AN EXTENSION OF A THEOREM OF HAMADA ON THE CAUCHY PROBLEM WITH SINGULAR DATA¹

BY LESLIE LAMPORT

Communicated by François Trèves, January 8, 1973

Introduction. Hamada [1] proved the following result about the propagation of singularities in the Cauchy problem for an analytic linear partial differential operator. Assume that the initial data are analytic at the point 0 except for singularities along a submanifold T of the initial surface containing 0. Let $K^{(1)}, \dots, K^{(m)}$ be the characteristic surfaces of the operator emanating from T. Under the assumption that the $K^{(i)}$ have multiplicity one, he showed that the solution of the Cauchy problem is analytic at 0 except for logarithmic singularities along the $K^{(i)}$. We extend his result to the case where the $K^{(i)}$ have constant multiplicity.

1. Definitions and theorem. Let C^{n+1} denote the set of (n + 1)-tuples $x = (x^0, \dots, x^n)$ of complex numbers. Let S be an *n*-dimensional analytic submanifold of C^{n+1} , and let T be an (n-1)-dimensional analytic submanifold of S. Since our results are local, we can assume $S = \{(0, \dots, (0, \dots,$ $x^1, \ldots, x^n \in \mathbb{C}^{n+1}$ and $T = \{(0, 0, x^2, \ldots, x^n) \in \mathbb{C}^{n+1}\}.$

Let $D_i = \partial/\partial x^i$, $D = (D_0, \dots, D_n)$, and let $a: x \to a(x; D)$ be an analytic partial differential operator on a neighborhood of 0 in C^{n+1} . Let h(x; D)be the principal part of a(x; D). We assume that S is not a characteristic surface of a at 0, so $h(0; 1, 0, \dots, 0) \neq 0$. Let $p = (p_0, \dots, p_n)$ be an (n + 1)-tuple of formal variables, so h(x; p) is a homogeneous polynomial in p with analytic coefficients.

We say that the operator a has constant multiplicity at 0 in the direction of T if we can factor h as

$$h(\boldsymbol{x};\boldsymbol{p}) = [h_1(\boldsymbol{x};\boldsymbol{p})]^{k_1} \cdots [h_s(\boldsymbol{x};\boldsymbol{p})]^{k_s}$$

for all x in a neighborhood of 0, where each $h_i(x; p)$ is a polynomial in **p** of degree m_i with analytic coefficients, and the Σm_i roots of the polynomials $h_i(\mathbf{0}; \tau, 1, 0, ..., 0)$ in τ are all distinct. If $s = k_1 = 1$, then a is said to be of *multiplicity one* at $\mathbf{0}$ in the direction of T.

Assume now that a has constant multiplicity at **0** in the direction of T. It can be shown that we can find $m = \sum m_i$ analytic characteristic functions $\varphi^{(1)}, \ldots, \varphi^{(m)}$ of h defined in a neighborhood N of **0** satisfying:

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 35A20; Secondary 35C10. Key words and phrases. Analytic Cauchy problem, characteristic surfaces, constant multiplicity, singularities.

¹The results described here are contained in the author's 1972 Ph.D. dissertation, written at Brandeis University under the supervision of Professor Richard Palais.

1. $h(\mathbf{x}; D \varphi^{(i)}(\mathbf{x})) = 0$ for all $\mathbf{x} \in N$.

2. $\varphi^{(i)}(0, x^1, ..., x^n) = x^1$ for all $(0, x^1, ..., x^n) \in N \cap S$.

3. For each $y \in N \cap S$, the *m* numbers $D_0 \varphi^{(i)}(y)$ are distinct.

Note that this implies that the numbers $D_0 \varphi^{(i)}(y)$ are the distinct roots of the polynomials $h(y; \tau, 1, 0, ..., 0)$ for each $y \in N \cap S$. Let $K^{(i)} = \{x: \varphi^{(i)}(x) = 0\}$, so each $K^{(i)}$ is a characteristic surface of a.

Using these notations, we now state our result.

THEOREM. Let a, N, S, T, $\varphi^{(i)}$ and $K^{(i)}$ be as above. Let v be an analytic function on N, and let w^j be an analytic function on $N \cap (S - T)$ for j = 0, ..., r - 1, where r is the degree of the operator a. Then there exists a neighborhood U of **0** such that the Cauchy problem

(1) $a(\mathbf{x}; D)u(\mathbf{x}) = v(\mathbf{x}),$ $(D_0)^j u(\mathbf{y}) = w^j(\mathbf{y}),$ for $\mathbf{y} \in S, j = 0, ..., r - 1,$

has a solution u of the form

$$u(\mathbf{x}) = \sum_{i=1}^{m} F^{(i)}(\mathbf{x}) + G^{(i)}(\mathbf{x}) \log \left[\varphi^{(i)}(\mathbf{x})\right]_{i}$$

where each $F^{(i)}$ is analytic on $U - K^{(i)}$ and each $G^{(i)}$ is analytic on U.

Hamada proved this result when a has multiplicity one. In this case, if each w^j has at most a polar singularity along T, then each $F^{(i)}$ has at most a polar singularity along $K^{(i)}$. This is false in the general case, as is shown by the solution

$$u(t, y) = \sum_{k=0}^{\infty} (-1)^k \frac{k!}{(2k+1)!} \frac{t^{2k+1}}{y^{k+1}}$$

of the two-dimensional Cauchy problem

$$\frac{\partial^2 u}{\partial t^2}(t, y) - \frac{\partial u}{\partial y}(t, y) = 0, \qquad u(0, y) = 0, \qquad \frac{\partial u}{\partial t}(0, y) = \frac{1}{y}.$$

2. Method of proof. The problem is easily reduced to solving the Cauchy problem (1) with each $w^j \equiv 0$ and v analytic on $N - K^{(1)}$. It can be shown that we may also assume that $h(x;p) = h_1(x;p) \cdots h_s(x;p)$, where each h_i has multiplicity one in the direction of T and has $\varphi^{(1)}, \ldots, \varphi^{(m)}$ as characteristic functions (so r = ms).

Let the functions f_k be the ones defined by Hamada satisfying $df_k/dt = f_{k-1}$, for all integers k, and $f_0(t) = \log t$. The first step is to show that there exists a neighborhood V of **0** such that if v is of the form

(2)
$$v(\mathbf{x}) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} v_k^{(i)}(\mathbf{x}) f_{k-i} [\varphi^{(i)}(\mathbf{x})],$$

with each $v_k^{(i)}$ analytic on V, then the Cauchy problem

 $h_i(x; D)u(x) = v(x),$ $(D_0)^j u(y) = 0,$ for $y \in S, j = 0, ..., m - 1,$

has a formal series solution of the form

$$u(\mathbf{x}) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} u_k^{(i)}(\mathbf{x}) f_{k-l+m-1} [\varphi^{(i)}(\mathbf{x})],$$

with each $u_k^{(i)}$ analytic on V. Moreover, bounds are obtained for the partial derivatives of the $u_k^{(i)}$ in terms of those of the $v_k^{(i)}$. This procedure is similar to the one used by Hamada.

Employing this result s times shows that with v given by (2), the Cauchy problem

$$h_1(x; D) \cdots h_s(x; D)u(x) = v(x), (D_0)^j u(y) = 0, \text{ for } y \in S, j = 0, \dots, r-1,$$

has a formal solution

$$u(\mathbf{x}) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} u_k^{(i)}(\mathbf{x}) f_{k-l+r-s}[\varphi^{(i)}(\mathbf{x})]$$

with the $u_k^{(i)}$ analytic on V. Again, bounds are obtained on the $u_k^{(i)}$.

Now we write $a(x; D) = h_1(x; D) \cdots h_s(x; D) + b(x; D)$, where the degree of b is less than r. Using the above results, we solve the sequence of Cauchy problems

$$h_1(\boldsymbol{x};\boldsymbol{D})\cdots h_s(\boldsymbol{x};\boldsymbol{D})_q \boldsymbol{u}(\boldsymbol{x}) = \begin{cases} \boldsymbol{v}(\boldsymbol{x}) & \text{if } q = 0, \\ -b(\boldsymbol{x};\boldsymbol{D})_{q-1}\boldsymbol{u}(\boldsymbol{x}) & \text{if } q > 0. \end{cases}$$
$$(\boldsymbol{D}_0)^j_q \boldsymbol{u}(\boldsymbol{y}) = 0, \quad \text{for } \boldsymbol{y} \in S, j = 0, \dots, r-1,$$

to get

(3)
$$_{q}u(\mathbf{x}) = \sum_{i=1}^{m} \sum_{k=0}^{\infty} {}_{q}u_{k}^{(i)}(\mathbf{x})f_{k-l-q(s-1)}[\varphi^{(i)}(\mathbf{x})]$$

with each $_{a}u_{k}^{(i)}$ analytic on V. Then

(4)
$$u(\mathbf{x}) = \sum_{q=0}^{\infty} {}_{q}u(\mathbf{x})$$

is easily seen to be a formal solution of (1) (with $w^j \equiv 0$).

Now assume $v(\mathbf{x}) = v_l(\mathbf{x}) f_{-l}[\varphi^{(1)}(\mathbf{x})]$, with v_l analytic on V, and let the corresponding solution (4) be $u_l(\mathbf{x}) = \sum_{i=1}^m u_l^{(i)}(\mathbf{x})$. Using the bounds on the ${}_{q}u_k^{(i)}$, we can find a neighborhood W of **0** and demonstrate the absolute convergence of the sums (3) and (4) to prove that $u_l^{(i)}$ is analytic on $W - K^{(i)}$. Furthermore, we obtain a bound on $u_l^{(i)}$ in terms of a bound on v_l .

Finally, we can write $v(\mathbf{x}) = \sum_{l=1}^{\infty} v_l(\mathbf{x}) f_{-l}[\varphi^{(1)}(\mathbf{x})]$ (plus an analytic term which is handled by the Cauchy-Kowalewski theorem). It can be shown that there is a neighborhood U of **0** such that the sums $u^{(i)}(\mathbf{x}) = \sum_{l=1}^{\infty} u_l^{(i)}(\mathbf{x})$

778

are absolutely convergent on $U - K^{(i)}$. It is then easily seen that the solution $u(\mathbf{x}) = \sum_{i=1}^{m} u^{(i)}(\mathbf{x})$ has the desired form.

3. Further generalizations. It is evident from the proof that the theorem remains valid if v has a singularity along any of the hypersurfaces $K^{(i)}$. The theorem is also true if v has a singularity on any hypersurface K containing T which is not tangent to S or to any $K^{(i)}$ at **0**.

By using different choices for the functions f_k , the result can be extended to the case where the w^j are *p*-valued analytic functions on $N \cap (S - T)$ —i.e., multiple-valued functions finitely ramified about T and v is a *p*-valued analytic function on $N - K^{(i)}$ or N - K. In this case, the $F^{(i)}$ become *p*-valued analytic functions on $U - K^{(i)}$. This result was also obtained by Wagschal [2] when *a* has multiplicity one.

References

 Y. Hamada, The singularities of the solutions of the Cauchy problem, Publ. Res. Inst. Math. Sci. 5 (1969), 21-40. MR 40 # 3056.
C. Wagschal, Problème de Cauchy analytique, à données meromorphe, J. Math. Pures

2. C. Wagschal, Problème de Cauchy analytique, à données meromorphe, J. Math. Pures Appl. (to appear).

Massachusetts Computer Associates, Lakeside Office Park, Wakefield, Massachusetts 01880