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Abstract

Public opinion polling is usually done by random sampling
from the entire population, treating individual opinions as in-
dependent. In the real world, individuals’ opinions are often
correlated, e.g., among friends in a social network. In this pa-
per, we explore the idea of partitioned sampling, which par-
titions individuals with high opinion similarities into groups
and then samples every group separately to obtain an accurate
estimate of the population opinion. We rigorously formulate
the above idea as an optimization problem. We then show that
the simple partitions which contain only one sample in each
group are always better, and reduce finding the optimal sim-
ple partition to a well-studied Min-r-Partition problem. We
adapt an approximation algorithm and a heuristic to solve the
optimization problem. Moreover, to obtain opinion similarity
efficiently, we adapt a well-known opinion evolution model
to characterize social interactions, and provide an exact com-
putation of opinion similarities based on the model. We use
both synthetic and real-world datasets to demonstrate that the
partitioned sampling method results in significant improve-
ment in sampling quality and it is robust when some opinion
similarities are inaccurate or even missing.

1 Introduction
Public opinion is essential nowadays for governments, orga-
nizations and companies to make decisions on their policies,
strategies, products, etc. The most common way to collect
public opinions is polling, typically done by randomly sam-
pling a large number of individuals from the entire popu-
lation and then interviewing them by telephone. This naive
method is unbiased, but conducting interviews is very costly.
On the other hand, in recent years, more and more online so-
cial media data are available and have been used to predict
public opinions on certain issues. Such predictions cost less
human effort, but they are usually biased and may lead to
incorrect decisions. Thus, keeping the estimation unbiased
while saving the cost becomes an important task to pursue.

In this paper, we utilize individuals’ social interactions
(potentially learned from social media data) to improve the
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unbiased sampling method. Our motivation is from the fact
that people’s opinions are often correlated, especially among
friends in a social network, due to their social interactions in
terms of the homophily and influence effects (McPherson,
Smith-Lovin, and Cook 2001; Goel, Mason, and Watts 2010;
Crandall et al. 2008). Such correlations are partially known
in the big data era. For example, many online social media
and networking sites provide publicly available social inter-
action data and user’s sentiment data, and companies also
have large amounts of data about their customers’ prefer-
ences and their social interactions. Our idea is to partition
individuals into different groups by utilizing the above prior
knowledge, such that people within a group are likely to hold
the same opinions. We can then sample very few people in
each group and aggregate the sampling results together to
achieve an accurate estimation. We call this the partitioned
sampling method.

We formulate the above idea as an optimization problem.
In particular, we first characterize individuals’ opinions as
random variables. We then specify our objective as mini-
mizing the expected sample variance of the estimate, and
define the statistical measure of pairwise opinion similar-
ity as the input. Our analysis later shows that this input is
enough to fully determine the solution of the optimization
problem, named the Optimal Partitioned Sampling (OPS)
problem (Section 2).

We solve the OPS problem in two steps (Section 3). First,
we show that the best partition is always a simple partition,
meaning that each group contains only one sample. Second,
we use people’s opinion similarities to construct a weighted
graph and reduce the OPS problem to the Min-r-Partition
problem. We adapt a semi-definite programming algorithm
and a heuristic algorithm to solve the optimization prob-
lem. We further show that partitioned sampling using any
balanced simple partition where group sizes are the same
always out-performs naive sampling method, and thus bal-
anced simple partition is always safe to use even if we only
have partial or inaccurate opinion similarity information.

Next, we adapt existing opinion evolution models and
propose the Voter model with Innate Opinions (VIO) based
on social network interactions (Section 4). We provide an
exact computation of opinion similarities in the steady state
of the model, which is novel in the study of such models.

Finally, we conduct experiments on both synthetic and



real-world datasets to demonstrate the effectiveness and ro-
bustness of our partitioned sampling method (Section 5).

In summary, our contributions include: (a) proposing the
partitioned sampling method to improve sampling quality
based on opinion similarities and formulating it as an op-
timization problem, (b) precisely connecting the OPS prob-
lem to the Min-r-Partition problem and providing efficient
algorithms for the OPS problem, and (c) adapting an opin-
ion evolution model and providing an exact computation of
opinion similarities based on the model.

Due to space constraints, all proofs and further technical
details are included in the full report (Huang, Li, and Chen
2015).

Related Work. There are many sampling methods in
the literature. The most related method is stratified sam-
pling (Bethel 1986; 1989; Chromy 1987; Cochran 2007;
Kozak, Verma, and Zieliński 2007; Keskintürk and Er 2007;
Ballin and Barcaroli 2013). The entire population is first
stratified into homogeneous atomic strata based on individ-
uals’ profiles (e.g., age, gender, etc.), and then they may be
combined to a final stratification and subsample size in each
stratum is allocated to minimize sample variance. Conceptu-
ally, our partitioned sampling method is similar to stratified
sampling, but there are some important differences. First,
stratified sampling partitions individuals based on their pro-
files, which may not imply opinion similarity, while we par-
tition individuals directly based on opinion similarity, and
thus our method is more accurate and flexible. Second, the
technical treatments are different. Stratified sampling treats
individual opinions as fixed and unknown, and requires the
(estimated) mean and standard deviation of opinions in each
stratum to bootstrap the stratified sampling, while we treat
individual opinions as random variables, and use pairwise
opinion similarities for partitioned sampling.

Among studies on social interaction based sampling, Das-
gupta, Kumar, and Sivakumar (2012) utilize social network
connections to facilitate sampling. However, their method
is to ask the voter being sampled to return the estimate of
her friends’ opinions, which changes the polling practice.
In contrast, we still follow the standard polling practice and
only use implicit knowledge on opinion similarities to im-
prove sampling quality. Das et al. (2013) consider the task
of estimating people’s average innate opinion by removing
their social interactions, which is opposite to our task —
we want to utilize opinion interactions for more efficient
sampling of final expressed opinions which are counted in
opinion polls. Graph sampling methods (Gjoka et al. 2010;
Kurant et al. 2011) aim at achieving unbiased uniform sam-
pling on large scale networks when the full network is not
available, which is orthogonal to our partitioned sampling
approach and could be potentially combined.

Various opinion evolution models have been proposed in
the literature (Yildiz et al. 2011; Das et al. 2013; Gionis,
Terzi, and Tsaparas 2013; Li et al. 2015). Our VIO model is
adapted from the voter model (Clifford and Sudbury 1973)
and its extension with stubborn agents (Yildiz et al. 2011).

Graph partitioning has been well studied, and numerous
problem variants and algorithms exist. In this paper, we
reduce the OPS problem to the Min-r-Partition problem,

which was first formulated by Sahni and Gonzalez (1976).
To the best of our knowledge, there is no approximation or
heuristic algorithms for Min-r-Partition. Thus, we adapt a
state-of-art approximation algorithm for the dual problem
(Max-r-Cut) to solve the OPS problem (Frieze and Jerrum
1997). We also propose a greedy algorithm for large graphs,
which takes the idea from a heuristic algorithm for Max-r-
Cut (Zhu, Lin, and Ali 2013).

2 Formulating the OPS Problem
We consider a vertex set V from a social network graph
containing n vertices (or nodes) v1, v2, . . . , vn. Each ver-
tex represents a person in the social network, and has a bi-
nary opinion on some topic of interest. Our task is to es-
timate the average opinion of all individuals in the social
network with sample size budget r. Let f : V → {0, 1} de-
note the opinion function, i.e., we wish to estimate the frac-
tion f̄ = 1

n

∑n
i=1 f(vi). The naive sampling method simply

picks r nodes uniformly at random with replacement from
V to ask their opinions and takes the average of sampled
opinions as the estimate, as denoted below: f̂naive(V, r) =
1
r

∑r
i=1 f(xi), where xi is the i-th sampled node.

In this paper, we propose a general sampling framework
called partitioned sampling. Formally, we first partition the
whole vertex set into several disjoint subsets (called groups),
and then allocate subsample size of each group. We use P =
{(V1, r1), (V2, r2), . . . , (VK , rK)} to represent such a parti-
tion, where V1, V2, . . . , VK are groups, and rk is the subsam-
ple size of group Vk. Next, we do naive sampling inside each
group Vk with its subsample size rk. Finally, we estimate the
average opinion of the population by taking a weighted aver-
age of all subsampling results, with weights proportional to
group sizes: f̂part(P) =

∑K
k=1

|Vk|
|V | · f̂naive(Vk, rk). Notice

that naive sampling is a special case of partitioned sampling
with P = {(V, r)}. One can easily verify that partitioned
sampling is unbiased (Huang, Li, and Chen 2015).

Intuitively, the advantage of using partitioned sampling is
that, if we partition individuals such that people likely hold-
ing the same opinions are partitioned into the same group,
then we can sample very few people in each group to get an
accurate estimate of the average opinion of the group, and
aggregate them to get a good estimate of population mean.
To implement this idea, we assume that some prior knowl-
edge about people’s opinions and their similarities is avail-
able before sampling. Based on these knowledge, our goal
is to find the best partition for partitioned sampling which
achieves the best sampling quality.

Our first research challenge is how to rigorously formulate
the above intuition into an optimization problem. To meet
this challenge, we need to answer (a) which objective func-
tion is the appropriate one for the optimization problem, and
(b) which representation of the prior knowledge about peo-
ple’s opinions and their similarities can be used as the inputs
to the optimization problem.

We first address the objective function. When all indi-
viduals’ opinions f(v1), f(v2), . . . , f(vn) are fixed (but un-
known), the effectiveness of an unbiased randomized sam-
pling method is measured by the standard sample variance



Var(f̂), where f̂ is the estimate. The smaller the sample
variance, the better the sampling method. When the prior
statistical knowledge about people’s opinions is available,
effectively we treat opinions f(v1), f(v2), . . . , f(vn) as ran-
dom variables, and the prior knowledge is some statistics re-
lated to the joint distribution of these random variables. In
this case, the best sampling method should minimize the ex-
pected sample variance E[Var(f̂)], where the expectation is
taken over the randomness from the joint distribution of peo-
ple’s opinions. For clarity, we use EM [VarS(f̂)] to represent
E[Var(f̂)], where subscript M (standing for “model”) rep-
resents the randomness from the joint distribution model of
opinions, and subscript S (standing for “sampling”) repre-
sents sample randomness from the sampling method. 1

We now discuss the input to the optimization task. The
full joint distribution of f(v1), f(v2), . . . , f(vn) requires an
exponential number of parameters and is infeasible as the
input. Then notice that the objective function only involves
first two moments, which suggests us to use the expecta-
tions and pairwise correlations of people’s opinions as the
inputs. Indeed, we find that these knowledge is good enough
to fully characterize the optimization problem. However, we
further discover that a weaker and more direct type of statis-
tics would be enough to enable the optimization problem,
which we formally define as pairwise opinion similarities:
the opinion similarity σij for nodes vi and vj is defined as
the probability that f(vi) and f(vj) have the same values.

With the objective function and inputs settled, we are now
ready to define our optimization problem:

Definition 1. (Optimal Partitioned Sampling) Given a ver-
tex set V = {v1, v2, . . . , vn}, sample size budget r < n, and
opinion similarity σij between every pair of nodes vi and vj ,
the Optimal Partitioned Sampling (OPS) problem is to find
the optimal partition P∗ of V , such that the partitioned sam-
pling method using P∗ achieves the minimum expected sam-
ple variance, i.e., P∗ = arg minP EM [VarS(f̂part(P))],
where P takes among all partitions of V with r samples.

We remark that the OPS problem requires all pairwise
opinion similarities as inputs so as to make the problem
well-defined. We will address the issue of handling missing
or inaccurate opinion similarities in Section 3.1, and show
that partitioned sampling still has outstanding performance.

3 Solving the OPS Problem
There are two issues involved in the OPS problem: one is
how to partition the vertex set V into K groups; the other is
how to allocate the subsample size in each group. For sim-
plifying the OPS problem, we first consider a special kind of
partitions that pick only one sample node in each group.

Definition 2. A simple partition is a partition in which the
subsample size of each group is equal to one.

Simple partitions are important not only for the simplicity
but also for the superiority. We will later show in Theorem 2

1One may propose to use the total variance VarM,S(f̂) as the
objective function. In the full report (Huang, Li, and Chen 2015),
we show that they are equivalent for the optimization task.

that, for any non-simple partitionP , one can easily construct
a simple partition based on P which is at least as good as P .
Thus, we focus on finding the optimal simple partition.

Our approach is constructing a weighted assistant graph
Ga whose vertex set is V , where the weight of edge (vi, vj)
is wij = 1 − σij , and then connecting the OPS problem
with a graph partitioning problem for the graph Ga. For a
simple partition P = {(V1, 1), (V2, 1), . . . , (Vr, 1)} of V ,
we use VolGa

(Vk) to denote the volume of the group Vk
in the graph Ga, defined as VolGa

(Vk) =
∑
vi,vj∈Vk

wij .
We define a cost function g(P) to be the sum of all groups’
volumes inGa, namely, g(P) =

∑r
k=1 VolGa

(Vk). Our ma-
jor technical contribution is to show that minimizing the ex-
pected sample variance of partitioned sampling using any
simple partition P is equivalent to minimizing the cost func-
tion g(P), as summarized by the following theorem:

Theorem 1. Given a vertex set V with pairwise opinion sim-
ilarities {σij}’s and sample size r, for any simple partition
P = {(V1, 1), (V2, 1), . . . , (Vr, 1)} of V ,

EM [VarS(f̂part(P))] = g(P)/2|V |2.

Thus, the optimal simple partition of V minimizes the cost
function g(P).

Proof (Sketch). We use xk to denote the sample node se-
lected in the k-th group Vk of the simple partition P . The
estimate of partitioned sampling with P can be written as
f̂part(P) = 1

n

∑r
k=1 nkf(xk), where n = |V | and nk =

|Vk|. When f is fixed, since f(xk)’s are independent, then

VarS(f̂part(P)) =
1

n2

r∑
k=1

n2k ·VarS [f(xk)]

=
1

n2

r∑
k=1

n2k · (ES [f(xk)2]− ES [f(xk)]2).

We then use the fact that f(xk)2 = f(xk) and ES [f(xk)] =∑
vj∈Vk

f(vj)/nk, and take expectation when f is drawn
from a distribution, to obtain

EM [VarS(f̂part(P))] =
1

n2

r∑
k=1

(nk − 1)
∑
vj∈Vk

EM [f(vj)]

−
∑

vi,vj∈Vk,vi 6=vj

EM [f(vi)f(vj)]

 .

Notice that for any two binary random variables A and B,
we have E[AB] = 1

2 (P[A = B] + E[A] + E[B]− 1). Af-
ter applying this formula to EM [f(vi)f(vj)] and simplify-
ing the expression, we obtain the theorem.

The intuition of the theorem is that, small cost function
indicates small volume of each group, which implies that
the nodes within each group have high opinion similarities.
Theorem 1 makes precise our intuition that grouping peo-
ple with similar opinions would make partitioned sampling
more efficient.



Algorithm 1 Greedy Partitioning Algorithm
Require: Graph Ga with n nodes, number of groups r.

1: Randomly generate a node sequence of all the nodes:
x1, x2, . . . , xn.

2: Let V1 = . . . = Vr = ∅.
3: repeat
4: for i← 1 to n do
5: if xi ∈ Vj for some j ∈ [r] then Vj = Vj \{xi}.
6: end if
7: k ← arg min`∈[r] δg`(xi, {(V1, 1), . . . , (Vr, 1)})
8: Vk ← Vk ∪ {xi}.
9: end for

10: until a predetermined stopping condition holds.
11: Output: Partition P = {(V1, 1), . . . , (Vr, 1)}.

Theorem 1 provides the connection between the OPS
problem and the graph partitioning problem. In particular,
it suggests that we can reduce the OPS problem to the fol-
lowing Min-r-Partition problem: given an undirected graph
with non-negative edge weights, partition the graph into r
groups such that the sum of all groups’ volumes is mini-
mized. However, Min-r-Partition is NP-hard to approximate
to within any finite factor (Kann et al. 1997), and to the best
of our knowledge, there is no approximation or heuristic
algorithms in the literature. The good news is that Min-r-
Partition and its dual problem (Max-r-Cut) are equivalent
in the exact solution, and there exist both approximation
and heuristic algorithms for Max-r-Cut. Frieze and Jerrum
(1997) propose a semi-definite programming (SDP) algo-
rithm which achieves 1 − 1/r + 2 ln r/r2 approximation
ratio and is the best to date. We adopt the SDP algorithm
to solve the OPS problem. The SDP partitioning algorithm
including the SDP relaxation program is given in the full
report (Huang, Li, and Chen 2015). The drawback of the
SDP partitioning algorithm is its inefficiency. Thus, we fur-
ther propose a greedy algorithm to deal with larger graphs,
which takes the idea from a heuristic algorithm for Max-r-
Cut (Zhu, Lin, and Ali 2013).

Given a simple partition P = {(V1, 1), . . . , (Vr, 1)} and
an external node vi which does not belong to Vk for any
k ∈ [r], we define δg`(vi,P) to be g(P ′)− g(P), where P ′
is {(V1, 1), . . . , (V`∪{vi}, 1), . . . , (Vr, 1)}. Thus δg`(vi,P)
represents the increase of the cost function when the exter-
nal node vi is added to the group V` of P . The greedy algo-
rithm (Algorithm 1) first assigns each ungrouped node xi to
the group such that the objective function g(P) is increased
the least. After the first round of greedy assignment, the as-
signment procedure is repeated to further decrease the cost
function, until some stopping condition holds, such as the
decrease is smaller than a predetermined threshold.

The running time of one-round greedy assignment is
O(n + m) where m is the number of edges in Ga. In our
experiment, we will show that greedy partitioning performs
as well as SDP partitioning but could run on much larger
graphs. Theoretically, the performance of partitioned sam-
pling using the simple partition generated by the greedy par-
titioning algorithm is always at least as good as naive sam-

pling, even using the partition generated after the first round
of greedy assignment, as summarized below:
Lemma 1. Given a vertex set V with sample size r, parti-
tioned sampling using the simple partition P generated by
the greedy partitioning algorithm (even after the first round)
is at least as good as naive sampling. Specifically,

EM [VarS(f̂part(P))] ≤ EM [VarS(f̂naive(V, r))].

We call a partition P ′ a refined partition of P , if each
group of P ′ is a subset of some group of P . Suppose we
are given a partition P such that there exists some group
which is allocated more than one sample. Then we can fur-
ther partition that group by the greedy partitioning algorithm
and finally obtain a refined simple partition of P . According
to Lemma 1, the refined simple partition should be at least
as good as the original partition P , summarized as below:
Theorem 2. For any non-simple partition P , there exists a
refined simple partition P ′ of P , which can be constructed
efficiently, such that partitioned sampling using the refined
simple partition P ′ is at least as good as partitioned sam-
pling using the original partition P . Specifically,

EM [VarS(f̂part(P ′))] ≤ EM [VarS(f̂part(P))].

Theorem 2 shows the superiority of simple partitions, and
justifies that it is enough for us to only optimize for parti-
tioned sampling with simple partitions.

3.1 Dealing with Inaccurate Similarities
When accurate opinion similarities are not available, one
still can use a balanced partition (i.e., all groups have the
exact same size) to achieve as least good sampling result as
naive sampling, summarized as below:
Theorem 3. Given a vertex set V with n nodes and sample
size r where n is a multiple of r, partitioned sampling using
any balanced simple partition P is at least as good as naive
sampling. That is, VarS(f̂part(P)) ≤ VarS(f̂naive(V, r))
holds for any fixed opinions f(v1), . . . , f(vn).

Theorem 3 provides a safety net showing that partitioned
sampling would not hurt sampling quality. Thus, we can al-
ways use the greedy algorithm with a balance partition con-
straint to achieve better sampling result. The result will be
further improved if opinion similarities get more accurate.

Furthermore, in the experiment on the real-world dataset
(Section 5), we artificially remove all the opinion similarity
information (set as 0.5) between disconnected individuals,
and perturb the rest opinion similarities more than 30%, to
simulate the condition of missing and inaccurate similarities.
The experimental result shows that the performance of the
greedy algorithm with perturbed inputs is quite close to the
performance of the greedy algorithm with exact inputs. This
demonstrates the robustness of our greedy algorithm in the
face of missing and inaccurate opinion similarity data.

Moreover, since real-world social interaction can be char-
acterized well by opinion evolution models, we adapt a well-
known opinion evolution model and give an exact compu-
tation of opinion similarity based on the model in the next
section. The model essentially provides a more compact rep-
resentation than pairwise similarities.



4 Opinion Evolution Model
We adapt the well-known voter model to describe social
dynamics (Clifford and Sudbury 1973; Yildiz et al. 2011).
Consider a weighted directed social graph G = (V,A)
where V = {v1, v2, . . . , vn} is the vertex set and A is the
weighted adjacency matrix. Each node is associated with
both an innate opinion and an expressed opinion. The in-
nate opinion remains unchanged from external influences,
while the expressed opinion could be shaped by the opin-
ions of one’s neighbors, and is the one observed by sam-
pling. At initial time, each node vi generates its innate opin-
ion f (0)(vi) ∈ {0, 1} from an i.i.d. Bernoulli distribution
with expected value µ(0). The use of i.i.d. distribution for
the innate opinion is due to the lack of prior knowledge on a
brand-new topic, and is also adopted in other models (Das-
gupta, Kumar, and Sivakumar 2012). When t > 0, each node
vi updates its expressed opinion f (t)(vi) ∈ {0, 1} indepen-
dently according to a Poisson process with updating rate λi:
at its Poisson arrival time t, node vi sets f (t)(vi) to its innate
opinion with an inward probability pi > 0, or with proba-
bility (1 − pi)Aij/

∑n
k=1Aik, adopts its out-neighbor vj’s

expressed opinion f (t)(vj). We call the model Voter model
with Innate Opinions (VIO).

The VIO model reaches a steady state if the joint distribu-
tion of all node’s expressed opinions no longer changes over
time.2 We use notation f (∞)(vi) to represent the steady-
state expressed opinion of node vi, which is a random vari-
able. We assume that opinion sampling is done in the steady
state, which means that people have sufficiently communi-
cated within the social network.

To facilitate analysis of the VIO model, we take an equiv-
alent view of the VIO model as coalescing random walks on
an augmented graph G = (V ∪ V ′, E ∪ {e′1, e′2, . . . , e′n}),
where V ′ = {v′1, v′2, . . . , v′n} is a copy of V , E is the edge
set of G and e′i = (vi, v

′
i) for all i. In this viewpoint, we

have n walkers randomly wandering on G “back in time”
as follows. At time t, all walkers are separately located at
v1, v2, · · · , vn. Suppose before time t, vi is the last node
who updated its expressed opinion at time τ < t, then the n
walkers stay stationary on their nodes from time t until time
τ “back in time”. At time τ , the walker at node vi takes a
walk step: she either walks to vi’s out-neighbor vj ∈ V with
probability (1−pi)Aij/

∑n
k=1Aik, or walks to v′i ∈ V ′ with

probability pi. If any walker (e.g., the walker starting from
node vi) walks to a node (e.g., v′k) in V ′, then she stops her
walk. In the VIO model language, this is equivalent to say-
ing that vi’s opinion at time t is determined by vk’s innate
opinion, namely f (t)(vi) = f (0)(vk). If two random walkers
meet at the same node in V at any time, they walk together
from now on following the above rules (hence the name co-
alescing). Finally, at time t = 0, if the walker is still at some
node vi ∈ V , she always walks to v′i ∈ V ′.

We now define some key parameters based on the coa-
lescing random walk model, which will be directly used for
computing the opinion similarity later.

2The VIO model has a unique joint distribution for the final
expressed opinions (Huang, Li, and Chen 2015).

Definition 3. Let I`ij denote the event that two random walk-
ers starting from vi and vj at time t = ∞ eventually meet
and the first node they meet at is v` ∈ V . Let Q be the
n × n matrix where Qij denotes the probability that a ran-
dom walker starting from vi at time t =∞ ends at v′j ∈ V ′.

Lemma 2. For i, j, ` ∈ [n], P
[
I`ij
]

is the unique solution of
the following linear equation system:

P
[
I`ij
]

=


0, i = j 6= `,

1, i = j = `,∑n
a=1

λi(1−pi)Aia

(λi+λj)di
P[I`aj ]

+
∑n
b=1

λj(1−pj)Ajb

(λi+λj)dj
P[I`ib], i 6= j,

where di =
∑n
j=1Aij is vi’s weighted out-degree. In addi-

tion, matrix Q is computed by

Q =
(
I − (I − P )D−1A

)−1
P,

where P = diag(p1, . . . , pn) and D = diag(d1, . . . , dn)
are two diagonal matrices, and matrix I − (I − P )D−1A
is invertible when pi > 0 for all i ∈ [n].

Our main analytical result concerning the VIO model is
the following exact computation of pairwise opinion corre-
lation, which directly leads to opinion similarity:
Lemma 3. For any i, j ∈ [n], opinion correlation ρij in the
steady state is equal to the probability that two coalescing
random walks starting from vi and vj at time t = ∞ end at
the same absorbing node in V ′. Moreover, opinion correla-
tion ρij can be computed by

ρij = CorM

(
f (∞)(vi), f

(∞)(vj)
)

=

n∑
k=1

QikQjk +

n∑
`=1

P
[
I`ij
](

1−
n∑
k=1

Q2
`k

)
where I`ij andQ are defined in Definition 3, and P

[
I`ij
]

and
Q are computed by Lemma 2.

Theorem 4. For any two nodes vi and vj , their opinion sim-
ilarity σij in the steady state of the VIO model is equal to:

σij = 1− 2µ(0)(1− µ(0))(1− ρij)
where opinion correlation ρij is computed by Lemma 3.

Notice that for partitioning algorithms, we only need
1 − σij as the edge weight and by the above theorem this
weight value is proportional to 1 − ρij , which means the
exact value of µ(0) is irrelevant for partitioning algorithms.
In the full report (Huang, Li, and Chen 2015), we will pro-
vide an efficient computation of all pairwise opinion corre-
lations with running time O(nmR) by a carefully designed
iterative algorithm, where m is the number of edges of G
which is commonly sparse, and R is the number of itera-
tions. We further remark that the correlations are calculated
offline based on the existing network and historical data, and
thus the complexity compared to the sampling cost of tele-
phone interview or network survey is relatively small.

In the full report (Huang, Li, and Chen 2015), we fur-
ther extend the VIO model to include (a) non-i.i.d. distribu-
tions of the innate opinions, and (b) negative edges as in the
signed voter model (Li et al. 2015).
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(b) Synthetic graph (10,000 nodes)
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(c) Synthetic graph (10,000 nodes)
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(e) Weibo graph with λi = 1
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(f) Weibo graph with λi set to the number
of vi’s tweets in a year

5 Experimental Evaluation
In this section, we compare the sampling quality of par-
titioned sampling using greedy partitioning (Greedy) and
partitioned sampling using SDP partitioning3 (SDP) against
naive sampling (Naive) based on the VIO model, using both
synthetic and real-world datasets. We describe major param-
eter settings for the experiments below, while leave the com-
plete settings in the full report (Huang, Li, and Chen 2015)
due to space constraints.

In our experiment, when the parameters of VIO model are
set, the simulation is done by (a) calculating the pairwise
opinion similarities by Theorem 4, (b) running the partition-
ing algorithms to obtain the partition candidate, and (c) com-
puting the expected variance EM [VarS(f̂)] by Theorem 1.

Synthetic Dataset. We use the planted partition model
(Condon and Karp 2001) to generate undirected graphs,
which aims at resembling the community structure in real-
world social networks. Given n vertices and k latent disjoint
groups, every edge (vi, vj) is generated with a high proba-
bility pH if vi and vj are in the same latent group, otherwise

3We use CVX package (Grant and Boyd 2014; 2008) to solve
the SDP programming.

with a low probability pL.
We generate two different sizes of synthetic graphs. The

small one includes 100 nodes and 20 latent groups, and pH ,
pL and λi are set to 0.9, 0.01 and 1, respectively. The inward
probability of each node is randomly chosen from [0, 0.01].
Fig (a) shows that, when the sample size r is small, the per-
formance of SDP and Greedy are similar to each other and
both better than Naive. When the sample size r increases,
Greedy becomes much better than Naive, and SDP starts
getting worse. For the large synthetic graph with 10k nodes
and 500 latent groups, SDP is no longer feasible, thus we
compare the improvement of Greedy against Naive. In Fig
(b), we range pH/pL and find that larger pH/pL (more ap-
parent clustering) indicates the better performance of the
partitioned sampling method. When pH/pL increases from
103 to 105, the improvement of expected sample variance
increases rapidly. When pH/pL > 105, the improvement
becomes saturated. This is because the number of edges
which cross different latent groups are so few that it de-
creases rather slowly and the graph structure is almost un-
changed when pH/pL increases further. In Fig (c), we set
all nodes’ inward probabilities to be equal and vary them
from 0.02 to 0.8. The figure shows that the lower inward
probability leads to the better performance of partitioned
sampling. When the inward probability gets small, the im-
provement expected sample variance increases rapidly. This
is because a lower inward probability means people inter-
acting more with each other and thus their opinions are cor-
related more significantly. According to the above experi-
ments, we conclude that the larger pH/pL and the lower in-
ward probability make people’s opinions more clustered and
more correlated inside the clusters, and our partitioned sam-
pling method works better for these cases.

Real-World Dataset. We use the micro-blog data from
weibo.com (Yuan et al. 2013), which contains 100,102
users and 30,518,600 tweets within a one-year timeline from
1/1/2013 to 1/1/2014. We treat the user following relation-
ship between two users as a directed edge (with weight 1).

We first learn the distribution of user’s inward probabili-
ties from the data. We extract a series of users’ opinions on
12 specific topics (e.g., Microsoft, iPhone, etc.) by applying
a keyword classifier and a sentiment analyzer (Tang et al.
2014) to the tweets. We also collect their relationships and
form a subgraph for each topic. Then we use VIO model to
fit the data by solving a minimization problem w.r.t. inward
probabilities using gradient descent. Fig (d) shows the distri-
bution of inward probabilities for three of the topics, namely
Spring Festival Gala (68 users), Microsoft (66 users) and
iPhone (59 users), and the results for other topics are simi-
lar. From these distributions, we observe that (a) over 45%
inward probabilities locate in [0, 0.2]; (b) the probability that
pi locates in [0.8, 1] is the second highest; (c) others almost
uniformly locate in [0.2, 0.8]. This indicates that in the real
world, most people tend to adopt others’ opinions, which
matches the intuition that people are often affected by oth-
ers. We manually look up the users who locate in [0.8, 1],
and find that most of them are media accounts and verified
users. This matches our intuition that those users always take
effort to spread their own opinions on the web but rarely



adopt others’ opinions, hence they should have large inward
probabilities.

Now we simulate the sampling methods on the Weibo
graph. We first remove the users who do not follow any-
one iteratively, and get the graph including 40,787 nodes
and 165,956 directed edges. We generate each user’s inward
probability following the distribution we learned. We use
two different settings for opinion updating rates: one is to
set λi = 1 for all i ∈ [n]; the other is to set λi to the num-
ber of vi’s tweets in a year. The improvement of Greedy
against Naive with two different updating rate settings are
similar as shown in Fig (e) and (f). In particular, if we
fix EM [VarS(f̂)] to be 3.86× 10−5, Greedy needs 4794
samples while Naive needs 8000 samples (saving 40.1%)
in Fig (e), and Greedy needs 4885 samples while Naive
needs 8000 samples (saving 38.9%) in Fig (f). This indi-
cates that partitioned sampling greatly improves the sam-
pling quality, and the sample size saving is more apparent
when the expected sample variance gets smaller (i.e., the
requirement of sampling quality gets higher). Moreover, in
order to test the performance of partitioned sampling with
missing and inaccurate opinion similarities, we artificially
remove all the opinion similarity information between dis-
connected nodes (set similarities as 0.5), and perturb each
rest similarity σij with a random noise eij in the range
[−0.1 − 30% · σij , 0.1 + 30% · σij ] (set perturbed similar-
ity of σij as the median of {0, σij + eij , 1}). Fig (e) and
(f) show that Greedy using the above perturbed similarities
(denoted as Greedy P) is very close to Greedy, and still
has a significant improvement against naive sampling.

In conclusion, the experimental results demonstrate the
excellent performance of our partitioned sampling method
both on synthetic and real-world datasets, even when the
opinion similarities are missing or inaccurate.
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