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FORTRAN DO loop which is used is that the range of  
values assumed by the index variable is known upon 
entry to the loop. Thus, most  but not all ALGOL for  
loops can be handled. 

The analysis is performed from the standpoint of  a 
compiler for a multiprocessor computer.  Two general 
methods are described. The hyperplane method is 
applicable to both multiple instruction stream computers  
and single instruction stream computers  such as the 
ILLIAC IV, the CDC STAR-100 and the Texas Instruments 
ASC. The coordinate method is applicable to single 
instruction stream computers.  Both methods translate a 
nest of  DO loops into a form explicitly indicating the 
parallel execution. The DO loops may be of a fairly 
general nature. The major  restrictions are that the loop 
body contain no I /o  and no transfer of  control to any 
statement outside the loop. 

These methods are basically quite simple, and can 
drastically reduce the execution time of the loop on a 
parallel computer.  They are currently being imple- 
mented in the ILLIAC IV FORTRAN compiler. Preliminary 
results indicate that they will yield parallel execution 
for a fairly large class of  programs. 

The two methods are described separately in the 
following two sections. The final section discusses 
some practical considerations for their implementation. 

Introduction 

Any program using a significant amount  of  computer  
time spends most  of  that time executing one or more 
loops. For  a large class of  programs, these loops can be 
represented as FORTRAN DO loops. We consider meth- 
ods of  executing these loops on a multiprocessor com- 
puter, in which different processors independently 
execute different iterations of  the loop at the same time. 

This approach was inspired by the ILLIAC IV since 
it is the only type of parallel computat ion which that 
computer  can perform [1]. However,  even for a com- 
puter with independent processors, it is inherently more 
efficient than the usual approach of having the processors 
work together on a single iteration of the loop. This is 
because it requires much less communicat ion between 
individual processors. 

The methods presented are, of course, independent 
of  "the syntax of FORTRAN. The basic feature of  the 
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I. The Hyperplane Method 

Example. To illustrate the hyperplane method, we 
consider the following loop. 

DO 99 1 = 1, L 
DO 99 J = 2, M 
DO 99 K = 2, N 
U(J,K) = (U(Jq-I,K) q- U(J, Kq-1) 

@ @ @ 
q- U(J--1,K) q- U(J,K--1)) • .25 

@ @ 
99 CONTINUE (1) 

(For future reference, we have assigned a name to 
each occurrence of the variable U, and written it in a 
circle beneath the occurrence.) This is a simplified 
version of a standard relaxation computat ion.  

The loop body is executed L(M--  1)(N-- 1) t imes- -  
once for each point (I,J,K) in the index set ~ = { (i,j,k) : 
1 < i < L ,  2 N j N  M, 2 N k N N}. We want to speed 
up the computat ion by performing some of these execu- 
tions concurrently, using multiple processors. Of course, 
this must be done in such a way as to produce the same 
results as the given loop. 

The obvious approach is to expand the loop into the 
L(M-- 1)(N-- 1) statements 

U(2,2) . . . .  
U(2,3) . . . .  

and then apply the techniques described in [2]. This is at 
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best a formidable task. It is impossible it L, M, and N 
are not all known at compile time. 

Our approach is to try to  execute the loop body 
concurrently for all points (1,J,K) in a lying along a 
plane. In particular, the hyperplane method will find 
that the body of loop (1) can be executed concurrently 
for all points (I,J,K) lying in the plane defined by 
21 9- J 9- K = constant. The constant is incremented 
after each execution, until the loop body has been 
executed for all points in a. 

To describe this more precisely, we need a means of 
expressing concurrent computation. We use the state- 
ment 

DO 99 CONC FOR ALL (J,K) E 8 
where 8 is a finite set of pairs of integers) It has the 
following meaning: Assign a separate processor to each 
element of 8. For  each (j,k) E 8, the processor assigned 
to (j,k) is to set J = j,  g = k and execute the state- 
ments following the DO CONC statement through 
statement 99. All processors are to run concurrently, 
completely independent of one another. No synchroniza- 
tion is assumed. Execution is complete when all proc- 
essors have executed statement 99. 

Given loop (1), the hyperplane method chooses 
new index variables i, J , / ~  related t o / ,  J, K by 

i = 2 I + J + K  
J = I  
/~ = r (2 )  

and the inverse relations 

I = J  
J = i - 2 J - E  
K = g7 . (2') 

Loop (1) is then rewritten as 

DO 9 9 i =  6 , 2 . L  9- M g - N  
DO 99 CONC FOR ALL (J,l{) E { (j, k) : 

1 < j < L ,  2 < i - - 2 j - - k ~ M a n d  
2 < k < N }  

U(i-- 2 . J -  gT,/() = ( U ( i -  2 , J - / ~ q -  1,/{7) 
+ U ( 1 - 2 . j - F S ,  I~+I) + U ( i - 2 . J  

- R -  1,/~) 4- U ( i - 2 . J - K , K -  1)) 
• .25 

99 CONTINUE (3) 

Using relations (2) and (2'), the reader can check 
that loop (3) performs the same L(M--1)(N--1)  loop 
body executions as loop (1), except in a different order. 
To see why both loops give the same results, consider 
the computation of U(4,6) in the execution of the 
original loop body for the element (9,4,6) E ~. It is set 
equal to the average of its four neighboring array 
elements: U(5,6), U(4,7), U(3,6), U(4,5). The values of 
U(5,6) and U(4,7) were calculated during the execution 
of the loop body for (8,5,6) and (8,4,7), respectively, 

We remind the reader that a set is an unordered collection of 
elements. We will not bother to define a syntax foc expressing sets, 
but will use the customary informal mathematical notation. 

Fig. 1. Computation of U(4,6) for l = 9. 

• Computed 
when ! = 8 

6 u • # 
Computed F "  when I = 9 

2 4 

i.e. during the previous execution of the DO I loop, with 
1 = 8. The values of U(3,6) and U(4,5) were calculated 
during the current execution of the outer DO 1 loop, 
with I = 9. This is shown in Figure 1. 

Now consider loop (3). At any time during its 
execution, U(p,q) is being computed concurrently for 
up to half the elements of the array U. These computa- 
tions involve many different values of 1. Figure 2 illus- 
trates the execution of the DO CONC for 7 = 27. The 
points (p,q) for which U(p,q) is being computed are 
marked with "x"s, and the value of I for the computa- 
tion is indicated. Figure 3 shows the same thing for 
i =  28. 

Note how the values being used in the computation 
of U(4,6) in Figure 3 were computed in Figure 2. A 
comparison with Figure 1 illustrates why this method 
of concurrent execution is equivalent to the algorithm 
specified by loop (1). 

The rewriting has reduced the number of sequential 
iterations from L(M--1)(N--1)  to 2L + M + N -- 5. 
This gives the possibility of an enormous reduction in 
execution time. The actual saving in execution time will 
depend upon the overhead in executing the DO CONC, 
as well as the actual number of processors available. 
The DO CONC set contains up to (M--1)(N--1) /2  
points. Since individual executions may be asyn- 
chronous, the DO CONC is easily implemented with 
fewer processors. 

We must point out that a real program would prob- 
ably have a loop terminated by a convergence test in 
place of the outer DO I loop. The hyperplane method 
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Fig. 2. Execution for [ = 27. 
q. 
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Fig. 3. Execution for 7 = 28. 
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could then only be applied to the D O  J / D O  K loop. 
The reader can check that applying the general method 
described below to this loop reduces the number  of 
sequential iterations from (M--  1)(N-- I) to M q- N -- 3 
--s t i l l  a significant reduction. 

N o t a t i o n s  a n d  A s s u m p t i o n s  

To describe the general methods, we introduce some 
notation. We consider loops of the following form: 

D O  11 = l 1, u I 

D O  F = ln, u ~ 

[ loop body I 

C O N T I N U E  (4) 

where l j and u j may be any integer-valued expressions, 
possibly involving 11, . . . ,  I j-1. (Our use of superscripts 
and subscripts is in accord with the usual notation of 
tensor algebra.) We could allow arbitrary constant 
D O  increments, but this would add many complicated 
details. 

A variable which appears on the left-hand side of an 
assignment statement in the loop body is called a 
genera ted  variable. 

We make the following assumptions about  the 
loop body. 

(AI) It  contains no I/O statement. 
(A2) It  contains no transfer of  control to any statement 

outside the loop. 
(A3) I t  contains no subroutine or function call which 

can modify data. 

8 5  

(A4) Any occurrence in the loop body of a generated 
variable V A R  is of  the form V A R ( e  1, . . . ,  e ') ,  
where each e ~ is an expression not containing any 
generated variable. 

Assumption (A3) could be replaced by the assump- 
tion that we know which data can be modified by a 
subroutine or function call. However, this would com- 
plicate the discussion. Assumption (A4) must be 
strengthened to assure that the hyperplane method will 
work. This will be done below. 

We let Z denote the set of  all integers, and Z ~ 
denote the set of n-tuples of integers. For  completeness, 
we define Z ° = {0}. The index set  ~ of loop (4) is de- 
fined to be the subset of  Z" consisting of all values as- 
sumed by (11, . . . ,  I") during execution of the loop, so 

= {(i 1, . . . ,  i") : l 1 < i I ~ U 1, " ' "  }. 

Note that ~ may not be known at compile time. The 
element (i 1, . . . ,  i ") of ~ represents the execution of 

l 1 ' the loop body for11 " . . . , / ~  = i n. 
We order the elements of  Z" lexicographically in 

the usual manner,  with (2,9,13) < (3 , -1 ,10)  < 
(3,0,0). For  any elements P and Q of ~, the loop body 
is executed for P before it is executed for Q if and only 
if P <  Q. 

Addition and subtraction of elements of  Z" are 
defined as usual by coordinate-wise addition and sub- 
traction. Thus (3,-- 1,0) -F (2,2,4) = (5,1,4). We let 0 
denote the element (0, 0, . . . ,  0). It  is easy to see that 
for any P , Q  C z n, we have P < Q if and only if 
Q - P > O .  
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R e w r i t i n g  the L o o p  
To generalize the rewriting procedure used in our 

example, loop (4) will be rewritten in the form 

DO a f = k I , /1 

DO a Jk = kk, k 
DO ot CONC FOR A L L  

(jk+l, . . . ,  j , )  E 3s~ ..... j~ 
[ loop body ] 

a CONTINUE (5) 

where Ssl ..... jk is a subset of Z "-k which may depend 
upon the values of f ,  . . . ,  jk. 

To perform this rewriting, we will construct a one- 
to-one mapping J : Z" ~ Z" of the form 

j [ ( / t , . . ,  in)] = ( ~  astlj, . . . ~ aj,,i i )  
' ¢=x ' ~=1 ( 6 )  

= ( j 1 , . . . , j , )  

for integers a / .  (2) We then choose the k ~, t~ ~ and 
$sl ..... j~ so that the index set ~ of loop (5) equals 
J(~), and write the body of loop (5) so that its execu- 
tion for the point J(P) E ~ is equivalent to the execu- 
tion of the body of loop (4) for P E a. 

Define the mapping r :Z" ---~Z k by r [ ( I  1, . . . ,  I")] = 
( j ~ , . . . ,  jk), so ~r(P) consists of the first k coordinates 
of J(P). It is then clear that for any points J(P), 
J(Q) E ~, the execution of the body of loop (5) for 
J(P) precedes the execution for J(Q) if and only if 
It(P) < 7r(Q). If we consider loop (5) to be a reordering 
of the execution of loop (4), this statement is equivalent 
to the following. 

(E) For  any P,Q E ~, the execution of the loop body 
for P precedes that for Q, in the new ordering of 
executions, if and only if ~-(P) < 7r(Q). 

The loop body is executed concurrently for alk 
elements of ~ lying on a set of the form { P : r ( P )  = 
constant E Zk}. Since J is assumed to be a one-to- 
one linear mapping, these sets are parallel ( n - k ) -  
dimensional planes in Z". ¢3) We thus have concurrent 
execution of the loop body along (n-k) -d imensional  
planes through the index set. For  k = 1, these are 
hyperplanes. We use the name "hyperplane method" 
to also include the case k > 1. 

In our example, we had n = 3 and k -- 1. The map- 
ping J : Z  3 ---4 Z 3 is defined by J[(i,j,k)] = (2i+j+k,i ,k) ,  
and ~- :Z  3 ---~Z is defined by ~r[(i,j,k)] = 2i + j  + k. 

The general problem is to find a mapping J for which 
loop (5) gives an algorithm equivalent to that of loop 
(4). By requiring that J be a linear mapping, we have 
greatly restricted the class of mappings which are to be 
examined. It is this restriction which makes the analysis 
feasible. 

J is one-to-one if and only if (6) can be-solved to write the 
I s. as linear expressions in the J~ with integer coefficients. 

3 We consider Z ~ to be a subset of ordinary Euclidean n-space 
in the obvious way. 

Bas ic  Cons iderat ions  

Let VAR be a program array variable. An occurrence 
of  VAR is any appearance of it in the loop body. If  it 
appears on the left-hand side of an assignment state- 
ment, the occurrence is called a generation; otherwise, 
it is called a use. Thus, generations modify the values of 
elements of the array, and uses do not. 

Consider the use u2 of the variable U in loop (1). 
During execution of the loop body for (i,j,k) E ~, 
it references the array element U(j+ 1,k). We define the 
occurrence mapping Tu2:g ~ Z 2 by T~[(i,j,k)] = 
( j +  l,k). Similarly, if f is an occurrence of an r-dimen- 
sional generated variable VAR in loop (4), then the 
occurrence mapping TI : g ~ Z r is defined so that f 
references the Tz(P) element of VAR during execution 
of the loop body for P E g. Assumption (A4) guarantees 
that this is a reasonable definition. 

We are looking for a condition to assure that the 
rewritten loop (5) is equivalent to the given loop (4). 
F rom our example, we can see that the significant con- 
sideration is the sequence of references to array ele- 
ments. In loop (1), a value for U(5,6) is generated by 
ul during execution of the loop body for (8,5,6) E ~. 
This value is used by u2 during the execution for (9,4,6). 
Therefore, when we change the order of executions in 
the rewriting, we must still have the execution for 
(8,5,6) precede the execution for (9,4,6). By statement 
(E) above, this means that r must satisfy 7r[(8,5,6)] < 
r[(9,4,6)]. Indeed, for our particular choice of r we 
have ~-[(8,5,6)] = 27 < ~-[(9,4,6)] = 28. 

In general, let VAR be any variable. If a generation 
and a use of VAR both reference the same array ele- 
ment during execution of the loop, then the order of  
the references must be preserved. In other words, i f f  
is a generation and g is a use of VAR, and TI(P) = 
To(Q) for some points P, Q E a, then: (i) if P < Q, 
we must have ~r(P) < lr(Q); and (ii) if Q < P, we 
must have ~r(Q) < 7r(P). In the above example, 
T~I [(8,5,6)] = T,~[(9,4,6)] = (5,6), and (8,5,6) < (9,4,6), 
so we must have ~r[(8,5,6)] < ~r[(9,4,6)]. Note  that if P 
= Q, then the order of execution of the references will 
automatically be preserved since they happen during 
a single execution of the loop body. 

The above rule should also apply to any two genera- 
tions of a variable. This guarantees that the variable 
has the correct values after the loop is run. It also 
ensures that a use will always obtain the value assigned 
by the correct generation. 

These remarks can be combined into the following 
basic rule. 

(C1) For  every variable, and every ordered pair of 
occurrencesf,  g of that variable, at least one of which 
is a generation: if TI(P) = Ta(Q) for P,Q E ~ with 
P < Q, then ~r must satisfy the relation 7r(P) < 
~'(a). 

Notice that the case Q < P is obtained by interchanging 
f and g. 

86 Communications February 1974 
of Volume 17 
the ACM Number 2 



Table I. 

Sets 

(ul,ul) = (*,0,0) 
(ul,u2) = (%--1,0) 
(u2,ul) = (*,1,0) 

(ul,u3) = (*,0,--1) 
(u3,ul) = (*,0,1) 

Elements Constraints > 0  
(+,0,0) a~ > 0 
(+ , -1 ,0)  al - a2 > 0 
(+,1,0) al + a2 > 0 
(0,1,0) a2 > 0 
(+ ,0 , -1)  al - a3 > 0 
(+,0,1) al + a~ > 0 
(0,0,1) a3 > 0 

(ul,u4) = (,,1,0) same as (u2,ul) 
(u4,ul) = (*,-1,0) same as (ul,u2) 
(ul,uS) = (*,0,1) same as (u3,ul) 
(u5,ul) = (*,0,-1) same as (ul,u3) 

Rule (Cl)  ensures that  the new ordering o f  execu- 
tions o f  the loop body  preserves all relevant orderings 
of  variable references. The orderings not  necessarily 
preserved are those between references to different array 
elements, and between two uses. Changing just  these 
orderings cannot  change the value o f  anything com- 
puted by the loop. The assumptions  we have made 
about  the loop body,  especially the assumption that  it 
contains no premature exit f rom the loop,  therefore 
imply that  rule (C1) gives a sufficient condi t ion for 
loop (5) to be equivalent to loop (4). Fo r  most  loops, 
(C1) is also a necessary condit ion.  

The Sets (f ,  g) 
The trouble with rule (C1) is that  it requires us to 

consider many  pairs of  points P ,Q  in ~. Fo r  the loop 
(1), there are (L - -1 )  ( M - 1 )  ( N - 1 )  pairs of  elements 
P,Q E ~ with T, I (P)  = T,,.,(Q) and P < Q. However ,  
T~I(P) = T~,~(Q) only if Q = P -I- ( , , - 1 , 0 ) ,  where • 
denotes any integer. We  would like to be able to work  
with the single descriptor ( . , - -1 ,  0) rather than all 
the pairs P,Q.  

This suggests the following definition. Fo r  any 
occurrence f , g  of  a generated variable in loop (4), 
define the subset ( f ,  g) o f Z  ~ by ( f ,  g) = {X : TI(P)  = 
T o ( P + X )  for some P E Z"}. Observe that  ( f ,g )  is 
independent  of  the index set ~. In our  example, 
(ul, u2) = {(x,--1,0) : x  E Z}, and we denote this set 
by ( . , - -  1,0). The other sets ( f ,g )  of  loop (1) which we 
will use are listed in Table I. 

We now rewrite rule (C1) in terms of  the sets ( f ,g) .  
First, note that  7r(P+X)  = 7r(P) + 7r(X), since we 
have assumed ~- to be a linear mapping.  (Recall the 
definition of  7r, and formula  (6).) Also, remember  that  
A < A 9- B i f a n d  only if B > 0. Then just  substi- 
tut ing P 9- X for Q in rule (Cl)  yields this rule. 

(CI ' )  F o r . . .  generat ion:  if Tf (P)  = T o ( P + X )  for 
P,P  q- X C  ~ with X > 0, then 7r must  satisfy 
the relation ~-(X) > 0. 

Removing  the clause " for  P,P  9- X E ~" f rom (CI ' )  
gives a stronger condit ion for ~- to satisfy. Doing  
this and using the definition of  ( f ,g )  then gives the 
following more  stringent rule. 

(C2) For  every variable, and every ordered pair  o f  
occurrencesf ,  g o f  that  variable, at least one of  which 
is a generat ion:  for every X E ( f ,g )  with X > 0, 
7r must  satisfy ~'(X) > 0. 

Any  ~r satisfying (C2) also satisfies (C1). Hence, 
rule (C2) gives a sufficient condi t ion for  loop (5) to be 
equivalent to loop (4). Moreover ,  (C2) is independent  
of  the index set ~. 

Each  condi t ion 7r(X) > 0 given by rule C2 is a 
constra int  on our  choice o f  7r. I f  7r satisfies all these 
constraints,  then loop (5) is equivalent to loop (4). 
Table I lists the constraints  on ~r for loop (1). In  this 
case ~r : Z  3 ---~Z is o f  the form rr[(i,j,k)] = a~i + a2j + 
a3k, and Table I gives the constraints which must  be 
satisfied by ax, a2, and a3.  Fo r  example, the set o f  ele- 
ments > 0 i n  (ul, u2) is ( + , - - 1 , 0 )  = {(x , - - l ,0 )  : 
x >  0}. The requirement  that  ~-[(x,-- 1,0)] > 0 for each 
x > 0 yields the constraint  a~ -- a2 > 0. Our  choice of  
al = 2, a2 = as = 1 satisfies all these constraints.  
Therefore,  loop (3) is equivalent to loop (1). 

Computing the Sets (f ,g) 
In order to guarantee that  we find a mapping  ~r 

which satisfies (C2), some further restriction must  be 
made on the forms of  variable occurrences allowed in 
the loop body.  We make the following assumption.  

(A5) Each  occurrence o f  a generated variable F A R  in 
the loop body  is of  the fo rm 

V A n  ( Iq  +ml ,  . . . , Iir 'Jvmr), (7) 

where the m ~ are integer constants,  and j l , . . .  ,jr are 
r distinct integers between 1 and n. Moreover ,  the 
j~ are t h e s a m e  for any two occurrences o f  VAR.  

Thus,  if a generation A(I2--1,I1,14+1) appears in 
the loop body,  then the occurrence A ( f + l , I X + 6 , 1 4 )  
may also appear. However,  the occurrence A ( I  1 -  1,I2,/4) 
may  not.  

It is possible to generalize our  results to the case o f  
occurrences of  the fo rm VAR(e  ~, . . . , e r) in which e ~ is 
any linear function of  fl, . . . ,  F .  However ,  the results 
become weaker and much  more  complicated.  

N o w  let f be the occurrence (7) and let g be 
the occurrence V A R ( I  j' + n  1, . . . , I  jr-'}-n'). Then 
T i [ ( p ~ , . . . ,  p")] = ( p J I + m ~ , . . . ,  pJr+rnr), and 
To[(p 1, . . . ,  p")] = ( p J ' + n  1, . . . ,  pJ'+nr) .  It  is easy to 
see f rom the definition that  ( f , g )  is the set o f  all ele- 
ments of  Z" whose jkth coordinate  is m k -- n k, for 
k = 1 , . . . ,  r, and whose remaining n -- r coordinates  
are any integers. 

As an example, suppose n = 5 a n d f ,  g are the oc- 
currences VAR( I3+ I , f  + 5,IS), VAR(I~--}-I,I2,IS--k l).  
Then ( f ,g )  is the set {(x,5,0,y,--1) :x ,  y E Z}, which 
we denote by ( , , 5 ,0 , . , - -1 ) .  

The index variable I j is said to be missing f rom  V A R  
if f l  is not  one of  the I jk in (7). It is clear that  I j is miss- 
ing f rom V A R  if and only if the set ( f ,g )  has an • in 
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the j th  coordinate,  for any occurrences f , g  of  VAR.  
We call f a missing index variable if it is missing f rom 
some generated variable in the loop.  

The Hyperplane Theorem 
The following result is an impor tan t  special case of  

a more  general result which will be given later. 4 The 
p r o o f  contains an a lgor i thm for const ruct ing a map-  
ping 7r which satisfies (C2). The reader can check that  
it gives the ~- which we used for loop (1). As we will see 
in loop (11) below, the a lgor i thm sometimes works 
even if the hypothesis  of  the theorem is not  satisfied. 

H Y P E R P L A N E  C O N C U R R E N C Y  THEOREM. Assume that 
loop (4) satisfies (A1)- (A5) ,  and that none o f  the index 
variables 12, . . . ,  I ~ is a missing variable. Then it can be 
rewritten in the fo rm of  loop ( 5 ) f o r  k = 1. Moreover, 
the mapping J used for  the rewriting can be chosen to be 
independent o f  the index set g. 

PROOF. We will first construct  a mapping  7r : Z n --+ Z 
which satisfies rule (C2). Let  6, be the set consisting of  
all the elements X > 0 of  all the sets ( f , g )  referred 
to in (C2). We must  const ruct  ~- so that  ~-(X) > 0 for 
all X C 6,. 

Let " + "  denote  any positive integer, so 
( + ,  x 2 , . . . ,  x ~) is any element of  Z"  o f  the form 
(x, x 2 , . . . ,  x ") with x > 0. Since 11 is the only index 
variable which may  be missing, we can write 6, = 
{ ) ( 1 , . . . , X N } ,  where X~ = (Xr 1 , . . . , x ~ " ) ,  or X~ = 
( + ,  Xr 2, . . . ,  X~ ~) for some integers x / .  

The mapping  ~r is defined by 

7 r [ ( i 1 , . . . ,  /n)]  = a~I 1 -t- "'" -t- a,1 ~ (8) 

for nonnegat ive integers a~, to be chosen below. Since 
2 n al _> 0, ~-[(1, x~-, . . . , x~ )] > 0 implies ~r[(x, X r 2 , . . . ,  

x~n)] > 0 for any integer x > 0. Therefore,  each X~ of  
the form ( + ,  x ~ 2 , . . . ,  x~") can be replaced by X~ = 
(1, x~ 2, . . . ,  x~"), and it is sufficient to construct  ~- such 
that  ~r(X~) > 0 for each r = 1, . . . ,  N. 

Define 6,j = {X~ :x~ 1 . . . . .  x{ -1 = 0, x /  # 0}, 
so 6,i is the set o f  all X~ whose j th  coordinate  is the left- 
mos t  nonzero  one. Then  each X, is an element o f  some 

6,3.. 
N o w  construct  the a~. sequentially for j = n, n --  1, 

• . . ,  1 as follows. Let a;  be the  smallest nonnegat ive 
integer such that  a j x /  + . . .  -4- a,  x f  ~ > 0 for each 
X~ = ( 0 , . . . ,  0, x / , . . . ,  x~ n) ~ 6,j .  Since X, > 0 
and x /  ~ 0 imply x ,  j > 0, this is possible. 

Clearly, we have ~r(X~) > 0 for all X~ C 6,~'. But 
each X~ is in some 6'y, so r(X~) > 0 for each r = 1, . . . ,  
N. Thus, 7r satisfies rule (C2). Observe that  the first 
nonzero  aj that  was chosen must  equal 1, so 1 is the 
greatest c o m m o n  divisor o f  the as .  (If  all the aj  are 
zero, then 6' must  be empty,  so we can let ~ r [ ( f , . . . ,  
1")] = 11.) A classical number  theoretic calculation, 
described in [4, p. 31], then gives a one- to-one linear 
mapping  J : Z "  ~ Z" such that  J [ ( f , . . . ,  F ) ]  = 
0 r [ ( l ~ , . . . ,  1 , ) ] , . . . ) . ( 5 )  

Since the sets ( f ig )  are independent  o f  the index 

set 9, the construct ion o f  r and .1 given above is also 
independent  of  9. This completes the p roof . [ ]  

Observe that  the theorem is trivially true without  
the restriction that  J be independent  of  a, because 
given any set 9 we can construct  a J for which the sets 
Ss2, . . . .  s- contain at most  one element, and the order 
o f  execution of  the loop body  is unchanged.  Fo r  
example, if 9 = {(x,y,z) :1 ~ x < 10, 1 ~ y < 5, 
1 < z < 7}, let J[(x,y,z)] = ( 3 5 x + 7 y + z ,  x, y). Such 
a J is clearly of  no interest. However ,  because the 
mapping  J provided by the theorem depends only on 
the loop body,  it will always give real concurrent  execu- 
tion for a large enough index set. 

Condi t ion  (C2) gives a set of  constraints  on the 
mapping  ~- : Z  ~ --~ Z. The Hyperp lane  Theorem proves 
the existence o f  a ~- satisfying those constraints.  We now 
consider the problem of  making  an opt imal  choice of  rr. 

It  seems most  reasonable to minimize the number  
of  steps in the outer DO j1 loop of  (5). (Remember  that  
k = 1.) I f  a sufficiently large number  of  processors are 
available, then this gives the max imum amoun t  o f  con-  
current  computa t ion .  This means that  we must  minimize 
i l l  - -  ~kl in loop (5). But X 1 and 1 are just  the upper and 
lower bounds  o f  { r (P)  : P ~ 9}. Setting M ~ = u ~ -- l ~, 
it is easy to see that  1 _ Xl equals 

M 1 ] a l [  + . . .  + M n l a ~ f ,  (9) 

where the a t  are defined by (8). F inding an opt imal  r 
is thus reduced to the following integer p rog ramming  
problem:  find integers a l , . . . ,  a ,  satisfying the con-  
straint inequalities given by rule (C2), which minimize 
the expression (9). 

Observe that  the greatest c o m m o n  divisor of  the 
resulting a~ must  be I. This follows because the con-  
straints are o f  the form xla~ + . . .  + xna~ > 0, so 
dividing the a~ by their g.c.d, gives new values o f  a~ 
satisfying the constraints,  with a smaller value for (9). 
Hence, the method  of  [4] can be applied to finding the 
mapping  J. 

Al though the above integer p rog ramming  problem 
is algorithmically solvable, we know of  no practical 
method  of  finding a solution in the general case. H o w -  
ever, the construct ion used in proving the Hyperp lane  
Theorem should provide a good  choice of  7r. In  fact, 
for mos t  reasonable loops such as loop (1), it actually 
gives the opt imal  solution. 

The General Plane Theorem 
We now generalize the Hyperp lane  Theorem to 

cover the case when some of  the index variables 
I 2 , . . . ,  I n are missing. Concurrent  execution is then 
possible for the points in 9 lying along parallel planes. 
Each  missing variable may  lower the dimension of  the 
planes by one. The following theorem may be viewed 
as a generalization o f  a result stated in [5, p. 584]. 

4 A weaker version of this result can be found in [3]. 
5If a j = 1, then we can define Jas  follows: for each k > 2, 

let jk equal some distinct Itk with/k ¢ j. 
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PLANE CONCURRENCY THEOREM. Assume that loop 

(4) satisfies (A1)- (A5)  and that at most  k -- 1 o f  the 
• 2 , i n index vartables I , . . .  are missing. Then loop (4) can 

be rewritten in the forrn & l o o p  (5). Moreover,  the map- 
ping J used f o r  the rewriting can be chosen to be inde- 
pendent  o f  the index set ~. 

PROOF. The p roof  is a general izat ion of  the p roof  of  
the Hyperp lane  Theorem.  Let I s2, . . . ,  I i k  be the pos- 
sibly missing variables a m o n g  I 2 , . . . ,  F .  Set j l  = 
1,jk+l = n + 1, and assume jl  < j2 < • - • < j ,  < j ,+l  • 

Let 6, be the set of  all elements X > 0 of  all sets 
( f i g )  referred to by rule (C2). We must  const ruct  ~- so 
tha t  7r(X) > 0 fo r  all X ~ 6,. Let 6,j = { ( 0 , . . . ,  
0, x J , . . . ,  x ") C 6 ) : x  j > 0}, so 6,i is the set of  all 
elements of  6' whose j th  coord ina te  is the lef t -most  
nonzero  one. Then  every e lement  of  6" is in one of  
the 6"j.. 

The  mapp ing  ~- :Z"  ---+ Z k will be cons t ruc ted  with 
7r(P) = (Trl(p), . . . , ~rk(P)), where each 7r i : Z "  --+ Z is 
defined by ~ J [ ( f , . . . ,  I")]  = a~I  ~ + . . .  + a,~I ~ for  
nonnegat ive  integers aj . Moreover ,  we will have a / =  0 
i f j  < j~ or j > j~+l • This implies tha t  if  X C 6"j" and  
and j > j~+l,  then TrY(X) = 0. It  therefore  suffices to 
const ruct  ~-~ so tha t  for  each j with j i  <_ j < j i + l ,  and 
each X C 6)3' : TrY(X) > 0 - - f o r  we then have ~-(X) = 
(o , . . . ,  0, # ( x ) , . . . ,  ~(x)) > 0. 

Recall  tha t  for  the sets ( f ,g ) ,  an • can appear  only 
in the j l ,  • • • ,  jk coordinates .  Thus  any element  of  any  
of the sets 6'3' with j i  ~ j < j i+l  can be represented in 

Ji X{i+1-1 the fo rm ( 0 , . . . ,  0, x ~ , . . . ,  , . . . ) ,  or  
j i + l  ". 

( 0 , . . . , 0 ,  + ,  x ,  ,.. . . , x~ '+'-1, . . .) for  a f i n i t e c o l -  
lection of  integers x / ,  j~ _< j < j i+l  • By the same argu-  
ment  used in the p r o o f  of  the Hype rp l ane  Theorem,  
we can replace " + "  by x'~ ~ = 1, and choose a /  >_ 0, 

• a i Jl i xJ i+ l - -1  j ~ < j < j ~ + l s u c h t h  t a ~ X r  + . . .  +"s~+~-I , > 0  
for  each r. Choosing  a /  = 0 for  j < j l  and j > j~+t 
completes  the const ruct ion of  the required  ~-~. 

The  const ruct ion of  [4] is then applied to give 
• i . I i~ invertable  relat ions of  the fo rm J~  = a~  -t- . . -  + 

i Ji+l--1 ' ~ J i+ l - -1  ] r a~+~_a.I , and J*~ = z...,*=s~ b~.I  , for  j i  < j < 
i~+,. Combin ing  these and reorder ing the JJ gives the 
required m a p p i n g  J . [ ]  

As in the hyperp lane  case, to get an opt imal  solu- 
tion, we want  to minimize the n u m b e r  of  i terat ions of  
the outer  D O  loops.  This  means  minimizing (u~- - ;~+  l) 
• . .  (p~--~ ,~+l) .  I t  is easy to verify that  if none  of  the 
expressions l ~, u ~ involve any index variable,  then  this 
n u m b e r  is equal  to (M1 [ a~ll + . . .  + M ~ [ a ~ l [  + 1) 
• . .  (M~[a~*[  + - . .  + M " [ a ,  *] + 1), where M ~ = 
u ~ -- l ~, and the a / a r e  defined by (6)• 

F inding  the best  a / i s  now an integer p r o g r a m m i n g  
problem.  No te  that  a solut ion with at . . . . .  a ,  = 0 
for  some i gives a solut ion to the rewrit ing p rob lem 
with k replaced by k -- 1, since that  7r ~ can be r emoved  
wi thout  affecting the const ra in t  inequalities• The  Plane 
Concur rency  T h e o r e m  proves  the existence of  a 

: Z"  Z ~ ~r --+ satisfying (C2), for  a par t icular  value of  k. 
I t  m a y  be possible to find such a ~r for  a smaller  k. 

F o r  completeness ,  we state a sufficient condi t ion 
for the loop body  to be concurrent ly  executable for  all 
points  in o-- i .e ,  to be able to rewrite loop (4) with a 

D O  a C O N C  F O R  A L L  (11 , . . . , I n) C S 
statement• This involves setting J equal  to the identi ty 
mapping ,  k = 0, and 7r : Z"  ~ Z ° the mapp ing  defined 
by~r (P)  = 0 f o r a l l P C  Z". Since (g , f )  = { - - X : X C  
( f i g )  }, it is clear tha t  this ~- satisfies (C2) if and only if 
all the sets ( f i g )  are equal  to {0}. The  me thod  of  
compu t ing  these sets then gives the fol lowing ra ther  
obvious  result• 

I f  loop (4) satisfies (A1)- (AS) ,  none  of  the index 
variables are missing, and  all occurrences of  any 
genera ted variable are identical, then the loop  can 
be rewrit ten as: 

D O  a C O N C  F O R  A L L  ( f  , . . . , I") C S 

The  hypothesis  means  tha t  in the expression (6) for  
each generated variable VAR,  r = n and the m ~ are the 
same for  all occurrences  of  VAR.  

I I .  T h e  C o o r d i n a t e  M e t h o d  

Example•  We illustrate the coord ina te  me thod  with 
the following loop.  

D O  24 1 = 2, M 
D O  24 J = l, N 

21 A ( L  J) = B(I ,  J)  + C(I)  

® ® @ 
22 c(I) = B ( I -  I , J )  

@ ® 
23 B(I, J) = A(I + 1, J) ** 2 

® @ 
24 C O N T I N U E  (11) 

The hyperp lane  me thod  would rewrite this as a D O  i /  
D O  C O N C  J l o o p  w i t h ]  = I - k -  J, and J = J. (Al- 
though  J is a missing variable,  so the hypothesis  of  the 
hyperp lane  theorem is not  satisfied, the a lgor i thm used 
in the p r o o f  still gives a ~- satisfying (C2).) The  rewrit ten 
loop  has M + N -- 2 sequential  i terations.  

F o r  a synchronous ,  single instruct ion s t ream com-  
puter  like the ILLIAC IV, we can do bet ter  than  this by  
using the coord ina te  method .  T o  express synchronous  
parallel  execution,  we in t roduce the D O  S I M  (for 
SIMul taneous l y )  s ta tement  having the following form.  

D O  c~ S I M  F O R  A L L  C $, 

where 8 is a finite set of  integers• Its  mean ing  is similar  
to tha t  o f  the D O  C O N C  s ta tement ,  except tha t  the 
c o m p u t a t i o n  is pe r fo rmed  synchronous ly  by  the indi- 
vidual processors• Each  e lement  of  S is assigned to a 
separa te  processor ,  and each s ta tement  in the range of  
the D O  S I M  is, in turn,  s imul taneously  executed by all 
the processors .  An  ass ignment  s ta tement  is executed by  
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first computing the right-hand side, then simultaneously 
performing the assignment. 

The coordinate method does not introduce new 
index variables. It will rewrite loop (11) as 

D O  24 J = 1, N 
D O  2 4 S I M F O R A L L I E  { i : 2  < i < M}  
T E M P ( I )  = A ( I  + 1, J) 

@ 
= ~( i ,  ,I) + c ( i )  

@ @ 
= T E M P ( I )  ** 2 

21 A(/, J) 

® 
23 B(I,  J) 

® 
22 c(i)  

@ 
= B ( I -  1, J) 

@ 
24 C O N T I N U E  (12) 

Observe that the D O  S I M  must be executed by syn- 
chronous processors. Processor i must generate the 
value for B(i, j )  in statement 23 before processor i + 1 
uses it in statement 22. We also see from this that it 
was necessary to rearrange the loop body in writing 
loop (12) in order to obtain a loop equivalent to the 
original one. 

Loop (12) requires only N sequential iterations, 
instead of the M + N -- 2 required by the hyperplane 
method. Moreover, the change of  index variables in the 
hyperplane method produces more complicated sub- 
script expressions, significantly increasing the time 
needed for a single execution of the loop body. By 
using the original index variables, the coordinate 
method eliminates this source of inefficiency. However, 
there are sortie loops, such as loop (1), which cannot 
be rewritten with the coordinate method. These loops 
require the hyperplane method. 

Assumptions and Notation 
In general, we consider a loop of the form 

11 d I D O  a = 11, u I, 

D O  a I" = l ~, u", d" 

! loop body I 

ct C O N T I N U E  (13) 

We assume that the loop body satisfies assumptions 
(A1)-(A4). In addition, we make the following assump- 
tions: 

(A6) Each d ~ is an integer constant. 
(A7) There is no conditional transfer of control within 

the loop body. 

Assumption (A7) prohibits a statement such as 

I F  (A(I1).GT.O) GO TO 9 

in the loop body. Such a statement would be me~tning- 
less inside a D O  S I M  11 loop, since all processors must 
execute the same statement. However, we do allow a 

conditional assignment statement such as 

I F  (A(I~).GT.O) B ( I  ~) == A(I 1) 

It is easily implemented on the ILLIAC IV by turning off 
individual processors. The real assumption in (A7) is 
that there are no loops within the loop body. In that 
case, conditional branches can be removed by adding 
1F clauses. 

We are not making assumption(A5). Some restric- 
tions on subscript expressions must be made by a real 
compiler to permit computation of the ( f , g )  sets. We 
will not consider this problem. 

To simplify the discussion, we assume that each d ~ 
equals 1, and that the expressions l ~ and u ~ do not con- 
tain any of the index variables I j. The modifications 
necessary for the general case are described later. 

The coordinate method will rewrite loop (13) as 

D O  a I j~ = l i~, u j' 

D O  a I ~ = l jk, u j~ 
D O  ct S I M  F O R  A L L  (1 ~k+l, . . . , ff~) C $ 

I loop body ] 
a C O N T I N U E  (14) 

where j l  < " "  < jk and 8 is the set {(x k+l, . . . ,  x n) : 
1 ~'' _< x '  < uS'}. 

: Z ~ Z ~ The mapping r ~ is defined as before. 
However, now it is the simple mapping r[(i  1, . . . , i n) ] = 
( i J l , . . . ,  iJ~). In other words, r just deletes the 

jk+t, • • •, jn coordinates. In our example, ~r was defined 
by ~r[(i,j)] = j.  

Basic Considerations 
Any D O  C O N C  statement can be executed as a 

D O  SIM,  since it must give the same result if the asyn- 
chronous processors happen to be synchronized. Thus, 
the rewriting could be done just as before by trying to 
find a r which satisfies (C2). However, the synchrony 
of the computation allows us to weaken the condition 
(C2). 

Recall that rule (C1) was made so that the rewriting 
will preserve the order in which two different references 
are made to the same array element. For  references 
made during two different executions of the loop body, 
the asynchrony of the processors requires that the 
order of those executions be preserved. However, with 
synchronous processors, we can allow the two loop body 
executions to be done simultaneously if the references 
will then be made in the correct order. The order of 
these two references is determined by the positions 
within the loop body of the occurrences which do the 
referencing. 

First, assume that we do not change the loop body. 
For  two occurrences f and g, let f - *  g denote that the 
execution of f precedes the execution of g within the 
loop body. This means either that the statement con- 
taining f precedes the statement containing g, or that f 
is a use and g a generation in the same statement. The 
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Table I1. 
Is (s1 (i)) Ordering relations 

The sets (f,g) violated? $1 (ii) $2 

(al,al) = (0,0) NO --  - -  
(al,a2) = (--1,0) NO --  --  
(a2,al) = (1,0) NO a2 ---* al - -  
(b3,b3) = (0,0) NO --  --  
(bl,b3) = (o,o) NO --  bl ~ b3 
(b3,bl) = (0,0) NO --  - -  
(b2,b3) = (--1,0) NO --  --  
(b3,b2) = (1,0) NO b3 ---* b2 --  
(cl,cl) = (0,*) NO --  --  
(c1,c2) = (0,*) NO --  cl --o c2 
(c2,cl) = (0,*) NO --  - -  

above observation allows us to change rule (C1) to the 
following weaker condition on ~-. 

F o r . . .  generation: if Ts(P) = To (P) for P, Q E 
with P < Q, then we must have either 
(i) ~-(P) < r (O) ,  or 
(ii) r ( P )  = r (Q)  andf---~ g. 

In this rule, either (i) or (ii) is sufficient to ensure that 
occur rencef  references the array element Ts(P) for the 
point P E a before g references the same array element 
for Q E ~. The conditions can be rewritten in the fol- 
lowing equivalent form: 

(i) r ( P )  _< r (O) ,  and ( i i ) / f r ( P )  = r (Q)  thenf----~ g. 

In the same way that (C2) was obtained from (C1), 
the above rule gives the following rule. 

(S1) For  every variable and every ordered pair of 
occurrencesf, g of that variable, at least one of which 
is a generation: for every X E (f ,g) with X > 0, 
we must have 
(i) ~r(X) > 0, and 
(ii) i f  re(X) = O, then f ---~ g. 

I f  r satisfies rule (S1), then it satisfies the preceding 
rule, so the rewritten loop (14) is equivalent to the 
original loop (13). 

So far, our discussion has assumed that we have 
not changed the loop body. Now let us consider chang- 
ing the order of execution of the occurrences. That  is, 
we may change the position of occurrences within the 
loop body, as we did in writing loop (12). (There was 
no point in doing this for asynchronous processors 
since it couldn't  help.) 

Let f ~ g mean that f is executed before g in the 
rewritten loop body. Then rule (S1) guarantees that the 
correct temporal ordering of references is maintained 
when the references were made in the original loop 
during different executions of the loop body. Having 
changed the positions of occurrences in rewriting the 

loop body, we now have to make sure that any two 
references to the same array element made during a 
single execution of the loop body are still made in the 
correct order. The following analogue of rule (C1) 
handles this. 

For  . . .  generation: if Ts(P) = To(P) for some 
P E ~ and f precedes g in the original loop body, 
then f---* g. 

Rewriting this in terms of the sets (fig) gives the follow- 
ing rule. 

($2) For  every variable, and every ordered pair of 
occurrences f ,g  of that variable, at least one of 
which is a generation: if 0 E (f,g) and f precedes 
g in the original loop body, then f - -+  g. 

Rules (S1) and ($2) guarantee that the rewritten loop 
(14) is equivalent to the original loop (13). Note that 
rule ($2) does not involve Ir. 

The Coordinate Algorithm 
(S 1) and ($2) together give a sufficient condition for 

a particular rewriting to be equivalent to the original 
loop. Rule (Sl(i)) gives a condition which must be 
satisfied by ~-. Rules (Sl(ii)) and ($2) specify ordering 
relations among the occurrences in the rewritten loop 
body. However, they do not indicate whether it is 
possible to rewrite the loop body so that these relations 
are satisfied. We now give a method for deciding if 
such a rewriting exists. 

First, we make a trivial observation: a use in an 
assignment statement must precede the generation in 
that statement. This observation is given the status of  
a rule. 

($3) For  any use f and generation g in a single state- 
ment, we must havef - -~  g. 

Now let ~ denote the relations given by rules (S1)- 
($3). Add all relations implied by transitivity. That  is, 
whenever f ~ g and g ~ h, add the relation f - - ~  h. 
(An efficient algorithm for doing this is given by [6].) 
If  the resulting ordering relations are consistent-- that  
is, if we do not h a v e f - - ~ f  for any occurrence f - - t h e n  
the loop body can be rewritten to satisfy the ordering 
relations. 

To show how the rewriting is actually done, we de- 
scribe the application of the coordinate method to loop 
(11). The calculations for Steps 1, 3, and 4 are shown 
in Table II. 

Step 1. Compute the relevant sets (f ,g) for rules (SI) 
and ($2). 

Step 2. Choose the DO S I M  variables. We wish to 
rewrite loop (I1) as a DO J / D O  S I M  1 loop, so 
the mapping ~- is defined by ~r[(i,j)] = j .  

Step 3. Check that (Sl(i)) is not violated. 
Step 4. Find the ordering relations given by (Sl(ii)) 

and ($2). 
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Step 5. Apply ($3) to get the following relations: 
statement 21 : bl  -~ a l  

cl --* al  
statement 22: b2 --~ c2 
statement 23: a2 -~ c3 

Step 6. Find all relations implied by transitivity: 
b3 --* c2 [by b3 --* b2 and b2 -~ c2] 
a2 --* b2 [by a2 --* b3 and b3 -~ b2] 
bl --* b2 [by bl --* b3 and b3 --. b2] 
bl  --* c2 [by bl -~ b2 and b2 --* c2] 
a2 --~ c2 [by a2 --~ b3 and b3 ~ c2] 

Step 7. Check that  no relation of the form f --* f was 
found in Step 4 or Step 6. 

Step 8. Order the generations in any way which is con- 
sistent with the above relations--i .e,  obeying 
b3 --* c2. We let a l  --* b3 --* c2. We then write: 
21 A(I, J) = 

@ 
23 B(I, J) = 

@ 
22 C ( I ) =  

@ 
Step 9. Insert  the uses in positions implied by the 

ordering relations (recall that  a2 ~ al)"  
A( I  + 1, J) 

@ 
21 A(I, J) = B(I, J) + C(I) 

@ @ @ 
23 B(I, J) = **2 

@ 
22 C(I) = B ( I - -  1, J) 

@ @ 
Step 10. Add any extra variables necessitated by uses 

no longer appearing in their original statements: 
TEMP(I )  = A ( i  + l, J) 

@ 
21 A(I, J) = B(I, J) + C(I) 

@ @ @ 
23 B(I,  J) = T E M P ( I )  ** 2 

@ 
22 C(I) = B ( I - -  1, J) 

@ @ 
Step 11. Insert  the DO and DO S I M  statements, to 

get loop (12). 

Further Remarks 
I t  is easy to deduce a general algorithm for the 

coordinate method from the preceding example. The 
method can be extended to cover the case of  an in- 
consistent ordering of the occurrences. In that  case, 
the loop can be broken into a sequence of sub-loops. 
Every generation g for which the relation g --~ g does 
not hold can be executed within a DO S I M  loop. An 
algorithm for doing this is described in [7]. 

In general, there are 2" - 1 choices for the DO 
S I M  variables in Step 2. Steps 3-11 are repeated for 
different choices until a suitable one is found. Rule 
(S1) should quickly eliminate many possibilities. In our 
example, the choice of a DO I / D O  S I M  J rewriting is 
eliminated by the relation cl ~ cl given by (Sl(ii)). 
One can also show that loop (13) can be rewritten 
with a DO S I M  (I jk, . . . ,  P") only if it can be re- 
written with a DO S I M  (I ~+1, . . . ,  Ii"), where 
jk < "'" < j , .  Thus, eliminating DO I / D O  S I M  J 
for loop (11) also eliminates the possibility of a DO 
S I M  (I,J) rewriting. I f  no choice of  DO S I M  variables 
works, then the hyperplane method must be tried. 

To  handle arbitrary DO increments d ~, one need 
only generalize the definition of the set (f ,g) as fol- 
lows: (f ,g) = { ( x l , . . . , x " )  C Z " : T s ( P )  = To[P + 
(d lx  1, . . . ,  dnxn)], for some P C Z"}. The rules (S1)- 
($3) and the algorithm described above remain the 
same. 

For  arbitrary DO limits if, u s we proceed as follows. 
For  each i: if the expression 1 s contains some I t, then 
replace I ~ by the new index variable i ~ = I s -- l s. Steps 
1-10 are then executed as before. In Step 11, a more 
complicated procedure is needed to find the DO limits 
and DO S I M  set for the rewritten loop. 

Ill.  Practical Considerations 

Satisfying the Assumptions 
Our analysis required several assumptions about  the 

given loop. I f  a loop does not satisfy these assumptions, 
then it may still be possible to rewrite it so that  it does. 
We have already indicated that assumption (A7) can 
be met  by replacing conditional transfers with IF  
clauses. We now describe some other useful techniques. 

Our first assumption was that  the DOs are tightly 
nested, as in loop (4) ; i.e. we did not allow loops such as 

D 0 9 9 I =  1, M 
21 A(I, 1) = 0 

DO 99 J = 2, N 

It  is easy to rewrite this as the following tightly nested 
loop: 

D 0 9 9 I =  1, M 
DO 99 J = 2, N 

21 IF (J  .EQ. 2) A(I ,J - -1)  = 0 

This method works in general. I t  may be possible later 
to move statement 21 back outside the J loop and 
remove the IF clause. A future paper  will describe 
methods of handling nontightly nested loops without 
using this artifice [8]. 

Assumption (A4) can sometimes be satisfied by sub- 
stituting for generated variables. One technique is illus- 
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trated by the following example. Given 
K = N  
D 0 6 1 =  1, N 

5 B(I)  = A ( K )  
6 K = K - - 1  

we can rewrite it as 
D 0 5 1 I =  I , N  

5 B(I)  = A ( N - k - I - - I )  
51 C O N T I N U E  
61 K =  1 

The use of  auxiliary variables to effect negative incre- 
menting is fairly common in FORTRAN programs. 

Scalar Variables 
Even though the loop satisfies all the restrictions, 

it is clear that these methods can give no parallel com- 
putation if there are generated scalar variables. Any 
such variable must be eliminated? 

Often, the variable simply acts as a temporary  
storage word within a single execution of the loop body. 
The variable X in the following loop is an example. 

D 0 3 1 =  1, 10 
X = S Q R T ( A ( I ) )  
B(I)  = X 

3 C(1) = E X P ( X )  
In this loop, each occurrence of X can be replaced by 
X X ( I ) ,  where X X i s  a new variable. 

In general, we want to replace each occurrence of 
the scalar by V A R  ( i 1 , . . .  , I " ) ,  for a new variable 
VAR.  (After the rewriting, to save space, we can lower 
the dimension of V A R  by eliminating any subscript 
not containing a D O  F O R  A L L  index variable.) A 
simple analysis of  the loop body's  flow path determines 
if this is possible. 

Another  common situation is for the variable X 
to appear in the loop body only in the statement 
X = X -b expression, where the expression does not 
involve X. This statement just forms the sum of the 
expression for all points in the index set ~. We can re- 
place it by the statement l IAR (11, . . . ,  /") = expres- 
sion, and add the following "s ta tement"  after the 
loop: X = X q- ~'~(? ..... I " )~  V A R  (I  1, . . . ,  I").  The 
sum can be executed in parallel with a special sub- 
routine. 

The same approach applies when the variable is 
used in a similar way to compute the maximum or 
minimum value of an expression for all points in a. 

Practical Restrictions 
The methods we have described yield parallelism 

in the form of  D O  C O N C  or D O  S I M  loops. In order 
for them to be of  use in a real compiler, the particular 
target computer  must be capable of' efficiently executing 
these loops in parallel. The structure of  the computer  
will place additional restrictions on the loops which 
the compiler can handle. 

s In our formalism, a scalar is a zero-dimensional array. Each 
~,g) set for a scalar variable equals all of Z ~. 

Consider the loop 

D 0 2 I =  1, N 
A ( 2 , I - - 1 )  = B(I)  

2 A(2 , I )  = C(I) 

The coordinate method can rewrite this as a D O  S I M  
I loop. However,  to execute this D O  S I M  loop in 
parallel on the ILLIAC IV requires a peculiar method of  
storing the arrays. This storage scheme would probably 
be incompatible with the requirements of  the rest of  
the program. 

In general, the computer 's  data accessing mechanism 
will limit the forms of variable occurrences which may 
appear  in the loop. I t  may also limit the utility of  the 
hyperplane method. For  example, implementation of  
the hyperplane method on the STAR-100 requires dy- 
namic reformating of the arrays. 

We have allowed a conditional assignment state- 
ment such as 

I F  (A(I).GT.O)B(1) = .,4(1) 
inside a D O  S I M  I loop. This is easily implemented on 
the ILLIA¢ IV and with vector operations on the STAR-100. 
However, it cannot be implemented with the ASC vector 
operations. 

Other computer  designs will require different re- 
strictions on the loops. However, our methods seem 
sufficiently general to be applicable to any parallel 
computer  to be built in the near future. 

Conclusion 

We have presented methods for obtaining parallel 
execution of a D O  loop nest. A number  of details and 
refinements were omitted for simplicity. Some of these 
are described in [7]. However,  all the basic ideas neces- 
sary for their implementation have been included. 
Preliminary experience with the ILLIAC IV FORTRAN 
compiler indicates that these methods can be used to 
obtain parallel execution for a fairly large class of 
sequential programs. 
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