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PREFACE

This work is one of the many which has been inspired by

Leray's monumental Probléme de Cauchy series of articles, Init, I

treat a classical problem using rather old-fashioned methods. In-
deed, Cauchy himself would have found little that was alien to him in
this dissertation. In the analytic case, there seems to be no substi-
tute for the classical method of finding a solution: construct an
infinite series which formally solves the problem, then prove that it
converges. Unfortunately, this method yields dull proofs --
expecially since I have included all the gruesome details, The results
themselves are fairly simple to state, and I hope of sufficient interest
to justify this effort. I have tried to organize the material so as to
ease the burden of those compelled to examine all the detail, while
still allowing the less compulsive reader to skim through the proofs.

I apologize here for the use of the pedantic ''we'' in the writing.
Somehow, the nature of the material seemed to demand it.

I will take this opportunity to informally describe the process
by which I arrived at these results. In writing formal mathematiéé,
one is usually very careful to obliterate the path which actually led
him to the results., The course of my own wanderings may be of
interest, especially to those readers familiar with the results on

which my work is based.
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The extension of Hamada's result comes from the method of
constructing a series solution given by (10-11). It gives the required
solution as a sum of solutions of the type found by Hamada. The key
to convergence was the -1 inside the factorial expression in (5. 6)
of Mizohata's Proposition 3. (This proposition is essentially quoted
in the Appendix.) It meant that the terms in the sum should get
smaller. After some unsuccessful tries at using this key (one of
them involved trying to extend Mizohata's result to allow the factor-
ialed expression to be negative, and led to the convenient definition of
k! for k< 0 given in Section 11), I arrived at the method used in
the proof of Lemma 13.4. The rest was a simple mass of detail,
culminating in Lemma 13,5,

The extension to finitely ramified multi-valued functions was
something of an afterthought. While not terribly exciting, it was a
fairly easy generalization,

Unfortunately, T received Wagschal's paper too late for it to
influence this dissertation. He has simplified the proof of Hamada's
result, as well as generalizing it. Hopefully, his method will do the
same for my results.

Theorem II resulted from a fairly direct application of the
methods of Garding, Kotake and Leray. Theorem IIT was a serendi-
pitous result which fell out of the process.

Theorem IV had its origins in an oversight, whenI
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vi

mistakenly thought that Hamada's method gave a solution which
converged along the length of a characteristic surface. It didn't, but
an even simpler method worked in the two-dimensional case. The
generalization of the result to higher dimensions currently defies
conjecture, The thing that makes the statement of the result easy in
the two-dimensional case is the fact that a characteristic surface is
just the range of a characteristic path.

The introduction of compact subsets in the definition of the
influence domain was made to patch a hole in my original ''proof'.
I do not know if it is necessary.

I wish to take this opportunity to thank Professor Takeshi
Kotake, who guided me in this work. 1 also want to thank Professor
Richard Palais for his help in preparing this dissertation, as well as

for his many other contributions to my education.
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INTRODUCTION

We will consider the Cauchy problem for an analytic linear
partial differential operator. Leray [6] has conjectured that the
singularities of the solution lie in the characteristic surfaces which
either emanate from the singularities of the initial date, or are tan-
gent to the initial surface. In other words, singularities of the solu-
tion can arise in the following two ways:

(i) If the initial data are singular, then the solution may have

singularities lying in the characteristic surfaces emanating

from the singularities of the initial data.

(ii) If the initial surface has characteristic points, then the

solution may have singularities in the characteristic surfaces

tangent to the initial surface at these points.

Leray considered case (ii), with analytic initial date. Garding,
Kotake and Leray [4] simplified his methods, and showed that in this
case the solution can be locally uniformized. Uniformizing the solu-
tion u means finding a mapping ¢ such that u.c is analytic.
Moreover, they constructed the uniformizing mapping o so that,
with certain restrictions on the set of characteristic points, this
showed that the solution u is an algebraic function, finitely ramified
about the tangent characteristic surface.

Hamada [5] proved (i) in the neighborhood of a
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non-characteristic point -- under the assumptions that the set of
singularities is a submanifold, and that the characteristic surfaces
emanating from it have multiplicity one and are not tangent to one
another., He showed that if the initial data have only polar singular-
ities, then the solution also just has polar singularities.

We will extend Hamada's result to cover some cases when
the characteristic surfaces which emanate from the set of singular-
ities have constant multiplicities. More precisely, we assume that
the principal part of the operator can be factored into the prloduct of
powers of operators. The characteristic surfaces of these opera-
tors must all be distinct, non-tangent to one another, and of
multiplicity one, In this case, the solution may have essential
singularities even though the initial date have only poles. We will
also extend the results to include multi-valued singular initial data
which are finitely ramified about a submanifold.

The method of proof is an extension of the one used by
Hamada, It involves constructing a formal series solution consisting
of sums of powers of characteristic functions, then proving that the
series converges. The construction requires solving a sequence of
Cauchy problems for first order partial differential operators, then
proving convergence using bounds for the solutions given by results
of Mizohata [8].

We will also consider cases (i) and (ii) together. That is,
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we suppose the initial data to be singular at a characteristic point.
We then show that the solution u is "uniformized'" by the mapping

o constructed in [4], so that uo.c has singularities along surfaces
emanating from the singularities of the initial data. Moreover, if
the initial data has poles of sufficiently low order which lie in the set
of characteristic points, then ueg is analytic. These results are
proved by showing that ueg is the solution of a Cauchy problem
with no characteristic points.

Finally, for the two-dimensional case we give a global result
which is closely related to (i). Given a domain V in the initial
plane, we construct a domain J(V) in the two-dimensional space
such that the solution is analytic on 4(V) whenever the initial data
is analytic on V, We define 4(V) so that it contains no point on
any characteristic surface emanating from a point outside V.
(Hence, singularities of the initial data cannot propagate along
characteristic surfaces into @(V).) The proof involves constructing
a formal series solution, then proving convergence using a simple
extension of Mizohata's results,

Precise statements of our results, as well as definitions of
the terms used above, are given in Chapter I. The proofs are con-

tained in the subsequent chapters,
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I. DEFINITIONS AND RESULTS

1. Preliminary Notations

We let @ denote the field of complex numbers, and IR the real
number field. The vector space of n-tuples of complex numbers is de-
noted by (En, and similarly R™ denotes the space of n-tuples of real
numbers, n> 1. We will identify ¢” with the subset

. N i
(0, y5, ...,y v e €} of @ 1 Similarly, @ ! will be identified

with the subset {(0,3% ...,y :y €@} of @, For n=0, e is
defined to be {0}.

We will use y = (yl, coes yn) to denote a point in (Dn, and
X = (xo, ...,x7) to denote a point in (En+1.

Let f be a function defined on ¢n+1. We will often use f(x)
to denote the function f, rather than the value of f at the point x.
Although formally incorrect, this will simplify the notation and should
cause no confusion. Similarly, g(y) may denote a function g on (En.
Thus, we can represent the restriction of f(x) to c” by f(0,y). We
will use = to denote.the equality of two functions.

We will identify ¢n+1 with its dual space in the usual way.

Welet p = (pq .. .,pn) denote an element of this dual space. (Thus, p

0

represents the linear function (xo, e xn) - 3 pixl.) Thus, the co-

tangent bundle T*((l‘nﬂ) over ¢n+1 is the set of all elements (x;p)

1

+ + +
with x, pe @ . 1, @t

The canonical projection 7: T *(Qn is
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just the mapping (x;p) = x.
We let D, denote the operator a/axl , andlet D= (DO, ....D).

Thus we have

Ditx) = (- (), ..., 2 ().
ox oX

+
Note that if f is analytic on an open subset C of (Cn 1, then Df maps

+
¢ into the dual space of (Dn 1.
The set of all functions analytic on an open set ¢ will be denoted

by a(0).

+ +
A complex path in (In 1 is a mapping y : C= (I‘n 1 on some

connected open subset ¢ of C.

+
A hypersurface in (L‘n 1 is a subset S such that for every point

Xo € S there is a neighborhood N of x0 and a function f € ¢(N) such

that
SANN={xeN:f(x)=0}.

The point Xq is a regular point of S if the function f can be chosen

such that Df(xo) # 0. In this case, N may be chosen so that SN N is

a submanifold of ¢n+1.

Let X be a regular point of a hypersurface S. A covector

+
(xo; p) € T*((Ifn 1) is said to be normal to S if for every vector
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(zo, cees zn) tangent to S at xo, z pizl =0, If S={x:f(x)=0}
and Df(xo) # 0, then (xo; p) is normal to S if and only if

P= fo(xO) for some )\ € €. Thus, the covectors normalto S at

n-1

x _ form a one-dimensional fiber of T*(Q‘ ).

0
Two hypersurfaces are tangent at a point X if there is a co-

vector (xo; p), p # 0, which is normal to both of them.

We let 6; denote the usual Kronecker delta. We also define

60 by

0 0.0 0
6 —(60’61,00.,611)_(1,0’-0-,0)-

Observe that (0, y; 60) is normal to (En, for all y € a”.

An analytic function h(x;p) on a subset 7 of T*(Q‘m-l) is said
to be homogeneous of degree k in p if h(x;\p) = )\kh(x; p) for all
(x; p) € N and all non-zero A € @. We say that h is a polynomial in

p of degree m if we can write

i0 in
h(x; p) = T h, ; (X)po cee Py
i+,...vi<m 0°"" 'n
0 n—
for all (x;p) € N, where the hi i are analytic on a subset O
0 * 0 e n

+
of ¢n+1 such that N < C x (En 1.
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2. Characteristics

We now make some definitions and state some elementary
results from the theory of characteristics. An exposition of the theory
may be found in [2].

Assume now that h(x; p) is an analytic function on a subset of
T*((En-*_l) which is homogeneous in p. A covector (xo; p) is said to

be a characteristic covector of h if h(x_;p) = 0. A regular point x

0 0

of a hypersurface K is a characteristic point of K for h if some

(and thus any) nonzero covector normal to K at X0 is a character-

istic covector of h. The hypersurface K is said to be a

characteristic surfaceof h if each of its points is a characteristic

point of K for h. When there is no ambiguity, we will omit the
reference to h,

An analytic function ¢ (x) is a characteristic function of h

if h(x; Do(x)) = 0, and Dg(x) # 0 for all x in the domain of ¢.
This implies that the hypersurfaces {x : @(x) = constant} are
characteristic surfaces of h,

The bicharacteristic equations of h are the Hamiltonian sys-

tem
dxi ah
(2-1) 5 = -a—p—i(x;p)
dp.
i__3h .. .
Td-:t—— i(X,P)s 1—0,...,1’1
oX
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+
of complex ordinary differential equations in T*(Cn 1). That is, a

complex path t- (€ (t); T(t)) satisfies the system (2-1) if and only if

i
(2-2) L) = 22 (g m)
ap,
dm
i, _ 23h ..
e (t) = - -3 (8(t); m(t)),
ox

where (E(t); T(t) = (€°(t), . .., ECt); Tt .o, (),

If, in addition, the path satisfies the condition
(2-3) h(g (t); m(t)) = 0,

+
Then it is called a bicharacteristic strip of h., A path in (Cn 1 which

is the image of a bicharacteristic strip under the canonical projection

+ +
T*((Fn 1)-> (Dn o i.e.,, the path t- g(t) -- is called a

bicharacteristic curve of h.

If the path t - (§(t); m(t)) satisfies the bicharacteristic equa-
tions of h, then h(E(t),m(t)) is a constant. Hence, condition (2-3) is
satisfies if and only if h(§(0); m(0)) = 0. Bicharacteristic strips are
therefore obtained by solving the system (2-1) with appropriate initial
conditions, using the usual existence and uniqueness theorem of
ordinary differential equations,

Suppose h(xo;p) = 0, andlet t= E(t) be the bicharacteristic
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curve obtained by solving (2-2) with initial conditions
8(0) = %, m(0) = p £ O.

If p is replaced by Ap, for A € @, then the bicharacteristic curve
becomes t-~ § ()\kt), where k is the degree of homogeneity of
h(x; p). Therefore, the locus of the bicharacteristic curve is deter-

. +
mined by the one-dimensional fiber lying over x_. in T*(Gfn 1) which

0
is spanned by (xo;p).

Let X be a characteristic point of a hypersurface S for h.
Choose any p # 0 such that (xo;p) is normal to S. Then
h(xo; p) = 0. The locus of the bicharacteristic curve determined by

(xo; p) is independent of the choice of p. The union of these loci for

all characteristic points of S is called the characteristic set tangent

to S. If this set is a submanifold, then it is a characteristic surface
of h, which is tangent to S at each characteristic point of S,

Now assume that h(x;p) is a homogeneous polynomial in p
of degree m. Suppose that ¢ is a characteristic function of h

such that (0, yl, cees yn) = yl. Then
h(0, y; Dy(0, y)) = h(0, y; Docp(O, y),1,0,...,0)= 0.

In other words, for each y, T = Docp(O, y) is a root of the polynomial
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10
equation
(2'4) h(O, y; T» 1: 0: DR} 0) = 0

Conversely, assume that 0 is not a characteristic point of
@® for h. Then h(0,y;5"), which is the coefficient of 7™ in
(2-4), is non-zero for all y in some neighborhood N of 0 in (Dn.
Therefore, (2-4) is a polynomial equation of degree m in 7, for all
y € N.

Assume that there is a function @ € @(N) such that T = a(y)
is a root of (2-4) for all y € N. Moreover, assume that o(y) is not
a multiple root, so 3dh/ apo(O, y; a(y),1,0,...,0) #0 for all y € N.
In this case, we will show that a characteristic function ¢ of h can

be found on a neighborhood of N in ¢n+1 satisfying
1
(2-5) ¢(0,y)=y", Dye(0,y)= a(y)

on N.
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3. Singularities

We now state some definitions and results from the theory of
functions of several complex variables. Proofs of the results can be

found in [1].

+
Let U be a connected open subset of c” 1, ¢ € 4(U) and

S={xec U:oplx)=0}. We first state:

Proposition 3.1: Let X, € S with Dcp(xo) #0. If ge a@(U-S), then

there is a neighborhood N of x

0 in U, a neighborhood M of 0 in
@ and a function h(t,x) € @ ((M-{0}) x N) such that g(x) = h(p(x), x)

on N-S.

Definition 3.2: Let g€ @(U-S). Then g is said to have a pole, or

polar singularity on S if [cp(x)]kg(x) is analyticon U, for some

integer k. Otherwise, g is said to have an essential singularity on

So

Definition 3.3: A q-valued analytic mapping g: U~ (Dm is a multi-

ple valued mapping such that for every simply-connected open subset
N of U, the restriction of g to N consists of q branches
g N> Cm such that:

(1) g; is analytic on N

(2) g, can be obtained from any gj by analytic continuation

along apathin U
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(3) analytic continuation of gi q times around any closed
path in U yields the same mapping g

The set of all g-valued analytic (complex-valued) functions on
U is denoted by dq(U).

(We could more elegantly defing g to be an analytic mapping
on the simply-connected covering space of U.)

Note that the q branches g need not be distinct. However,
it is easy to show that the number of distinct branches must divide q.
Of course, a 1-valued analytic mapping is just an ordinary analytic
mapping.

If f and g€ dq(U), then f+ge¢ dq(U) is defined by specify-
ing one branch of it on any open subset of U. This can be done by
specifying a branch of f and a branch of g on a neighborhood of any

point of T,

Proposition 3, 4: Let g€ aq(U-S). Then the following two conditions
are equivalent:

€ S, there is a neighborhood N of x_. such

(1) For any x 0

0
that g is bounded on N-S.

(2) For any x, € S, there is a neighborhood N of x_. and a

0 0

function h(t, x) € Z(@xN) such that h(t,x) is a monic poly-
nomial in t of degree q satisfying h(g(x),x)= 0 on N-S.
If g satisfies these conditions, it is said to be an algebraic

function on U with singularities on S. An algebraic mapping on U is
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a qg-valued analytic mapping on U-S whose coordinate functions are
algebraic functions.

Observe that a 1-valued algebraic mapping on U is analytic
on U.

In analogy to Definition 3. 2, we make:

Definition 3. 5: A function g ¢ dq(U-S) is said to have a pole, or

polar singularity on S if [cp(x)]kg(x) is an algebraic function on U

for some integer k., Otherwise, g is said to have an essential

singularity on S.

The analogue of Proposition 3.1 is:

Proposition 3.6: Let X, € S with Dgp(xo) =0, If g edq(U-S),

then there is a neighborhood N of x., in U, a neighborhood M of

0
0 in C and a function h € g([M-{0}] x N) such that
g(x) = h([cp(x)]l/q, x) on N-S, If g is algebraic, then we can choose

h € a(MxN).

4, The Cauchy Problem

+
Let U be an open subset of " 1. An operator on U is de-

fined to be an analytic linear differential operator -- that is, a
mapping x- a(x; D) such that a(x;p) is an analytic function on

U x Cn-'-1 which is a polynomial in p. The principal part of the
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operator a(x; D) is the sum of the highest order terms in Pgr s 2Py
of a(x;p). The principal part of a(x; D) is thus a homogeneous poly-
nomial in p of degree equal to the order of the operator a. The
characteristic surfaces, functions, etc. of a(x; D) are defined to be
the characteristic surfaces, functions, etc. of its principal part.

We will be considering solution functions u(x) of the following

Cauchy problem:
(4-1) a(x; D)u(x) = v(x)
(Do)ju(O, y) = Wj(y), j=0,...,m-1;

where a(x; D) is an operator of order m on a neighborhood of 0,
v(x) a function on a neighborhood of 0 in (En+1, and the Wj(y)
functions on a neighborhood of 0 in (Dn. We will seek a solution
function u(x) defined on a neighborhood of 0 in ¢n+1.

Note that any local results for the Cauchy problem (4-1) can
be applied to the Cauchy problem on an arbitrary finite- dimensional
analytic manifold, with initial data on a submanifold of codimension
one,

The classical Cauchy-Kowalewski Theorem states that if:

(1) v(x) and the wJ(y) are analytic at 0, and

(2) 0 is not a characteristic point of a” for a; then there
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exists a unique solution function u(x) which is analytic on a
neighborhood of 0. (See [9] for a more precise statement of the

theorem. )

J

Hamada [5] considered the case in which the w* have singu-

larities along a submanifold of a” containing 0. Without loss of
generality, this submanifold can be taken to be ([‘n—l. Let h(x;p)
be the principal part of a(x; D). Under the hypothesis that the m
roots of (2-4) are distinct for all y in some neighborhood of 0, he
proved the existence and uniqueness of a multiple valued analytic
solution u(x) having singularities along the characteristic surfaces
{x : p(x) = 0} emanating from (Dn-l, where the functions ¢(x) are
the ones defined by (2-5) for the different roots a(y) of (2-4).

We will generalize Hamada's result in the following ways:

(1) We will allow certain cases of multiple roots of (2-4).

(2) v{x) may have a singularity along a certain type of sub-

manifold of (Ifn_'-1 containing 0.

(3) v(x) and the Wj(y) may be q-valued functions. *

Leray [6] and Garding, Kotake and Leray [4] considered the
case in which 0 is a characteristic point of (L‘n. They showed that

the solution function u(x) can be uniformized. That is, there exist

- +
an analytic function u(x) on a subset of (L‘n 1 and an analytic

*Wagshal [10] has recently also covered this case, in the course of

extending Hamada's results to systems of equations,
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mapping ¢ from a subset of ¢n+1 into ¢n+1 such that u = uego.
Under certain conditions, 0'1 is an algebraic mapping, so

u = uo c_ is an algebraic function. In this case, the singularities of
u are contained in the characteristic set tangent to (I‘n.

We will generalize their results to allow the Wj(y) to be g-
values analytic functions with singularities along (I‘n—l.

The above results describe how the singularities of the solution
are propagated from the singularities of the initial date. For equations
in two dimensions (n = 1), we will give a complementary result des-
cribing the propagation of analyticity. More precisely, assuming cer-
tain restrictions on a(x; D), for a simply-connected domain of
analyticity of the initial date we will describe a domain of analyticity

of the solution. This generalizes a known result for real hyperbolic

operators. (See [8].)

5. Operators of Constant Multiplicity

Definition 5.1: Let h(x;,p) be a homogeneous polynomial in p,

+
analytic for x in a neighborhood of 0 in o 1, such that
h(0; 60) #0., Let g= (gl, cees gn) o E #0. Then h is said to be

of constant multiplicity at 0 in the direction of g if there exists a

+ +
neighborhood N of 0 in c” 1, and hl(x;p), .+ h (xp) c a(Nxq” 1)
which are homogeneous polynomials in p, such that:

k1 k
(1) hix;p) = [hl(x;p)] [hs(x;p)] S on N
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(2) Let m, be the degree of hi(x;p), and let 1t = a?) ,

i=1..., m., be the roots of the polynomial

(6))

h.(0;7,€.,...,8 ). Thenthe £ m, numbers o, are
i 1 n i i

distinct.

If s=1 and k1 =1, then h(x;p) is said to have multiplicity

one at 0 in the direction of §.
Since the a{J) are distinct, they can be extended to functions

analytic on a neighborhood of 0 in a@” such that T = af?)(y) are the

roots of hi(y; ™58 R §n).

Note that multiplying € by a scalar A just causes the a?)

to be multiplied by A . We can therefore make the following:

Definition 5.2: Let a(x; D) be an operator on a neighborhood of 0

such that 0 is not a characteristic point of (En. Let S be a sub-
manifold of @" of co-dimension one containing 0, and let
(0; €) € T*((L‘n) be normalto S, € # 0. Then a(x; D) is called an

operator of constant multiplicity (multiplicity one) at 0 in the direc-

tion of S if its principal part is of constant multiplicity (multiplicity

one) in the direction of §.

The following Theorem 6f-Matsuura [7] is of interest in connec-

tion with these definitions. However, we will not use it.
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Theorem: The following conditions are equivalent:
(1) There are constants \)i and analytic functions 'ri(x; €)
on N x (]Rn-{O}) for some neighborhood N of 0 in

¢n+1’ such that

Vl Vr
h(x; 7, §) = ['r-'rl(X; E)] " ... ['r-'rr(x; E)] .

k1 k
(®  hxp) = [B6p] ... B,

where the hi(x; p) satisfy the conditions of Definition 5.1

for all € € R" - {0}.

Of course, (2) implies that h has constant multiplicity in the
direction of € for all E ¢ R" - {01.

(Note: Matsuura actually states a somewhat different result.
E.g., he only considers real hyperbolic operators -- for which the
'ri(x; g) are real when x € R". However, the proof of the above

theorem is identical to the proof given in [7].)
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6. Extension of Hamada's Result

Let a(x; D) be an operator of order m on a neighborhood ¢

of 0, which is of constant multiplicity at 0 in the direction of (I‘n—l.

Let h(x;p) be its principal part, and let oz(l), oo a(r) be analytic

(1)

functions on a neighborhood of 0 in € such that T =T« ! (y) are

the distinct roots of h(0,y;r,1,0,...,0).
(i)

Let ¢ '(x) be the characteristic functions of h(x; p) such that

(i) (i) (i)

1 1
@ (0,y,...,yn)5y, Docp (0,y) = o '(y),

o (1)(}:) = 0}. Then the K(I) are distinct character-

and let K )={x:cp
istic surfaces of a(x; D) passing through 0, no two of which are

tangent at 0, Moreover, K(l) n e’ c (L‘n—I.

Let K(O) be a submanifold of ¢n+1 of co~dimension one
containing 0 which is not tangent to ([‘n, such that K(O) n (Enc (En—l.
Assume that either K(O) = K(l) for some i, or else K(O) is not tan-

(i) (0)

gent to any other K at 0. Let ¢ '(x) € d(N) for some neighbor-

hood N of 0 be such that
(0) 1 n 1

o (0,y,....,y)=y

and
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(0)

K 'AN-={x:px)=0}.

it K =k® for 1>1; take ¢ = o
We can now state our result:
(i) (i)

Theorem I: Let a(x;D), ¢, ¢ ~ and K~ be above, let

w(y) €a on -0y for j=0,...,m-1 and let

(0)). Then

v(x) € dq(O-K
1. (a) There exists a unique solution function u(x) of the

Cauchy problem (4-1), defined on a neighborhood U of

0, of the form

r . . .
(6-1) w = 5 PP+ 6 Patoge™ e,
i=0
where F(i) € dq(U—K(i)) and G(i) € a(U).

(b) If a(x; D) has multiplicity one, and the WJ(y) and
(i)

v(x) have polar singularities, then each F '(x) has a

polar singularity along K(l).

2, (a) If the WJ(y) and v(x) are algebraic functions, then

each G(i)(x) = 0.

(b) If, in addition, a(x; D) has multiplicity one, then
(i)

ity on K(l).

each F is an algebraic function on U with singular-
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Note: For multiple valued functions WJ(y), v(x), finding a solutica

function u(x) of the Cauchy problem (4-1) has the following meaning.

r .
Let N be a simply-connected open subset of ¢ - U K(l) having 0
i=0

as a boundary point, Choose a branch of v(x) on N and a branch of
each W‘](y) on NN (En. Then u(x) can be chosen so that it has a

branch on N N U which satisfies (4-1) for the chosen branches of v

and WJ.

Analytic continuation along a path lying in c”- Q‘n_l clearly

yields another branch of u(x) which is a solution of (4-1) for other

J

branches of w* and v. At most q distinct branches are obtained

] and v. However,

in this way, corresponding to the q branches of w
continuation along a path going outside (L‘n may yield a branch of u

which does not satisfy the initial conditions (DO)Ju(O, y) = WJ(Y).

Remark 6,1: In part 1 of the theorem, the conclusions are not

changed if we add to each WJ(y) a function gJ(y)log(yl), and add to

v(x) a function h(x)log[cp(o)(x)], where g:i € qonc”) and h € a@).

Hamada proved part 1 for q = 1, v analyticon ¢ and
a(x; D) of multiplicity one. The conclusion of part 1 (b) is false with-
out the assumption of multiplicity one. To see this, consider the

following Cauchy problem on (Dz:
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2
23ty - Sz y) = 1/y.
at oy

- ou =
u(0,y) = v (0,y)=0.

(1) (1)

2
Then h(t,y;po,pl)f—‘- (po) , sor=1, a (y)=0 and ¢ '(t,y)=y.

Term by term differentiation shows that we have the solution

K1 t2(k+1)
[2(k+1)]! yk+1

u(t,y)= = (—1)k
k=0

Since the sum is absolutely convergent on

{(t,y) € (]32 :y 0} = (112 - K(l), u is analytic on this set. Obviously,

(0)

u has an essential singularity on K ",
Similarly, the solution
[}

+ z (1/2)
k=1

(-1/2)...(1/2-(k-1)) 4 2(k+1)

21/2
u(t,y)zty/

of the Cauchy problem

2

1/2
28y - Ly =y
at Y
w0,y) = 50,5 = 0

shows that hypothesis of multiplicity one is necessary in part 2 (b).
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7. The Cauchy Problem at a Characteristic Point

We now consider the Cauchy problem (4-1) when 0 is a
characteristic point of an. Let a(x; D) be an operator of order m
on an open neighborhood ¢ of 0 with principal part h(x;p), and
let g(x;p) = hix; p)/(po)m-l. Then g(x;p) is analytic on a neighbor-
hood of (O, 60) in T*((Dn+1), and is homogeneous of degree 1 in p,
Moreover, g(x; 50) equals h(x; 60), the coefficient of (DO)m in a.

Define a mapping ¢ : N- ¢n+1 for some neighborhood N of

+
0 in " 1 by letting t- (o(t,y); 7(t,y)) be the solution path of the

bicharacteristic equations of g:

i
do = 98 .
dm 3
— ty) = - 2B (ot y) it 3)
3%
with initial conditions
0
(7-2) 0(0,y;86 )=y

(0, v; 60) = 60

for ye€ ¢". The analyticity of ¢ (and 7) follows from the theory of

ordinary differential equations. (See [3].) Note that ¢ is the
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identity mapping on (Dn.
Let T = {(0,y) € a” g(o, y;bo) = 0}, so T is the set of

characteristic points of (En. We will prove:

Proposition 7.1: Assume ('L‘n is not a characteristic surface of

a(x; D). Then 0—1 is an analytic mapping on a neighborhood of

+
on ¢ -T in L,

Now let K = {g(t,y) : y € T}. Then K is the characteristic
set of a(x; D) tangent to c”.

Garding, Kotake and Leray defined a characteristic point
y € T to be exceptional if the bicharacteristic curve t- o(t,y) lies

entirely in (Dn. They then proved the following result:

Theorem: 1. If 0 is a non-exceptional characteristic point of o
for a(x; D), then 0-1 is an algebraic mapping on a neighborhood of
0, with its singularities contained in K.
2. Assume that in some neighborhood of 0 in ™
(a) T is a submanifold of an,
(b) The function y - g(0,y; 60) has a zero of order q-1
at each point of T,
(c) The vector (3g/ ap1(0, Vs 60), cens ag/apn(o, N 50)) is

not tangent to T for any y € T.
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+ +
Then a neighborhood of 0 in " 1, K is a submanifold of @ 1
(of co-dimension one) and o'_1 is a g-valued algebraic mapping with

singularities contained in K.

Now assume that 0 is a characteristic point of (Dn, but (I.‘n
is not a characteristic surface of a(x; D). In other words,
g(0; 60) =0, but g(0,y; 60) # 0. Since h(x;p) is an mth degree
polynomial in p 0 with leading coefficient g(x; 60), we can define a

homogeneous polynomial 'l;l'(x;p) in p of order m by setting

(7-3) hx; g(x; 60)p0, Pyseees pn) = [g(x; 60)]m—1h(x; p).

Then 'lz(x; p) is analyticon & x ¢n+1.

Moreover, h(x; 60)'=' 1, so
0 is not a characteristic point of (L‘n for ,1:,1

We now state our main results.

Theorem II: Let a(x;D), ¢, ¢ and ﬁ(x;p) be as above., Assume

that h has constant multiplicity in the direction of (En-l. Then

there exist analytic functions 5(1)(x), ces ,Q(r)(x) on a neighborhood

of 0 in @™ with 30, yL,....yN =y, D0, y) £ 0 for all

y, and submanifolds E(I) = {x :-c—p(l) = 0} such that:
1. (a) If wJ(y)eaq(oncrn-cn’l) for j=0,...,m-1, and

v(x) € @(®), then the Cauchy problem (4-1) has a
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unique solution of the form u(x) = -ﬁ(x)oo_l, where

r .
ux) = ¢ ﬁ(l)

i=1

(i)

(x) + G (X)log[:a(i)(X)]

with fm € aq(U-Iz(i)) and (—}(i) € d(U) for some

neighborhood U of 0.

.

(b) If ﬁ(x;p) has multiplicity one, and the wd have polar
(i)

singularities on ([‘n_l, then each F' ' has a polar

singularity on ﬁ(l) ’

2, 1If the w) are algebraic functions, then each G

(i)(x) = 0.

(i)

If, in addition, ﬁ has multiplicity one, then each F is

algebraic on U with singularities on I-<'(1).

If the WJ(y) have polar singularities along the set T of

characteristic points of (Dn, the following theorem may apply.

Theorem III: Let a(x; D), h(x;p), ¢ and o be as above. If

[h(0, y; 60)]JWJ(Y) €a@) for j=0,...,m-1, then the Cauchy problem
(4-1) has a unique solution of the form u(x) = E(x)o 0-1, where u(x)

is analytic on a neighborhood of 0.
By Proposition 7.1, the solution functions u(x) of Theorems

+
II and III are defined on a neighborhood of &N c”-T in o 1. The

note following Theorem I in Section 5 applies easily in this case to
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define precisely what is meant by a multiple-valued solution of the

Cauchy problem.

Remark 7.2: As in Theorem I, the conclusions of part 2 of Theorem

II is not changed if a function gJ(y) 1og(h1) is added to WJ(y),

where gJ e ana™).
Note that if 0 is a non-exceptional point, the Theorem of

Garding, Kotake and Leray implies that the solution function u(x)

of Theorem III is an algebraic function.
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8. Analyticity of the Solution in Two Dimensions

We first make some preliminary definitions,

Definition 8,1: A star-shaped domain in € is an open neighborhood

N of 0 suchthatif t€ N, then pt€ N for all p€ R such that

0<p <1,

For the following definition, we consider € to have the

differentiable structure of a two-dimensional vector space over IR,

Definition 8.2: A star-like domain in € is an open neighborhood

S of 0 together with a bijective mapping n: N-» [/ on a star-
shaper domain N such that:
(1) m(0)=0

(2) m and n_l are continuously differentiable.

Note that a star-shaped domain is also star-like, where n

may be taken to be the identity mapping.

Assume that we have chosen a star-like domain 5 . Let
n =1, andlet a(x; D) be an operator of order m on an open set
Gc Bx @ with principal part h(x;p). We assume that there are
1)

functions o ° € (@) such that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

(1) (m)

(8-1) h(x; p) = (po-oz (X)pl) (po-a (X)pl).

(For any operator on ((32 of order m whose coefficient of (DO)m is

1, for almost all points x, in its domain we can choose a neighbor-

(i)

0

hood @& of x. and a ' € @(@) satisfying (8-1).)

0

This assumption about a(x; D) implies that for any x_ € G,

0

we can find m characteristic surfaces (not necessarily distinct)

passing through X, @s follows. Let X = (to, yo) and define the

complex path y;l) in @ to be the solution of
0
dY}il)
P

(8-2) —% = [y‘l)u:)])

(i) _
Y (to) =x

0 0

The theory of ordinary differential equations guarantees the analyti-

city of y}(:) on a neighborhood of tO in @. The locus of the path
. 0 .
yi{l) is a characteristic surface for a(x; D), since if Y;I)(t) = X,
0 . 0
then (x;a 1)(x), 1) € T*((Dz) is tangent to this surface.
Note that if x. lies on the curve ym , then Y(I) = y(l) .
1 X4 X 3
Also note that t is the first coordinate of the point

YS)(t) € 032.

0

Definition 8.3: Let m be as in Definition 8, 2, Xq = (to, yo), and
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y(;) as above. Let tO = n(pele), where p, 8 € R and p > 0. The

0 .
dependence path B}(:) : [0,p] » @& is defined by
0
B::)(T) = Y;l )[n(Tele)]
0 0
if n(rrele) is in the domain of Y;I) for all ¢ € [0,p]. Otherwise,
. 0
B(l) is undefined.
X
0
Note that B(l)(p) =x _ and B(l)(O) € ¢. In fact, B(l)(O) is the
X 0 X X
0 0 0
intersection of the locus of yf{l) with €. (Recall that n(0) =0, and

0

y(i)(t) = (t,y) for some y € C.) Hence, B(i)
XO Xo

lying in a characteristic surface.

is a (real) path from the
initial plane @ to x

0’

Definition 8.4: ILet V be an open subsetof ¢ N C.

(1) For any compact set Kc ¢, S(K) is defined to be the
maximal subset of K having the following property:
For any x €K andeach i=1,...,m, thepath B:{i) is
defined and lies in K.

(2) The influence domain (V) is the union of the W(K), for

all compact subsets K of ¢ with KN Cc V.

Note that if any collection of subsets of K have the property
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stated in part (1) of the definition, then their union also has that
property. Hence, @(K) is well-defined. Obviously K N € c W.(K),
so Vc (V). Remember that HV) depends upon a(x; D) and 5.

We will prove:

Proposition 8.5: (1) If V is an open subset of @ N @, then A(V)

is an open subset of G@.

(2) If V is simply-connected, then (V) is simply connected.

We now consider the Cauchy problem (4-1) for a(x; D).
Theorem I shows (under a more restrictive hypothesis on a(x; D)

than we are now making) that if v(x) or WJ(y) has a singularity at

@) But x
y

y € @, then u(x) has singularities along the curves vy
lies on the path y;rl) if and only if y = B::)(O). Hence, we expect that

J

u has a singularity at x only if v or one of the w® has a singularity

at B;l)(O), or if v has a singularity at x. In other words, if v is

J

analytic at x, and v and the wY are analytic at B}(:)(O) for each i,

then u should be analytic at x. Our actual result is the following:

Theorem IV: Let a(x; D), & and S5 be as above, andlet V be a

simply-connected open subset of & N €. If v(x) € a(4V)) and
WJ(y) €eq(V) for j=0,...,m-1, then the Cauchy problem (4-1) has a

unique solution u(x) € @ (L(V)).
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Now consider IR2 to be a subset of 032 in the obvious way,

2
and call an element of (132 real if it liesin IR . Let B be a star-
shaped domain in € (so n- is the identity mapping). The operator

(i)

a(x; D) is said to be a real hyperbolic operator if the a '(x) € R for

all real xX€ @& .
)

_ Tt is clear from (3-2) that the curves B}(: lie in IR2 for all

real x if and only if a(x; D) is a real hyperbolic operator. In this

)

case, the B}({i are the real characteristic curves passing through x,
and the real part of (V) is the influence domain of the real part of
V, in the usual sense of influence domain for a real hyperbolic opera-
tor. (See [9].) Thus, Theorem IV contains the known result for real
hyperbolic operators.

Theorem IV also helps explain why this result is only true for
a hyperbolic operator. For any other operator, the real part of 4(V)
depends upon the non-real part of V. In other words, complex

singularities of the initial date can propagate along characteristic

) 2
curves into IR .
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II. PROOF OF THEOREM I

In Section 9, we show that it suffices to prove Theorem I
under certain simplifying assumptions. Using these assumptions,
in Section 10 we obtain the solutions of the Cauchy problem in the
form of infinite sums of functions. The rest of the chapter is devoted
to proving the convergence of these formal series solutions. In
Section 13, bounds are obtained for the individual terms of the series,
using results from Section 12. With these bounds, convergence is

proved in Section 14.

The proof of the existence of the characteristic functions is

deferred until Chapter IV, where it is more convenient for it to appear.
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9. Reduction of the Problem

We now show that it is sufficient to prove Theorem I with

the following additional assumptions.

(1) wj(Y)EO foreach j=0,...,m-1

@ % =pl)

(3) If h(x;p) is the principal partof a(x;D), then
h(x;p)=h (xip) ... h, (xip),

where each h.l(x;p) is a homogeneous polynomial

of degree r in p whichis analytic on a neighborhood
of [0}x @™ , is of multiplicity one in the direction

of C ntl ., and has cp(l), cees cp(r) as characteristic

functions .
Note that h(x;p) is of multiplicity one if and only if s=1.

Since K(O) = {x: cp(o) (x) =0} is not tangent to c® at o,

+
n+l and an

we can easily find a neighborhood N of 0 in C
analytic mapping v : N +¢C"  such that y(0,y)=y and

1w=0?w®,..0, so kPan=ytc™h.

(C Let
Wj (x) = wj °© § (x) . Then the Wj satisfy the hypotheses for v

in all parts of Theorem1I.
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Now let
m-1 O i .
U®=ux -2 () w(x
j=0
where x = (xo, e xn). Then u(x) is a solution of the Cauchy

problem (4-1) if and only if U(x) solves the Cauchy problem

m-1 O i .
(9-1)  a(x;D) UG = v() +a(x;D) [Z (x )W ()]
J=

(D)’ V(0.9 =0,j=0,...,m-1

If (4-1) satisfies the hypotheses of Part 1 of Theorem I, then (9-1)

does also. However, this is not true of Part 2, since the fact that the

Wj (x) are algebraic functions does not mean that a(x;D) [T (x O) j Wj (x)]
is algebraic. Our proof of Part 2 (a) will remain valid when v(x) is a
function of the form b(x;D) V(x), where V(x) is an algebraic function
and b(x;D) is any operator. For Part 2(b), we will indicate in

Section 10 why the solution function U(x) of (9-1) is algebraic when
a(x;D) has multiplicity one, even if a(x;D) [Z(x 0)j Wj (x)] is

not algebraic. Thus, replacing (4-1) by (9-1) allows us to assume

that the Wj(y) =0.

() (1) (0)

Now renumber the ® and a sothat o becomes

(1)

P (replacing r by r+1 if necessary). Let

¢ (xip) =py - (D) ) / D0 G0y p, -
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(Note that cp(i) (0,y) = yl implies that g(i) is analytic on a

ntl .) Then cp(i) (x) is a characteristic

neighborhood of {0} x C
function of g(i) (x;p), and r = a(i) (y) is the root of
g(i) (0,y;7,1,0,...,0). (Fori=1, we define on(l) (y) EDO cp(l) (0,y)

if necessary.)

By the definition of an operator of constant multiplicity, we
(1) ky (r) ky
can find k such that h(x;p) [g (x;p)] o [gV (x;p)] =
hl (x;:p) ... hs (x;p), where for each 1i, hi (x;p) is homogeneous
in p and « (1) (v),....,a (r) (y) are the distinct roots of
hi(O,y; t,1,0,...,0) . Moreover, cp(l), ce s cp(r) are characteristic

functions of hi (x;p) . Thus, the hi (x;p) satisfy the conditions

of (3).

Now consider the Cauchy problem

k k
9-2)  a@:D) [eP DIt ... [¢W(x:D)] TU = vx)
(DY  UO.M=0,5=0,....m-1+Zk, .

k
If U(x) is a solution of this Cauchy problem, then .u(x)= [g(l) (x:;D)]

[g(r) (x:D)] kr U(x) is a solution of (4-1), with w) (v)= 0. It

clearly suffices to prove Parts 1 and 2 (a) of the theorem for (9-2). For

Part 2 (b), observe that if a(x; D) has multiplicity one, then k1 =0

or 1 and ki =0 for i>1. We thus either leave a(x;D) unchanged,
or else change it to an operator of order m +1 and then apply an

operator of degree one to the solution function U(x) to obtain u(x) .
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We will show in Section 10 that with the assumptions of Part 2(b),
this yields an algebraic function u(x) . Since the principal part

k k
of the operator in (9-2) is h(x;p) [g(l) (x;p)] 1, .[g(r) (x:p)] T,

this completes our reduction of the problem.

Finally, we note that this reduction also applies to Remark 6.1
Indeed, adding gj(y) 10g(yl) to wj(y) . gj e 4(¢ N ch,
requires adding the function go § (x) log [cp(o) (x)] to the Wj (%)
of (9-1). This adds a function of the form G (x) + h(x) log [cp(o) (x)]
to the right hand side of (9-1), where h(x) e #(¢) and
G(x)e a(C - K(O)) qu(O - K(O)) . Thus, it suffices to prove
Remark 6.1 for the case wj(y) = gj (y)= 0 . The remark is not

affected by the other parts of our reduction.

10. Construction of the Formal Solution

By a forma.l solution to the Cauchy problem

(10-1) a(x;D) u(x) = v(x)

(Dg) w0, =0, 3=0,...,m-1,

we mean a formal sum u(x)=1I uk(x) of functions uy such that
(10-1) is satisfied with term by term differentiation and recombination
of terms. If each u, € dq (U) and the sum is absolutely convergent
on U, for some openset U, then wue aq (U) and is an

actual solution to the Cauchy problem. Note that we can speak of
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a formal solution of (10-1) when v(x) is a formal sum. In this

case, the first equation of (10-1) denotes term by term equality.

In this section, we construct a formal solution to the Cauchy

problem of Theorem I (as reduced in Section 9).

We let fk denote a sequence of multi-valued analytic

functions on € - {0} such that

(10-2)  df () =f _; ()
dt

for all integers k . The particular choice of the fk will be made

later.

We utilize the notation of Section 9, so the principle part of
a(x;D) is h1 (x;p) ... hs (x;p) ., where each hi is of degree
r with characteristic functions ® (1) fes e cp(r) . Then a(x;D)

has multiplicity one in the direction of (Dn if and only if s =1.
We first prove a result about formal sums.
Lemma 10.1: Let a(x;D) be as in Theorem I, with

characteristic functions cp(i) . Let u](:) (x)e g2(6), with

ul(ci) =0 for k<0 . Then

(1) There exist operators =£’,§i) (x;D) on & of degree
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=j, forj=1,..., m, such that

A ) (i)
(10-)  aGiD) (2 = ) g, [ )

i=1 0
r o m . . .
- (i (1) (i)
i i).:—.l k2=o (jil * ; [ ooy 61§ g ey [0 (0]
(2) g(})(x;D) depends only ona(x;D) and cp(i) (x).
(1)

(3) The principal part of =E,l (x;D) is

o v ()
L Oh(x:Dy (X))pj

i=0 op.
j=0 P

where h(x;p) is the principal part of a(x;D) .

Proof: Note that the left hand side of (10-3) denotes term by

term differentiation. Performing the differentiation, it is clear from

(10-2) that we can find operators z(ji) (x;D) on & of degree

HA

j, for j=0,...,r, such that

© m . -
. = (i) (i)
(10-4) a(x:D)(...) -‘f k'Z'f__o ;(E'-O ;ﬂjl [uk-j (x)]) fk_z_m[cp Y(x)] .

Moreover, (2) is satisfied by the £(ji) .

An elementary calculation shows that
- . (i)
(10-5)  h(x:D) (w, () £ _, [#" (x)])

= h(x;DCP(i) (x)) u, (=) £ _ [fp(i) (x)]
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n . :
+ 2 (oW ) D) w6 g [0 0]
j=0 dp;

r .
* I by (D) [ 0] fy e [0 (0]
S:

for some operators bs (x;D) oforder =p . But h(x;Dcp(i) x))=0,
(i)

since © is a characteristic function of h(x;p) . Prom (10-5), it
is then easy to see that ,g(oi) (x;D)= 0. Substituting k+1 for k

in (10-4) then gives (10-3).

It also follows from (10-5) that

n
29Dy = 3h (x;0
1 =0 apj

(i) (x)) Dj + w (x)

for some function w(x) , proving (3). .

The fact that £%) =0 allows us to construct a formal

solution for (10-1) as follows.

Lemma 10.2: Let a(x;D) have multiplicity one in the

direction of ™1

, and let the ;g(ji) be as in Lemma 10.1. There
exists a neighborhood U of 0 in (Dn+l and operators M (}) (x;D)

on U of degree =j with the following property:

r o
- (i) (1) ,
Let v(x) = 121 ]<Z=0 vk1 (x) fk-z [o'Y (x)] , with

each Vg)?’d(U), and }-t vl(:)EO for k< 0. Then
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(1) There exist functions u (]? (x) ¢ 2 (U) such that

r o . .
_ (1) (i)
=3 T (x) £ 1 L' (x)]
u(x) 2, ul (%) £y prin

is a formal solution of (10-1).

(2) The u](:) (x) are solutions to the following sequence

of Cauchy problems:

u(]?s 0 for k<0

w0-6) @ 2P ul 1 =vP e
(b) ul(0,9)= 0
D () g SO )
w0-7 @ 2P uPer=vP -2, 21 [} o)
(1) RSN () S ¢
(b) uy (0,y)—j2;l q2=1 My [u k_q] (0,v) .
for k> 0.
Proof: It follows from Lemma 10.1 that if the u(]? satisfy

(10-6) (a) and (10-7) (a), then

a(x;:;D) u(x)=v(x) .
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(Recall that m =r , since a(x;D) has multiplicity one.) We
now construct the operators ‘?71(3 (x;D) so that (10-6) (b) and
(10-7) (b) imply

(D) ul0,9)=0 , §=0,...,m-1.

Term by term differentiation shows that we can find operators

n®

0] (x;D) of order =q such that

. r o .
- iy () = (i
(10-) (D) ue= L B my  [u g (D)

Moreover,
(10-9) m (2,1‘ (x;D) = [D0 co(i) (x)] J

1

Recall that cp(i) (0,y) =y and D0 cp(i) (0,v)=a (1) (y) . Then

from (10-8) and (10-9) we see that (DO)j u(0,y) =0 if

) L (@) oy . (D) I R €) RPN ()
(10-10) i’_Z__l [a ™ () ] u? (0,9) = 121 q2=1 My, i [Wk=qg! (0:9)

for each k .

Let A(y) be the Vandermonde determinant

ay) = det ([aP (19 .
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Since the o (i) (0) are distinct, A(y) #0 in a neighborhood of 0
in ©®. We can thus solve (10-10) for the u(]? (0,y) by Cramer's
rule, getting equation (10-7) (b) for some operators N (ci) (y:D)

on a neighborhood of 0 in c™. The m (é) depend only on
a(x;D) and the cp(i) (x) , and are independent of k . We can
then extend the N (2 to operators on a neighborhood N of 0

in (13n+1 . Hence, (10-7) (b) implies that (Do)j u(0,y)=0 for

j=0,...,m-1, so u(x) is a formal solution of (10-1). (Note

that (10-6) is a special case of (10-7), since u, = 0 for k< 0.)

Finally, by the Cauchy-Kowalewski Theorem, we can find a
neighborhood U of 0 contained in N such that foreach 1,

if V(x)ea(U) and W(y)e 4(UN (Bn) , then the Cauchy problem

=£(11) [u] (x) = V(x)
u(0,y) = W(y)
has a solution u(x) € #(U) . (For the operators £(li) of order one,

this follows from Lemmas 12.4 and 12.5.) Thus, (10-6) and (16-7)
inductively define the u(lig (x) e 2(U) . l

For the general case of an operator a(x;D) of constant
multiplicity , we proceed as follows. By assumption (3) of Section 9,

we can write

a(x;D)= hl(x;D) hs(x;D) +b(x;D) ,
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with degree of b(x;D)<m=rs . We then apply Lemma 10.2 s

times to inductively find the formal solutions U (x) satisfying

v(x) if k=0

(10-11)  hy(x;D) ... h (x;D) [u(x)] =
~b(x;D) [ _ju(x)] if k>0

(Dg)? [ul (0.9)=0 .

(=<
Then T 1y (x) is easily seen to be a formal solution to (10-1).
k=0
We now show that the reduction of Section 9 applies to

Part 2 (b) of the Theorem. We will choose the f sothatif k=0,

k
then fk is an algebraic function on € with singularity at 0 . Then
the sum
s oo (i) (i)
(10~-12) DY uy (x) fk [o' (x)]
i=1 k=0
is algebraic on a neighborhood of 0 in C n+l , if it converges. For

Part 2 (b) of the theorem, we will write the functions v(x) and Wj (%)

of (9-1) in the form

T v £ (oW )],
k=0vkx o Lo (x

Then by Lemma 10.1, the right hand side of (9-1) can be written in the

form

© 1)
= ) fypyp [0 0]

Lemma 10.2 then gives a solution function of the form (10-12), which is
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algebraic. This shows that we can assume w (v) =0 in the proof

of Part 2 (b) of Theorem I.

If a(x;D) is replaced by a(x;D) g(l) (x;D) , then Lemma 10.2

gives a solution

r o . .
vw=z 3 uPwe,, W]
=1 k=0 K k+l
of (9~1). Then u(x)= g(l) (x;D) U(x) has the form of (10-12), and
is algebraic. This finishes the proof that it suffices to prove Theorem I

with assumption (3) of Section 9.

11. Notations

We assume that we have a star-like domain S with
0 c Axc®. Let n be as in Definition 8.2, Forany te £ ,

we define ||t|| by
It =1ntw].

We define the real path  ng4 in 8 , 0s6<2m, by
ngl)= (e'd .

Note that forany te &, t=m, ([|t|]) forsome 6.

For the proof of Theorem I, we will let & =C and n be the

ie

identity mapping. Then |t| =|t] , and ngP)=pe We
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consider the more general case so that we may apply some results

from this chapter to the proof of Theorem IV.

We now define the functions E(r,s) on 5 X ch, for

non-negative integers r and s , by

(11-1)  E(r,s) (t,y) = (r+s+! exp(y |[t]) [exp(yn |t
r+s
0

L+yn JtD] TS yn) ",

for some constants y,p >0 . Observe that E(r,s)(x) isan

increasing function of r,s,y and 1/p . Also notice that

(11-2) E(rls+j)§E(r+le)l

if yz1/n.

For any number TZ 0 , we can choose ET such that

Ex = [exp(ynllt]) Q+yn[itlD] ) exp (v i)
| p

forall te s with |t| ST . We then have

(11-3) E(r+1,s)(t,y) =(r+1+s) E, E(r,s)(t,y)
(11-4) E(r,0) =r! (ET)r

whenever |t| =T . (Like E(r,s), E, dependsupon p and Y .)
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Let IN denote the set of non-negative integers, and
INk the set of k-tuples of elements of N . For a = (cx,'l yee .,onk) € [Nk ,

we define
laf =a;+... +o .

If ¢ =(@ . ,onn) € an+1 , then we define

0,0.

o o

D%f= (D) 0 ..oy "t

Note that D% is an operator of order o] . Similarly, for

B=(Bl,...,Bn)€an, we let
B B
pPi= (D) !

We now state some simple relations which we will need later
on. The proofs are elementary, and are omitted. Assume j,kelN .

Then
(11-5) (+k)t=zjlk!.

If j=sk, then

(1-6) _k! = 2K
iT(k=i1!

w-7 s u_pls j!_gi__+
i=k  (i~j)! (1-p) ] 1

forany peR with 0= p<1. (To verify (11-7), write 1/(1-p) =Z:p1

and differentiate j times.)
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Finally, for k< 0 we define k! toequal I/(-k)! .

We then have

(11-8) kl=(k+1)!

for all integers k.

12. Mizohata's Lemmas

In order to establish the convergence of our formal solution, we
will need bounds on the solutions  u, (x) of (10-6) and (10-7). For

this, we will use some results of Mizohata [8].

First, we prove the following simple result.

Lemma 12.1: Let K be a compact subset of ¢ . There exists
a constant p such that if w (x) is any bounded analytic function

on G , then

ID%w ) |=M (|a] )/ pl*
ntl
for all xeK and aelN ; where M=sup w) | .
x €0
Proof: Let N(x;p)={z€¢n+1:in-zi|<p;i=0,...,n}.

One easily deduces from the (n+1) - dimensional Cauchy integral

formula that if N(x;p) <®, then
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@ | 1
ID"w (2) | = Moy ! euva !
o]

forall zeN(x;p), andall a= (ao,...,an)eNnH.

By the compactness of K, we can find points X, € K and <N

such that
KCENxip) Ueet UNK ip ) O

Choosing p to be the smallest of the p; bproves the lemma, since

aO!...an!§Ia|! .l

We now state the first of Mizohata's lemmas, which is

Lemmal of |8].

Lemma 12.2: letf,ge (@) ., x€¢ &, and assume that

[ID¥f(x) |= @+ la)! F , k>1
(kp)lal

ID% (x) |= (s+ ||0.‘|)! G
o
P

+ . .
forall o eN™ 1 , where r and s are non-negative integers.

Then

ID%(fg) () |= k. (+s+la])! FG

Kk -1 p|<1| (r:s)

Using these two lemmas, we prove the following.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

Lemma 12.3: Let L(x;D) be an operator of degree =k on C.

Let U be an open subset of & with compact closure contained in

® . Then for sufficiently large constants Y, 1/p and K,

depending onlyon L(x;D) and U:
If we @(U) and satisfies
q B = +
D¢ DPwi) |SAE(G+a |B]) @

forsome s €N andallxeU, gelN and Be[Nn; then L |w]

satisfies
| D¢ DPLiw)®) |SKAE (+k+a, B]) &

forall xe¢U,qelN and Bean .

Proof: , First suppose L (x;D)= DB DY for some
veN", with i+ lu=k . Then the result is true with K=1,

since

10§ DLl |= 0§ DP W |
=AE(st+i+q, |B|+ |v]) &) [by hypothesis on w]
SE(s+i+ |ul+q, |B]) &) [by (1-2)]
=E(s+k+q, |B|) ®  [sincei+ |v=k].

Next, suppose L is multiplication by a function £ %) ,

so L has order 0. By Lemma l2.1, for sufficiently large constants
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F and 1/p , dependingonlyon f and U ,

ID*fx | = F(lal!)
o ol

forall xeU . Writing E(s+q, |B]) ®=(s+q+ |B])!G/ pq+|8|

and applying Lemma 12.2 gives the desired result, with K=F ,

Finally, write L (x;D) Ezfi U(x) DB DY . Applying the
above results for the operators f; U(x) and Dll) D" easily proves

the lemma. l

We now consider the first order operator £ defined by

n
(2-1)  2&:D)=Dg+ X
=l

where a, x), bx) e 7(0) . We wish to examine the solution of

a; &) D;+bx) .,

the Cauchy problem

(12-2) 2[u] &) =£fk&)

u(0,y) =g () .

Foreach yeC® nn ¢, let Yy be the complex path in

n

C defined by

dy
(12-3) L W=y & v, 0) .. ay iy, ©)).

YY(O)=Y-

n+l

Define the mapping T on a subsetof C by

T,y =(t, Yy(t)) .
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From the theory of ordinary differential equations, we know that T' is
é 1-1 analytic mapping with an analytic inverse. Moreover, a simple

calculation shows that
£ [u]eT = D, [uel' 7 + (beT ) (ueT ).
Hence, the solution to (12-2) can be obtained from

(12-4) ueT (t,y)=[exp (-IE beT' (r,y) dr)] [J‘B foT (s,¥).

exp ([ beT (r,y)d)ds+g(y) ],

where the integration is along some path in € . We will perform the

integration along the paths ‘I]H .

Now let U be an open subset of & and assume f(x) e @(U),
gy) e a(Un ¢™). 1In order to insure that we can perform the integration
in (12-4) to get a solution u(x) ¢ @(U), we make the following

assumptions about U :

(1) If xeU, then x= Tf(,y) for some

te .B,yeUn(Dn .

(2) 1f I‘(TIQ(T),Y)€U,then

I‘(T]e(pT)ly)eU whenever 0 =p=sl.

In order to obtain our bounds on |u (x) |» we make the following additional

assumptions:

(3) U has compact closure contained in & . We can

then choose T suchthat (t,y) eU implies |t|=T.
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(4) If (ne(p),y)eU. then |dﬂe(p)|§l-
dp

Note that (4) is always satisfied if 7 is the identity mapping.

We can now state our result, which combines and generalizes

Propositions 3 and 4 of [ 8 ] . The proof is given in the appendix.

Lemma 12.4: Let £ , U, N and T be as above. For
sufficiently large constants Yy and 1/p, dependingonly on £ and
U:
If: (@ fea(U) andforsome A, rz0 satisfies
D DP f(x) |SAE (+1+a, |B]) &)

forall xeU, geN and BeNn

b) gea(U nC® and for some B=z0 satisfies
IDPg @) |=BE (. |8] (0.¥)

forall yeUNC"™ and peN".

Then: There exists a solution u(x) ¢ @(U) of the

Cauchy problem (12-2) satisfying

D DP uw |= 2 @E* B EG+a, B] &

forall xeU,qeN and beNn.

To be able to apply Lemma 12.4 to the operators {,(i) of (10-6), we

need the following result.
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Lemma 12.5: Let £ 17 v £ k be operators of the form
(12-1), and let 1 be the identity mapping. There exists a single open
subset of U of ¢, with 0eU, satisfying conditions (1) - (3)

above for each £

Proof: Choose a compact subset K of & . Let

be given by (12-1) and choose M such that
(12-5) |ai ) |=M

forall xe¢X, and i=1l, ..., n. Let s,teC and suppose that
Yy maps the straight line segment between s and t into K. It follows
from (12-3) that if y ()= (', ..., 2" and v, ()= wh e WY
then

12-6) |z'-wh|=M |t-s)|

foreach i=1l, ..., n.

Now let T i be the mapping T defined above for the
operator =£i . Let V be an open neighborhcod of 0 in c™ with
compact closure containedin ¢ . We can choose an € >0 such
that for each i, I‘i (t,y) e & whenever yeV and |t|<e .

We can also choose an [ (n+1) - dimensional] open neighborhood N
of V in @ suchthat foreach xeN andeach i, x= I‘i (t,y) for
some yeO® NC" and teC with |t|<e¢ . Moreover, we can

assume that N cK for some compact subset K of ¢ .
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Choose M so that (12-5) is satisfied for each of the 2 i

For any yeCn,6>0, define
Ky:s)=1{(t,z): |t|< 6/M and |z' -y |<6-M|t];

for i=1, ..., n}.

+
Then K (y:§) is an open subset of C" 1 , and

Ky:8) NC =4z: |z -y |<6}.

Assume that K (YO’ § c N. We will show that for each i,
if T, () eKlyy:8) and 0 spsl, then T, (ot, ¥) €K (yy:0) .
We can write T, t.,y) = (t, Yy (t)) . Let Yy(t) =z and Yy (pt) =w .
By (12-6), we have

|z -w' =M (1-p)|t].
Since (t,z) €K(y0;6) , we have

IYB -z |< 6-M |t].
Adding these inequalities yields

]yg —wl | < 8-M|pt].
which shows that T i t,y) = (t,w) €K (y0 19 .
Foreach y eV , choose 6y>0 such that K(Y;éy) c N and

K(Y;éy) nC™ cv. Since N and V are open sets, we can obviously

dothis., lLet U= U K(y;éy).
vy eV
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Since U cN , condition (1) is satisfied for each i . Since
Mg eT)=1p1 5 (t) , condition (2) follows from the fact that
T (t.y) e K(YO;G) implies T (pt,y) ¢K (yo;o) if 0sp=s1l.

Finally, condition (3) is obviously satisfied because U cN cK. .

13. Bounds on the Formal Solutions

We now establish bounds on the formal solutions obtained in
Section 10, which will be used to prove their convergence. We first

obtain bounds for the functions u}((i) of Lemma 10.2 .

Lemma 13.1: Let a(x;D), U,v(x) and u{x) Dbe as in
Lemma 10.2 . We can choose the neighborhood U and a constant B
such that for all sufficiently large C , y and 1/p.

(i)

If: for some constants A, rz0, each v X satisfies
|Dg pP v(]i) (x)|§ACkE(r+l+k+q, 18]) )
foreach xeU, gqelN and Bean,

(i)

Then: each u K satisfies

| k
(3-) |pd pPull) ® = ABCTEG¥kra. [8]) (d

foreach xeU, qgeN and Bean .
The choice of U , B, C, y and p depends onlyon afx;D), and B
may be chosen to be arbitrarily large. Moreover, a single such choice

can be made for any finite collection of operators a(x;D) .
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Proof: Since a(x;p) has multiplicity one,

_B_PE (0; D o (1)(0)) a%h (0, a(i)(O)) # 0. Replace ¢ by a smaller
neioghborhood of 0, iof necessary, so that -:p—h (X;Dcp(i)(x)) £ 0
for all x €@, i=1,...,r. Let h(i)(x) = (01/-aap—h(x; D cp(i)(x))).

(o]

Now let (1)

and let .5(11) (x; D) = h(l)( )z,(l)(x; D). Then part (3) of Lemma 10.1

implies that ,g(l)

(x; D) be the operator defined in Lemma 10.1,

has the form of (12-1), The Cauchy problems

(10-6) and (10-7) can be replaced by the following equivalent ones:

) (i)

(13-2) (a) .£1 [ (X)]‘ )Vo (x)
(b) 10,5 =0
13- (@ 2P = A - 22 Ll )
S=
®) w0,y = s 1 m(J)[u(J) 10, 3).
j=1 s=1

Replace & by the set U of Lemma 10, 2, which we can assume
to have compact closure in @&, and apply Lemma 12.5 to the operators

-2(1)

1 of Lemma 10, 2 to choose U. Then Lemma 12.4 can be applied to

the Cauchy problems (13-2) and (13-3). For a finite collection of

operators a(x; D), we replace @& by the intersection of the U's of
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Lemma 10. 2, and apply Lemma 12.5 to all the 2(11).

Observe that
Lemma 10. 2 remains valid if U is replaced by any smaller set

which satisfies the hypotheses of Lemma 12. 4.

We now prove (13-1) by induction on k., Choose K to be
large enough to satisfy the conclusion of Lemma 12. 3 for each of the
oth degree operators h(i)(x). Applying Lemma 12, 3 to the operator
( )(x) and the function vf)i)(x), using the hypothesis on v(()i), and

then applying Lemma 12,4 (with B = 0) to (13-2) yields (13-1) for

k=0, if > 2 K.
i B_ ET

Now assume k >1 and (13-1) holds for all u:(jl) with j<k.

Considering the right hand side of (13-3) (a), we have

r
P - ’5(1)[ 1(::1 -s

s=2

IDID"(v =) |

()|+ z IDqDB(-.'& [k+1 g

s=2

< quD
But
IDqDB (1)(x)| < AC E(r+1+k+q, |B])(x)

(i)

by hypothesis. By the induction assumption for Wr-g’ and Lemma
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12, 3 applied to ,5;1), we get

q.-B (1), (i) < k+1-s_ (i) 1kt
|D0D £ [uk+1_s(x)]| < ABC L E(r+1+k+q, |8])(x)
for some constant L(sl) depending only on .e(sl) - hence depending only
r .
on a(x; D)., If we choose C>B I L(Sl) and C>1, we get
s=2
r .
> Bck+1-sL(1)< Ck.
S —
s=2
Combining this with the above inequalities, we get
a8, (1) o), )
(13-4) |D D'(v, () - sz 2 [u O]

<2 ACk E(r+1+k+q, |B])(x).

Applying L.emma 12, 3, using (13-4), we get

. . r
13-5 D’ EM P - 5
o k 5=2

is)[u::-zl—s(x)]m

< 2AK CE E(r+14ktq,

B])(x)

forall x€ U, g€, Be IN".
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For the right hand side of (13-3) (b), we apply the induction

hypothesis to u(J) and Lemma 12,3 to mg), getting

r r-1
Pz = m(J)[ @ 0, 7))
. s
j=1 s=1
r r-1 k-5 (i)
<z 3z ABCT MY E(r+k, [B])0,y)
j=1 s=1 S
for some constants M(SJ) depending only on a(x; D). If C>B z. Mg)
S, ]
and C> 1, this gives
r r-1
(13-86) |DB(2 = mg [u(J) 10, y)) |
j=1 s=1

< ACKE(r+x, |B])0, ¥).

We can now use (13-5) and (13-6) to apply Lemma 12,4 to the

Cauchy problem (13-3), getting
quDB (x)l < 2AQE K + 1)c* E(r+k+q, |B])(x)
+
for all x€ U, g€ N and B € n" 1, Requiring that B > 2(2ETK+ 1)

and then choosing C as required by the above inequalities, completes

the proof of (13-1). Note that B can be chosen arbitrarily large.
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Observe that in the above proof, the choice of the constants vy
and p for the functions E(i, j) depended only on a(x; D). Moreover,

v and 1/p can always be increased.

It is clear from the proof that we can make a single choice of

B, C, p and y for any finite collection of operators a(x; D). I

In order to find bounds for the solutions ku(x) of (10-11), we

will need the following two results.

Lemma 13.2: Let h1 x:p)..., hs(x;p ) be as in Section 9. Then

there exist a neighborhood U of o and a constant B such that for

any sufficiently large C, vy and 1/p:

r -]
(i)
If: vix)= ¢ T v, (xf [
i=1 k=0 & K74

W,

€ @(U) and satisfies

where each VI(:)

B_(i)

(DI v =) | < ACK E(r+stk+q, |B)(x)

for some constants A, r>0 (independent of k and i)

andall x€U, q¢€¢ IN and B € an,

Then: The Cauchy problem
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(13-7) hl(x; D)... hS(x; D)u(x) = v(x)
(Do)ju(O, y) =0 , j=0,...,m-1; m =rs,
has a formal solution
r <)
_ (i) (i)
u(x) = .2 Py u, (x)fk—;ﬁm—sm (x)],
i=1 k=0

(i)

K € 4(U) and satisfies

where each u

(i)

. ®)|<AB C® E(r+k+q, |B])(x)

(13-8) ngDBu

forall x€ U, q€¢IN and Be IN".

The choiceof U, B, C, vy and p depends only on the hi’ and B

can be chosen arbitrarily large.
Proof: Consider the Cauchy problems

(13-9) hj(x-; D)uj(x)Eu. (x)

j-1

n
e

i
0 = i ., r-1,

for j=1,...,s; where u, = V. Then u(x) uk(x) formally satisfies
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h.(x; D) ... h (x; Dyu(x) = v(x).
1 s

¥ to the first of equations (13-9), and using the

Applying (Do)k_
fact that the coefficient of (Do)r in hJ.(O; D) is not zero (since
h(0; 60) # 0), gives a simple inductive proof that (Do)kuj(O, y)=0 for
all k=0,...,jr-1. This shows that u(x) = uk(x) is a solution to the

Cauchy problem (13-17).

Applying Lemma 13,1 successively to the s Cauchy problems
(13-9) gives the required result (since s(r-1) = m-s), where U, Y
and p are as in Lemma 13.1, and B and C are the sﬁ roots of the

B and C of that lemma. l

Lemma 13.3: Let L(x, D) be an operator on & of degree _<_ s

p€ @(6), and U an open set with compact closure contained in G.
Then for sufficiently large constants K, y and 1/p depending only on

L(x, D), ¢(x) and U:

I vix)= %

v, () [op(x)],
k=0 k k-2

where each Vi € g (U) satisfies

IDSDka(x)l < AE(r+k+q, |B])(x)

for some A, r> 0 (independent of k) andall x€ U, q¢€ N
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BeN,
Then L(x; D)v(x) = kEo wy (X, _ o [p(x)],

where each W € @(U) and satisfies

IDgDBwk(x) | < AKE(r+k+q, |B|)x)
forall xe U, q€N and Be IN.

Proof: A calculation using Lagrange's formula shows that if

1

+
a€ N, |a[<j and a (x)€ @(0), then

o
aa(x)Da(vk(X)fk_ z[cp(x)]) =T

i=0 AR N P L) |

where each Li o is an operator on ¢ of order < i which depends

»

only on . Applying Lemma 12,3 to the operators a (x)L, (x; D),
Y o i, a

we get
(13-10) a_(x)D%(v, (x)f, _ ()]
ol
= 2y Mol e e i -0
where each le-!-(j- || )+ € @ (U) and satisfies
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o

) a8
(13-11)  |D D Wier(i- )

+i(x)l < AKL aE(r+k+i, |8 ])(x)

for some constants Ki o depending only on aa and Li a; and for

£

all x €U, g€ N, BeIN".

Since j> |a| > i, and E(r,s)(x) is an increasing function of

r, (13-11) yields

(24

q.8 . .
|D,D Wit (G- Ia|)+i(x” S AK; E(r+kt(- |a|)+it+q, |B])(x).

||
Choosing K > £ K, , this and (13-10) give
a—.; La

aa(x)Da[v(x)] = Wg(x)fk_z_j[cp(x)]

k=0

o . o
where each Wk satisfies

arB. @y <
|D_D w, (x)| < AK E(r+k+q, [B|)x)
forall x€ U, q€IN and B N,

Now write I{(x, D)= I aa(x)Da, Then wk(x) =z W{:(X),
la|<j a

and letting K= ¢ Ka easily gives the required bound on L l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

We now find bounds for the solutions of the Cauchy problems

(10-11),

Lemma 13.4: Let h l(x;p), cees hs(x; p) be as in Section 9, and let

b(x; D) be an operator on ¢ of order <m-1 (where m = rs).
There exists a neighborhood U of 0 and constants B, C and K

such that for all sufficiently large y and 1/p:

. = (1)
If: v(x) = W(x)f_£+(s_1)[cp (x)] where w(x) € @(G) and
A> sup |w(x)],
x€0
Then: The sequence of Cauchy problems (10-11) possesses

formal solutions

©

r L
(13-12) ju(X)E z z (x)f

(X)],
i=1 k=0 3 "k

k-2-j(s- 1)[cp

where each ,u(l) € 7(U) and satisfies

jk

KABICK
T@Gs)t

(13-13) IDqDB (1)

x)| < E(k+q, |B])(x)
forall x€ U, g€ IN and B € N,
The choice of U, B, C, K, y and p depends only on b(x; D) and the

h..
i
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Proof, It suffices to show that for the Cauchy problems (10-11),

we can find formal solutions ju(x) of the form (13-12) such that for
any d> j,
j -k

KAB“C
(ds)!

B8 (1) E((d-j)s+k+q, |B])(x)

(13-14) IDqD (x)] <
forall x€ U, q€IN, B¢ N, Indeed, (13-13) is just (13-14) for
i=d.

The proof is by induction on j. Assume that U has compact

closure in ¢. Then by Lemma 12,1, for sufficiently large 1/p de-

pending only on U, andfor y> 1/n, we have

IpIp’wen | < ARG, [Bh)

forall x€ U, q€IN, BeIN. Setting v(ol) = w, and all other

(i) _
Vk = 0,

with r = 0. (Recall that E(q, |B|)(x) < E(s+q, |B|)x).) Application

we see that v(x) satisfies the hypotheses of Lemma 13. 2,

of Lemma 13, 2 gives us a choice of U and K such that for suffi-
ciently large C, y and 1/p, we have the formal solution ou(x)l
satisfying

g . @)

K
IDED Uy (x)| < KAC E(k+q, [B)(0)
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forall x€ U, q€ N, BE€ ]Nn. From (11-1) and (11-5), it is easy
to see that

E(k+q, |B])x) < /==, E(ds+k+q, |B])(x).

(d (ds)!

Combining these two inequalities yields (13-14) for the case j = 0.
Now assume that we have constructed the solution j11(x)

satisfying (13-14) for all d>j, andlet d> j+l. By (13-12) and

(13-14), Lemma 13.3 gives a constant M depending only on

(i)

b(x; D) and the ¢ (x) such that

r (]

(i) (i)
b(x; D f .
(x; D)[;u(x)] = ZZ M @ g _j(s-1)-(m-n® &
and each Wl(«:i) satisfies
j K
IDqDB (1)( )| <-K—4(-1c‘i£;-;”-!§— E((d-j)s+k+q, |B])x).

Applying Lemma 13. 2 for v(x) = b(x; D)[ju(x)], we get a formal

solution u(x) of the form (13-12), since

(j+1)
k-2-j(s-1)-(m-1)+m-s = k-4-(j+1)(s-1), satisfying
i k

KAMB B’C
(ds)!

q.-B (1)
ID D (+1) k

(x)] < E([d-(j+1)]s+k+q, | B|)(x),
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for some constant B andall x €U, g€ N, B¢ N Choosing

B> MB, this gives (13-14) for (j+1), finishing the induction

argument, l

Having found bounds on the terms of the formal sums ju(x),

we now prove a result which will yield the convergence of the formal

solution £ ju(x) of our original (restricted) Cauchy problem (10-1).

Lemma 13.5:

tion g on C - {0},
|fk(t)| 3—1{1!— (2|t|)k | 211 integers k. With

the notations of Le: jts J, L and M

independent of w(x!

2
KA ! L J
< g(x) exp : . ][( - )
M) | chm(x)ls UM i-m P |

()]
Icp(l)<x) |

for all x € U suchthat 0< Icp(l)(x)l <1/M.

Proof: Denote Icp(l)(x)l by @. By the assumption onthe f, it
suffices to find J, L and M such that
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[+ «©
(13-15) T z
j=0 k=0

. k-2-j(s-1)
Q). (29)
e @ S

8 oo [ ] [(R) +(2)']

whenever 0 << 1/M.
Choose T suchthat |[t] < T for all (t,y) € U. By Lemma
13.4,

KABICK
(ds)!

(i)

'juk E(k, 0)(x).

x| <

By (11-3), E(k, 0)(x) < k! (ET)k. The above inequality thus implies

that the ieft hand side of (13-15) is less than or equal to

© © b

KA k!

kf B
(13-16) —= 3 % vy (2ECo) ( . ) .
(2cp)z §=0 k=0 (k-2-j(s-1))1(js)! T ;Fs 1

For convenience, we let X denote 2ETCcp and Y denote

s-1

B/ To bound the expression (13-16), we split the sum on k

into two parts. First, we have
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for some constant B and all x € U, g€ N, B¢ ]Nn. Choosing
B> MB, this gives (13-14) for (j+1), finishing the induction

argument, .
Having found bounds on the terms of the formal sums ju(x),
we now prove a result which will yield the convergence of the formal

solution X ju(x) of our original (restricted) Cauchy problem (10-1).

Lemma 13, 5: Assume that for some function g on € - {0},

lf )| <uT (2|t|) g(t) for all t€ € - {0} and all integers k. With
the notations of Lemma 13.4, there exist constants J, L. and M

independent of w(x) and 2 > 0, such that for each i=1,...,r:

[--} (-] .
T = | .ul(:)
j=0 k=0 J

L
KA ! L J
< g(x) - exp [ ][( )
1-M [ () | o P60 |37 Y N i-m P ) |

4
()]
lo (x)]

(i)
(X)fl«:-!?,-j(s-l)[qJ ]|

for all x€ U suchthat 0< |p(x)| < 1/M.

Proof: Denote Icp(l)(x)l by ©. By the assumption on the f, it

suffices to find J, L. and M such that
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© © . k"fa"j(S'l)
i (i) (20)
(13-15) JEO I N ey ey ey

i oo [ 2] ) +(2)']

whenever 0< o< 1/M.
Choose T such that [t] < T for all (t,y) € U. By Lemma

13.4,

I u(i)(x)l < ——KABjCk

%% asy1 Bk, 0x).

By (11-3), E(k, 0)(x) < k! (ET)k. The above inequality thus implies

that the left hand side of (13-15) is less than or equal to

o ©

KA k!

k¢ B \’
(13-16) —= § § = (2E Ccp)( _) .
(2@);& §=0 k=0 (k-2-j(s-1))1(js)! T cps 1

For convenience, we let X denote ZETCcp and Y denote

s-1

B/cp To bound the expression (13-16), we split the sum on k

into two parts. First, we have
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- - k! k. j

z z . — XY
j:O k=j(S"1)+£ (k_z-J(S'l))'(JS)'

© ® k' . J

s : k=2-3(s- DI G(s- D151 = ¥

j=0 k=j(s-1)+4

[by (11-5), since j(s-1) +j = js]

= ; ; (k-4)! _k! st_(i

-0 -1 - 1[4 - 1 Y 1

520 k=j(s-1)+g 273D - (k-0 il
-] [ 0
k-4 k! k Y9I
< p . L. X
= = w01 X 3

j=0 k=j(s-1)+4
[by (11-86)]

4

°° i
< ¥ _];_zl (2X) X_

.—— .'
=0 2% (1-axftt 3

if 0<2X< 1 [by (11-7)]

. exp(Y).
(1-2X)

4+1

As the second part, we have
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j(s-1)+2-1
; : T k! <Xy
“2-i(s-1)11(s)!
j=0 k=0 [k-2-j(s-1)]!(js)!
© j(s-1)+4-1 1Y T .
-5 5 [£+3(S. 1)' k]'k! <Ky
j:o k=0 (JS).

[by definition of k! for k < 0]

© j(S-l)'l'f;‘l el ' .
<s s ——-———”?(SS),”]' x%y )
j=0 k=0 Js7:
[by (11-5)]
@ js-1)+4-1 21 4+j(s-)]! k Y9
<z s WD X 7T
j=0 k=0 "L ' 3
[by (11-5), since js = j(s-1) + j]
o  jls-1)+2-1 o j
< 3 g g1 oS DGR Y
j=0 k=0 J:
[by (11-6)]
o j(s-1)+4-1 s-1_ .
= 2 PN 27 ! Xk(—zT-YL
j=0 k=0 J°
© s-1_..j
<t o.ow 23X iro<x<t
j=0 T

[since T xkf 1/(1-x)]
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1 _
= .2_1'.. exp(zs 1

l'X Y)o

Combining these two results and substituting for X and Y,

we see that the expression (13-16) is less than or equal to

2
KA (2E.Co) B
7 2! 771 exp[——s_l]
(2¢) (1-4ETCcp) o
A s-1
5 5 B]
tT19E o XP | 51
1-2E,.Co { o 1

if 0< 4ETCcp <1 and ¢> 0. Setting J = ETC, M = 4ETC and

L= ZS—IB, the above expression becomes

) 1-s
J 2 'L 1 1 L
KA 2! ————-exp[ ]4' exp[———J s
+1 -1 i- 2 -1
(I_M@)z 0° (1-(My 2)) cp'e -

and the conditions become 0< ¢ < 1/M. Since 21—SL_<_ L and
(1-Mep) < (1-(Mgp/ 2)), it is easy to see that the above expression is

< the right hand side of (13-15), completing the proof. .
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14, Proof of Theorem I

In this section, we will prove Theorem I - assuming the
existence of the characteristic functions cp(i). The proof of their
existence is deferred until Chapter IV, since it requires some
results which will also be used in proving Theorems II andIII,

We first define the functions we will use as the f .

k

Definition 14.1: (1) For 0<g<1,

P(-l)k+1c(1-c) (Ikl-l-c)tk+c if k<0

fg(t)z < if k=0

+
tkc

| @), .. (ko) k>0

k

r k+1 t .
(2) (-1) -(-E-ITI)—‘ if k<0

0 .
£, (t) = { logt if k=0
L.k_l' [t5log(t) - Aktk] if k>0

1 1
where Ak= (1 +-2-+ +T{')
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The following lemma states that these functions satisfy the

assumptions we have made about the fk.

Lemma 14.2: If 0<g <1, then for each integer k:

W = fo=£2 o

(2) |f§(t)|§k1—!(2ltl)kgc(t) for all te C-{0},
where

go(t) = 1+ |log(t)]

gy = |t]°, 0<o <1.

Proof: (1) is easily verified by direct computation. For ¢ =0, (2)
follows easily from (11-8) for k< 0, and from the fact that Ak < 2k
for k> 0, For ¢ >0, the resultis also easily obtained, remember-

ing that 1/k! = |k|! for k<O, l

In order to apply the lemmas of Section 13, we will use the

following result:
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(1)

Lemma 14, 3: Let v(x) € dq(O -K'"’). There exists a neighborhood

U of 0 contained in & such that:

(1) There exist functions W‘L(x), w(x) € @(U) such that

q-1
= T zo wieod/9 e + wo,
j=0 2=

and for any sufficiently small ¢ > 0, there exists a con-

stant Ne such that for each W:,IQ, s

eJ?,

j
sup |w, ()| SN, =gy

x€U

(1)

(2) If v(x) has a polar singularity on K'~’, then there exist

functions Wil{(x), w(x) € @(U) and 2> 0 such that

gq-1 3
v = £z wleord MM )] + wi),
j=0 k=0

and a constant A such that each w! satisfies

j
k
|D LBy J(x)l < A E(kH, [B])(x)

forall x€U, i€ N and B€ N, if y and p are

sufficiently large.
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(3) The conclusions of (1) and (2) remain valid if
h(x)log[cp(l)(x)] is added to v(x), for any h(x) € 7(®).
(4) If v(x) is algebraic on ¢, then there exist functions
WJ.(X), w(x) € 7(®) such that
q-1 .
1
vix)= I W.(X)f‘z)/q[cp( )(x)] + w(x).
=1 !
Proof: By Proposition 3.6, we can find neighborhoods M of 0 in
C and N of 0 in ¢n+1 contained in &, and a function
h(t = (o M)yt @
,x) € a((M-{0}) x N) such that v(x) = h([p '(x)]"/ 7, x) for

X € N-K(l).

The Laurent expansion of h(t, x) about t = 0 gives

(14-1) =z v M 9,
k=-

where Vk(X) € 4(N) and the sum is absolutely convergent for all

x € N with lcp(l)(x)l sufficiently small, Moreover, the sum
- -}
(14-2) £ v, () ck/a

k=-e

is absolutely convergent on N for sufficiently small ¢ > 0. Letting
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r i -
V[-z+(s-1)]q+j (x) if g4 > s-1
vi(x)ssﬁo if 4 =s-1, j=0
t v P i pes-l, j51,...,q1
| k=0 KM o
(1), .k
wix)z T v, (X)o (%),
k=0 X4
(14-1) gives
(14-3) v = % vi<x>[@(1’<x)1("+‘S'1’+j/ D 4 wix),
4=s-1

where V:LE @ (N) and the sum is absolutely convergent for 'cp(l)(x)l
sufficiently small. Choose U to be an open neighborhood of 0 with

(1)

compact closure contained in N such that |¢ '(x)] is small enough
to ensure absolute convergence of (14-3) for all x € U.
By the absolute convergence of (14-2), for sufficiently small
¢ € > 0, we can choose a constant Me: such that

x€U

forall j, 2. Thenif ¢<1,
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M

€ L
e:(s-1+(q-1)/01)

e €

(14-4) sup IV?@(X)' <
x€U

Setting

J (1),_\,(-e+(s-1)+j/a) _ G, \o (1)
VL(X)[cp (x)] =Wz(x)f]z+(s-1)[c° (=1,

Definition 14,1 gives

V(;(X)

o o
(14-5) (a) w,(x) =(-p+s-1HDIV (x) = PP

(-1)(—L+S)vzj(x)
G/IL-G/DI. .. [2-5-G/a)] *

(b) wj(x)z =1,...,9-1,

so (14-5) and (14-3) yield the required sum representation of v(x)
for (1).

To find the required Ne , Wwe observe that
(4-s)! > (g-s-1)!
G/a1-G/a)] ... [£-s-(i/Q)]> (1/q@)[1-(q-1)/q}(4-s-1)!

for 0< j< . Then setting

N = e
¢ (8 1Ha-D/ Ay 0y(1-(g-1)/q)
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(14-4) and (14-5) yield

. 4
J <N —&
P Iwz ()| —Ne (2-s-1)!

x€U

This proves part (1).

)

Observe that adding h(x) log[cp(1 (x)] just requires setting

WZ_I(x) = h(x). Choosing Ne so that it also satisfies

s-1
€

(-2)!

sup IW:_l(X)I SN,
xe€U
is trivial, This proves (3) for part (1).
For Part (2), we note that if v(x) has a polar sibngularity,
then the sum in (14-1) can be taken from k = -q4 to » for some ¢ .
Setting

wi(x) = (k-2 +1)1 v (x), 0<k<g

a(k- )
Wz(x) =0

k-4+1

Jex) = (-
Wk(x) = (-1) Vq(k—z)+

J-(X)/(.'i/ D[1-G/a)] ... [4-k-1-(G/q)]

for 0<k<yg, j=1,...,9-1
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P

PR
WL(X)— by qu+3

k=0

l;oao;q-l

(-]
1 k
w(x) = T % (X)[cp( )(X)] )
k=0 =9
gives the required sum representation of v(x).

By Lemma 12.1, and the definition of E(i, j)(x), if

A> sup lwi(x)l
xeU

for each le(x), then
IpipPwit | < A BG, [B])6)

forall x€ U, ieN, BeN' . Since E(, |B|)x) < E(i+k, |B])(x)
for k> 0, this proves part {2).

Adding h(x) log[cp(l)(x)] to v(x) simply requires setting
Wz (x) = h(x), which does not change the above argument., This
completes the proof of Part (3).

Finally, assume that v(x) is algebraic on U. Then the sum
in (14-1) can be taken from k=0 to o, so we cantake 4= 0 in
Part (2). Since wZ(x) = 0, setting Wj(x) = wg(x), Part (2) then

implies Part (4). l
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We now prove the theorem. Replace ¢ by the neighborhood
U of Lemma 14,3, By Part (1) of Lemma 14, 3, using the super-
position principle (since a(x; D) is linear), we need only prove part
1 (a) of the theorem for
q-1 ©

(14-6) v(x) = 2 5% WJ(X)fJ/ PPN )

for each j, where the Wg are as in the lemma. (Since w(x) is
analytic, the solution for v(x)= w(x) follows from the Cauchy-
Kowalewski Theorem.)

Let gul: )(x) be the functions found in Lemma 13. 4 for

w(x) = Wz(x), and let

qloo ©

( )(x) = T I gulil)(x).
j= o d=0 k=0
S (@)
Then u (x)= £ u (x) is a formal solution to the (reduced) original
i=1 gq-1
Cauchy problem (10-1) for v(x)= ¢ (x)fJ/q [cp(l)(x)].
j=1 -4 +(s-1)

Lemma 13,5, together with Lemmas 14,2 (2) and 14. 3 (2) show that the
formal sum u Jél)(x) converges on a neighborhood U of 0 which is
independent of g, so uz(x) is a function which solves the above
Cauchy problem. Moreover, it is easy to see that

)

u(i)(x)s T F.1
2 j=1 1

(i)

@) + Fx) + 6B xytogloP @1,
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(i) (i), O (1)

where F (x) ea (U-K
Gr(i)

)s (x) € 7 (U-K

) and
(x) € @(U). Hence, uz (x) is a function of the form (6-1).

Using the bound on sup IWJ(X)I of Lemma 14,3 in Lemma

x€U .
13.5, we get
q-1 gj/q(x)KN 1
(14-17) Iu (X)l < PN —“—-(_1_)—_2 exp ——(S—— .
i=0 [1-M|op "(x)] o (x)|°
o ez[( J )"+( { )"]
(4-s-1)! 1-M | m(x)l lcp(l)(x)l
(1)

for all x€ U with 0< |¢ '(x)| <1/M, and any sufficiently small

€, where K, L, M and Ne are constants which are independent

of 1.

Let U be small enough so that Icp(l)(x)l <1/M for all
X€U, i=1,...,r. Then (14-7) holds for all x € U-K',

. o r .
(1)(x)'=‘ z (1)(x), and u(x)= % u(l)(x). Then

Now let u
z

£=0 i=1

the superposition principle implies that u(x) solves the Cauchy
problem (10-1) for the v(x) given by (14-6), if the sum defining
each u(i)(x) is absolutely convergent.

Given any x> 0, there is a sufficiently small € > 0 such

that

4! by
(zsl)'
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converges. Using this, it is easy to see from (14-7) that
T ¢! (i)
5 Iu 1 1 )
g=0 *

(x)| converges for all x € U-K Since each uz(x) is

of the form (6-1), wu(x) is also. Hence, u(x) is the required
solution function of part 1 (a) of the theorem.

The uniqueness of u(x) follows easily from the uniqueness
part of the Cauchy Kowalewski Theorem, since
a(x; D)u(x) = a(x; D)E(x) implies a(x; D)[u(x)—ﬁ(x)] = 0, This
completes the proof of part 1 (a).

For part 1 (b) of Theorem I, we combine Lemma 14,3 (2)

and Lemma 13.1 to get the neighborhood U and formal solution

-1 r = . . .

- - (i), \oi/a (i)
(14-8) u(x) = j=20 i>=:1 kEO P E3 SR )
with
(14-9) |julf)(x)| < ABCE(r+k, 0)(x),

for all x € U, where B and C are constants independent of k.

Then (14-9), (11-4) and Lemma 14, 2 (2) yield

() e/ d
PRt

-g4r-1 (I“*‘k)! [2C|Cp(i)(X) I]k.

(@)
@) ‘Terk- -1

< ag UmE ) (2o
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This implies that the sum on k in (14-8) converges absolutely on
U-K(i), if U is small enough so that Im(i)(x)l <1/2C for all

x € U. Using (14-8), it is easy to write u(x) in the form (6-1),
where the F(i) have only polar singularities along K(i). This
proves part 1 (b).

An examination of the proof of part 1 of the theorem shows
that Remark 6.1 follows from Lemma 14,3 (3).

For part 2 (a), observe that the logarithmic terms in the
solution u(x) come from the functions f;[cp(i)(x)]. If these func-
tions are missing from the expression (14-8) for v(x), then they
will not appear in u(x). Hence, we will have each Gi(x) =0 if
v(x) can be represented in the form (14-8) with the sum on j
running from 1 to q-1. By Lemmas 14,3 (4) and 13, 3, this is the
case if v(x) = L(x; D)V(x) for any algebraic function V(x) on &
with singularities along K(l), and any operator b(x; D). This
proves part 2 (a).

Finally, observe that for j> 0, the sum on k in (14-8) is
an algebraic function with singularities on K(i), if 4<r-1. By
Lemma 14,3 (4) and Lemmas 10,1 and 13,3, this is the case if
v(x) is algebraic, or v(x) = a(x; D)V(x) for any algebraic function

(1)

). This proves part 2 (b), completing our proof

(i)). .

V(x) € g (U-K
q

of Theorem I (assuming the existence of the @
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III, PROOF OF THEOREM IV

15. Proof of Proposition 8.5

In this section, we prove Proposition 8.5. We begin by proving
an eiementary result which will be needed. Let |s| denote the usual

norm on 032, defined by |(t, y)I2 = |1212+ lylz

Lemma 15.1: Let B [u,p]~ (132 be a differentiable real path satisfy-

ing
| ('r)l <L |B(7) |
for some constant L, andall ¢ € [u, p]. Then
|B(7)| < exp(L l'ro-'rl) IB(TO)I
for any T, o € L, pl.
Proof: Assume T 2> 7. . We then have

0

|B(r) - Blr )] = IJ" (o)dcl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87
EITO I-(E (0)] do
T
<] LB d .
To
Since |B(r) - B(r )| > |B(r)| - |B(r )], this gives
.
|B(n| < IB(TO)I +Lf [B(o)| do
o

A change of variables then reduces the problem to proving that

if f is a continuous real-valued function satisfying
T

(15-1) tr) < £0) + L[ | #(0)do

for each 1t € [0,A], then

(15-2) £(r) < £(0)exp(Lr).

Let M= sup f(r). We will prove by induction that for

T€[0, 1]
every n,
n K n+1
(L7) (L)
(15-3) f(r) < f(o)[kfo wr M)

for all 1 € [0, p]. This inequality then obviously implies (15-2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

For n=1, (15-3) follows easily from (15-1), since
"r
fO flo)do < M T . Assume that (15-3) holds for n. Applying (13-3)

to f(o) in (15-1), we get

- n k n+1
(Lo) (Lo)
f(1) < £(0) + Lfo (f(O)IkEO 1 T MR

A simple integration shows that this inequality is just (15-3) with n + 1
substituted for n,

This completes the proof for the case ¢ > Th(qe_ proof for

T 0 0
T < To just requires changing all integrals f "t to j:r e l
FI"
0

We now recall our notation., N is a star-shaped neighborhood
of 0 in C, and J§ is a star-like neighborhood of 0 with n: N =~ 5
is a star-like neighborhood of 0 with n : N- 5 the mapping of
Definition 8.2, The open set @& is a subset of § x C, and the func-
(i) (i)

€ @(®). For each X €0, Y is the complex path in &
0

tions «
defined by (8-2),

We now prove a result which puts a bound on the change in yx(t)
as x changes. Recall the definitions of ny and it|| given in

Section 11.

Lemma 15,2: Let K be a compact subset of @ . There exist con-

stants L. and € > 0 such that for any x » X4 € K with lxl-xol <e,

0
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where x,. = (t

5 o yo) and 1:0 = ne(llton), and for each i=1,...,m:

(i) (i)
(15-4) lvxl[ne(w)l - vxo[ne(ﬂ]l

< exp[Ldlity||-)] lv (t ) - v D 0|
0

for any 1 such that y ['q ('r')] Y )['ne('r')]GK for all t'¢€ ['r,HtoH].
%0 1_

Proof: By the compactness of K and the analyticity of the a/(l), we

can find constants A and § > 0 such that

la(i)(z) - a(i)(x)| < Alz-x]|

for all x,z € K with |z-x| <& . Since m is continuously differen-
dn
tiable, we can also find a constant B satisfying I—Erg('r)l <B for all

8, T such that (ne('r), y) € K for some y.

We now compute

d (i) ()
I-CF(YX1 [ng(mM] - Yxo [ng (1) |
. dn
- 10,120 o - o mgmmigL o]

1

[by (8-2)]
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Tor n=1, (15-3) follows easily from (15-1), since
r
Io f(o)ds < MT . Assume that (15-3) holds for n. Applying (13-3)
to f(o) in (15-1), we get
n

T k
g <o+ Ll oz L j+m
= 0 o K

(Lo')n+ 1

7%

A sim»le integration shows that this inequality is just (15-3) with n + 1

substi:uted for n.

This completes the proof for the case 1 > To*

T c
T<T, just requires changing all integrals f'r Certo J"T e I
0

Th?_ proof for

We now recall our notation, N is a star-shaped neighborhood
of 0 in C, and JB is a star-like neighborhood of 0 with n: N~ 5
is a star-like neighborhood of 0 with 71 : N- 5 the mapping of
Definition 8.2. The open set @ is a subset of § x C, and the func-
tions a(i) € 2(®). For each X € G, Y;i) is the complex path in &
defined by (8-2). °

We now prove a result which puts a bound on the change in Yx(t)

as x changes. Recall the definitions of n, and It]l given in

Section 11,

Lemma 15.2: Let K be a compact subset of ¢ . There exist con-

stants L. and € > 0 such that for any x

o %X € K with le—xol <e,
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where x, = (tys ¥, and tg= ne(\]ton), and for each i=1,...,m:

(i) (i)
(15-4) vy g ()] - 1%

[, ()1
) 8

(i)

< explLdlitgll-m1 |y,
1

(1)
(t) - YXO (ty)]

for any T such i (r')]€ K for all t'€ [T, “tou].

()

.,analyticity of the o ', we

1 < Alz-x|

for all x,z € K with |z—x| < 8§ . Since n is continuously differen-
dn

tiable, we can also find a constant B satisfying |—-a;rg('r)| <B forall

6, T such that (ne('r), y) € K for some y.

We now compute

d , (i) (i)
ld—,,f(w/xl (g1 - Yxo [ne('r)])l

. . o\ dn
- I, [oz(l)(Y;l; g - a‘”(yfjl’ 1IN ()]

[by (8-2)]
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< AB |y tn (] -

[m 11
1 0o °

. i i
if 'Y;)['ﬂe(ﬂ] - YL)['ﬂe("')]l <s.
1 0
Applvi (i) (i)
pplying Lemma 15.1 to the path > v, [ne('r)] " Yy
1 0
and letting L = AB, yields (13-14) - if we

[ne (™1,

substituting ||t0” for T,

make the additional assumption that

(i)

(15-5) |YS) [ng(r] - v,
0

. [ne('r')]l <9

for all '€ [T, |]t0||].
The compactness of K and the continuity of n-l allow us to

choose T suchthat T> ||t|| for all (t,y) € K. By the continuity of
(i)
X

{tt, ¢, ) : (t,y) € K}, we can find an ¢ > 0 such that le-x0| <e

the mappings (t, x) > y_ "(t) on a neighborhood of the compact set

implies Yf:l)(to) is defined and Iy;ll) (to) - y}({i(; (to)l < 8/ exp(LT).

Now, applying (15-4) to the points T' shows that (15-5) holds
so long as Y}il)['n e('r')], Y)(:)
1 0

[ne('r')] € K for all 1'e€ [7, Htoll , and let

[ne('r')] € K. More precisely, assume that

Yf:; [n e(*r'>], Y;ll)

' = sup{r' € [r, ”ton]:: (15-4) holds for +'} . It is easy to apply what
we have already proved (i.e., that (15-4) holds under the additional

assumption (15-5) holds for all ' € [r, ||t0"]) to the points

y}({i) n e(rr")], Y;i) [ne(rr")] in order to show that t'" =71 . Thus, (15-4)
1

0
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holds for . l

With the aid of the paths 7 8’ we can rewrite the definition of

the dependence path B}(:) as
0

(i)

X

(i)
)=y
0 )

B [ne('r)],

(1)

where x, = (to, YO) and t, = ne(”toll). Note that BXO (HtOH) =X,
We drop the requirement that B::) be defined on the entire

0

interval [0, HtO”]- Instead, we just assume that B;l) (p) is defined
0

when YS) [ne('r)] is defined for all T € [p, ||t0|| 1.
0

To prove that 4(V) is open, we need a method of proving that
a particular point x is in Q(K). To obtain it, we first make the

following definition.

-

Definition 15.3: Let x = (t,y) €® . A broken dependence path to x

is any continuous real path B: [p]t||.||t|1»> & for 0<p <1 such that
for some numbers pj with p = Po < Py <...< P, = 1 and some ij:

) _ (5
if 7 € [pj_l, pj], then B(T"t") = BB(pJ"t“)(THt“).

(i,)
We say that 8 can be extended to 0 if BB(lp "t“) is defined on
1

[0, plutn]. In this case, we can assume that B is defined on [0, ||t]|].

Thus, a broken dependence path is obtained by piecing together
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segments of dependence paths BS) to form a continuous path, This

definition allows us to give the following characterization of 2(K).

Lemma 15.4: Let K be a compact subsetof ¢, and V<o N (.

Then the point x = (t,y) € K is an element of KK) if and only if
every broken dependence path B to x satisfies:

(1) B can be extended to 0, and

(2) B(0, ftiD <= K

Proof: Let g2 be the set of all elements x € K with the above property.

We must show that ¢ = #(K). Recall that #(K) is defined to be the lar-
gest set Sc K such that for every x=(t,y) €S andeach i=1,.,.,m:
(i)
X

(1") B is defined on [0, ||t||]. and

@) B0, D e s

Since a dependence path BS) is a special case of a broken
dependence path to x, anypoint x € ,,p obviously satisfies (1') for any
i, Forany x€ @, let z =(s,w)¢€ B}(:)([O, IIt)|]) andlet B be any
broken dependence path to z. We can extend B to a broken dependence
path E to x by letting

Biry it 7 <|s|

B(r) = .
By it sl <7<t

X
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Since E satisfies conditions (1) and (2) above, B does also. Thus,
z € ¢ and (2') is satisfies with S = g. By the maximality of W(K),
this proves that gc g(K).

Now let x € 9(K) and let B8 be any broken dependence path

to x. With the notation of Definition 15.3, we can apply (1') and (2')
(i,)

successively to the paths f3 J for j=n,n-1,...,1. Since each
Blo,tlD

of these paths lies in @(K) = K, this shows that B satisfies (2).
(i,)
Since satisfies (1'), B satisfies (1). Hence x € @,
Lo, It

proving that g(K)c 4. '

Given a broken dependence path B to x and a point X, close

to x, we want to choose a broken dependence path to Xy which is

close to B. We thus make the following definition.

Definition 15. 5: Let x,%x, € ¢ and let B be a broken dependence

1

path to x. The broken dependence path to x. parallel to B is the

1
path B defined as follows. Let X, = (tl,yl) and let the pj, ij be as

in Definition 13.3. Then —B(”tlﬂ) =x, andfor j=n,n-1,...,1: if

1
T G . ) p. ’ tllell

(i)
J

Brllt,Ib = 8
A

(1 “tlu );

so long as this is defined.
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In general, if B is defined on [p|t||, ||t||], then B will be

defined on [E“tl\\ ,|It,|I1 for some 5> p. Note that if B is parallel

y|
to B, then B is parallel to B. (More precisely, this is true if we

restrict the domain of B to [p|[t|, ||t]|].)

We now show that if x1 is close to x, then -B is close to B.

Lemma 15.6: Let K, K be compact subsets of ¢ such that K is

contained in the interior of K . There exists an ¢ > 0 such that for
each i=1,...,m:
If Xq = (to, yo) € K and B is a broken dependence path to x

defined on [p|t [, ||Ityll1 with B([ellt L, llt,llD = K,

0

Then for any x, = (t,,y.) with |x,-x | <e, the dependence
=2 41 17%0

1 1

path B to x, parallel to B is defined on [p|t ||, [|t,[|]. and

1
BlIpllt, Il lit, D =X .

(i)

Proof: Since the mappings (t, x) > Y

(t) are defined and analytic on
a neighborhood of the compact set {(t, (t,y)) : {t,y) € ﬁ} , We can

choose constants A, 8 1 > 0 with the following property: if

x = {t,y) € K and [t'-t]< 61, then Y::)(t') is defined and

(i)

(15-6) v,

(t') - yi”(t)l <Afe-t].

We can also find constant B, 52 > 0 suchthat x=(t,y), x'E€ K and
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|x'-x| < 5, imply Yx'(t) is defined and

(i)

(i) .
o B =Yy t)| < B |x'-x].

(15-7) ly
Similarly, the differentiability of n on the compact set

S={pt: (n(t),y) € K for some y, 0<p<1} allows us to choose

constants C, 6,> 0 such that for any t,t' € S with [t'-t] < bq

and any 0<T <1:
In(rt') - n(rt)] < Crltr-t].

We can restate this as follows. If t=mng (Itlh, t = nx(llt'”), and
[t'-t] < & 3’ then

(15-8) m D - n el ] < Crleet]

whenever 0< gt <1,
Choose constant L, € as in Lemma 15,2 for the set K.
Using the compactness of K, we can find 64 > 0 such that x € K

and |z-x| < &, imply that z is contained in the interior of K.

4
Finally, choose T> |t| for all (t,y) € K .

Now let the pj, ij be as in Definition 15.5. Let B be the

path defined by
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(i.)
Berlltd) = v ! . (it D1,
bl 122 1 ol

where tg = ne(\\to\\). The path B thus "lies between' the paths B

and B.
If € _<_E , successive applications of Lemma 15. 2 for
j=n,n-1,...,1 - substituting B(pj“ton) for x,, B(pj“ to\\) for x,

and ij for i - gives

~ (i) (i)
Bl - Belltgld1 < explLligl=rleghl Iy, ™ i)y, ™ o)

so long as §(7‘|[tol|), B(¢'||t0|]) are defined and in K for all

7' € [v,1].

If e< 62, then applying (15-7) gives
(15-9) [Berlltgld-Berlity] < B exp(LT) |x; x|

whenever ’B'('r'"toﬂ), B(T'Htoll) € K forall r'e [7,1].

Now choose ¢ smaller than 8, and 61/(3. Then

|t1-t0| < lxl-xol < ¢, together with (15-8) implies that

(15-10) In (rlltg ) - mgtrlitglD] <3,

for all v € [0,1]. Now assume that -B-(rr\\tln), 'E(T\\ton) are defined
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andin K, and 1 € [pj_l,pj]. Then

[B (et 1) - BerlitglD |

(i) (i.)
= |y_? In_ (et D7 - v_° RGN
IYﬁ(pj"’tlll) n rlityl Y'E(pj\\tl\\) ngrlity
I(ij) [ (r ||t 1] B el
= T - N, (T
Bl X Belie )y ©

<A |'\']X(‘T"t1”) -1 e("l‘”ton)l [by (13-6) and (13-10)]

< ACT |t1-t0| [by (13-8)]
<AC [x,-xy | .
(The second equality above follows because z = Y::)(t) implies that
W, W
Yo =V¥x -

Combining this with (15-9) and setting M = B exp(LT) + AC,

we get
(15-11) (a) ré(T"tl“) - B(T”ton)l iM |x1_xol

(b) |Blaltgl) - BerlitgD I <M [,
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whenever T > p, and E(T'Htln), E(T'Hto“) are defined and in K
for all '€ [r,1]. (By hypothesis, B(r|ty|) € K for 7 € [p,1].)

It is clear that if E(Tntln), 'B'(Tuton) are defined and in the
interior of E, and T > p, then we can find a & > 0 such that
E('r'“tlﬂ ) E(T'Iltol\) are defined and in K for all t'€ [T-,7]. Then
choosing € < 64/M, it is easy to show from (15-11) that -E(q-”tlﬂ),
E(T'\\ton are defined and in K for all T € [p,1]. This completes the

proof. l

We now prove Proposition 8.5, To prove part (1), we must
show that for any compact set Kc & with KN Cc V and any

x € MK), thereisan ¢ >0 such that le-x| <¢ implies x, € (V).

1
Since K is compact and V is open, we can choose a compact
set Kc & such that K is contained in the interior of K and
KN Cc V. Let ¢ be asin Lemma 15.6. We will show that x € 4(K)
and le-xl <e¢ imply x € 2(K). Since H(K)c g(V), this will prove
part (1).
Assume x € J(K) and ]xl-xl <e. Write x = (t,y) and
X, = (tl,y1

Lemma 13.4, we need only show that B can be extended to 0 and

). Let B be any broken dependence path to x By

1

B(10, |It, D = K.

Let -é be the broken dependence path to x, parallel to B.

1
Since x € #(K), Lemma 15,4 implies that B(r|lt]) € K, whenever it
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is defined, But it is clear from Definition 15,5 that this implies that
E(TH’LH) is defined whenever B('rntl\\) is. Again by Lemma 15.4, we
can extend B to be defined on [0, ||t]|]] with B([0, ||t||]) c K. Apply-
ing Lemma 15.6 (with B and E reversed) shows that B can be ex-
tended to 0, and B([O, ntlu]) c K. This completes the proof of part

(1).

Part (2) of the proposition is trivial, since the mapping
(p, (t, y)) = BE:? 9) (p||t||) defines a continuous deformation of W(V)
onto V, for any i.

In the proof of part (1), we also proved the following result

which we will use in the next section.

Lemma 15.7: Let K, Kc® be compact sets such that K is con-

tained in the interior of K . Then the closure of J(K) is contained

in W(K).

In fact, using the relation (15-11) (a) from the proof of Lemma
15,6, one can show that W(K) is closed. However, we will not need

this result.
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16. Proof of Theorem IV

The proof of Theorem 1V is similar to that of Theorem I, only
simpler. We first show that it suffices to prove the theorem with the

WJ(y) = 0. The method is essentially the same one used in Section 9.

Define the functions Wi3(x) by W(x) = WJ[Y::)(O)]. Since
Y:{”(O) = BS)(O), the definition of @(V) shows that YLI)(O) € V for

any x € V. Thus, W? is defined on (V). By the analyticity of the
mapping (i, x) - yx(t), w? € @(4(V)). The rest of the argument isthe
same as in Section 9.

We now write

(m)

(1)

a(x; D) = (Do-oz (x)Dl) ce (Do-a (X)Dl) + b(x; D),

where b(x; D) is an operator on ¢ of order < m-1. As in the proof
of Theorem I, we will inductively define the functions uk to be the

solutions of the following sequence of Cauchy problems:

(16-1) v{x) if k=1

(m)

(1)

(Do-ar (X)Dl) .o (Do-a (x)Dl)uk(x) =

-b(x; D)uk_l(x) if k> 1,

j = i = -
(Do)uk(O,y)_O for j=0,...,m-1,
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- .
Then u(x)= T uk(x) is a formal solution if (4-1) (with w= 0).
k=1 :

If the sum is absolutely convergent, then u(x) is a solution function
for (4-1).

We will use Lemma 12, 4 to obtain the solutions u, of (16-1).
In order to be able to apply Lemma 12,4, we first introduce some
notation, Let U be an open subset of (L‘2 with compact closure con-
tained in @&, such that the closure of UN € is contained in V, Let
l\T1 be a star-shaped neighborhood of 0 in @ with compact closure
contained in N, such that Uc n(Nl) x ¢. (N is as in Definition 8. 2.)
Since U has compact closure and n-l is continuous, such an N1
exists. Finally, let #(V;U) be the set HVNU) defined by Definition
8.4 with U substituted for ¢ . Proposition 8.5 states that #(V;U) is
an open subset of U.

The definitions of W(V) and @(V;U) are unchanged if n is
replaced by the mapping t - n(pt) for any fixed real number p> 0.

dn (1)
We can therefore assume that n satisfies l—dT | <1 whenever

rrele € Nl, and hence whenever (ne('r ), y) € U for some y.

Now let £ be the operator (Do—a(l)(x)Dl). The mapping T
defined in Section 12 is then just the mapping (t,y) = Y;I)(t). For any

x = (t,y) € 4(V;U), we have
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X = yf{i)(t) - y(i)' (t)
BS’(O)
) (M)
= T(t, Bx (0)).

By definition of g(V;U), B;l)(O) exists and is an element of
JV;U)N @. Thus, condition (1) of Section 12 (page 52 ) is satis-
fied, when Q(V;U) is substituted for U in it. Similarly,

T(n (p'r), y) is just /3 ('r) )(p"r), so condition (2) also follows

from the definition fo @(V;U) - again with g(V; U) substituted for U.
Conditions (3) and (4) follow from the restrictions on U and n

made above, since Y(V;U) ¢ U. We can therefore apply Lemma

(i)

12, 4 to the operators (Do—a (x)Dl) and the open set 4(V;U). We

do so in the proof of the following result.

LLemma 16,1: Let U be an open set in (E2 with compact closure

contained in &, such that the closure of U N C is contained in V;
let H(V;U) be as defined above, and let v € @(W(V)). Then there
exist solutions u € a(g(V; U)) of the Cauchy problems (16-1), and

constants B, L, y and p such that each Uy satisfies

K
(16-2) |DDTu, (x)] < B2 L - E(q, )(x)

for all x € w(V;U) andall q,r € IN.
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Proof: Consider the Cauchy problem

(1)

(m)

(16-3) (Do—oz (x)Dl) - (Do-oz (x)Dl)u(x) = f(x)

(DO)Ju(O,y)E 0 for j=0,..., m-1, !

As we saw in the proof of Lemma 13.2, if U_ = f and Ui is defined

0

iteratively to be the solution to the Cauchy problems

(i)

(16-4) (Do-a (x)Dl)Ui(X)EU. (x)

i-1

DOUi(O, y)=0,
then u(x) = Um(x) is the solution to (16-3).
Applying Lemma 12,4 to the Cauchy problems (16-4), we find
that for sufficiently large constants y and 1/p: if fe¢ a(p(V; U))
and satisfies

B .
IDgDrl.f(x)l ET{T E(q+j+m, r)(x)

for all x ¢ @(V;U) and q,r € IN; then the Cauchy problem (16-3)

has a solution u(x) € @(#(V;U)) satisfying
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IDID u) | < = (2B, ) E(qH, r)(x)
01 — k! T ’

for all x€ Y(V;U) and g, r € IN.
Next, applying Lemma 12,3 to the operator -b(x; D), we ob-

tain a constant A such that
|D8D11‘[-b(x; D)u(x)]| i% A(ZET)mE(q+(j—1)+m, r)(x)

for all x € »(V;U) and q,r € IN,

We now get the solution functions u.,...,u by repeating this

1 k

procedure k times - starting with f(x) = v(x), then letting
f(x) = -b(x; D)uj(x) for j=1,...,k-1. The above inequalities show

that if v(x) satisfies
q.r B
(16-5) IDODlv(x) | < 37 Elgtktm, r)(x)

for all x € 4(V;U) and q,r € IN, then uk(x) € J(V; U) and satisfies
(16-2) with L = A(2E,)".

To prove (16-5), we first show that the closure of J(V;K) is
contained in J(V). Let K denote this closure. Since »(V;U)c U,
we have Kc@® and KN C€Cc V. Choose a compact subset K of @
such that K is contained in the interior of K and Kn Cc V.

Then Lemma 15,7 shows that the closure of #(K) is contained in
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J(K), which in turn is contained in (V). It is easy to see from
Definition 8.4 that 2(V;U)c 4(K). Thus, the closure of L(V; U)
is contained in (V).

Since v(x) € @(@(V)), we can now apply Lemma 12.4 to find

constants B and p such that

|DO 1()|§B—-—-

for all x ¢ »V;U) and q,r € IN. But

(g+r)!
P < E(q, r)
o)
< & E(gtk, 1)
<17 Ela
1

-l-{— E(g+k+m, r)

if y> 1, Thus v(x) satisfies (16-5) for any k, completing the

proof. l

The proof of Theorem IV is now straightforward. Lemma

16.1 implies that

Lk

|u (x)| <B=— o

E(0, 0)(x),
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8O

-]

T |u (x)| < B exp(L)E(0, 0)(x)
k=1 &

for all x € 4(V;U). Therefore, the function ulx)= % uk(x) is a
solution of the Cauchy problem (4-1) (for Wj = 0), and
u € a(HV; 1).

To prove that u € @ (4(V)), we need only show that for any
x € 4(V), there is an open subset U of ¢ satisfying the hypotheses
of Lemma 16.1 with x € 2(V; U).

Let x € #(V). Then x € HK) for some compact subset K
of & with KN Cc V. Choose a compact subset K of 0 such that
KN Cc V, and K is contained in the interior of K. Let U be
the interior of K. Then U satisfies the hypotheses of Lemma 16.1.
Moreover, it is clear from the definition of 2(V;U) that
J(K)c 4V;U), so x€ »(V;U). This proves that u € @((V)).

The uniqueness of the solution u(x) follows from the Cauchy-

Kowalewski Theorem, completing the proof of Theorem 1V.
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IV - PROOF OF THEOREMS II AND III

To prove Theorems II and III, we will construct a Cauchy

problem
a(x; Dyu(x) = v(x)
(Dy)a(0, ) = wity)

which is solved by u(x) = veg(x) if and only if u(x) is a solution of
(4-1). Theorem II will be proved by applying Theorem I to this Cauchy
problem, and Theorem III will be proved by applying the Cauchy-
Kowalewski Theorem,

The construction of this Cauchy problem, and the proof that it
has the required properties, is done in Section 19, using results proved
in Section 17. Section 18 is a digression to prove the existence of the

characteristic functions used in Theorem I.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

17. Notations and Preliminary Lemmas

We begin with some notations to be used in this chapter. For

+ —n+
clarity, we consider ''another copy' of a” 1, denoted by " 1. We

- - +
let x = (xo, .. .,_}En) denote an element of (_fn 1. Similarly,

Bi = a/a§i , etc,

We introduce the summation convention whereby any expression
involving the same index as both a subscript and a superscript is to be
summed on that index. The range of summationis 0 to n for a
Roman letter index, and 1 to n for a Greek letter index.

+1 —n+
Let L((I‘n 1, (‘L‘n 1) denote the set of all linear transformations

1 i1, 1t e L@ @), then the T;G @, for

from an+ to €

i,j=0,...,n, are definedby

i i
T (poa . e o’pn) - (Topi: o e .,'Tnpi).

. n .
(Remember that 'rl.pi = % 'r;pi by our summation convention., )
i=0

+
If ¢ : U> (T_n 1 for some set U, then the functions

6 : U> € are defined by o(x) = (o o(x), cees o (x)). Similarly, if

+1 — . .
T:U- L((L‘n 1, (En+1), then 'r;'i : U-> @ is defined by 'r;f(x)

n

i
T(x)]; .
[ ]3
In this section, we assume that U is an open neighborhood of
—n+1

— +
0in ¢ ', and g: U=~ (I‘n 1 is any analytic mapping. Later, we

will apply our results to the particular ¢ defined in Section 7.
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1

_ +1 —nt .
. Define the mapping o, : U~ L((!fn , a” 1) by (c*); = Diol,

J
We define 'the mapping c:kl by c;l(x) = [c*(x)]_l. Then

0;1 : x € T : detfo, (x)] # 0} » L@t oty

where det(t) denotes the determinant of the matrix ('r;).

+
Given an operator b(x; D) on a subset U of o 1, we want

- — —n+
to define an operator ¢ *b(x; D) on a subset of (Ifn 1 with the pro-
perty that for any analytic function f on T,
b{x; D)[f]ec= o *b(x; D)[fe g].

The following will turn out to be the appropriate definition.

Definition 17.1: Let b(x; p) be an analytic function on an open subset

— _— —n+
of T*(Cnﬂ). Then o-*b(x;p) is the function on a subset of T*((En 1)

defined by

(17-1) o *b(xp) = blo®@; [o;, @G

It follows immediately from this definition that:
- — ~n+
(1) o*b(x; p) is analytic on the open subset of T*((En 1) con-
sisting of all points (%,p) satisfying

(1) x€T, detfo, (x)]#0
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(i) (o(x), [c;l&)](ﬁ)) is in the domain of b(x;p)

(2) If b(x; p) is homogeneous in p, then o*b(x; p) is homo-

geneous in E of the same degree.

(3) If b(x;p) is a polynomial in p, then o*b(x; p) is a poly-

nomial in E of the same degree.

For an operator b(x; D), o *b(;; 5) is thus formed by substitu-
ting o(x) for x and (c;l)g(;:-)ﬁj for P, in b(x;p). Lemma 17,3 will
show that ¢ *b(x; D) is a well-defined operator (i.e., it is independent
of the order of multiplication of the pi in b(x;p)), and that is satis-

fies (17-1). The proof requires the following simple result,

Lemma 17.2: Let ;{-0 € U, with det[o*(;:-o)] #0, andlet f bea
1

function analytic at c(§0) ¢ ¢, Then
— B —
(Df)e o(xy) = (o, )(xo)[D(f°o)(x0)]
Proof: By the chain rule,
B (t:0&,) = [B,01E,) + [0
Di(f c)(xo) [D;o ](xo) [Djf](c(xo)).
By definition of o, this becomes

D(fe0)(x,) = 0,(x ){DBoc (x )] .
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Applying 0;1(320) to this equality proves the lemma. .

+
Lemma 17.3: Let b(x; D) be an operator on an open set N in (En 1.

Then

(1) o*b(x; D) is a well-defined operator on
N-Gelnolmn: det[o (x)] # 0}
(2) If x€ U and the function f is analytic at o(x), then
[b(x; D)f][o(x)] = o *b(x; D)[fe 5](%).

(3) If k(x;p) is the principal part of b(x; D), then o ¥k(x; p)

is the principal part of g *b(x; D).

Proof: (2) Write b(x; D) = Zbi . D, ...D, . Then

[b(x; D)f]eo(x) = £ b, ; loGNID, ; fleo(®)
e i T

and
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o*b(x; D)[fe0](x) =

— -1 j1— -1~ jk— —

T b, ; [o(x)1([o, (x)]i D, )... ([0, (X)]i D, )feo](x).
1k 1 N k Ik

Applying Lemma 17,2 k times shows that these two expressions are

equal,

(1) Let x€ N, and g a function analytic at x . Since
det[o *(-}E)] # 0, we can find a unique analytic inverse 0_1 on a neigh-

borhood of g(x). Then (2) implies
o *b(®; D)[g]®) = [blx; D)geo oo ,

so © *b(;{-; I_)) is well-defined on N .

(3) This is an immediate consequence of Definition 17,1, '

The application of this result to the proof of Theorems I and

I1I will be by means of the following lemma.

Lemma 17.4: Assume c(ﬁn(_[‘n)c (Dn, and that det[c*(O, y)] is

not identically zero on a neighborhood of 0 in En. Let b(x; D),
i +
bl(x; D) be operators on a neighborhood of 0 in o 1. Then a

function u is a solution of the Cauchy problem
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b(x; D)u(x) = v(x)

b'(x; D0, y) = w'(y), i=0,...,m-1

if and only if U= ueg is a solution of the Cauchy problem

o*b(x; D)Yu(x) = veo (x)

o*bl(-:z; D)u(0,y) = W oo (0, v), i=0,...,m-1,

Proof: The "only if"' part follows immediately from part (2) of

Lemma 17.3. For the converse, the same lemma implies that if
u is a solution of the second Cauchy problem, then u is a solution
of the first in the neighborhood of any point ¢(0, y) in its domain
with dét[c=k(0, y)] # 0. By hypothesis, such a point exists. The

result then follows by analytic continuation. l

We now examine the relationship between the solutions to
the bicharacteristic equations for b(x; D) and o*b(x; ]3). In
particular, we will show that if t- E(t) is a bicharacteristic curve
of g*b, then t- geE(t) is a bicharacteristic curve of b.

Before doing this, we prove the following result which we

will need.
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Lemma 17.5: If x € U and det[o, ()] # 0, then

—r-lz—_ "lj— k— - -1!,—
D (0, (x) = (o, )i(x)'(o*)r(x)'Dj (0, ) (x).
Proof: For convenience, we drop the reference to the point X .
Since (o*);.{ = ]_53.0 k, we see that
= k , -1.4 = k , -1.2
(17-2) Dr(o*)j o, ) = Dj(o*)r (0, ) -
But

— kK, -14. = . f.
DS[(c*)q- (O, 1= Dgo,1=0
implies

= k, -1.2 k=
Ds(c*)q(c* W =" (c*)qDS(c

-1.2
*)k

Applying this to both sides of (17-2) yields

BB o 2 -

v
#j° Tt x Tk

k =, -1
(o (cr*)r-D‘_i(cg;< "

Multiplying this last equality by (0;1);] (and summing on j) gives

the required result. l
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Lemma 17.6: Let g(x;p) be an analytic function on a subset of

+ - —
T*((Ifn 1) which is homogeneous in p, and let X € U with
det[o (x )] # 0.
If t- (E(t); T(t)) is the solution of the bicharacteristic
equations of o *g(—;z; 5) with the initial conditions E(O) = ;{-0’
m(0) = py,

then

£ (£ 7)) = (00F (1); [0, EENITD))

is the solution of the bicharacteristic equations of g(x;p) with initial

conditions
20 =0 &), T0) =0, (x)F) -

Moreover, g(E(t); T(t)) = o*g(E(t); m(t)). (Thus, t- (&t), T(t))

is a bicharacteristic strip if t- (€ (t), Tt)) is.)
Proof: We must show that for each i=0,,..,n:

i
(17-3) S 0 =2E rgas T
i
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dm

(17-4) —dT‘ (1) = - (D,@IE(), T(t)]

whenever det[o(E(t))] # 0. We now compute:

dgel | dlo’eE]
dt (t) = dt (t)

D.o[E(t) ng(t) the chain rul
jc [E(t)]. it [by the chain rule]

iz, 2078 F ) 7
Do (BT 25 E0.TO)

[since €, T satisfy bicharacteristic equations]

i, B Eiey. e L E M. (-1 (F
= DjO [E(t)] %, [0°E(t); [0, (EENITEN] . (0, )L(E(t))

[by definition of o*g, and the chain rule]

- E)E®] 0 Ew)]e 2L 2
= (0,350 (0, ) [B)] >, [E(t); T(t)]

[By. definition of &, 7 and o]

- o8 (E(t), m(t)), [by definition of o _1].

op i

thus proving (17-3).
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To verify (17-4), we compute

5 ) = [0, B 7))

ST P
- @y hiEw L

+D,[(o, )Jng(tn- g’ ©) 70

(o, DIEW] - [- Bylo¥e)E®), T

+D,l(o, "YIE -“‘g (®) 700

[since E , T satisfy bicharacteristic equations]
- @, E® - - Bo'fE) +D gl T o) EFO)
- 28 (5eE(t) o (E(t» [m(t)] » D, [(0' Y4Ew - T (3

op k k
5 e iE) « B ) 7.0
+ D, [0, 18] « 5 J.

[by definition of ¢ *g, and the chain rule]

- - o, IEW] « DT - D g(E ) T
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1= k
)[E(t)] — D[(c* k][§(’c)] 1r (t)
+ D[( )3][g(t)] (t) .(t)
[by definition of g, 7, and (17-3)]
= - D,g(&(t); m(t)
- W B W g ® +Blc, HhE® 7,0
+ D e HEwm] -9_5-%-&) o T,(t)
A e dt j

[by definition of 0;1 and €, plus the chain rule]

= - Dig(§(t), m(t))
- -1 , -1 = k -1.4. =
+[D (o, )y = (0, )] + Do + Do, N IE®] «
g S(0) T (0)
= - Dig(g(t); m(t)) [by Lemma 17, 5].

This proves (17-4).
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The fact that
g(E(t); T(t)) = o *g(E(t); m(t))

is an immediate consequence of the definitions of &(t), m(t) and o*g. .
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18, Existence of the Characteristic Functions

We now construct the characteristic functions used in Theorem
I. The basic idea is to first find mappings ¢, m such that
t » (o(t, y); m(t,y)) is a bicharacteristic strip for h(x;p). Hence,
h(o(t, y); m(t,y)) = 0. We then find a function ¢(x) with
Do[o(t, y)] = m(t,y), which will imply that ¢ is a characteristic func-
tion of h,

The bicharacteristic strips are easy to construct. We just

solve the ordinary differential- equations

i
30 _ _oh )

oT.

h
—2(t, y) = - 22 (o, y); T, )
ot i

oxX
with initial values ¢(0,y), w(0,y) satisfying
h(c(0, y); m(0,y)) = 0,

A simple computation using (18-1) shows that

—a-a;c- [h(o(t, y); T(t, Y] = O,

so we have
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(18-2) h(o(t, y); m(t, y)) = 0.

Proposition 18, 2 will enable us to construct the characteristic
function ¢(x), given ¢ and T, First, we prove it for the special
case in which g is the identity mapping. We assume that h(x;p) is

+
analytic and homogeneous in p on a subset of T*(([fn 1).

Lemma 18.1: Let N be an open subset of (Ifn, U an open neighbor-

hood of N in ¢n+1, and m: U= ¢n+1 an analytic mapping such that
t - (t,y;m(t,y)) is a bicharacteristic strip of h(x;p) for each y € N.
Let §(y) € 2(N) be such that Duq:(y) = Tru(O, y) for up =1,...,n.
Then there exists an analytic function ¢(x) on a neighborhood of N in

¢n+1 such that (0, y) = §(y), and De(x)= m(x).

Proof: Let ¢(t,y) be the solution to the ordinary differential equation

o)

(18-3) 3t o(t,y) = wo(t. y) - h(t, y; m(t, y))

©0(0,y) = ¥(y).

It is clear that ¢(x) is defined and analytic on a neighborhood of N.

Moreover, for y=1,...,n, we have:
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o

0% =0
o [at (t, y)1 St [Du<p]<t, y)

oh
D 7 .(t,y) - — (t, y; m(t, y))
uo 3

-1

op.

H > L . t: .
J (t, y; m(t, y)) Duer( y)

But the bicharacteristic equations imply that

o

- 'él}i—(t, ¥, Tr(t: Y)) = '——1— (t, Y)
ot
X
dh ) = &)
apj (t: Yy 77-(1:: Y)) = 60 .

Hence, the above equality yields

) =9

for p=1,...,n. Since Ducp(O, y) = Du\p(O, y) = 7ru(0, y), this shows
that Do = 7 for =1,...,n,
ucp 2] .
Now observe that because t - (i, y; m(t, y)) is a bicharacteristic

strip, h(t,y; m(t,y)) = 0. Hence, (18-3) shows that Docp(x) = 7r0(x),

completing the proof that Dy = 7. '

Proposition 18,2: Let N be an open subset of (Ifn, U an open
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neighborhood of N in ¢n+1’ and g, T: U= (l‘n+1 analytic mappings
such that for each y € N:

(1) t- (olt, y); m(t,y)) is a bicharacteristic strip of h(x; p).

(2) ¢(0,y) =y.

(3) det[o,(0,¥)] # 0.
Let y(y) € a(N) with Du\b(y) = 7ru(0, y) for uy=1,...,n,

Then there exists an analytic function ¢(x) on a neighborhood

+
of N in Cn 1 such that «¢(0,y) = ¢(y) and Dgoo(x) = m(x).

Proof: Since det[c*(O, y)1£0 on N, ¢ is 1-1 with an analytic in-

n+1

verse on some neighborhood U of N in € Let h(x;p)

= 0 *h(x; p). Then h(x;p) E(c-l)*ﬁ&; D).
Applying Lemma 17,6 to the mapping c-l, we see that for
each y € N,
to (t,y: (L, y))
is a bicharacteristic strip of hix; _15), where
(18-3) T(t, y) = 0, (t Y7L, )]
. -1 -1
(since (o "), [o0(x)] =0, (x)).

Because ¢(0,y)=y, we get (0.(0, ))jED cj(O, ):—:E)j for
o(0,y) =y g 0. 7)) =D y) =8
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each j=0,...,n and u =1,...,n. Equation (18-3) then implies that
T (0,y) = 7 (0,
vu( y) .u( y)
for p =1,...,n.
We can now apply Lemma 18,1 to H(E; -13), T and ¥, since

D y(y)= 7m0, y) = (0, y), to get a function Tp(E) such that

©(0,y) = ¢(y) and Do (x)= 7mx). Let o(x)= _q;oc-l(x). Then for any

]l

X€
Dgeo®) = 0, @[Dlpec)®]  [by Lemma 17.2]

- o, @D o @]

)

T(x) [by (18-3)],
proving that Degeo = 7. l

We can now construct the characteristic functions. Recall that
we assumed a neighborhood N of 0 in @” and a function aly) € a (N)

such that
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(18_4) h(O, Yy Q(Y): 1: 0: LR 0) =0 ’
and for all y € N:
ah
(18-5) =—(0,y; aly),1,0,...,0) £ O,
BPO

We must construct a function ¢(x) analytic on a neighborhood of N

in ¢n+1 such that
(18-6) (a) o(0, yl, .....yn) = yl
(b) Dy(0,y) = aly)
(c) h(x; Do(x)) = 0.
Define the mappings o, 7 by letting

t- (ot,y) 7(t, y))

be the solution path for the bicharacteristic equations of h(x; p) with

initial conditions
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(18-17) 0(0,y)=y
m0,y) = (aly), 1,0, ..., 0).

By (18-4), this path is a bicharacteristic strip of h.
The mappings o, T are analytic on a neighborhood of N in
+
" 1. Using (18-17) and the bicharacteristic equations of h(x;p),

we get

@1 (0,v)= D o0, y) = 67
= y f 0,y "

0 0 h
(0,),(0,5) = Do (0,y) = =22 (0,y; aly), 1,0, ..., 0).
3k 0 0 apo

Then (18-5) implies that for all y € N, det[o,(0,y)] #0,

We now apply Proposition 18, 2 with q:(yl, cees yn) = y1 to get
the function o(x) analytic on a neighborhood of N and satisfying
9(0,y) = Y(y), Dwgoo(x) = m(x). Then (18-6) (a) follows from our

choice of { and (18-6) (b) follows from (18-7). We also have

h(o (t, y); Dolo(t, y)1) = hc(t,y); m(t,y)) = 0

by our choice of ¢ and 7. But det[c*(o, y)]1# 0 for y € N implies
that the range of ¢ is an open neighborhood of N, so the above
equality proves (18-6) (c). Hence, ¢ is the required characteristic

function.
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19. Proof of Theorems II and III

We now return to the proof of Theorems II and III. We assume

the notation of Section 7, so h(x; p) is the principal part of the mm

order operator a(x; D), and g(x;p) = h(x; p)/ (po)m—l is homogeneous
of degree 1. The mappings ¢, 7 are defined so that
is the solution of the bicharacteristic equations of g(x; p) with
(19-1) 0(0,y)=y

0

m™0,y)=6 =(1,0,...,0).
For convenience, we will let g(x) denote g(x; 60).
To find the function u=ues, we would like to solve the
Cauchy problem
o *a(x; DJu = Voo

oH(D (0, ) = wiy) .

However, we will see that det[c*(O, y)] = 0 if y is a characteristic
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point of (I,‘n for a(x; D). Thus, oc*a and ¢ *(DO)J are not defined
at a characteristic point of (]Zn, so we cannot solve this Cauchy
problem for u . Instead, we will solve the following equivalent

problem:

(19-2) g™ alx DI = (@)™ Hvx)eo
c*[(g(x))j(DO)j]aO, ¥ = 20, »Pwlty).

It turns out that these operators are defined and analytic on a neigh-

+
borhood of 0 in (En 1, and 0 is not a characteristic point for the

above problem even if it is one for the original problem (4-1).

We first prove some simple results about the mapping o .

Lemma 19, 1: For each i=0,...,n and pu=1,...,n:

i i
0, =
(1) (6,),0,3) = 5!
0

W = 98 (0. v: 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

Proof: (1) follows from (19-1), and (3) follows from the

bicharacteristic equations. For (2), we have

(0,000, 5) = Do °(0, 3)

og 0
—=(0, y;
apo( ¥:6 )

by the bicharacteristic equations. But, the homogeneity of g(x; p)
implies
0 0 0
g(0,y:8 ) = 6, =E-(0,y;6)

i api

= -33(0, y; 60),
BPO

proving (2). '

Lemma 19,2: Foreach i=0,...,n and p=1,...,n:

(1) det[o,(0,y)] = g(0,y)
-1 i

0,y) =
(2) (@) (o, )u( y) 6u

(b) (031000, 3) = 1/g(0, 5)
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@ (o350, ) = - 2£0,3:6°)/g(0,y)
u

— —n+
(3) For some neighborhood V of 0 in T :

-1.1 -
(@) (0,) € a(V)
U
-1.4 —_
(b) (g°c)-(c* )0 € a(Vv).
Proof: (1) and (2) are easily verified using Lemma 19.1. By (1),
we can find a neighborhood V of 0 and a function f € d(\_f) such

that
detfo, (x)] = f(x)geo(x)
f(x) # 0
for all x € V . Part (3) then follows from part (2), plus the fact that
det[o *(i—c)](c;l )‘1&) is the minor of (o *);(;;-) in the matrix of ¢ *(E)

and is thus analytic on V. l

We now prove that the operators in the Cauchy problem (19-2)

have the required properties.
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Lemma 19.3: For each p=1,...,n, © *(Du) is an analytic

1.

operator on a neighborhood of 0 in @n+
Proof: By definition of ¢%*, we have

o*(D ) = (1) D, .

M M1

The lemma is thus an immediate consequence of part (3-a) of Lemma

19, 2, l

Lemma 19,4: For any integer j,

(1) cr>’<[(,c=,r(x)):l .(DO)J] is an analytic operator on a neighborhood

—n+
of 0 in &L,

(2) c*[(g(x))j-Do)j](O,-j-r-) = (50)j + b(y; D) for some operator

b(y; D) of order less than j in DO'

Proof: (1) By part (3-b) of Lemma 19. 2, we can find a neighborhood

V of 0 in (fnﬂ and functions fl(—};) € @(V) such that

@ i@ = 6/ ge o)
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for each i =0,...,n. Then

o+« (D) = [geo@P1(0, )y B,

R P
= [geo@PE . D,1 .
goo(x)

which is clearly an analytic operator on V ,

(2) By part (3) of Lemma 17. 2, the coefficient of (]30)J in

. . R . .
c*[(g(x))J»(DO)J] is obtained by setting p =8 in o'*[(g)J-(pO)J](x;p).

We thus calculate
. . 0
o *[(g)+(p)’1(0, 3; 8")

_ j -1.d 0.j
= [go0(0, )1+ [(0, V{0, ¥) 45, ]

[g(0, .’)’)]j « [1/ g(0, ,')')];i [by Lemma 19, 2 (2-6)]

]
[y
.

Thus, the coefficient of (50):l in the 13}—1 order operator

G*[(g(x))j(Do)j] is 1 on (L‘n. This proves (2). l

Lemma 19.,5: If b(x; D) is an operator on a neighborhood of 0 in
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then ¢ >"[(g(x)):i «b(x; D)] is an

analytic operator on a neighborhood of 0 in " +1.

¢! which is of order <j in D,

Proof: Write b(x; D) as a sum of the form

Uy »oo M
b(x; D) =% bi
k

k i
. e & o D
(x) (DO) Du . ™

My owee My

for analytic functions bi Then

c:*[(g(X))j b(x; D)] =

My oo MW

T b, Klo@1 + [goo@P " + o, [(gN (D] +

D )... D ),
,( Lll) 0, ( 'uk)

and the result follows from the preceding two lemmas. I

Recall that in Section 7 we defined 'ﬁ(x; p) such that

(19-3) ﬁ(x; glx)epg Pyreves pn) = [g(X)]m—1 «h(x; p).

Theorem II assumes that ﬁ(x; p) has constant multiplicity in the

direction of (En-l. We let ﬁi(x;p) denote the homogeneous
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polynomials in p with
hi(x; p) = Tll(x;p) - Tls(x; p)
of Definition 5. 1.
The following result shows that the operator
o *[(g(x))m-la(x; D)] in (19-2) has the desired properties, and explains

why we introduced hix; p).

Lemma 19, 6:

(1) o*(gN™ Lohix; p))(0, ) =

latd —— 0 — — —
h(O,y;p0 --5%5 (0,y; 8 )-pu,pl, ...,pn)
!

(2) With the hypothesis of Theorem II,

k k
o*ge)™ ints )] = f PN L. B G S

where the Hi(x; p) are polynomials in p with co-

+1

’

efficients analytic on a neighborhood of 0 in o

which satisfy
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— ._ - ~ .._ __g. -
h.(0,y;p) = hi<0,:>',p0 “ 0,y;6 >p ,pl, .esP).

Proof: (1) c*[(g)m—l *h](0, y; p)

1]

[goo(O,y)] -h(0‘(0 y) (c ) (o, y)-p e e s (c ) (0 y)e P )

m-1 = 30 5= - —
[g(0, ¥)] *h(0, 3; [P, apu(o, y:i8) pu]/g(o, Y Ppseesp)

[by part (2) of Lemma 19, 2]

Tl(O,y;EO =2£ (0,v;5 )-p pl,... ,p)

B n
pl-l

[by (19-3)].

) o*[(g)™ Lenix; p)]

o *[h(x; g(x)-po,pl, ---,pn] [by 19. 3]

o*[TT h ;5 8Py .. ,p )]
i=1

S

TT By 0@ (ge0)+(0, )y By (030 By -+ (03 1B

1 n 1

|_a
l-d

S
TT hi(§; P),
i=1
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where the last equality defines the Yl-i(;;?)). The analyticity of
-ﬁi(;; p) follows from part (3) of Lemma 19. 2, The required ex-

pression for 'ﬁi(o, Y p) follows from part (2) of Lemma 19, 2. .
We can now prove the results stated in Section 7. First,
observe that Proposition 7.1 follows easily from part (1) of Lemma
19.2. For Theorems II and III, recall that we assumed g(0,y) # O.
Therefore, the Cauchy problem (4-1) is equivalent to the following
one:
m-1 m-1
(19-4) [g(x)] « a(x; D)u(x) = [g(x)] o v(x)
i ] = i i . - -
[2(0, )]« (D) w(0, y) = [g(0,y)) +w"(y), j=0,...,m-1.
By Lemma 17,4, u(x) is a solution of (19-4) if and only if
u(x) = uoo(x) is a solution of (19-2).
Let
S -1
a(x; D) = o*(gx)" " +alx; D),

and let E(;c-; f)—) be the principal part of a(x; D). We have

[g0]™ ! ate D) =[G (DY™ + 2™ vbix; D)
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for some operator b(x; D) of degree < m-1 in DO' By the
linearity of o%*, and Lemma 19,5, this implies that a(x; D) is ana-
. . . =n+l
lytic on a neighborhood of 0 in € .
Part (3) of Lemma 17.3 and part (1) of Lemma 19, 6 imply that
(19-5)  h(0, y;p) = Tl(O ViPn - ig—(0 N 50)-15- P p.)
> » > 2 0 ap ? E 4 u’ 1! o 0 0 n .
!
— 0 ~ 0 n s e
Hence, h(0,y;6 )= h(0,y;8 )= 1, so ¢ hasno characteristic
points for a(x; D).
By part (2) of Lemma 19.4, we can write
j-1

I 5 )(D.)*
iE bi(y, Dl,...,Dn)(DO)

o (g0, 7))+ (D)1 = (B’ -
0

for some analytic operators b:i‘ on a neighborhood of 0 in (En.

o I—)n) = 1, we can rewrite (19-2) in the following

Letting b?i(y; 51, .o

form:

Y

(19-6) a(x; Dyu(x) = Voc(;)
o i . _ .
(B0, y) = = bl(y, Dys -+ - DO, YN e w (3]

0

fOI’ j=0,¢¢o,m_1-
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Under the hypotheses of Theorem III, the initial data of the
Cauchy problem (19-6) are analytic. Theorem III therefore follows

from the Cauchy-Kowalewski Theorem.

Now assume the hypotheses of Theorem II. Part (a) of
Lemma 19, 6 shows that

- = == = - = g
h(z; p) = [h,(xP)] ~ ... [hs(x; p)]

and

og

op

0— — -
(0,y;8 )p PyseesP ).
f vl

Let T = Zi(:])(y) be the roots of h(0,y;7,1,0,...,0), andlet
T = '&';J)(y) be the roots of E(O,y; t,1,0,...,0). Then (19-7)

shows that

=Py = ~() o8 .0
g (y) = a, (y)+ap1 (0,y:87).

Since the 5?) (y) are all distinct numbers, for each y in some

neighborhood of 0, the same is true of the E(iJ) (y). Hence,
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1

h(x; E) has constant multiplicity at 0 in the direction of o
Therefore, the Cauchy problem (19-6) satisfies the hypotheses of
Theorem I. Theorem II follows immediately from the application

of Theorem I to (19-6).
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APPENDIX

Proof of Lemma 12,4

The proof of LLemma 12,4 requires simple extensions of
some results of Mizohata [8]. We will sketch their proofs, and
refer the reader to that paper for the details. We therefore adopt
the notation and numbering of results used in Section 5 of [8].

We let x now denote an element of € and (x,t) an

element of (Dn+1. We let

n

9 o)
l = — S" a x, — e b x, s
ot i;l i( t axi (1)

where a, and b are as in Section 12, Wealsolet f, ¢, T, U
and n be as in Section 12, satisfying assumptions (1) - (4).
By assumption (3), for sufficiently large v, Yo and 1/p we

have

(5.1) ID;taim,t)lg—(ﬂ—H%!l— v, vzt
’ (3p)

|
Y
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for all (x,t) € U.
Assuming (5.1), we now consider the solution u(x,t) of the

Cauchy problem
(5. 2) Llul =f
u(x, 0) = 0,

We then have the following result. (Note that this is just Mizohata's

Lemma 2 with ||t|| substituted for t in the bounds.)

Lemma 2: Assume

(5. 3) D) (%, 1) | gﬂik’)—}ﬂ exp(yut||)K(||t||)r+|V' A,

P

for all (x,t)€ U and v € ]Nn, for some r > 1, Then

I‘+|\)|

(5.4) ID;u(x, )| < A/vn,

z<_+lr3_;_w exply || t]R(|t]))

P

for all (x,t) € U, where K(||tll) = exp(ynl|t||)(1 + ynl|t|)).

Proof: Let (x,t) = T(x,t). Then (12-4), with g =0, can be written

as
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t _ s _
(A-1) ulx, ) = ) £ s) - expl/ , b r)drlds,

where the integration is along the path 7, with t = thele .

Using (5.1) and the assumption that _c_iTe (m)| <1, we get
S —
[, b rar] < vl - sl
Combining this with (5.3) for v =0, (A-1) gives
11 £l r
lu(x, t) | _<_I0 r! exp(y| s|PDK(s|) exply(|t]] - ||s|D1d]|s]]

It r
= vt Aewp|t ), explryn]slh + yalsh dfs|

<r! A exply||[t(L +yaljt])” exp(ryn||t||

e
Thus, we have

(A-2) lutx, t)] < (r-1)1 exply||tK(|tH" A/yn

for any (x,t) € U. This proves (5.4) for |v| = 0. Note that (A-2)

was obtained using (5. 3) only when lv] = 0.

Now assume (5.4) holds for all v with |v|<m, Let |v|=m

and apply D; to (5.2). As in [8], this gives
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(A-3) L[D)ul(x, 1) = F (x,t) + Fylx, 1)

where

(r +m) r+m

|7, (e 1) <= exply |[HDERAHD

|F2(x, )| g(f%n'—l)—! exp(yllt|| )K(||t||)r+m'1(m+1)A.
P
m
(We have used the fact that I (1/3)p <1/2.)
p=1

We now apply (A-2) to the Cauchy problem (A-3), since
D\;u(x, 0) = 0. More precisely, we apply it twice: for F1 with

r+m substituted for r, and for F2 with r+m-1 substituted for

r. The superposition principle then gives

DY utx, 0] < L eyl A « 11

p
+ (m+1)/ (r+m)(r+m-1)],
since K(||t]|)> 1. Since r, m> 1, this proves (5. 4). I

We now consider the homogeneous equation L[u] =

Lemma 3: Under the above hypotheses, let vy > 1, let u(x,t)
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satisfy L[u] = 0, and assume that

|
DY ulx, 0)] < (—rf’-l—}’ll)— A

P

for all (x,0)€ U and v € INn , for some r> 0. Then

2 !
DY utx, b 5—"”—3%’1& esxpy DR ™V A

Proof: The proof is similar to that of Lemma 2, and is just outlined.

dn
Using (12-4) with £=0, (5.1), | dTe (r)] < 1, and the hypothesis on
u(x, 0) for |[v]| =0, we get
(A-4) lu(x, t)] < r! expiY ) 4,
This proves the result for |v| = 0.

Now assume it is true whenever |v|<m andlet |v| = m.

Applying D;i to the relation L[u] = 0 gives
L[D’ul(x,t) = F (x,t)
x 24 2 2] 2

where F2 satisfies

|7, 0] < 2L (o)™ (m1)a,

o
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Applying (A-4) and the hypothesis to the Cauchy problem
L[ul] =0
Y
ul(x, 0) = Dxu(x, 0)

gives

o (et < AL exby[IE) -,
1777 = pm Y

Applying Lemma 2 to the Cauchy problem
L[uz] =F 2

u2(x, 0)=0

gives

fuyt, 1] < L ST o™ pgemt,
0 Y

Combining these inequalities gives the required bound for

vo,.

v
Dxu = u1
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The following two propositions are proved by induction using
Lemma 2 and 3. The proofs are identical to those of the correspond-

ing results in [8], with ||t|]] substituted for t in the obvious places.

Proposition 3: Let u(x,t) be the solution of Lfu] = f with

u(x, 0) = 0, Assume that

+ !
(5. 5) ID:: D:‘f(x, t)| < &Tgf‘%l—)— exp(y|ft]])

r(|jt])" ¢ MVl ym)® a

for all (x,t)e U, g€IN, vy € an, and for some r> 1, Then

2(r-1+q+ I\) l)'
pq+Iv|

(5. 6) D) Dlutx, t)] < exp(y||t]))

k(e M ymyd a,

forall (x,t)€ U, q€IN, v € N, where y and p satisfy the

following condition in addition to (5.1):

(5.7) Yy > min(6 Yor 27); p<1/18,
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Proposition 4: Let u(x,t) satisfy L[u] =0, and

!
(5.17) DY u(x, 0] < ﬁ-}%ﬁ-‘l A

Y

for all (x,0)€ U, v € an, and for some r> 0. Then
v g < o fr+at|v)! .
(5.18) D) Dutx, t)| < 2—;;17’3-‘1— exp(y|it||)
+qg+
K(th" 2 vl ymyd A

for all (x,t) € U, g€ IN and v € ]Nn, where y and p are

assumed to satisfy (5.7) of Proposition 3.

The proof of Lemma 12,4 is now easy. Returning to the

notation of Section 12, we apply Proposition 3 to the Cauchy problem
2[u]=1
u, (0, y)= 0,

and Proposition 4 to
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=g[u2] =0
u2(0, y)= gly) .
The required bound on u(x) = ul(x) + u2(x) then follows

immediately by just applying the definitions of ET and E(r, s)

made in Section 11,
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