothesis testing
(8). For example, consider the question of pre-
dicting the size of online diffusion “cascades” to
understand how information spreads through
social networks, a topic of considerable recent
interest (6, 7, 10, 1I). Although seemingly unam-
biguous, this question can be answered only
after it has first been translated into a specific
computational task, which in turn requires the
researcher to make a series of subjective choices,
including the selection of the task, data set, model,
and performance metric. Depending on which spe-
cific set of choices the researcher makes, what ap-
pear to be very different answers can be obtained.

To illustrate how seemingly innocuous design
choices can affect stated results, we reanalyzed
data from (1I) comprising all posts made to
Twitter during the month of February 2015 that
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contained links to the top 100 most popular web-
sites, as measured by unique visitors. In addition
to holding the data set fixed, for simplicity, we
also restricted our analysis to a single choice of
model, reported in (I7), that predicts cascade size
as a linear function of the average past perform-
ance of the “seed” individual (i.e., the one who
initiated the cascade). Even with the data source
and model held fixed, Fig. 1 (top) shows that
many potential research designs remain: Each
node represents a decision that a researcher must
make, and each distinct path from the root of the
tree to a terminal leaf node represents a poten-
tial study (12). We emphasize that none of these
designs is intrinsically wrong. Nevertheless, Fig. 1
(bottom) shows that different researchers—each
making individually defensible choices—can ar-
rive at qualitatively different answers to the same
question. For example, a researcher who chose to
measure the AUC [the area under the receiver
operating characteristic (ROC) curve] on a subset
of the data could easily reach the conclusion that
their predictions were “extremely accurate” [e.g.,
(10)], whereas a different researcher who decided
to measure the coefficient of determination (R)
on the whole data set would conclude that 60%
of variance could not be explained [e.g., (6)].

Reality is even more complicated than our
simple example would suggest, for at least three
reasons. First, researchers typically start with
different data sets and choose among poten-
tially many different model classes; thus, the
schematic in Fig. 1is only a portion of the full
design space. Second, researchers often reuse
the same data set to assess the out-of-sample
performance of many candidate models before
choosing one. The resulting process, sometimes
called “human-in-the-loop overfitting,” can pro-
duce gross overestimates of predictive perform-
ance that fail to generalize to new data sets. Third,
in addition to arriving at different answers to
the same question, researchers may choose similar-
sounding prediction tasks that correspond to
different substantive questions. For example, a
popular variant of the task described above is to
observe the progression of a cascade for some
time before making a prediction about its even-
tual size (7). “Peeking” strategies of this sort gen-
erally yield much better predictive performance
than ex ante predictions, which use only infor-
mation available before a given cascade. Im-
portantly, however, they achieve this gain by,
in effect, changing the objective from explana-
tion (i.e., which features account for success?)
to early detection (i.e., which cascades will con-
tinue to spread?). Using the same language
(“predicting cascades”) to describe both exercises
therefore creates confusion about what has been
accomplished, as well as how to compare results
across studies.

Resolving these issues is nontrivial; nevertheless,
some useful lessons can be learned from the past
three decades of progress in the Al applications
of machine learning, as well as from recent
efforts to improve the replicability of scientific
claims in behavioral science (3, 4, 12). First,
comparability of results would be improved by
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establishing consensus on the substantive prob-
lems that are to be solved. If early detection of
popular content is the goal, for example, then
peeking strategies are admissible, but if expla-
nation is the goal, then they are not. Likewise,
AUC is an appropriate metric when balanced
classification (i.e., between classes of equal size)
is a meaningful objective, whereas R or root
mean square error (RMSE) may be more appro-
priate when the actual cascade size is of in-
terest. Second, where specific problems can be
agreed upon, claims about prediction can be
evaluated using the “common task framework”
(e.g., the Netflix prize), in which competing algo-
rithms are evaluated by independent third parties
on standardized, publicly available data sets,
agreed-upon performance metrics, and high-
quality baselines (13). Third, in the absence of
common tasks and data, researchers should
transparently distinguish exploratory from con-
firmatory research. In exploratory analyses, re-
searchers are free to study different tasks, fit
multiple models, try various exclusion rules, and
test on multiple performance metrics. When report-
ing their findings, however, they should trans-
parently declare their full sequence of design
choices to avoid creating a false impression of
having confirmed a hypothesis rather than sim-
ply having generated one (3). Relatedly, they should
report performance in terms of multiple metrics
to avoid creating a false appearance of accuracy.
In cases where data are abundant, moreover,
researchers can increase the validity of explor-
atory research by using a three-way split of their
data into a training set used to fit models, a
validation set used to select any free parameters
that control model capacity and to compare dif-
ferent models, and a test set that is used only
once to quote final performance. Last, having
generated a firm hypothesis through exploratory

research, researchers may then choose to engage
in confirmatory research, which allows them
to make stronger claims. To qualify research as
confirmatory, however, researchers should be
required to preregister their research designs, in-
cluding data preprocessing choices, model spe-
cifications, evaluation metrics, and out-of-sample
predictions, in a public forum such as the Open
Science Framework (https://osf.io). Although strict
adherence to these guidelines may not always
be possible, following them would dramatically
improve the reliability and robustness of results,
as well as facilitating comparisons across studies.

Limits to prediction

How predictable is human behavior? There is
no single answer to this question because hu-
man behavior spans the gamut from highly reg-
ular to wildly unpredictable. At one extreme, a
study of 50,000 mobile phone users (14) found
that in any given hour, users were in their most-
visited location 70% of the time; thus, one could
achieve 70% accuracy on average with the sim-
ple heuristic “Jane will be at her usual spot
today.” At the other extreme, so-called “black
swan” events (e.g., the impact of the Web or the
2008 financial crisis) are thought to be intrin-
sically impossible to predict in any meaningful
sense (I15). Last, for outcomes of intermediate
predictability, such as presidential elections, stock
market movements, and feature films revenues,
the difficulty of prediction can vary tremendously
with the details of the task (e.g., predicting box
office revenues a week versus a year in advance).
To evaluate the accuracy of any particular pre-
dictive model, therefore, we require not only the
relevant baseline comparison—that is, the best
known performance—but also an understanding
of the best possible performance. The latter is
important because when predictions are imper-

fect, the reason could be insufficient data and/
or modeling sophistication, but it could also be
that the phenomenon itself is unpredictable, and
hence that predictive accuracy is subject to some
fundamental limit. In other words, to the extent
that outcomes in complex social systems resem-
ble the outcome of a die roll more than the re-
turn of Halley’s Comet, the potential for accurate
predictions will be correspondingly constrained.
To illustrate the potential for predictive lim-
its, consider again the problem of predicting
diffusion cascades. As with “success” in many
domains [e.g., in cultural markets (8)], the dis-
tribution of outcomes resembles Fig. 2 (top) in
two important respects: First, both the average
and modal success is low (i.e., most tweets, books,
songs, or people experience modest success), and
second, the right tail is highly skewed, consistent
with the observation that a small fraction of
items (“viral” tweets, best-selling books, hit songs,
or celebrities) are orders of magnitude more suc-
cessful than average. The key question posed by
this picture, both for prediction and for explana-
tion, is what determines the position of a given
item in this highly unequal distribution. One ex-
treme stylized explanation, which we label “skill
world” (Fig. 2, bottom left), holds that success is
almost entirely explained by some property that
is intrinsic, albeit possibly hard to measure, which
can be interpreted loosely as skill, quality, or fitness.
At the opposite extreme, what we call “luck world”
(Fig. 2, bottom right) contends that skill has very
little impact on eventual success, which is instead
driven almost entirely by other factors, such as
luck, that are external to the item in question
and effectively random in nature. Where exactly
the real world lies in between these two extremes
has important consequences for prediction. In
skill world, for example, if one could hypotheti-
cally measure skill, then in principle it would be
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Fig. 1. A single question may correspond to many research designs, each
yielding different answers. (Top) A depiction of the many choices involved
in translating the problem of understanding diffusion cascades into a concrete
prediction task, including the choice of data source, task, evaluation metric, and
data preprocessing. The preprocessing choices shown at the terminal nodes
refer to the threshold used to filter observations for regression or define suc-
cessful outcomes for classification. Cascade sizes were log-transformed for all
of the regression tasks. (Bottom) The results of each prediction task, for each
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precision and recall.
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Threshold for defining successful outcomes

metric, as a function of the threshold used in each task. The lower limit of each
vertical axis gives the worst possible performance on each metric, and the top
gives the best. Dashed lines represent the performance of a naive predictor
(always forecasting the global mean for regression or the positive class for clas-
sification), and solid lines show the performance of the fitted model. R?, co-
efficient of determination; AUC, area under the ROC curve; RMSE, root mean
squared error; MAE, mean absolute error; F1 score, the harmonic mean of
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possible to predict success with
almost perfect precision. In luck
world, in contrast, even a “per-
fect” predictor would yield medi-
ocre performance, no better than
predicting that all items will ex-
perience the same (i.e., average)
level of success (I1). It follows,
therefore, that the more that out-
comes are determined by extrin-
sic random factors, the lower the
theoretical best performance that
can be attained by any model.
Aside from some special cases

P (Success|skill)

Empirical Observation

(14), the problem of specifying a
theoretical limit to predictive
accuracy for any given complex
social system remains open, but
it ought to be of interest both
to social scientists and com-
puter scientists. For computer
scientists, if the best-known per-
formance is well below what is
theoretically possible, efforts to
find better model classes, con-
struct more informative features,
or collect more or better data
might be justified. If, however,
the best-known model is already close to the theo-
retical limit, scientific effort might be better
allocated to other tasks, such as devising inter-
ventions that do not rely on accurate predictions
(16). For social scientists, benchmarking of this
sort could also be used to evaluate causal expla-
nations. For example, to the extent that a hy-
pothesized mechanism accounts for less observed
variance than the theoretical limit, it is likely that
other mechanisms remain to be identified. Con-
versely, where the theoretical limit is low (i.e.,
where outcomes are intrinsically unpredictable),
expectations for what can be explained should be
reduced accordingly. For example, although suc-
cess is likely determined to some extent by in-
trinsic factors such as quality or skKill, it also
likely depends to some (potentially large) extent
on extrinsic factors such as luck and cumulative
advantage (8). Depending on the balance between
these two sets of factors, any explanation for why
a particular person, product, or idea succeeded
when other similar entities did not will be lim-
ited, not because we lack the appropriate model
of success, but rather because success itself is in
part random (17).

Prediction versus interpretation

Conversations about the place of prediction in
social science almost always elicit the objection
that an emphasis on predictive accuracy leads
to complex, uninterpretable models that gen-
eralize poorly and offer little insight. There is
merit to this objection: The best-performing mod-
els are often complex, and, as we have already
emphasized, an unthinking focus on predictive
accuracy can lead to spurious claims. However,
it does not follow that predictive accuracy is nec-
essarily at odds with insight into causal mecha-
nisms, for three reasons. First, simple models do

Hofman et al., Science 355, 486-488 (2017)

sign the prediction exercise to ad-
dress that question, clearly stating
and justifying the specific choices
made during the modeling pro-
cess. These requirements do not
preclude exploratory studies, which
remain both necessary and desir-
able for a variety of reasons—for
example, to deepen understanding
of the data, to clarify conceptual
disagreements or ambiguities, or to
generate hypotheses. When evaluat-
ing claims about predictive accu-
racy, however, preference should
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Fig. 2. Schematic illustration of two stylized explanations for an empirically
observed distribution of success. In the observed world (top), the distribution of
success is right-skewed and heavy-tailed, implying that most items experience rel-
atively little success, whereas a tiny minority experience extraordinary success. In “skill
world” (bottom left), the observed distribution is revealed to comprise many item-
specific distributions sharply peaked around the expected value of some (possibly un-
observable) measure of skill; thus, conditioning correctly on skill accounts for almost all
observed variance. In contrast, in “luck world” (bottom right), almost all the observed
variance is attributable to extrinsic random factors; thus, conditioning on even a hypo-
thetically perfect measure of skill would explain very little variance. [Adapted from (11)]

not necessarily generalize better than complex
models (7, 18). Rather, generalization error is a
property of the entire modeling process, includ-
ing researcher degrees of freedom (3) and algo-
rithmic constraints on the model search (I8).
Generalization error should therefore be mini-
mized directly, as illustrated by ensemble methods
such as bagging and boosting (19), which often
succeed in lowering generalization error despite
increasing model complexity. Second, there is
increasing evidence from the machine learning
literature that the trade-off between predictive
accuracy and interpretability may be less severe
than once thought. Specifically, by optimizing
first for generalization error and then searching
for simpler and more interpretable versions of the
resulting model, it may be possible to achieve
close to optimal prediction (subject to the limits
discussed above) while also gaining insight into
the relevant mechanisms (20). Third, it is im-
portant to clarify that “understanding” is often
used to refer both to the subjective feeling of
having made sense of something (i.e., interpreted
it) and also to having successfully accounted for
observed empirical regularities (i.e., predicted
it). Although these two notions of understand-
ing are frequently conflated, neither one nec-
essarily implies the other: It is both possible to
make sense of something ex post that cannot be
predicted ex ante and to make successful predic-
tions that are not interpretable (77). Moreover,
although subjective preferences may differ, there
is no scientific basis for privileging either form
of understanding over the other (I8).

None of this is to suggest that complex pre-
dictive modeling should supplant traditional
approaches to social science. Rather, we advocate
a hybrid approach in which researchers start
with a question of substantive interest and de-
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be given to studies that use stan-
dardized benchmarks that have been
agreed upon by the field or, alterna-
tively, to confirmatory studies that
preregister their predictions. Mecha-
nisms revealed in this manner are
more likely to be replicable, and
hence to qualify as “true,” than
mechanisms that are proposed
solely on the basis of exploratory
analysis and interpretive plausibil-
ity. Properly understood, in other
words, prediction and explanation
should be viewed as complements,
not substitutes, in the pursuit of social scientific
knowledge.
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