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Abstract

Markov Logic for Machine Reading

Hoifung Poon

Chair of the Supervisory Committee:

Professor Pedro Domingos

Computer Science and Engineering

A long-standing goal of AI and natural language processing (NLP) is to harness human

knowledge by automatically understanding text. Known as machine reading, it has become

increasingly urgent with the rise of billions of web documents. However, progress in machine

reading has been difficult, due to the combination of several key challenges: the complexity

and uncertainty in representing and reasoning with knowledge, and the prohibitive cost

in providing direct supervision (e.g., designing the meaning representation and labeling

examples) for training a machine reading system.

In this dissertation, I propose a unifying approach for machine reading based on Markov

logic. Markov logic defines a probabilistic model by weighted first-order logical formulas.

It provides an ideal language for representing and reasoning with complex, probabilistic

knowledge, and opens up new avenues for leveraging indirect supervision via joint inference,

where the labels of some objects can be used to predict the labels of others.

I will demonstrate the promise of this approach by presenting a series of works that

applied Markov logic to increasingly challenging problems in machine reading. First, I will

describe a joint approach for citation information extraction that combines information

among different citations and processing stages. Using Markov logic as a representation

language and the generic learning and inference algorithms available for it, our solution

largely reduced to writing appropriate logical formulas and was able to achieve state-of-the-

art accuracy with substantially less engineering effort compared to previous approaches.





Next, I will describe an unsupervised coreference resolution system that builds on Markov

logic to incorporate prior knowledge and conduct large-scale joint inference. This helps

compensate for the lack of labeled examples, and our unsupervised system often ties or

even outperforms previous state-of-the-art supervised systems.

Finally, I will describe the USP system, the first unsupervised approach for jointly

inducing a meaning representation and extracting detailed meanings from text. To resolve

linguistic variations for the same meaning, USP recursively clusters expressions that are

composed with or by similar expressions. USP can also induce ontological relations by

creating abstractions to assimilate commonalities among non-synonymous meaning clusters.

This results in a state-of-the-art end-to-end machine reading system that can read text,

extract knowledge and answer questions, all without any labeled examples. Markov logic

provides an extremely compact representation of the USP model, and enables future work

to “close the loop” by incorporating the extracted knowledge into the model to aid further

extraction.
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Chapter 1

INTRODUCTION

1.1 Machine Reading: The Promise and Challenges

A long-standing goal in AI and natural language processing (NLP) is to automate language

understanding by extracting formal meaning from text [2].1 Known as machine reading [25],

it has become increasingly urgent with the advent of the web, which makes available billions

of documents and virtually unlimited amount of knowledge [18]. Success in machine reading

will not only help breach the knowledge acquisition bottleneck in AI, but also promise to

revolutionize scientific and applied research, web search, and other fields.

For example, the PubMed online repository contains over 18 million abstracts on biomed-

ical research, with more than two thousand new abstracts added each day. Such explosive

growth of information makes it imperative to automate the scientific discovery processes [26].

By automatically extracting and synthesizing knowledge from research literature, machine

reading can play a pivotal role in this direction.

Despite the promise, progress in machine reading has been difficult. In particular, three

major challenges stand out:

• Complexity: Knowledge is highly heterogeneous, ranging from facts on individual

objects (e.g., Socrates) and general types (e.g., man), to generic inference rules (e.g.,

syllogism) and ontological relations (e.g., ISA and ISPART). In addition, language

processing is very complex and requires many challenging and interdependent sub-

tasks such as morphological analysis, part-of-speech tagging, syntactic chunking and

parsing, coreference resolution, semantic parsing, etc.

• Uncertainty: Natural languages are highly ambiguous, and a lot of knowledge is

1By “formal” we mean that a canonical meaning representation is in use, which facilitates querying and
reasoning, and can potentially be actionable.
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about soft correlation rather than hard constraints. Modeling of the world is always

incomplete and therefore predictions are inherently uncertain.

• Long tail of variations: Natural languages contain myriad variations in expressing

the same meaning. For example, “Microsoft buys Farecast” can be stated alternatively

as “Farecast was bought by the Redmond software giant”, “Microsoft’s acquisition of

Farecast”, etc. Such variations pose serious challenges to machine reading systems,

which can be visualized in Figure 1.1. The horizontal axis represents potential knowl-

edge extractions, whereas the vertical axis represents how confident we are whether an

extraction is correct or not. For well-known facts like Edison invented the practical

light bulb, many independent occurrences exist, and it is relatively easy to extract

them with high confidence. However, language variations mean that there is also an

extreme long tail of extractions with few occurrences, which make it very difficult to

assess their correctness.

Early approaches to machine reading were manual, but the sheer amount of coding and

knowledge engineering needed makes them very costly and limits them to well-circumscribed

domains. More recently, machine learning approaches dominate. However, existing learning

approaches are inadequate in addressing all three challenges. Statistical learning methods

typically circumvent the complexity in knowledge representation by focusing on subtasks

that can be reduced to classification, where objects are modeled by i.i.d. feature vectors.

The complexity in language processing is tackled by adopting a pipeline architecture, where

the output of each stage is the input of the next, and there is no feedback from later stages

to earlier ones. Although this makes the systems comparatively easy to assemble, and

helps to contain computational complexity, it comes at a high price: errors accumulate as

information progresses through the pipeline, and an error once made cannot be corrected.

Moreover, the prevailing learning paradigm is supervised, which requires labeled data in

the form of example input-output pairs. While raw text is available in virtually unlimited

amount, labeled resources are scarce and the cost to build them is very high.2 For large-

2For example, the development of the widely used and invaluable English Penn treebank for syntactic
parsing [71] spanned a decade and yet the coverage is still quite limited.
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Figure 1.1: The long tail of variations: most potential knowledge extractions have few
occurrences, which makes it very hard to determine whether they are correct or not.

scale, open-domain machine reading, the cost to acquire sufficient labeled examples for

handling the long tail of variations is simply prohibitive.

1.2 Related Work

Inspired by the web and potential applications, interest in machine reading is rising quickly,

as evidenced by the recent symposiums, workshops, and DARPA programs.3 Existing work

tends to focus on various subtasks of machine reading. For example, a lot of progress

has been made in automating the components in the language processing pipeline, such as

part-of-speech tagging [108], syntactic parsing [85], information extraction [73], coreference

resolution [79], etc. The Never-Ending-Language-Learning (NELL) system starts from an

3E.g., AAAI-07 Machine Reading Symposium, NAACL-10 Learning by Reading Workshop, DARPA
Machine Reading Program (2009-2014).
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ontology with a few example instances for each concept, and learns to extract more instances

by reading new text [12]. There is much work in textual entailment, which aims to determine

if a proposition can be inferred from a small paragraph of text [20].

On the other hand, end-to-end solutions for machine reading are still rare, and existing

systems typically require substantial amount of human effort in manual engineering and/or

labeling examples. As a result, they often focus on restricted domains and limited types of

extractions (e.g., a prespecified relation). A notable exception is the TextRunner system [8],

which conducts open-domain machine reading by extracting relational tuples from raw text.

Extraction is not limited to predefined relations and does not require labeled examples.

The TextRunner system and the “open information extraction” direction it pioneers sig-

nify a shift from the traditional paradigm that relies on direct supervision. For web-scale,

open-domain machine reading, the cost to garner sufficient direct supervision is prohibitive.

Consequently, there has been increasing interest in harnessing various sources of indirect

supervision. For example, TextRunner first employs self-supervision to label noisy examples

using a small set of hand-picked generic relational patterns, and then trains an extractor

using standard supervised-learning methods [8, 7]. NELL uses an approach similar to boot-

strapping [1]: it initializes the extractor with seed examples and then repeatedly labels

new examples and retrains the extractor, with a novel addition that enforces the mutual-

exclusive constraint among non-overlapping concepts and substantially improves extraction

accuracy. To resolve language variations, a well-known idea is to leverage distributional

similarity [40]: if two expressions often occur in similar contexts, they probably mean the

same. For example, the typical approach in lexical semantics resolves synonymous words by

clustering their contextual profiles (e.g., dependency neighbors [65]). Similarly, the DIRT

system [67] resolves synonymous binary relations (as represented by dependency paths)

using distributional information of the argument words.

The combined challenges of complexity and uncertainty are not only present in language

understanding but also widespread in other areas of AI. In response, an emerging direc-

tion in machine learning aims to combat head-on with both challenges [34, 6]. Known as

statistical relational learning and many other names (e.g., structured prediction, collective

classification, multi-relational data mining, etc.), this movement has several salient agenda:
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• Joint inference: The complexity challenge stems from the fact that real-world ob-

jects often have elaborate structures (e.g., the parse tree of a sentence, the part-

decomposition of human body) and the objects and processing stages are interde-

pendent. Joint inference aims to model such structures and interdependencies and

incorporate them in learning and prediction.

• Combine logic and probability: First-order logic can succinctly represent complex

dependencies, probability can handle uncertainty. Combining the two thus offers a

powerful language to deal with the combination of complexity and uncertainty.

• Automate the design of features and representations: Much of the current suc-

cess of machine learning relies on feature engineering, which requires domain expertise

and substantial manual effort. As we enter the “big data” era, the ever rising scale

and heterogeneity of the data make progress in this paradigm increasingly difficult.

As a result, there has been increasing interest in automating the process of designing

representations and features for modeling and learning. Examples include predicate

invention [77, 53], structure learning [52], deep learning [62], etc.

• Develop efficient algorithms for joint inference and learning: The power in

combining logic and probability comes at a price: inference becomes intractable, and

learning becomes much harder since it requires inference as a subroutine. For sta-

tistical relational learning to materialize its promise, we need to develop a generic

framework that makes it as easy to use and as efficient as traditional statistical learn-

ing.

1.3 A Unifying Approach to Machine Reading

Ideally, a machine reading system should satisfy the following desiderata [91]:

• End-to-end: the system should input raw text, extract knowledge, and be able to

answer questions and support other end tasks;
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Figure 1.2: A vision for machine reading: bootstrap from the easily extractable knowl-
edge, and conquer the long tail using a self-supervised learning process that propagates
information from more certain extractions to less certain ones via joint inference.

• High quality: the system should extract knowledge with high accuracy;

• Large-scale: the system should require knowledge at web-scale and be open to arbi-

trary domains, genres, and languages;

• Maximally autonomous: the system should incur minimal human effort;

• Continuous learning from experience: the system should constantly integrate

new information sources (e.g., new text documents) and learn from user questions

and feedback (e.g., via performing end tasks) to keep improving its performance.

These desiderata raise many intriguing research questions. For example, how can a

machine reading system overcome the limitation of pipeline architectures and enable infor-
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mation to propagate across processing stages? How can it seamlessly integrate information

from heterogeneous sources? How can it incorporate extracted knowledge back to the model,

thus closing the loop and continuously improving reading accuracy? How can it breach the

bottleneck of labeled examples? What indirect supervision can be leveraged and how? How

can the reading system adapt to different domains with minimal domain-specific engineer-

ing? How can all these be done while inference and learning remain efficient? How can such

a system scale to the web?

In this dissertation, we propose a unifying approach to machine reading based on sta-

tistical relation learning. A distinctive focus of our approach is using joint inference to

compensate for the lack of labeled examples. The key idea is that, by modeling interde-

pendencies among objects, the labels of some objects can be used to predict the labels of

others. Figure 1.2 shows the vision of our approach. By leveraging interdependencies among

extractions, the system can bootstrap from easily extractable knowledge, and conquer the

long tail by propagating information from more certain extractions to less certain ones.

This process is governed by self-supervised learning which determines, among other things,

what direct and indirect supervision to use and how.

To materialize this vision, there are several challenges to overcome. First, we need to

develop a representation language. Clearly, such a language must be capable of handling

uncertainty and must be expressive enough to accommodate a wide variety of direct and

indirect supervision. In particular, a key source of supervision can derive from world knowl-

edge, which is crucial for resolving ambiguities in language understanding [2]. Therefore,

the ideal representation language should make it easy to incorporate arbitrary knowledge

into the model, thus closing the loop between the extraction process and the knowledge

output.

We propose to use Markov logic [23] as our representation language for machine reading.

Markov logic defines a probability distribution using weighted first-order logical formulas as

feature templates. First-order logic can compactly encode very complex dependencies, and

has been extensively studied for knowledge representation. The main drawback is that logic

is deterministic and can not handle noise and uncertainty. This limitation is overcome in

Markov logic by softening the formulas with weights to account for uncertainty. Extracted
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knowledge can be naturally represented as weighted formulas, which can be added back to

the model to guide future extractions.

Second, we need to bridge the schism between knowledge representation (KR) and NLP.

The two fields used to recognize each other as complementary for the common goal of ma-

chine reading: KR is responsible for designing the formal system to represent and reason

with knowledge, whereas NLP is responsible for converting text into the given canonical

meaning representation after resolving variations and ambiguities. Unfortunately, the mar-

riage was short-lived and this vision went into oblivion [14]. The KR community become

preoccupied with devising and revising numerous logical formalisms for knowledge and be-

lief, without worrying much about NLP and how the knowledge comes by. As a result, the

formalisms so designed are often not very useful in NLP. In particular, the logical forms

are typically disconnected from text and there requires substantial effort to map between

the two [110]. Meanwhile, the NLP community, disillusioned by the lack of progress in

this direction, largely abandon the vision and sidestep the KR problem by focusing on sub-

tasks that do not require sophisticated knowledge structures. There remain attempts to

extract deep meanings from text (e.g., [76, 119]), but they presuppose that the meaning

representation has been manually designated and example text-meaning pairs are available

for learning the mapping. As mentioned earlier, the long tail of variations render both

assumptions questionable in open-domain machine reading.

We propose to reunite KR and NLP by automatically inducing knowledge representation

from text. This would benefit from joint inference among the two endeavors, and solve

the core problem in the original divide-and-conquer scheme: the disconnect between text

and representation. By automating the KR process, this approach helps reduce manual

effort and overcome the lack of direct supervision. For statistical relational learning, the

unification of KR and NLP raises intriguing challenges and offers an ideal “killer app”.

Third, for web-scale machine reading, it is imperative to develop efficient algorithms for

joint inference and learning that can scale up to the whole web. To address this challenge, we

propose to adopt a new paradigm of probabilistic modeling by incorporating computation into

the model and automating the trade-off between modeling fidelity and inference efficiency.

Dynamic programming is a particular effective paradigm for efficient inference and is widely
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used in NLP, vision, and other fields (e.g., [43, 28]). However, existing approaches typically

adopt a specific trade-off between efficiency and accuracy by prespecifying the structure

for dynamic programming (e.g., linear chains in HMMs, charts in PCFG parsing). By

automatically inducing the dynamic programming structure, we can let data to decide

where it is necessary to model the dependencies and where independence assumptions can

be made without compromising the accuracy by much, while ensuring efficient inference at

performance time.

To scale up to the web, we propose to adopt coarse-to-fine inference and learning [29,

84, 47]. Essentially, coarse-to-fine inference leverages the sparsity imposed by hierarchical

structures that are ubiquitous in human knowledge (e.g., taxonomies/ontologies). At coarse

levels, ambiguities are rare (there are few objects and relations), and inference can be

conducted efficiently. The results are then used to prune unpromising refinements at the

next level. This process continues down the hierarchy until decision can be made. In this

way, inference can potentially be sped up exponentially, analogous to binary search tree.

The success of coarse-to-fine inference hinges on the availability of appropriate hierar-

chical structures. An ontology specifies entities and their relations in a problem domain,

among which are the ISA and ISPART hierarchies that can be used to support coarse-to-fine

inference. In general, constructing the ontology (ontology induction) and mapping textual

expressions to ontological nodes (ontology population) remain difficult open problems [103].

We propose to automatically induce ontology from text, with supporting efficient coarse-to-

fine inference being a core component of the learning objective. In general, we hypothesize

that computational constraints offer a potent bias for learning knowledge representation

(also see our second proposed agenda above).4

Finally, we observe that there are inherent problems in existing evaluation methodolo-

gies. In the standard paradigm, the system output is compared with gold annotation by an

intrinsic measure. There are two problems with this approach. First, it requires an anno-

tated corpus which is expensive and time-consuming to construct. Second, the evaluation is

4We may even ask a broader question: why do humans invent the symbolic representations such as
concepts, relations, taxonomies? It is appealing to regard them as mental tools for tackling the complexity
of the real world by facilitating efficient modeling, communication, and decision making. A thorough
exploration in this question is fascinating but is beyond the scope of this dissertation.
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biased to the specific annotation formalism in use and may bear little indication to the real

contribution for an end-to-end task. Examples include word sense disambiguation, semantic

role labeling, and word alignment. Intuitively, progress in these subtasks will clearly help

end applications. In practice, it is non-trivial to materialize the gains [115], and sometimes

the payoff is quite small [38].

We propose to develop a new evaluation methodology for machine reading that includes

end users and applications in the loop. The knowledge output from machine reading can

be used in end services such as question answering and decision making. By designing an

appropriate mechanism, we can motivate end users to use the services while deriving explicit

or implicit feedback that can be used to evaluate the machine reading system as well as

provide learning signals for continuously improving reading accuracy.

In sum, we propose a unifying approach for machine reading as follows:

• Adopt Markov logic as the unifying framework for knowledge representation and joint

inference.

• Bootstrap from easily extractable knowledge and conquer the long tail of language

variations via a self-supervised learning process that incorporates knowledge with

large-scale joint inference and closes the loop between the extraction process and

knowledge output.

• Scale up joint inference with coarse-to-fine inference.

• Incorporate computation into probabilistic modeling for learning the knowledge rep-

resentation. In particular, automatically induce probabilistic ontologies from text for

better generalization and efficient coarse-to-fine inference.

• Accomplish continuous learning by combining bootstrapping and crowdsourced con-

tent creation to synergistically improve the reading system from user interaction.
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1.4 Overview of this Dissertation

In this dissertation, we take some initial steps following this approach and show that it is

quite promising.

In Chapter 2, we review the theory and algorithms for Markov logic, which form the

basis for the remaining chapters.

In Chapter 3, we apply Markov logic to learn a joint model for information extraction in

the citation domain. We show that Markov logic makes it easier to perform joint inference:

it can compactly specify a very large and complex probabilistic model, and attain state-of-

the-art accuracy using the generic learning and inference algorithms for it.

In Chapter 4, we develop an unsupervised weight learning algorithm for Markov logic

and apply it to coreference resolution. We show that Markov logic can have even greater

impact in the more challenging setting where labeled examples are not available: using joint

inference and a small amount of prior knowledge, our unsupervised system often ties or even

outperforms previous supervised systems.

In Chapter 5, we take an initial step toward automating the development of knowledge

representation: we propose the first unsupervised approach for semantic parsing and develop

the USP system, which automatically induces a canonical meaning representation based on

Markov logic by recursively clustering language variations for the same meaning. Addition-

ally, we propose a novel evaluation method that applies semantic parsing to the end task of

reading text and answering questions. We show that by jointly identifying meaning units

and clustering variations, USP substantially improves the accuracy and recall compared to

state-of-the-art systems such as TextRunner.

In Chapter 6, we extend USP to also induce ontological relations among the meaning

clusters. We show that this can drastically improve the recall in question answering without

affecting the accuracy, and that learning can be made possible by assimilating commonalities

such as similar argument types among meaning clusters.

We conclude in Chapter 7 with a discussion on the limitations of this work and exciting

future directions.

Many of the datasets and code in this dissertation are available online at
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alchemy.cs.washington.edu. In particular, for information extraction and unsupervised

coreference resolution, we used standard datasets and extensions to the Alchemy open-

source software. The code and dataset for unsupervised semantic parsing are available at

alchemy.cs.washington.edu/usp; see Chapter 5 for details.
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Chapter 2

MARKOV LOGIC

2.1 Introduction

Markov logic is a probabilistic extension of finite first-order logic [94, 23].1 Logic can

compactly specify elaborate relations among many objects. However, it is deterministic

and therefore brittle in the presence of noise and uncertainty. The key idea of Markov logic

is to overcome this brittleness by softening the formulas with weights, thereby defining a

probability distribution as a log-linear model.

Markov logic provides as an interface layer and enables a healthy separation between

foundational work and applications [23]. Advances in inference and learning algorithms

can immediately benefit numerous applications; application developers can concentrate on

application-specific modeling without worrying much about algorithms and implementation.

Such an interface layer enables faster overall progress, better reuse of algorithmic ideas and

implementations, and substantially reduced engineering effort in applications.

Among the numerous approaches proposed for statistical relational learning [34], Markov

logic stands out as a leading unifying framework. Despite its simplicity, Markov logic is very

general, subsuming both first-order logic and probabilistic graphical models. In comparison,

other approaches typically use a restricted subset of first-order logic (e.g., database query

[107], Horn theory [113, 80, 46]), which limits the types of dependencies and uncertainty

that can be expressed. This also means that other approaches can be straightforwardly

converted into Markov logic, which makes it easy to compare approaches, share lessons and

advances, and assemble existing modules into a larger system.

Compared to other approaches, Markov logic is arguably the most developed. There

are algorithms available for major inference and learning tasks, ranging from MAP and

marginal inference, to learning weights, formulas, and even predicates.

1Extensions to infinite domains exist, such as [100].
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Open-source software implementations are available for existing algorithms of Markov

logic, with Alchemy [57] being the most complete to this date. There is a growing community

of Markov logic2 and many successful applications.

2.2 Background

First-order logic provides a precise language for compactly specifying a complex domain

with many objects [33]. A term is a variable or constant representing an object in the

domain, such as Anna and x. An atomic formula or atom is a predicate symbol applied to

a tuple of terms that describes relations, such as Friends(x, y), Smoke(Anna). Formulas are

recursively constructed from atomic formulas using logical connectives (¬,∨,∧,⇒,⇔) and

quantifiers (∀,∃). Below are two example formulas.

∀x Smoke(x)⇒ Cancer(x)

∀x Friend(x, y)⇒ (Smoke(x)⇔ Smoke(y))

The first formula says that if x smokes, then x has cancer; the second formula says that if

x, y are friends, then if x smokes, y smokes, and vice versa. A first-order knowledge base

(KB) is a set of first-order logical formulas. A ground term is a term containing no variables.

A ground atom or ground predicate is an atom all of whose arguments are ground terms. A

ground formula is a formula that contains only ground atoms.

To handle uncertainty, probability is the method of choice. A popular formalism for

probabilistic modeling is graphical model, which can compactly specify probability distri-

butions by exploiting conditional independence [83, 58]. A Markov network (a.k.a. Markov

random field) is an undirected graphical model that defines a joint distribution over a set

of variables X = (X1, · · · , Xn) [83] as follows:

P (X=x) =
1

Z

∏
k

ϕk(x{k}) (2.1)

where ϕk is a potential function defined on a subset of variables, and x{k} is the state of the

variables in that subset. Z =
∑

x∈X
∏

k ϕk(x{k}) is the normalization constant, also known

2By September 2009, Alchemy had been downloaded for 5000 times. As of June 2011, the number has
reached 9000.
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as the partition function. The compactness of this model derives from the factorization

into potential functions, each of which ideally involves only a small number of variables.

Defining a potential function requires as many entries as the total number of states for

the corresponding subset of variables. But this can be drastically simplified by leveraging

redundancy in the entries and adopting a feature representation. Consequently, Markov

networks are often represented as log-linear models, with each potential replaced by an

exponentiated weighted sum of features of the state as follows:

P (X=x) =
1

Z
exp

∑
j

wjfj(x)

 (2.2)

2.3 Representation

Definition 1. A Markov logic network (MLN) is a set of weighted first-order formulas.

Together with a set of constants, it defines a Markov network with one variable per ground

atom and one feature per ground formula. The weight of a feature is the weight of the

first-order formula that originated it. The probability of a state x in such a network is given

by

P (x) =
1

Z
exp

(∑
i

wini(x)

)
,

where Z is the normalization constant as in Markov networks, wi is the weight of the ith

formula and ni(x) is the number of its true groundings given x.

Intuitively, the higher the weight, the stronger the regularity represented by the formula.

With infinite weight, the formula becomes a logical constraint.3 First-order logic is a special

case with all weights being infinite. For Markov networks, Markov logic formulas define the

feature templates and offer an elegant way to tie parameters.

As the number of objects increases, the size of the ground Markov network grows ex-

ponentially in the number of variables in a formula, whereas Markov logic maintains its

3In practice, it suffices to use a large number. For example, a weight of 20 makes the formula about 400
million times more likely to be true than false, everything else being equal.
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compactness. Moreover, the first-order structure can be leveraged to improve efficiency in

inference and learning (e.g., see lazy inference in the next section).

2.4 Inference

Given a probabilistic model, the inference problem is to compute the answer to a query.

Specifically, maximum a posterior (MAP) inference finds the most probable state given

the evidence (i.e., a partial truth assignment of the variables), whereas marginal inference

computes the conditional probability for a formula to be true.

Like graphical models, inference in Markov logic is intractable [95]. Thus an important

research agenda is to develop efficient methods for approximate inference. To do this, we can

build on existing logical and statistical inference methods and piggyback on decades of prior

research. For example, the MAP inference problem in Markov logic can be reduced to a

weighted SAT problem, and can be solved using a weighted SAT solver such as MaxWalkSAT

[44].

However, existing methods are often inadequate by themselves. For example, the stan-

dard approach for marginal inference is Markov chain Monte Carlo (MCMC), which samples

from the states by constructing a Markov chain and computes the probabilities using the

samples [35]. A popular MCMC algorithm is Gibbs sampling, which iteratively samples

the next state of a variable while fixing the current value of other variables. When there

are logical constraints, the state space is broken into disjoint regions and it is very hard to

jump between regions using such a local update scheme. As a result, Gibbs sampling tends

to get trapped in the initial region and return incorrect probabilities. This is the kind of

challenges we face when we try to unify logic and probability.

Fortunately, we can turn the challenge into an opportunity by combining logical and

statistical methods. For example, we developed the MC-SAT algorithm [87], which uses a

SAT solver to propose a sample for MCMC. MC-SAT is a “slice sampling” MCMC algo-

rithm. Slice sampling introduces auxiliary variables u that decouple the original ones x,

and alternately samples u conditioned on x and vice-versa. To sample from the slice (the

set of states x consistent with the current u), MC-SAT calls SampleSAT [112], which uses a

combination of satisfiability testing and simulated annealing. The advantage of using a sat-
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Algorithm 1 MC-SAT(formulas, weights, num samples)

x(0) ← Satisfy(hard formulas)

for i← 1 to num samples do

M ← ∅

for all ck ∈ formulas satisfied by x(i−1) do

With probability 1− e−wk add ck to M

end for

Sample x(i) ∼ USAT (M)

end for

isfiability solver (WalkSAT [97]) is that it efficiently finds isolated modes in the distribution,

and as a result the Markov chain mixes very rapidly. The slice sampling scheme ensures

that detailed balance is (approximately) preserved. MC-SAT is orders of magnitude faster

than previous MCMC algorithms like Gibbs sampling, making efficient sampling possible

on a scale that was previously out of reach.

Algorithm 1 gives pseudo-code for MC-SAT. At iteration i− 1, the factor ϕk for clause

ck is either ewk if ck is satisfied in x(i−1), or 1 otherwise. MC-SAT first samples the auxiliary

variable uk uniformly from (0, ϕk), then samples a new state uniformly from the set of states

that satisfy ϕ′
k ≥ uk for all k (the slice). Equivalently, for each k, with probability 1− e−wk

the next state must satisfy ck. In general, we can factorize the probability distribution in

any way that facilitates inference, sample the uk’s, and make sure that the next state is

drawn uniformly from solutions that satisfy ϕ′
k ≥ uk for all factors.

MC-SAT, like most existing relational inference algorithms, grounds all predicates and

formulas, thus requiring memory and time exponential in the predicate and formula arities

(i.e., the number of variables in the predicate or formula). We developed a general method

for producing a “lazy” version of a wide variety of relational inference algorithms [89], which

carries exactly the same inference steps as the original algorithm, but only maintains a small

subset of “active” predicates/formulas and grounds more as needed. We show that lazy-

MC-SAT, the lazy version of MC-SAT, reduced memory and time by orders of magnitude
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in several domains [89].

2.5 Learning

There are three major learning tasks for Markov logic.

• Weight learning: Given the formulas, learn their weights. This is the most common

learning scenarios in existing applications. The formulas define the features, which are

devised by domain experts and application developers. Learning amounts to finding

optimal parameters for some learning objective such as maximizing the likelihood.

• Structure learning: Learn both the formulas and weights. The Markov logic net-

work is initialized by an initial KB (which may be empty). The goal is to construct

new formulas and/or refine old ones by learning from the data. This is a much more

ambitious task that amounts to feature induction or feature learning.

• Predicate invention: In addition to learning formulas and weights, also learn to

create new predicates by composing base predicates. This would make it possible to

create formulas using the new predicates to compactly capture much more general

regularities.

The learning scenario can also be classified into supervised and unsupervised, by whether

the system makes use of labeled examples (i.e., example input-output pairs). If the system

uses labeled examples as well as many unlabeled examples (i.e., only the input is available),

the learning problem is semi-supervised.

Exist works in statistical relational learning and Markov logic are mostly supervised.

They also tend to focus on weight learning, although progress has been made in structure

learning as well (e.g., [52, 74, 55, 56]). Unsupervised works exist mainly in the form of

relational clustering, which clusters relations and objects simultaneously (e.g., [45, 53, 54]).

Relational clustering can also be viewed as a form of predicate invention, with the clusters

forming new predicates.

For supervised weight learning, a standard learning objective is to maximize the condi-

tional log-likelihood L(x, y) = logP (Y = y|X = x), where Y represents the non-evidence
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predicates, X the evidence predicates, and x, y their values in the training data. For sim-

plicity, from now on we omit X, whose values are fixed and always conditioned on. The

optimization problem is convex and a global optimum can be found using gradient descent,

with the gradient being

∂

∂wi
L(y) = ni(y)−

∑
y′

P (Y = y′)ni(y
′)

= ni(y)− EY [ni].

where ni is the number of true groundings of formula i in the training data and EY [ni] is

the expected count given the current parameterization. To combat overfitting, a Gaussian

prior is imposed on all weights. Here, the core challenge is computing the expected counts,

which requires inference that is generally intractable. One solution is to use existing MCMC

algorithms such as Gibbs sampling [94]. Namely, the expected count can be approximated

as

EY [ni] ≈
1

N

N∑
k=1

ni(yk)

where yk are the samples generated by Gibbs sampling. However, Gibbs sampling is often

quite slow and may completely break down when hard constraints are present. An alter-

native approach, as exemplified by the voted percetron algorithm [17], is to approximate

the expected counts using the MAP state. The original voted percetron algorithm was de-

veloped for hidden Markov models, where computing the MAP state can be done exactly

using the Viterbi algorithm. It has since been generalized to Markov logic by replacing the

Viterbi algorithm with MaxWalkSAT [98].

Another major challenge is the problem of ill-conditioning. In gradient descent, the ideal

learning rate for each parameter can vary to a great deal. The ratio between the highest

and lowest rates is called the condition number.4 An optimization problem with condition

number in the hundreds is considered to be quite challenging. In Markov logic, the ideal

rate for the weight of a formula correlates with the number of groundings for the formula,

which means that the condition number can easily rise to millions or even billions.

4More precisely, the condition number is the ratio between the largest and smallest absolute eigenvalues
of the Hessian.
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In this dissertation, we build on previous works and make new contributions to learning

in Markov logic.

In Chapter 3, we describe a supervised weight learning algorithm that uses MC-SAT

to estimate the gradient and uses a heuristic adjustment to combat the ill-conditioning

problem.

In Chapter 4, we describe a general unsupervised weight learning algorithm also based on

MC-SAT. It can also be used in semi-supervised learning if labeled examples are available.

In Chapter 5, we describe an algorithm for recursive relational clustering, a novel form

of relational clustering that jointly segments the input into meaning units and clusters the

units.

In Chapter 6, we extend the algorithm in Chapter 5 to form an ISA hierarchy.
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Chapter 3

JOINT INFERENCE IN INFORMATION EXTRACTION

3.1 Introduction

Much existing work in machine reading focuses on information extraction, which aims to

extract database records from text or semi-structured sources according to a prespecified

schema. Traditional approaches to information extraction typically adopt a pipeline archi-

tecture: the output of each stage is the input of the next, and there is no feedback from

later stages to earlier ones. Two key stages in the pipeline are segmentation, which locates

candidate fields, and entity resolution, which identifies duplicate records. Typically, each

candidate record or field is segmented separately, and the output of this process is then

passed to the entity resolution stage. To illustrate the shortcomings of this approach, con-

sider the problem of extracting database records from the following two citations in CiteSeer

[61]:

Minton, S(1993 b). Integrating heuristics for constraint satisfaction problems:

A case study. In: Proceedings AAAI.

S. Minton Integrating heuristics for constraint satisfaction problems: A case

study. In AAAI Proceedings, 1993.

In the first citation, author and title are clearly separated by a date and period, and extract-

ing them is fairly straightforward. In the second one, there is no clear author-title boundary,

and correctly pinpointing it seems very difficult. Large quantities of labeled training data

and an extensive lexicon could help, but they are expensive to obtain, and even then are

far from a guarantee of success. However, if we notice that the two citations are coreferent

and the title of the first one begins with the substring “Integrating heuristics for,” we can

hypothesize that the title of the second one also begins with this substring, allowing us to

correctly segment it.
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Ideally, we would like to perform joint inference for all relevant tasks simultaneously.

However, setting up a joint inference model is usually very complex, and the computational

cost of running it can be prohibitive. Further, joint inference can sometimes hurt accuracy,

by increasing the number of paths by which errors can propagate. As a result, fully joint

approaches are still rare, and even partly-joint ones require much engineering.

In this chapter we propose a joint approach to information extraction based on Markov

logic, where segmentation of all records and entity resolution are performed together in a

single integrated inference process. While a number of previous authors have taken steps

in this direction (e.g., [82, 114]), to our knowledge this is the first fully joint approach. In

experiments on the CiteSeer and Cora citation matching datasets, joint inference improved

accuracy, and our approach outperformed previous ones. Further, by using Markov logic

and the generic algorithms for it, our solution consisted mainly of writing the appropriate

logical formulas, and required much less engineering than previous ones.

3.2 Related Work

A number of previous authors have taken steps toward joint inference in information ex-

traction, but to our knowledge no fully joint approach has been proposed. For example,

[10] applied joint segmentation to protein name extraction, but did not do entity resolu-

tion. In citation matching, Pasula et al. [82] developed a “collective” model, but performed

segmentation in a pre-processing stage, allowing boundaries to occur only at punctuation

marks. Wellner et al. [114] extended the pipeline model by passing uncertainty from the

segmentation phase to the entity resolution phase (as opposed to just passing the “best

guess”), and by including a one-time step from resolution to segmentation, but did not

“close the loop” by repeatedly propagating information in both directions. (Due to this,

they explicitly refrained from calling their model “joint.”) Both of these models required

considerable engineering. Pasula et al. combined several models with separately learned

parameters, a number of hard-wired components, and data from a variety of sources (in-

cluding a database of names from the 2000 US Census, manually-segmented citations, and

a large AI BibTex bibliography). Wellner et al. assembled a number of different learning

and inference algorithms and performed extensive feature engineering, including computing
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a variety of string edit distances, TF-IDF measures, global features of the citations, and

combinations thereof. As we will see, our approach is considerably simpler, and outperforms

both of these.

3.3 An MLN for Joint Citation Matching

Citation matching is the problem of extracting bibliographic records from citation lists in

technical papers, and merging records that represent the same publication. It has been a

major focus of information extraction research (e.g., [82], [114]). We use citation matching

as a testbed for joint inference with Markov logic. In particular, we focus on extracting

titles, authors and venues from citation strings. In this section we present an MLN for this

task.1 In the next section, we learn weights and perform inference with it. While the MLN

is specific to citation matching, we believe that the key ideas in it are also applicable to

other information extraction tasks (e.g., extraction from Web pages, or from free text).

The main evidence predicate in the MLN is Token(t, i, c), which is true iff token t

appears in the ith position of the cth citation. A token can be a word, date, number, etc.

Punctuation marks are not treated as separate tokens; rather, the predicate HasPunc(c, i) is

true iff a punctuation mark appears immediately after the ith position in the cth citation.

The query predicates are InField(i, f, c) and SameCitation(c, c′). InField(i, f, c) is true

iff the ith position of the cth citation is part of field f, where f ∈ {Title, Author, Venue},

and inferring it performs segmentation. SameCitation(c, c′) is true iff citations c and c′

represent the same publication, and inferring it performs entity resolution.

3.3.1 Isolated Segmentation

We begin by describing our standalone segmentation model. This will form part of the over-

all MLN for joint inference, and also serve as a baseline for comparison. Our segmentation

model is essentially a hidden Markov model (HMM) with enhanced ability to detect field

boundaries. This combines two key elements of the state of the art. The observation matrix

of the HMM correlates tokens with fields, and is represented by the simple rule

1Available at http://alchemy.cs.washington.edu/papers/poon07.
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Token(+t, i, c)⇒ InField(i,+f, c)

where all free variables are implicitly universally quantified. The “+t, +f” notation signifies

that the MLN contains an instance of this rule for each (token, field) pair. If this rule was

learned in isolation, the weight of the (t, f)th instance would be log(ptf/(1 − ptf )), where

ptf is the corresponding entry in the HMM observation matrix.

In general, the transition matrix of the HMM is represented by a rule of the form

InField(i,+f, c)⇒ InField(i+ 1,+f′, c)

However, we (and others, e.g., [37]) have found that for segmentation it suffices to capture

the basic regularity that consecutive positions tend to be part of the same field. Thus we

replace f′ by f in the formula above. We also impose the condition that a position in a

citation string can be part of at most one field; it may be part of none.

The main shortcoming of this model is that it has difficulty pinpointing field boundaries.

Detecting these is key for information extraction, and a number of approaches use rules de-

signed specifically for this purpose (e.g., [60]). In citation matching, boundaries are usually

marked by punctuation symbols. This can be incorporated into the MLN by modifying the

rule above to

InField(i,+f, c) ∧ ¬HasPunc(c, i)⇒ InField(i+ 1,+f, c)

The ¬HasPunc(c, i) precondition prevents propagation of fields across punctuation marks.

Because propagation can occur differentially to the left and right, the MLN also contains

the reverse form of the rule. In addition, to account for commas being weaker separators

than other punctuation, the MLN includes versions of these rules with HasComma() instead

of HasPunc().

Finally, the MLN contains the following rules2: the first two positions of a citation are

usually in the author field, and the middle one in the title; initials (e.g., “J.”) tend to

2The complete set of rules can be found in alchemy.cs.washington.edu/papers/poon07.
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appear in either the author or the venue field; positions preceding the last non-venue initial

are usually not part of the title or venue; and positions after the first venue keyword (e.g.,

“Proceedings”, “Journal”) are usually not part of the author or title. Despite its simplicity,

this model is quite accurate, and forms a very competitive baseline for joint inference, as

we will see in the experimental section.

3.3.2 Entity Resolution

As our starting point for entity resolution, we took the MLN of [99], which assumes pre-

segmented citations. It contains rules of the form: if two fields contain many common

tokens, they are the same; if the fields of two citations match, the citations also match, and

vice-versa; etc. Simply taking the output InField() predicates of the segmentation MLN

as evidence to this MLN would constitute a standard pipeline model. Merging the two

MLNs produces a joint model for segmentation and entity resolution. We found, however,

that this gives poor results, because entity resolution often leads segmentation astray. Since

only a small fraction of citation pairs (c, c′) match, in the absence of strong evidence to the

contrary the MLN will conclude that SameCitation(c, c′) is false. If SameCitation(c, c′)

is the consequent of a rule (or rule chain) with InField() in the antecedent, the MLN may

then infer that InField() is false, even if segmentation alone would correctly predict it to

be true. This is an example of how joint inference can hurt accuracy.

Our solution to this problem is to define predicates and rules specifically for passing

information between the stages, as opposed to just using the existing InField() outputs. We

want a “higher bandwidth” of communication between segmentation and entity resolution,

without letting excessive segmentation noise through. We accomplish this by defining a

SimilarTitle(c, i, j, c′, i′, j′) predicate, which is true if citations c and c′ contain similar

title-like strings at positions i to j and i′ to j′, respectively. A string is title-like if it

does not contain punctuation and does not match the “title exclusion” rules in the previous

section. Two such strings are considered similar if they start with the same trigram and end

with the same token. Most importantly, SimilarTitle() is true only if at least one of the

strings is immediately preceded by punctuation, and at least one is immediately followed by
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punctuation. This greatly reduces the number of potential matches, focusing them on the

cases that are most likely relevant for joint inference. In sum, SimilarTitle() incorporates

lower-level segmentation information into entity resolution.

If two citations have similar titles, they are usually the same, unless they appear in

different venues (in which case they are usually different versions of the same paper). Hence

the basic rule we use to perform entity resolution is

SimilarTitle(c, i, j, c′, i′, j′) ∧ SimilarVenue(c, c′)⇒ SameCitation(c, c′)

coupled with the unit clause ¬SameCitation(c, c′), which represents the default.

SimilarVenue(c, c′) is true as long as c and c′ do not contain conflicting venue keywords

(e.g., “Journal” in one and “Proceedings” in the other). The rule above ignores whether the

citations’ authors are the same, which may seem unintuitive. However, the reason is simple.

When two citations have the same title and venue, they almost always have the same author

as well, and thus comparing authors contributes no additional information. On the other

hand, if the authors are the same but are difficult to match, as is often the case, including

SimilarAuthor(c, c′) as a precondition in the rule above prevents drawing the correct con-

clusion that the citations are the same. Thus, on balance, including SimilarAuthor(c, c′)

is detrimental.

As we will see in the experimental section, this simple MLN suffices to outperform the

state of the art in citation matching.

3.3.3 Joint Segmentation

Segmenting a citation can help segment similar ones. For example, if in one citation the

title is clearly delimited by punctuation, but in a similar one it is not, noticing this sim-

ilarity can help extract the more difficult title. Incorporating this idea into the MLN de-

scribed earlier leads to joint segmentation, where citations are segmented collectively, as

opposed to in isolation. As before, we proceed by defining a predicate for this purpose.

JointInferenceCandidate(c, i, c′) is true if the trigram starting at position i in citation

c also appears somewhere in citation c′, the trigrams do not match the “title exclusion”
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rules, and the trigram in c is not preceded by punctuation, while in c′ it is. This rule

thus identifies potential opportunities for one title segmentation to help another. We then

incorporate this into the segmentation model simply by adding a precondition to the “field

propagation” rules. For example:

InField(i,+f, c) ∧ ¬HasPunc(c, i)

∧(¬∃c′ JointInferenceCandidate(c, i, c′))

⇒ InField(i+ 1,+f, c)

The effect of this precondition is to potentially introduce a field boundary in c immediately

before a substring if a similar title-like substring is preceded by punctuation in another

citation. This may be quite effective when citation lists are “sparse” (i.e., strings usually do

not occur both at boundaries and inside fields). However, if the citation lists are “dense,” it

may produce incorrect field boundaries. Consider the following two citations from the Cora

dataset:

R. Schapire. On the strength of weak learnability. Proceedings of the 30th

I.E.E.E. Symposium on the Foundations of Computer Science, 1989, pp.

28-33.

Robert E. Schapire. 5(2) The strength of weak learnability. Machine Learning,

1990 197-227,

In the second citation, “The strength of” is immediately preceded by punctuation, which

will cause a title boundary to be incorrectly introduced between “On” and “the” in the first

citation. To combat this, we can in addition require that the two citations in fact resolve

to the same entity:

InField(i,+f, c) ∧ ¬HasPunc(c, i)

∧(¬∃c′ JointInferenceCandidate(c, i, c′) ∧ SameCitation(c, c′))

⇒ InField(i+ 1,+f, c)
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This is another instance of joint inference between segmentation and entity resolution: in

this case, entity resolution helps perform segmentation. However, this rule may sometimes

be too strict; consider the following citations from CiteSeer:

H. Maruyama Constraint dependency grammar and its weak generative capacity.

Computer Software, 1990.

Maruyama, H 1990. Constraint dependency grammar. Technical Report # RT

0044, IBM, Tokyo, Japan.

In this case, the first rule would correctly place a title boundary before “Constraint”, while

the second one would not. Both approaches are generally applicable and, as shown in the

next section, significantly outperform isolated segmentation. The first one (which we will

call Jnt-Seg) is better for sparse datasets (like CiteSeer), and the second (Jnt-Seg-ER) for

dense ones (like Cora).

3.4 Inference and Learning

We used MC-SAT for inference and modified the standard algorithm for supervised weight

learning (see Section 2.5) in two ways. First, we used MC-SAT to compute the expected

counts when estimating the gradient. MC-SAT is much more efficient than Gibbs sampling,

and tends to give more reliable results than MaxWalkSAT since the distribution can contain

many modes. Second, we used a different learning rate for each weight, by dividing the global

learning rate by the number of true groundings of the corresponding clause. This greatly

speeds up learning. Because the number of true groundings can vary widely, a learning rate

that is small enough to avoid divergence in some weights is too small for fast convergence in

others. Having separate learning rates overcomes this problem. Specifically, our adjustment

can be viewed as preconditioning using the inverse diagonal Hessian,3 with the variances

approximated by the number of true groundings. We also modified Alchemy to save time

3This achieves the optimal learning rates if the formulas are independent from each other (e.g., as in
logistic regression). See [68] for more details.
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Table 3.1: CiteSeer entity resolution: cluster recall on each section.

Approach Constr. Face Reason. Reinfor.

Fellegi-Sunter 84.3 81.4 71.3 50.6

Lawrence (1999) 89 94 86 79

Pasula (2003) 93 97 96 94

Wellner (2004) 95.1 96.9 93.7 94.7

Joint MLN 96.0 97.1 95.1 96.7

Table 3.2: Cora entity resolution: pairwise recall/precision and cluster recall.

Approach Pairwise Rec./Prec. Cluster Recall

Fellegi-Sunter 78.0 / 97.7 62.7

Joint MLN 94.3 / 97.0 78.1

and memory in grounding the network.4

3.5 Experiments

3.5.1 Datasets

We experimented on CiteSeer and Cora, which are standard datasets for citation matching.

The CiteSeer dataset was created by [61] and used in [82] and [114]. The Cora dataset was

created by Andrew McCallum and later segmented by [9]. We fixed a number of errors in

the labels.5

In citation matching, a cluster is a set of citations that refer to the same paper, and a

4By default, Alchemy converts an existentially quantified formula into a disjunction by enumerating the
values of the quantified variables. We simplified this disjunction by skipping the components that are
guaranteed to be false given the evidence.

5Dataset available at http://alchemy.cs.washington.edu/papers/poon07.
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Table 3.3: CiteSeer segmentation: F1 on each section.

All Total Author Title Venue

Isolated 94.4 94.6 92.8 95.3

Jnt-Seg 94.5 94.9 93.0 95.3

Jnt-Seg-ER 94.5 94.8 93.0 95.3

Nontrivial Total Author Title Venue

Isolated 94.4 94.5 92.5 95.5

Jnt-Seg 94.9 95.2 93.6 95.7

Jnt-Seg-ER 94.8 95.1 93.3 95.6

Potential Total Author Title Venue

Isolated 91.7 91.5 86.5 94.9

Jnt-Seg 94.3 94.5 92.4 95.3

Jnt-Seg-ER 93.9 94.4 92.0 94.9

nontrivial cluster contains more than one citation. The CiteSeer dataset has 1563 citations

and 906 clusters. It consists of four sections, each on a different topic. Over two-thirds of

the clusters are singletons, and the largest contains 21 citations. The Cora dataset has 1295

citations and 134 clusters. Unlike in CiteSeer, almost every citation in Cora belongs to a

nontrivial cluster; the largest cluster contains 54 citations.

3.5.2 Methodology

For CiteSeer, we followed [114] and used the four sections for four-fold cross-validation. In

Cora, we randomly split citations into three subsets so that they were distributed as evenly

as possible and no cluster was broken apart (to avoid train-test contamination). We then

used these subsets for three-fold cross-validation. In CiteSeer, the largest section yields 0.3

million query atoms and 0.4 million ground clauses; in Cora, 0.26 million and 0.38 million,

respectively. For simplicity, we took the original author and title fields and combined other
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Table 3.4: Cora segmentation: F1 on each section.

All Total Author Title Venue

Isolated 98.2 99.3 97.3 98.2

Jnt-Seg 98.4 99.5 97.5 98.3

Jnt-Seg-ER 98.4 99.5 97.6 98.3

Nontrivial Total Author Title Venue

Isolated 98.3 99.4 97.4 98.2

Jnt-Seg 98.5 99.5 97.7 98.3

Jnt-Seg-ER 98.5 99.5 97.7 98.3

Potential Total Author Title Venue

Isolated 97.6 97.9 95.2 98.8

Jnt-Seg 98.7 99.3 97.9 99.0

Jnt-Seg-ER 98.8 99.3 97.9 99.0

fields such as booktitle, journal, pages, and publishers into venue.

In preprocessing, we carried out standard normalizations like conversion to lower case,

simple stemming, and hyphen removal. For token matching, we used edit distance and

concatenation. Two tokens match if their edit distance is at most one, and a bigram

matches the unigram formed by concatenating the two tokens.

In MLN weight learning, we used 30 iterations of gradient descent, and in each iteration,

for each fold, we ran MC-SAT for 20 seconds. This proves to be effective and enables

fast learning; see [42] for a theoretical justification of a similar method. However, it also

introduces fluctuations among the runs, and we obviate these by reporting averages of ten

runs. The total learning time per run ranged from 20 minutes to an hour. In inference, we

used no burn-in and let MC-SAT run for 30 minutes. MC-SAT returns marginal probabilities

of query atoms. We predict an atom is true if its probability is at least 0.5; otherwise we

predict false.
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Table 3.5: Segmentation: wins and losses in F1.

CiteSeer JS-Isolated JSR-Isolated JSR-JS

All 8-2 4-2 1-7

Nontrivial 8-2 9-2 1-8

Potential 12-0 9-3 2-9

Cora JS-Isolated JSR-Isolated JSR-JS

All 5-1 6-1 3-1

Nontrivial 4-1 5-1 2-1

Potential 7-1 8-1 5-0

For entity resolution in CiteSeer, we measured cluster recall for comparison with previ-

ously published results. Cluster recall is the fraction of clusters that are correctly output

by the system after taking transitive closure from pairwise decisions. For entity resolution

in Cora, we measured both cluster recall and pairwise recall/precision. In both datasets

we also compared with a “standard” Fellegi-Sunter model (see [99]), learned using logistic

regression, and with oracle segmentation as the input. For segmentation, we measured F1

for InField, F1 being the harmonic mean of recall and precision.

3.5.3 Results

Table 3.1 shows that our approach outperforms previous ones on CiteSeer entity resolu-

tion. (Results for Lawrence (1999), Pasula (2003) and Wellner (2004) are taken from the

corresponding papers. The MLN results are for Jnt-Seg; the results for Jnt-Seg-ER are

identical, except for 95.5 instead of 96.0 on Constr.) This is particularly notable given that

the models of [82] and [114] involved considerably more knowledge engineering than ours,

contained more learnable parameters, and used additional training data.

Table 3.2 shows that our entity resolution approach easily outperforms Fellegi-Sunter on

Cora, and has very high pairwise recall/precision. (As before, the MLN results are for Jnt-
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Table 3.6: Percentage of F1 error reduction in segmentation obtained by joint inference.

CiteSeer Total Author Title Venue

All 2 6 3 0

Nontrivial 9 13 15 4

Potential 31 35 44 8

Cora Total Author Title Venue

All 11 24 7 6

Nontrivial 12 17 12 6

Potential 50 67 56 17

Seg; the results for Jnt-Seg-ER are identical, except for 75.2 instead of 78.1 on cluster recall.

Note that in Cora clusters are much more difficult to discriminate than in CiteSeer; also,

because Cora contains on average only 44 clusters per fold, each less-than-perfect cluster

degrades cluster recall by over 2%.)

Table 3.3 and Table 3.4 compare isolated segmentation with the two joint inference

methods on CiteSeer and Cora. The “Total” column aggregates results on all InField

atoms, and the remaining columns show results for each field type. The “All” section

shows results for all citations, “Nontrivial” for non-singleton citations, and “Potential” for

citations with poor author-title boundary (and which therefore might benefit from joint

inference). Approximately 9% of citations fall into the “Potential” category in CiteSeer,

and 21% in Cora. All total improvements are statistically significant at the 1% level using

McNemar’s test. Table 3.5 summarizes the relative performance of the three methods in

terms of number of wins and losses. Each (field, subset) pair is one trial. In CiteSeer,

there are four subsets and twelve comparisons, and thus 12-0 means that the first method

outperformed the second in all comparisons. In Cora, there are three subsets and nine

comparisons in total, so 5-0 means the first wins five times and ties four times.

Joint inference consistently outperforms isolated inference. Table 3.6 shows error re-
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duction from isolated inference by the better-performing joint inference method (Jnt-Seg in

CiteSeer, Jnt-Seg-ER in Cora). Improvement among potential citations is substantial: in

Cora, error is reduced by half in total, 67% for authors, and 56% for titles; in CiteSeer,

error is reduced by 31% in total, 35% for authors, and 44% for titles. Overall in Cora, joint

inference reduces error by 11% in total and 24% for authors. The overall improvement in

CiteSeer is not as large, because the percentage of potential citations is much smaller. The

joint inference methods do not impact performance on citations with good boundaries (not

shown separately in these tables).

In CiteSeer, Jnt-Seg outperforms Jnt-Seg-ER, while in Cora the opposite is true. These

results are consistent with the different characteristics of the two datasets: Cora is dense,

while CiteSeer is sparse. In Cora, there is a lot of word overlap among citations, and

often the same trigram occurs both within a field and at the boundary, making Jnt-Seg

more prone to misaligning boundaries. In CiteSeer, however, this rarely happens and Jnt-

Seg-ER, being conservative, can miss opportunities to improve segmentation. There is no

absolute advantage of one joint inference method over the other; the best choice depends

on the dataset.

3.6 Discussion

To overcome the difficulty in joint inference, our solution introduced special predicates

and formulas that were tailored to the citation domain for passing information between

processing stages. With Markov logic, the engineering effort takes place mostly at the

formula level, which is considerably easier compared to engineering at the software and

algorithmic level. However, it still requires considerable amount of effort and makes it harder

to generalize to other domains. Ideally, we would like to have a modular approach that works

by simply combining the component MLNs. This has proven to give poor results in our

preliminary experiments, and the reason is likely due to difficulties in approximate inference.

Inference in the combined MLNs involved longer chains of reasoning and is considerably more

challenging for the underlying SAT solvers. Effectively, our solution alleviates the inference

complexity by introducing auxiliary predicates to propagate information. Therefore, a key

research direction is to improve the accuracy and efficiency of inference algorithms, so that
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such domain-specific engineering can be further alleviated.

3.7 Summary

Information extraction is an important form of machine reading that focuses on extracting

database records according to a predefined schema. Joint inference can potentially im-

prove accuracy by propagating information across pipeline stages as well as among objects.

However, joint inference is often difficult to perform effectively, due to its complexity, com-

putational cost, and sometimes mixed effect on accuracy. In this chapter, we show how

these problems can be addressed in a citation matching domain, using Markov logic, the

MC-SAT algorithm, and careful interconnection of inference tasks. Experiments on stan-

dard datasets show that our approach is efficient and consistently improves accuracy over

non-joint inference. It is also more accurate and easier to set up than previous semi-joint

approaches.
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Chapter 4

JOINT UNSUPERVISED COREFERENCE RESOLUTION

4.1 Introduction

For machine reading in free text, an important subtask is coreference resolution, which iden-

tifies mentions (typically noun phrases) that refer to the same entities. Machine learning

approaches to coreference resolution are typically supervised, which treat the problem as one

of classification: for each pair of mentions, predict whether they corefer or not (e.g., [73]).

While successful, these approaches require labeled training data, consisting of mention pairs

and the correct decisions for them. This limits their applicability. Unsupervised approaches

are attractive due to the availability of large quantities of unlabeled text. However, unsu-

pervised coreference resolution is much more difficult. Haghighi and Klein’s (2007) model

[39], the most sophisticated before this work, still lags supervised ones by a substantial

margin. Extending it appears difficult, due to the limitations of its Dirichlet process-based

representation.

The lack of label information in unsupervised coreference resolution can potentially be

overcome by performing joint inference, which leverages the “easy” decisions to help make

related “hard” ones. Relations that have been exploited in supervised coreference resolution

include transitivity [73] and anaphoricity [22]. However, there is little work to date on joint

inference for unsupervised coreference resolution.

In this chapter, we develop the first unsupervised approach that is competitive with

supervised ones. This is made possible by performing joint inference across mentions, in

contrast to the pairwise classification typically used in supervised methods, and by using

Markov logic as a representation language, which enables us to easily express relations like

apposition and predicate nominals. By extending the state-of-the-art algorithms for infer-

ence and learning, we developed the first general-purpose unsupervised learning algorithm

for Markov logic, and applied it to unsupervised coreference resolution.
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We test our approach on standard MUC and ACE datasets. Our basic model, trained

on a minimum of data, suffices to outperform Haghighi and Klein’s (2007) one. Our full

model, using apposition and other relations for joint inference, is often as accurate as the

best supervised models, or more.

4.2 Related Work

Most existing supervised learning approaches for coreference resolution are suboptimal since

they resolve each mention pair independently, only imposing transitivity in postprocessing

[78]. Moreover, many of them break up the resolution step into subtasks (e.g., first determine

whether a mention is anaphoric, then classify whether it is coreferent with an antecedent),

which further forsakes opportunities for joint inference that have been shown to be helpful

[88]. Using graph partitioning, McCallum & Wellner (2005) incorporated transitivity into

pairwise classification and achieved the state-of-the-art result on the MUC-6 dataset [73],

but their approach can only leverage one binary relation at a time, not arbitrary relations

among mentions. Denis & Baldridge (2007) determined anaphoricity and pairwise classifi-

cation jointly using integer programming [22], but they did not incorporate transitivity or

other relations.

While potentially more appealing, unsupervised learning is very challenging, and unsu-

pervised coreference resolution systems are still rare to this date. Prior to our work, the

best performance in unsupervised coreference resolution was achieved by Haghighi & Klein

(2007), using a nonparametric Bayesian model based on hierarchical Dirichlet processes [39].

At the heart of their system is a mixture model with a few linguistically motivated features

such as head words, entity properties and salience. Their approach is a major step forward

in unsupervised coreference resolution, but extending it is challenging. The main advantage

of Dirichlet processes is that they are exchangeable, allowing parameters to be integrated

out, but Haghighi and Klein forgo this when they introduce salience. Their model thus

requires Gibbs sampling over both assignments and parameters, which can be very expen-

sive. Haghighi and Klein circumvent this by making approximations that potentially hurt

accuracy. At the same time, the Dirichlet process prior favors skewed cluster sizes and a

number of clusters that grows logarithmically with the number of data points, neither of
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which seems generally appropriate for coreference resolution.

Further, deterministic or strong non-deterministic dependencies cause Gibbs sampling

to break down [87], making it difficult to leverage many linguistic regularities. For example,

apposition (as in “Bill Gates, the chairman of Microsoft”) suggests coreference, and thus

the two mentions it relates should always be placed in the same cluster. However, Gibbs

sampling can only move one mention at a time from one cluster to another, and this is

unlikely to happen, because it would require breaking the apposition rule. Blocked sampling

can alleviate this problem by sampling multiple mentions together, but it requires that the

block size be predetermined to a small fixed number. When we incorporate apposition

and other regularities the blocks can become arbitrarily large, making this infeasible. For

example, suppose we also want to leverage predicate nominals (i.e., the subject and the

predicating noun of a copular verb are likely coreferent). Then a sentence like “He is Bill

Gates, the chairman of Microsoft” requires a block of four mentions: “He”, “Bill Gates”,

“the chairman of Microsoft”, and “Bill Gates, the chairman of Microsoft”. Similar difficulties

occur with other inference methods. Thus, extending Haghighi and Klein’s model to include

richer linguistic features is a challenging problem.

Our approach is instead based on Markov logic, a powerful representation for joint

inference with uncertainty [23]. Like Haghighi and Klein’s, our model is cluster-based rather

than pairwise, and implicitly imposes transitivity. We do not predetermine anaphoricity of

a mention, but rather fuse it into the integrated resolution process. As a result, our model is

inherently joint among mentions and subtasks like determining anaphoricity or coreference.

It shares several features with Haghighi & Klein’s model, but removes or refines features

where we believe it is appropriate to. Most importantly, our model leverages apposition

and predicate nominals, which Haghighi & Klein did not use. We show that this can be

done very easily in our framework, and yet results in very substantial accuracy gains.

It is worth noticing that Markov logic is also well suited for joint inference in super-

vised systems (e.g., transitivity, which took McCallum & Wellner (2005) nontrivial effort to

incorporate, can be handled in Markov logic with the addition of a single formula [89]).
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4.3 An MLN for Joint Unsupervised Coreference Resolution

In this section, we present our MLN for joint unsupervised coreference resolution. Our model

deviates from Haghighi & Klein’s (2007) in several important ways. First, our MLN does

not model saliences for proper nouns or nominals, as their influence is marginal compared to

other features; for pronoun salience, it uses a more intuitive and simpler definition based on

distance, and incorporated it as a prior. Another difference is in identifying heads. For the

ACE datasets, Haghighi and Klein used the gold heads; for the MUC-6 dataset, where labels

are not available, they crudely picked the rightmost token in a mention. We show that a

better way is to determine the heads using head rules in a parser. This improves resolution

accuracy and is always applicable. Crucially, our MLN leverages syntactic relations such

as apposition and predicate nominals, which are not used by Haghighi and Klein. In our

approach, what it takes is just adding two formulas to the MLN.

As common in previous work, we assume that true mention boundaries are given. We

do not assume any other labeled information. In particular, we do not assume gold name

entity recognition (NER) labels, and unlike Haghighi & Klein (2007), we do not assume

gold mention types (for ACE datasets, they also used gold head words). We determined

the head of a mention either by taking its rightmost token, or by using the head rules in a

parser. We detected pronouns using a list.

4.3.1 Base MLN

The main query predicate is InClust(m, c!), which is true iff mention m is in cluster c. The

“c!” notation signifies that for each m, this predicate is true for a unique value of c. The

main evidence predicate is Head(m, t!), where m is a mention and t a token, and which is

true iff t is the head of m. A key component in our MLN is a simple head mixture model,

where the mixture component priors are represented by the unit clause

InClust(+m,+c)

and the head distribution is represented by the head prediction rule

InClust(m,+c) ∧ Head(m,+t).
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All free variables are implicitly universally quantified. The “+” notation signifies that the

MLN contains an instance of the rule, with a separate weight, for each value combination

of the variables with a plus sign.

By convention, at each inference step we name each non-empty cluster after the earliest

mention it contains. This helps break the symmetry among mentions, which otherwise

produces multiple optima and makes learning unnecessarily harder. To encourage clustering,

we impose an exponential prior on the number of non-empty clusters with weight −1. (This

is incorporated into the MLN as a formula with fixed weight.)

The above model only clusters mentions with the same head, and does not work well

for pronouns. To address this, we introduce the predicate IsPrn(m), which is true iff the

mention m is a pronoun, and adapt the head prediction rule as follows:

¬IsPrn(m) ∧ InClust(m,+c) ∧ Head(m,+t)

This is always false when m is a pronoun, and thus applies only to non-pronouns.

Pronouns tend to resolve with mentions that are semantically compatible with them.

Thus we introduce predicates that represent entity type, number, and gender: Type(x, e!),

Number(x, n!), Gender(x, g!), where x can be either a cluster or mention,

e ∈ {Person, Organization, Location, Other}, n ∈ {Singular, Plural} and

g ∈ {Male, Female, Neuter}. Many of these are known for pronouns, and some can be

inferred from simple linguistic cues (e.g., “Ms. Galen” is a singular female person, while

“XYZ Corp.” is an organization).1 Entity type assignment is represented by the unit clause

Type(+x,+e)

and similarly for number and gender. A mention should agree with its cluster in entity

type. This is ensured by the hard rule (which has infinite weight and must be satisfied)

InClust(m, c)⇒ (Type(m, e)⇔ Type(c, e))

There are similar hard rules for number and gender.

1We used the following cues: Mr., Ms., Jr., Inc., Corp., corporation, company. The proportions of known
properties range from 14% to 26%.
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Different pronouns prefer different entity types, as represented by

IsPrn(m) ∧ InClust(m, c) ∧ Head(m,+t) ∧ Type(c,+e)

which only applies to pronouns, and whose weight is positive if pronoun t is likely to assume

entity type e and negative otherwise. There are similar rules for number and gender.

Aside from semantic compatibility, pronouns tend to resolve with nearby mentions. To

model this, we impose an exponential prior on the distance (number of mentions) between

a pronoun and its antecedent, with weight −1.2 This is similar to Haghighi and Klein’s

treatment of salience, but simpler.

4.3.2 Full MLN

Syntactic relations among mentions often suggest coreference. Incorporating such relations

into our MLN is straightforward. We illustrate this with two examples: apposition and

predicate nominals. We introduce a predicate for apposition, Appo(x, y), where x, y are

mentions, and which is true iff y is an appositive of x. We then add the rule

Appo(x, y)⇒ (InClust(x, c)⇔ InClust(y, c))

which ensures that x, y are in the same cluster if y is an appositive of x. Similarly, we intro-

duce a predicate for predicate nominals, PredNom(x, y), and the corresponding rule.3 The

weights of both rules can be learned from data with a positive prior mean. For simplicity,

in this paper we treat them as hard constraints.

4.3.3 Rule-Based MLN

We also consider a rule-based system that clusters non-pronouns by their heads, and attaches

a pronoun to the cluster which has no known conflicting type, number, or gender, and

2For simplicity, if a pronoun has no antecedent, we define the distance to be ∞. So a pronoun must
have an antecedent in our model, unless it is the first mention in the document or it can not resolve with
previous mentions without violating hard constraints. It is straightforward to soften this with a finite
penalty.

3We detected apposition and predicate nominatives using two simple heuristics based on parses: if (NP,
comma, NP) are the first three children of an NP, then any two of the three noun phrases are apposition;
if (NP NP) form a noun-noun compound, then the two noun phrases are apposition.
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contains the closest antecedent for the pronoun. This system can be encoded in an MLN

with just four rules. Three of them are the ones for enforcing agreement in type, number,

and gender between a cluster and its members, as defined in the base MLN. The fourth rule

is

¬IsPrn(m1) ∧ ¬IsPrn(m2)

∧Head(m1, h1) ∧ Head(m2, h2)

∧InClust(m1, c1) ∧ InClust(m2, c2)

⇒ (c1 = c2⇔ h1 = h2).

With a large but not infinite weight (e.g., 100), this rule has the effect of clustering non-

pronouns by their heads, except when it violates the hard rules. The MLN can also include

the apposition and predicate-nominal rules. As in the base MLN, we impose the same

exponential prior on the number of non-empty clusters and that on the distance between a

pronoun and its antecedent. This simple MLN is remarkably competitive, as we will see in

the experiment section.

4.4 Inference and Learning

Unsupervised learning in Markov logic maximizes the conditional log-likelihood

L(x, y) = logP (Y = y|X = x) = log
∑
z

P (Y = y, Z = z|X = x)

where Z are unknown predicates. In our coreference resolution MLN, Y includes Head and

known groundings of Type, Number and Gender, Z includes InClust and unknown ground-

ings of Type, Number, Gender, and X includes IsPrn, Appo and PredNom. (For simplicity,

from now on we drop X from the formula.) With Z, the optimization problem is no longer

convex. However, we can still find a local optimum using gradient descent, with the gradient

being
∂

∂wi
L(y) = EZ|y[ni]− EY,Z [ni]

where ni is the number of true groundings of the ith clause. Compared to supervised

learning, the key difference is that now the gradient is the difference of two expectations.

The first expectation ranges over arbitrary Z while fixing Y to the training data, whereas

the second expectation ranges over arbitrary Y and Z.



43

Note that if some labeled examples are available, semi-supervised learning can be done

straightforwardly by fixing Z to the known labels in the first expectation [86].

The gradient can be computed by approximating both expectations using MC-SAT.

To combat the ill-conditioned problem, we extended the preconditioned scaled conjugate

gradient algorithm (PSCG) that was previously developed for supervised weight learning

[68]. In PSCG, the optimal step size in each step is estimated as

α =
−dT g

dTHd+ λdTd
.

where g is the gradient, d the conjugate update direction, and λ a parameter that is au-

tomatically tuned to trade off second-order information with gradient descent. H is the

Hessian matrix, with the (i, j)th entry being

∂2

∂wi∂wj
L(y) = EY [ni] · EY [nj ]− EY [ni · nj ] = −CovY [ni, nj ].

The Hessian can be approximated with the same samples used for the gradient. Its

negative inverse diagonal is used as the preconditioner.4

In unsupervised learning, the (i, j)th entry of the Hessian now becomes

∂2

∂wi∂wj
L(y) = CovZ|y[ni, nj ]− CovY,Z [ni, nj ]

and the step size can be computed accordingly. Since our problem is no longer convex,

the negative diagonal Hessian may contain zero or negative entries, so we first took the

absolute values of the diagonal and added 1, then used the inverse as the preconditioner.

For automatically adjusting λ, Lowd & Domingos (2007) used a more aggressive schedule

than the one suggested in [81] by leveraging the convexity of the learning objective. In

unsupervised learning, however, we found that this can lead to divergence since the learning

objective is no longer convex, so we roll back to the schedule in [81].

Notice that when the objects form independent subsets (in our cases, mentions in each

document), we can process them in parallel and then gather sufficient statistics for learn-

ing. We developed an efficient parallelized implementation of our unsupervised learning

4Lowd & Domingos showed that α can be computed more efficiently, without explicitly approximating
or storing the Hessian. Readers are referred to their paper for details.
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algorithm using the message-passing interface (MPI). Learning in MUC-6 took only one

hour, and in ACE-2004 two and a half.

To reduce burn-in time, we initialized MC-SAT with the state returned by MaxWalkSAT

[44], rather than a random solution to the hard clauses. In the existing implementation in

Alchemy [57], SampleSAT flips only one atom in each step, which is inefficient for predicates

with unique-value constraints (e.g., Head(m, c!)). Such predicates can be viewed as multi-

valued predicates (e.g., Head(m) with value ranging over all c’s) and are prevalent in NLP

applications. We adapted SampleSAT to flip two or more atoms in each step so that

the unique-value constraints are automatically satisfied. By default, MC-SAT treats each

ground clause as a separate factor while determining the slice. This can be very inefficient

for highly correlated clauses. For example, given a non-pronoun mention m currently in

cluster c and with head t, among the mixture prior rules involving m InClust(m, c) is the

only one that is satisfied, and among those head-prediction rules involving m, ¬IsPrn(m) ∧

InClust(m, c)∧Head(m, t) is the only one that is satisfied; the factors for these rules multiply

to ϕ = exp(wm,c+wm,c,t), where wm,c is the weight for InClust(m, c), and wm,c,t is the weight

for ¬IsPrn(m) ∧ InClust(m, c) ∧ Head(m, t), since an unsatisfied rule contributes a factor of

e0 = 1. We extended MC-SAT to treat each set of mutually exclusive and exhaustive rules

as a single factor. E.g., for the above m, MC-SAT now samples u uniformly from (0, ϕ),

and requires that in the next state ϕ′ be no less than u. Equivalently, the new cluster and

head for m should satisfy wm,c′ +wm,c′,t′ ≥ log(u). We extended SampleSAT so that when it

considers flipping any variable involved in such constraints (e.g., c or t above), it ensures

that their new values still satisfy these constraints.

The final clustering is found using the MaxWalkSAT weighted satisfiability solver [44],

with the same extensions as mentioned above for SampleSAT. We first ran a MaxWalkSAT

pass with only finite-weight formulas, then ran another pass with all formulas. We found

that this significantly improved the quality of the results that MaxWalkSAT returned.
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4.5 Experiments

4.5.1 System

We implemented our method as an extension to the Alchemy system [57]. Since our learn-

ing uses sampling, all results are the average of five runs using different random seeds. Our

optimization problem is not convex, so initialization is important. The core of our model

(head mixture) tends to cluster non-pronouns with the same head. Therefore, we initial-

ized by setting all weights to zero, and running the same learning algorithm on the base

MLN, while assuming that in the ground truth, non-pronouns are clustered by their heads.

(Effectively, the corresponding InClust atoms are assigned to appropriate values and are

included in Y rather than Z during learning.) We used 30 iterations of PSCG for learning.

(In preliminary experiments, additional iterations had little effect on coreference accuracy.)

We generated 100 samples using MC-SAT for each expectation approximation.5

4.5.2 Methodology

We conducted experiments on MUC-6, ACE-2004, and ACE Phrase-2 (ACE-2). We evalu-

ated our systems using two commonly-used scoring programs: MUC [111] and B3 [4]. To

gain more insight, we also report pairwise resolution scores and mean absolute error in the

number of clusters.

The MUC-6 dataset consists of 30 documents for testing and 221 for training. To evaluate

the contribution of the major components in our model, we conducted five experiments,

each differing from the previous one in a single aspect. We emphasize that our approach is

unsupervised, and thus the data only contains raw text plus true mention boundaries.

MLN-1 In this experiment, the base MLN was used, and the head was chosen simply as the

rightmost token in a mention. Our system was run on each test document separately,

using a minimum of training data (the document itself).

5Each sample actually contains a large number of groundings, so 100 samples yield sufficiently accurate
statistics for learning.
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MLN-30 Our system was trained on all 30 test documents together. This tests how much

can be gained by pooling information.

MLN-H The heads were determined using the head rules in the Stanford parser [50], plus

simple heuristics to handle suffixes such as “Corp.” and “Inc.”

MLN-HA The apposition rule was added.

MLN-HAN The predicate-nominal rule was added. This is our full model.

We also compared with two rule-based MLNs: RULE chose the head simply as the

rightmost token in a mention, and did not include the apposition rule and predicate-nominal

rule; RULE-HAN chose the head using the head rules in the Stanford parser, and included

the apposition rule and predicate-nominal rule.

Past results on ACE were obtained on different releases of the datasets, e.g., Haghighi

and Klein (2007) used the ACE-2004 training corpus, Denis and Baldridge (2007) used ACE

Phrase-2, and Culotta et al. (2007) used the ACE-2004 formal test set. In this paper, we

used the ACE-2004 training corpus and ACE Phrase-2 (ACE-2) to enable direct comparisons

with Haghighi & Klein (2007) and Denis and Baldridge (2007). Due to license restrictions,

we were not able to obtain the ACE-2004 formal test set and so cannot compare directly

to Culotta et al. (2007). The English version of the ACE-2004 training corpus contains

two sections, BNEWS and NWIRE, with 220 and 128 documents, respectively. ACE-2

contains a training set and a test set. In our experiments, we only used the test set, which

contains three sections, BNEWS, NWIRE, and NPAPER, with 51, 29, and 17 documents,

respectively.

4.5.3 Results

Table 4.1 compares our system with previous approaches on the MUC-6 dataset, in MUC

scores. Our approach greatly outperformed Haghighi & Klein (2007), the state-of-the-art

unsupervised system. Our system, trained on individual documents, achieved an F1 score

more than 7% higher than theirs trained on 60 documents, and still outperformed it trained
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Table 4.1: Comparison of coreference results in MUC scores on the MUC-6 dataset.

# Doc. Prec. Rec. F1

H&K 60 80.8 52.8 63.9

H&K 381 80.4 62.4 70.3

M&W 221 - - 73.4

RULE - 76.0 65.9 70.5

RULE-HAN - 81.3 72.7 76.7

MLN-1 1 76.5 66.4 71.1

MLN-30 30 77.5 67.3 72.0

MLN-H 30 81.8 70.1 75.5

MLN-HA 30 82.7 75.1 78.7

MLN-HAN 30 83.0 75.8 79.2

on 381 documents. Training on the 30 test documents together resulted in a significant gain.

(We also ran experiments using more documents, and the results were similar.) Better head

identification (MLN-H) led to a large improvement in accuracy, which is expected since for

mentions with a right modifier, the rightmost tokens confuse rather than help coreference

(e.g., “the chairman of Microsoft”). Notice that with this improvement our system already

outperforms a state-of-the-art supervised system [73]. Leveraging apposition resulted in

another large improvement, and predicate nominals also helped. Our full model scores

about 9% higher than Haghighi & Klein (2007), and about 6% higher than McCallum &

Wellner (2005). The B3 scores of MLN-HAN on the MUC-6 dataset are 77.4 (precision),

67.6 (recall) and 72.2 (F1). (The other systems did not report B3.) Interestingly, the rule-

based MLN (RULE) sufficed to outperform Haghighi & Klein (2007), and by using better

heads and the apposition and predicate-nominal rules (RULE-HAN), it outperformed

McCallum & Wellner (2005), the supervised system. The MLNs with learning (MLN-

30 and MLN-HAN), on the other hand, substantially outperformed the corresponding
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Table 4.2: Comparison of coreference results in MUC scores on the ACE-2004 (English)
datasets.

EN-BNEWS Prec. Rec. F1

H&K 63.2 61.3 62.3

MLN-HAN 66.8 67.8 67.3

EN-NWIRE Prec. Rec. F1

H&K 66.7 62.3 64.2

MLN-HAN 71.3 70.5 70.9

rule-based ones.

Table 4.2 compares our system to Haghighi & Klein (2007) on the ACE-2004 training set

in MUC scores. Again, our system outperformed theirs by a large margin. The B3 scores

of MLN-HAN on the ACE-2004 dataset are 71.6 (precision), 68.4 (recall) and 70.0 (F1) for

BNEWS, and 75.7 (precision), 69.2 (recall) and 72.3 (F1) for NWIRE. (Haghighi & Klein

(2007) did not report B3.) Due to license restrictions, we could not compare directly to

Culotta et al. (2007), who reported overall B3-F1 of 79.3 on the formal test set.

Table 4.3 compares our system to the recent supervised system by Denis & Baldridge

(2007). Our approach tied with Denis & Baldridge (2007) on NWIRE, and was somewhat

less accurate on BNEWS and NPAPER. Table 4.4 shows our B3 scores in this dataset.

(Denis & Baldridge (2007) did not report B3 scores.)

Luo et al. (2004) pointed out that one can obtain a very high MUC score simply by

lumping all mentions together. B3 suffers less from this problem but is not perfect. Thus

we also report pairwise resolution scores (Table 4.5), the gold number of clusters, and our

mean absolute error in the number of clusters (Table 4.6). Systems that simply merge all

mentions will have exceedingly low pairwise precision (far below 50%), and very large errors

in the number of clusters. Our system has fairly good pairwise precisions and small mean

error in the number of clusters, which verifies that our results are sound.
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Table 4.3: Comparison of coreference results in MUC scores on the ACE-2 datasets.

BNEWS Prec. Rec. F1

D&B 78.0 62.1 69.2

MLN-HAN 68.3 66.6 67.4

NWIRE Prec. Rec. F1

D&B 75.8 60.8 67.5

MLN-HAN 67.7 67.3 67.4

NPAPER Prec. Rec. F1

D&B 77.6 68.0 72.5

MLN-HAN 69.2 71.7 70.4

Table 4.4: Our coreference results in B3 scores on the ACE-2 datasets.

Section Prec. Rec. F1

BNEWS 70.3 65.3 67.7

NWIRE 74.7 68.8 71.6

NPAPER 70.0 66.5 68.2

4.5.4 Error Analysis

Many of our system’s remaining errors involve nominals. Additional features should be

considered to distinguish mentions that have the same head but are different entities. For

pronouns, many remaining errors can be corrected using linguistic knowledge like binding

theory and salience hierarchy. Our heuristics for identifying appositives and predicate nomi-

nals also make many errors, which often can be fixed with additional name entity recognition

capabilities (e.g., given “Mike Sullivan, VOA News”, it helps to know that the former is a

person and the latter an organization). The most challenging case involves phrases with
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Table 4.5: Our coreference results in precision, recall, and F1 for pairwise resolution.

Pairwise Prec. Rec. F1

MUC-6 63.0 57.0 59.9

EN-BNEWS 51.2 36.4 42.5

EN-NWIRE 62.6 38.9 48.0

BNEWS 44.6 32.3 37.5

NWIRE 59.7 42.1 49.4

NPAPER 64.3 43.6 52.0

Table 4.6: Average gold number of clusters per document vs. the mean absolute error of
our system.

# Clusters MUC-6 EN-BN EN-NW

Gold 15.4 22.3 37.2

Mean Error 4.7 3.0 4.8

# Clusters BNEWS NWIRE NPAPER

Gold 20.4 39.2 55.2

Mean Error 2.5 5.6 6.6

different heads that are both proper nouns (e.g., “Mr. Bush” and “the White House”).

Handling these cases requires domain knowledge and/or more powerful joint inference.

4.6 Discussion

In our coreference MLN, many formulas use conjunction rather than implication; e.g., the

head prediction rule

InClust(m,+c) ∧ Head(m,+t).
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At the first sight, this might seem odd from the logical inference viewpoint. This also raises

the practical question: when should a conjunction be used instead of an implication?

We first note that a formula like the head prediction rule is not a logical constraint

but rather represents probabilistic dependencies. In particular, it corresponds to multiple

formulas of the form of InClust(m, Ci) ∧ Head(m, Tj), for all constants Ci’s and Tj’s, with a

separate weight learned for each. With conjunction, these formulas are mutually exclusive

and their sets of true groundings do not overlap. If the conjunction is replaced with impli-

cation, however, the sets of true groundings overlap substantially among the formulas, and

their weights interact in a much more tightly coupled way. Empirically, we found that this

makes weight learning unnecessarily harder, leading to poorer results.

To choose between conjunction and implication, we find the following rule of the thumb

useful. If a formula captures logical or near-deterministic dependency, then by no mean

should we convert the implication into conjunction. However, if a set of formulas model soft

correlation, then it is often better to make them mutually exclusive by using conjunction.

Another natural question may rise regarding the formulation of our unsupervised learn-

ing objective. In Section 4.4, we separate the observed features into two types: those in X

that are always conditioned on, and those in Y whose likelihood is to be maximized. This

makes our unsupervised learning partially discriminative. We found that this led to better

performance for the same reason that discriminative learning generally improves accuracy

in supervised learning. In particular, the features in X (IsPrn, Appo, PredNom) are those

for which our MLN does not model their occurrences in a way that can help coreference

resolution.

4.7 Summary

In this chapter, we applied Markov logic to develop the first unsupervised coreference resolu-

tion system that is as accurate as supervised systems. Markov logic facilitates joint inference

among mentions and the use of relations like apposition and predicate nominals. It also

makes it easy to extend the current system with additional linguistic and world knowledge.
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Chapter 5

UNSUPERVISED SEMANTIC PARSING

5.1 Introduction

In the previous two chapters, we consider the tasks of information extraction and coreference

resolution, which have rather confined goals compared to general machine reading. In

particular, we want to extract arbitrary entities and relations, not just a few prespecified

ones as in information extraction. To do this, we need to resolve variations among arbitrary

synonymous expressions, not just coreferring noun phrases as in coreference resolution.

Semantic parsing is a key task for achieving general machine reading. The goal is to map

text to canonical meaning representations. This contrasts with semantic role labeling [13]

and other forms of shallow semantic processing, which do not aim to produce complete

formal meanings.

Traditionally, semantic parsers were constructed manually, but this is too costly and

brittle. Recently, a number of machine learning approaches have been proposed [119, 76].

However, they are supervised, and providing the target logical form for each sentence is

costly and difficult to do consistently and with high quality. More importantly, they assume

that the target meaning representations (e.g., the sets of predicates and objects) are readily

available, which is a questionable assumption in general domains.1 Unsupervised approaches

have been applied to shallow semantic tasks (e.g., paraphrasing [67], information extraction

[8]), but not to semantic parsing.

In this chapter, we develop the first unsupervised approach to semantic parsing, using

Markov logic. Our USP system starts by clustering tokens of the same type, and then recur-

sively clusters expressions whose subexpressions belong to the same clusters. Experiments

on a biomedical corpus show that this approach is able to successfully translate syntactic

variations into a logical representation of their common meaning (e.g., USP learns to map

1For example, imagine trying to identify all objects and predicates for PubMed or Wall Street Journal.
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active and passive voice to the same logical form, etc.). This in turn allows it to correctly

answer many more questions than systems based on TextRunner [8] and DIRT [67].

5.2 Related Work

5.2.1 Semantic Parsing

The standard language for formal meaning representation is first-order logic. A term is any

expression representing an object in the domain. An atomic formula or atom is a predicate

symbol applied to a tuple of terms. Formulas are recursively constructed from atomic

formulas using logical connectives and quantifiers. A lexical entry defines the logical form

for a lexical item (e.g., a word). The semantic parse of a sentence is derived by starting

with logical forms in the lexical entries and recursively composing the meaning of larger

fragments from their parts. In traditional approaches, the lexical entries and meaning-

composition rules are both manually constructed. Below are sample rules in a definite

clause grammar (DCG) for parsing the sentence: “Microsoft acquired Farecast”.

V erb[λyλx.ACQUIRE(x, y)]→ acquired

NP [MICROSOFT]→Microsoft

NP [FARECAST]→ Farecast

V P [rel(obj)]→ V erb[rel] NP [obj]

S[rel(obj)]→ NP [obj] V P [rel]

The first three lines are lexical entries. They are fired upon seeing the individual words.

For example, the first rule applies to the word “acquired” and generates syntactic category

Verb with the meaning λyλx.ACQUIRE(x, y) that represents the acquisition relation. Here, we

use the standard lambda-calculus notation, where λyλx.ACQUIRE(x, y) represents a function

that is true for any (x, y)-pair such that ACQUIRE(x, y) holds. The last two rules compose

the meanings of sub-parts into that of the larger part. For example, after the first and third

rules are fired, the fourth rule fires and generates V P [λyλx.ACQUIRE(x, y)(FARECAST]; this

meaning simplifies to λx.ACQUIRE(x, FARECAST) by the λ-reduction rule, which substitutes

the argument for a variable in a functional application.

A major challenge to semantic parsing is syntactic variations of the same meaning, which
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abound in natural languages. For example, the aforementioned sentence can be rephrased

as “Microsoft Corporation bought Farecast,”“Farecast was purchased by the Redmond soft-

ware giant,” etc. Manually encoding all these variations into the grammar is tedious and

error-prone. Supervised semantic parsing addresses this issue by learning to construct the

grammar automatically from sample meaning annotations [76]. Existing approaches differ

in the meaning representation languages they use and the amount of annotation required.

In the approach of Zettlemoyer and Collins (2005), the training data consists of sentences

paired with their meanings in lambda form. A probabilistic combinatory categorial gram-

mar (PCCG) is learned using a log-linear model, where the probability of the final logical

form L and meaning-derivation tree T conditioned on the sentence S is

P (L, T |S) = 1

Z
exp

(∑
i

wifi(L, T, S)

)
where Z is the normalization constant and fi are the feature functions with weights wi.

Candidate lexical entries are generated by a domain-specific procedure based on the target

logical forms.

The major limitation of supervised approaches is that they require meaning annotations

for example sentences. Even in a restricted domain, doing this consistently and with high

quality requires nontrivial effort. For unrestricted text, the complexity and subjectivity

of annotation render it essentially infeasible; even pre-specifying the target predicates and

objects is very difficult. Therefore, to apply semantic parsing beyond limited domains, it is

crucial to develop unsupervised methods that do not rely on labeled meanings.

In the past, unsupervised approaches have been applied to some semantic tasks, but not

to semantic parsing. For example, DIRT [67] learns paraphrases of binary relations based on

distributional similarity of their arguments; TextRunner [8] automatically extracts relational

triples in open domains using a self-trained extractor; SNE applies relational clustering to

generate a semantic network from TextRunner triples [54]. While these systems illustrate

the promise of unsupervised methods, the semantic content they extract is nonetheless

shallow and does not constitute the complete formal meaning that can be obtained by a

semantic parser.

Another issue is that existing approaches to semantic parsing learn to parse syntax and
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semantics together.2 The drawback is that the complexity in syntactic processing is coupled

with semantic parsing and makes the latter even harder. For example, when applying their

approach to a different domain with somewhat less rigid syntax, Zettlemoyer and Collins

(2007) need to introduce new combinators and new forms of candidate lexical entries [120].

Ideally, we should leverage the enormous progress made in syntactic parsing and generate

semantic parses directly from syntactic analysis.

5.3 An MLN for Unsupervised Semantic Parsing

Unsupervised semantic parsing (USP) rests on three key ideas. First, the target predi-

cate and object constants, which are pre-specified in supervised semantic parsing, can be

viewed as clusters of syntactic variations of the same meaning, and can be learned from

data. For example, ACQUIRE represents the acquisition relation, and can be viewed as the

cluster of different forms for expressing this relation, such as “acquired”, “bought”, “pur-

chased”; Microsoft represents the company Microsoft, and can be viewed as the cluster of

“Microsoft”, “the Redmond software giant”, etc.

Second, the identification and clustering of candidate forms are integrated with the learn-

ing for meaning composition, where forms that are used in composition with the same forms

are encouraged to cluster together, and so are forms that are composed of the same sub-

forms. This amounts to recursive relational clustering, a novel form of relational clustering,

where clustering is done not just on fixed elements in relational tuples, but on arbitrary

forms that are built up recursively.

Third, while most existing approaches (manual or supervised learning) learn to parse

both syntax and semantics, unsupervised semantic parsing starts directly from syntactic

analyses and focuses solely on translating them to semantic content. This enables us to

leverage advanced syntactic parsers and (indirectly) the available rich resources for them.

More importantly, it separates the complexity in syntactic analysis from the semantic one,

and makes the latter much easier to perform. In particular, meaning composition does not

require domain-specific procedures for generating candidate lexicons, as is often needed by

2The only exception that we are aware of is Ge and Mooney (2009) [31].
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Figure 5.1: Left: the dependency tree for the sentence “Microsoft Corporation bought
Farecast”. Right: the corresponding quasi-logical form (QLF).

supervised methods.

The input to our USP system consists of dependency trees of training sentences. Com-

pared to phrase-structure syntax, dependency trees are the more appropriate starting point

for semantic processing, as they already exhibit much of the relation-argument structure at

the lexical level.

USP first uses a deterministic procedure to convert dependency trees into quasi-logical

forms (QLFs). The QLFs and their sub-formulas have natural lambda forms, as will be

described later. Starting with clusters of lambda forms at the atom level, USP recursively

builds up clusters of larger lambda forms. The final output is a probability distribution

over lambda-form clusters and their compositions, as well as the MAP semantic parses of

training sentences.

In the remainder of the section, we describe the details of USP. We first present the

procedure for generating QLFs from dependency trees. We then introduce their lambda

forms and clusters, and show how semantic parsing works in this setting. Finally, we

present the Markov logic network (MLN) used by USP. In the next section, we present

efficient algorithms for learning and inference with this MLN.

5.3.1 Derivation of Quasi-Logical Forms

A dependency tree is a tree where nodes are words and edges are dependency labels. Figure

5.1 shows an example for the sentence “Microsoft Corporation bought Farecast” in Stanford
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Figure 5.2: An example semantic parse. Top left: a partition that divides the QLF into three
sub-formulas and the corresponding lambda forms. Top right: an assignment to clusters
and argument types. Bottom left: the final form of the semantic parse. Bottom right: an
example cluster with parameters (the numbers are unnormalized multinomial counts).

dependencies [21]. To derive the QLF, we convert each node to an unary atom with the

predicate being the lemma plus POS tag (below, we still use the word for simplicity), and

each edge to a binary atom with the predicate being the dependency label. For example, in

Figure 5.1 the node for Corporation becomes Corporation(n2) and the subject dependency

becomes subj(n1, n2). Here, the ni’s are Skolem constants indexed by the nodes. The

QLF for a sentence is the conjunction of the atoms for the nodes and edges, e.g., the

sentence above will become bought(n1)∧Corporation(n2)∧Farecast(n3)∧Microsoft(n4)∧

nsubj(n1, n2) ∧ dobj(n1, n3) ∧ nn(n2, n4).
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5.3.2 Lambda-Form Clusters and Semantic Parsing in USP

A semantic parse consists of a partition of the QLF and an assignment of the parts to

meaning-unit clusters corresponding to relations and objects. We will go through the details

using a running example in Figure 5.2. Here, the partition divides the QLF into three

subformulas

p1 = bought(n1) ∧ nsubj(n1, n2) ∧ dobj(n1, n3)

p2 = Corporation(n2) ∧ Microsoft(n4) ∧ nn(n2, n4)

p3 = Farecast(n3)

USP places no restriction on the partitions, which ensures the maximum flexibility in learn-

ing. In particular, lexical entries are no longer limited to be adjacent words as in Zettlemoyer

and Collins (2005), but can be arbitrary fragments in a dependency tree.

Given a sub-formula, some atoms signify the core meaning of this unit, while others

refer to arguments. For example, in p1, bought(n1) signifies an acquisition event, whereas

nsubj(n1, n2) and dobj(n1, n3) lead to the arguments of the acquirer and the acquired, as

indexed by n2, n3, respectively. These arguments are defined elsewhere (in this case, in

the unary atoms Corporation(n2), Farecast(n3)), and the subformula p1 can be viewed

as a function that can produce the final form given the arguments as input. We thus

follow the standard approach in semantics by representing the sub-formulas in lambda

calculus. Specifically, the lambda form of a sub-formula p is derived by replacing every

Skolem constant ni that does not appear in any unary atom in p with a unique lambda

variable xi. The lambda form is then further decomposed into the core form, which does

not contain any lambda variable (e.g., bought(n1)), and the argument forms, each of which

contains a single lambda variable (e.g., λx2.nsubj(n1, x2) and λx3.dobj(n1, x3)).

A lambda-form cluster is a set of semantically interchangeable lambda forms. For ex-

ample, to express the acquisition event, we can use any form in the cluster ACQUIRE, such

as “acquired” and “bought”. To refer to Microsoft, we can use any form in the cluster

MICROSOFT, such as “Microsoft Corporation” and “the Redmond software giant”. Each

lambda-form cluster may contain some number of argument types, which cluster distinct

forms of the same argument in a relation. For example, ACQUIRER is an argument type for

ACQUIRE that refers to the acquirer argument. There are variations in the syntactic form



59

for an argument type. For example, in Stanford dependencies, the subject of a verb uses

the dependency nsubj in the active voice, but agent in passive, and both can be used in an

reference to the acquirer. There are other variations as well. For example, the acquirer may

not be mentioned at all, as in “Farecast was acquired for over 100 million”. Additionally, the

likelihood of being an acquirer differs. For example, a stone doesn’t acquire things, while

big companies like Microsoft are much more likely to be the acquirer than smaller ones.

(Selectional preference captures exactly this kind of variations, except that past works on

selectional preference focus on the case where the core meaning is expressed by a word sense

rather than arbitrary meaning units.) In sum, a lambda-form clusters abstract away varia-

tions in representing the core meaning, whereas an argument type abstracts away variations

in referencing a particular kind of argument.

Given a lambda form in cluster T with arguments of types A1, · · · , Ak, its abstract lambda

form is given by λx1 · · ·λxk.T(e) ∧
∧k

i=1 Ai(e, xi). The mapping of a raw form to a cluster

or argument type corresponds to a semantic grammar rule. In USP, semantic parsing is

conducted by partitioning the QLF to sub-formulas, and then mapping the core forms to

clusters and argument forms to argument types by invoking semantic grammar rules. The

final form of the semantic parse is obtained by composing the abstract lambda forms of sub-

formulas using λ-reduction. Essentially, the USP model defines a probability distribution

over the semantic parses by assigning them scores according to the grammar rules and their

parameters. The learning problem in USP then amounts to learning the grammar rules and

their parameters using the generic templates defined in Markov logic.

USP does not distinguish between relations and objects among meaning units. This

enables a unified approach to handle higher-order relations that take other relations as

arguments.

5.3.3 The USP MLN

Formally, for a QLF Q, a semantic parse L partitions Q into parts p1, p2, · · · , pn; each part

p is assigned to some lambda-form cluster c, and is further partitioned into core form f

and argument forms f1, · · · , fk; each argument form is assigned to an argument type a in
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c. The USP MLN defines a joint probability distribution over Q and L by modeling the

distributions over forms and arguments given the cluster or argument type.

The USP MLN uses second-order Markov logic where the constants and variables can

represent arbitrary lambda forms corresponding to atoms and formulas in the QLF. They

should not be confused with the predicates and formulas in the USP MLN.

To model distributions over lambda forms, we introduce the predicates Form(p, f!) and

ArgForm(p, i, f!), where p is a part, i is the index of an argument, and f is a QLF subformula.

Form(p, f) is true iff part p has core form f, and ArgForm(p, i, f) is true iff the ith argument

in p has form f.3 The “f!” notation signifies that each part or argument can have only one

form.

In our running example in Figure 5.2, there are three parts in the given partition,

p1, p2, p3. The true Form, ArgForm atoms are determined by the partition, and in this case

they are

Form(p1, “bought(n1)”)

Form(p2, “Corporation(n2) ∧ Microsoft(n4)”)

Form(p3, “Farecast(n3)”)

ArgForm(p1, 2, “λx2.nsubj(n1, x2)”)

ArgForm(p1, 3, “λx3.dobj(n1, x3)”)

To model distributions over arguments, we introduce three more predicates: ArgType(p, i, a!)

signifies that the ith argument of p is assigned to argument type a; Arg(p, i, p′) signifies

that the ith argument of p is p′; Number(p, a, n) signifies that there are n arguments of p

that are assigned to type a. The truth value of Number(p, a, n) is determined by the ArgType

atoms.

In our running example, the ArgType, ArgForm atoms are determined by the semantic

parse (specifically, the partition and argument type assignment). In this case, the true

3There are hard constraints to guarantee that these assignments form a legal partition. We omit them
for simplicity.
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atoms are

Arg(p1, 2, p2)

Arg(p1, 3, p3)

ArgType(p1, 2, ACQUIRER)

ArgType(p1, 3, ACQUIRED)

Number(p1, ACQUIRER, 1)

Number(p1, ACQUIRED, 1)

Unsupervised semantic parsing can be captured by four formulas:

p ∈ +c ∧ Form(p,+f)

ArgType(p, i,+a) ∧ ArgForm(p, i,+f)

Arg(p, i, p′) ∧ ArgType(p, i,+a) ∧ p′ ∈ +c′

Number(p,+a,+n)

All free variables are implicitly universally quantified. The “+” notation signifies that the

MLN contains an instance of the formula, with a separate weight, for each value combination

of the variables with a plus sign.

Essentially, the USP model defines a recursive mixture model. The first formula models

the mixture of core forms given the cluster, and the others model the mixtures of argu-

ment forms, argument clusters, and argument numbers, respectively, given the argument

type. This amounts to a generative story where the model first picks the core form from

a cluster (first formula). Then, for each argument type in the cluster, it determines how

many instances to instantiate (fourth formula). For each argument instance, it chooses

the argument form (second formula) and the cluster of the argument (third formula). The

generative story then continues recursively for each argument cluster that is chosen.

To encourage clustering and avoid overfitting, we impose an exponential prior with

weight α on the number of parameters.4

The MLN above has one problem: it often clusters expressions that are semantically

opposite. For example, it clusters antonyms like “elderly/young”, “mature/immature”.

This issue also occurs in other semantic-processing systems (e.g., DIRT). In general, this

4Excluding weights of ∞ or −∞, which signify hard constraints.
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Figure 5.3: The search operator used in USP inference. Left: current partition. Right: new
partition after applying lambda-reduction.

is a difficult open problem that only recently has started to receive some attention [75].

Resolving this is not the focus of this paper, but we describe a general heuristic for fixing

this problem. We observe that the problem stems from the lack of negative features for

discovering meanings in contrast. In natural languages, parallel structures like conjunctions

are one such feature.5 We thus introduce an exponential prior with weight β on the number

of conjunctions where the two conjunctive parts are assigned to the same cluster. To detect

conjunction, we simply used the Stanford dependencies that begin with “conj”. This proves

very effective, fixing the majority of the errors in our experiments.

5.4 Inference and Learning

Given a sentence and the quasi-logical form Q derived from its dependency tree, the con-

ditional probability for a semantic parse L is given by Pr(L|Q) ∝ exp (
∑

iwini(L,Q)).

The MAP semantic parse is simply argmaxL
∑

iwini(L,Q). Enumerating all L’s is in-

tractable. It is also unnecessary, since most partitions will result in parts whose lambda

forms have no cluster they can be assigned to. Instead, USP uses a greedy algorithm to

search for the MAP parse. First we introduce some definitions: a partition is called λ-

reducible from p if it can be obtained from the current partition by λ-reducing the part

containing p with one of its arguments; such a partition is called feasible if the core

5For example, in the sentence “IL-2 inhibits X in A and induces Y in B”, the conjunction between
“inhibits” and “induces” suggests that they are different. If “inhibits” and “induces” are indeed synonyms,
such a sentence will sound awkward and would probably be rephrased as “IL-2 inhibits X in A and Y in
B”.
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Algorithm 2 USP-Parse(MLN, QLF)

Form parts for individual atoms in QLF and assign each to its most probable cluster

repeat

for all parts p in the current partition do

for all partitions that are λ-reducible from p and feasible do

Find the most probable cluster and argument type assignments for the new part

and its arguments

end for

end for

Change to the new partition and assignments with the highest gain in probability

until none of these improve the probability

return current partition and assignments

form of the new part is contained in some cluster. Figure 5.3 illustrates this operator

with an example. Consider the QLF of “Microsoft Corporation bought Farecast” and as-

sume that the current partition is p1 = λx2x3.bought(n1) ∧ nsubj(n1, x2) ∧ dobj(n1, x3),

p2 = λx4.Corporation(n2) ∧ nn(n2, x4), p3 = Farecast(n3), p4 = Microsoft(n4). Then

the following partition is λ-reducible by applying λ-reduction to compose p2 and p4: p1 =

λx2x3.bought(n1) ∧ nsubj(n1, x2) ∧ dobj(n1, x3), p
′
2 = Corporation(n2) ∧ Microsoft(n4),

p3 = Farecast(n3). Whether this new partition is feasible depends on whether the core

form of the new part Corporation(n2) ∧ Microsoft(n4) is contained in some lambda-form

cluster.

Algorithm 2 gives pseudo-code for our algorithm. Given part p, finding partitions that

are λ-reducible from p and feasible can be done in time O(ST ), where S is the size of the

clustering in the number of core forms and T is the maximum number of atoms in a core

form (by reduction to the unordered subtree matching problem [48]). Inverted indexes (e.g.,

from p to eligible core forms) are used to further improve the efficiency. For a new part p

and a cluster that contains p’s core form, there are km ways of assigning p’s m arguments

to the k argument types of the cluster. For larger k and m, this is very expensive. We
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Algorithm 3 USP-Learn(MLN, QLFs)

Create initial clusters and semantic parses

Merge clusters with the same core form

Agenda ← ∅

repeat

for all candidate operations O do

Score O by log-likelihood improvement

if score is above a threshold then

Add O to agenda

end if

end for

Execute the highest scoring operation O∗ in the agenda

Regenerate MAP parses for affected QLFs and update agenda and candidate operations

until agenda is empty

return the MLN with learned weights and the semantic parses

therefore approximate it by assigning each argument to the best type, independent of other

arguments.

The learning problem in USP is to maximize the log-likelihood of observing the QLFs

obtained from the dependency trees, denoted by Q, summing out the unobserved semantic

parses:

Lθ(Q) = logPθ(Q) = log
∑
L

Pθ(Q,L)

where L are the semantic parses, θ are the MLN parameters, and Pθ(Q,L) is the completion

likelihood. A serious challenge in unsupervised learning is the identifiability problem (i.e.,

the optimal parameters are not unique) [64]. This problem is particularly severe for log-

linear models with hard constraints, which are common in MLNs. For example, in our USP

MLN, conditioned on the fact that p ∈ c, there is exactly one value of f that can satisfy

the formula p ∈ c ∧ Form(p, f), and if we add some constant number to the weights of
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p ∈ c∧Form(p, f) for all f, the probability distribution stays the same.6 The learner can be

easily confused by the infinitely many optima, especially in the early stages. To address this

problem, we impose local normalization constraints on specific groups of formulas that are

mutually exclusive and exhaustive, i.e., in each group, we require that
∑k

i=1 e
wi = 1, where

wi are the weights of formulas in the group. Grouping is done in such a way as to encourage

the intended mixture behaviors. Specifically, for the rule p ∈ +c∧Form(p,+f), all instances

given a fixed c form a group; for each of the remaining three rules, all instances given a fixed

a form a group. Notice that with these constraints the completion likelihood P (Q,L) can

be computed in closed form for any L. In particular, each formula group contributes a term

equal to the weight of the currently satisfied formula. In addition, the optimal weights that

maximize the completion likelihood P (Q,L) can be derived in closed form using empirical

relative frequencies. E.g., the optimal weight of p ∈ c ∧ Form(p, f) is log(nc,f/nc), where

nc,f is the number of parts p that satisfy both p ∈ c and Form(p, f), and nc is the number

of parts p that satisfy p ∈ c.7 We leverage this fact for efficient learning in USP.

Another major challenge in USP learning is the summation in the likelihood, which is

over all possible semantic parses for a given dependency tree. Even an efficient sampler

like MC-SAT [87], as used in Poon & Domingos (2008), would have a hard time generating

accurate estimates within a reasonable amount of time. On the other hand, as already noted

in the previous section, the lambda-form distribution is generally sparse. Large lambda-

forms are rare, as they correspond to complex expressions that are often decomposable

into smaller ones. Moreover, while ambiguities are present at the lexical level, they quickly

diminish when more words are present. Therefore, a lambda form can usually only belong

to a small number of clusters, if not a unique one. We thus simplify the problem by

approximating the sum with the mode, and search instead for the L and θ that maximize

logPθ(Q,L). Since the optimal weights and log-likelihood can be derived in closed form

6Regularizations, e.g., Gaussian priors on weights, alleviate this problem by penalizing large weights, but
it remains true that weights within a short range are roughly equivalent.

7To see this, notice that for a given c, the total contribution to the completion likelihood from all ground-
ings in its formula group is

∑
f wc,fnc,f. In addition,

∑
f nc,f = nc and there is the local normalization

constraint
∑

f e
wc,f = 1. The optimal weights wc,f are easily derived by solving this constrained optimiza-

tion problem.
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Figure 5.4: Example operations of MERGE and COMPOSE. For simplicity, only core forms and
their unnormalized counts are shown.

given the semantic parses L, we simply search over semantic parses, evaluating them using

log-likelihood.

Algorithm 3 gives pseudo-code for our algorithm. The input consists of an MLN without

weights and the QLFs for the training sentences. Two operators are used for updating

semantic parses. The first is to merge two clusters, denoted by MERGE(C1, C2) for clusters

C1, C2, which does the following:

1. Create a new cluster C and add all core forms in C1, C2 to C;

2. Create new argument types for C by merging those in C1, C2 so as to maximize the

log-likelihood;

3. Remove C1, C2.

Here, merging two argument types refers to pooling their argument forms to create

a new argument type. Enumerating all possible ways of creating new argument types is

intractable. USP approximates it by considering one type at a time and either creating

a new type for it or merging it to types already considered, whichever maximizes the log-

likelihood. The types are considered in decreasing order of their numbers of occurrences so

that more information is available for each decision. MERGE clusters syntactically different

expressions whose meanings appear to be the same according to the model.

The second operator is to create a new cluster by composing two existing ones, denoted

by COMPOSE(CR, CA), which does the following:
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Figure 5.5: Initialization of USP-Learn. Top: a toy corpus with two sentences and their
dependency trees. Middle: initial parses by shattering formulas and clustering same forms.
Bottom: initial clusters and parameters (in unnormalized multinomial counts).
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1. Create a new cluster C;

2. Find all parts r ∈ CR, a ∈ CA such that a is an argument of r, compose them to r(a)

by λ-reduction and add the new part to C;

3. Create new argument types for C from the argument forms of r(a) so as to maximize

the log-likelihood.

COMPOSE creates clusters of large lambda-forms if they tend to be composed of the same

sub-forms (e.g., the lambda form for “the Redmond software giant”). These lambda-forms

may later be merged with other clusters (e.g., Microsoft).

See Figure 5.4 for example operations.

At learning time, USP maintains an agenda that contains operations that have been

evaluated and are pending execution. During initialization, USP forms a part and creates

a new cluster for each unary atom u(n). It also assigns binary atoms of the form b(n, n′)

to the part as argument forms and creates a new argument type for each. This forms the

initial parses. From these parses, we can derive initial clusters and MAP parameters by

merging clusters with the same core form (i.e., the same unary predicate) using MERGE.8

Figure 5.5 illustrates this process with an example.

In each iteration, all candidate operations are evaluated. To evaluate a candidate opera-

tion, USP first updates the MAP parses where the operator is applicable, from which it then

updates the clusters and parameters, and calculate the delta in regularized log-likelihood

of the MAP parses. These updates are sparse and can be computed very efficiently using

inverted indexes.

These candidate operations are then added to the agenda if the improvement in log-

likelihood is above a threshold.9 The operation with the highest score is executed, and the

parameters are updated with the new optimal values. The QLFs which contain an affected

part are reparsed, and the remaining operations in the agenda whose score might be affected

8Word-sense disambiguation can be handled by including a new kind of operator that splits a cluster into
subclusters. We leave this to future work.

9We currently set it to 10 to favor precision and guard against errors due to inexact estimates.
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are re-evaluated. USP terminates when the agenda is empty, and outputs the current MLN

parameters and MAP semantic parses.

USP learning uses the same optimization objective as hard EM, and is also guaranteed

to find a local optimum since at each step it improves the log-likelihood. It differs from EM

in directly optimizing the likelihood instead of a lower bound.

5.5 Experiments

5.5.1 Task

Evaluating unsupervised semantic parsers is difficult, because there is no predefined formal

language or gold logical forms for the input sentences. Thus the best way to test them is by

using them for the ultimate goal: answering questions based on the input corpus. In this

paper, we applied USP to extracting knowledge from biomedical abstracts and evaluated its

performance in answering a set of questions that simulate the information needs of biomed-

ical researchers. We used the GENIA dataset [49] as the source for knowledge extraction.

It contains 1999 PubMed abstracts and marks all mentions of biomedical entities according

to the GENIA ontology, such as cell, protein, and DNA. As a first approximation to the

questions a biomedical researcher might ask, we generated a set of two thousand questions

on relations between entities. Sample questions are: “What regulates MIP-1alpha?”, “What

does anti-STAT 1 inhibit?”. To simulate the real information need, we sample the relations

from the 100 most frequently used verbs (excluding the auxiliary verbs be, have, and do),

and sample the entities from those annotated in GENIA, both according to their numbers

of occurrences. We evaluated USP by the number of answers it provided and the accuracy

as determined by manual labeling.10

5.5.2 Systems

Since USP is the first unsupervised semantic parser, conducting a meaningful compari-

son of it with other systems is not straightforward. Standard question-answering (QA)

benchmarks do not provide the most appropriate comparison, because they tend to simul-

10The labels and questions are available at http://alchemy.cs.washington.edu/papers/poon09.
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taneously emphasize other aspects not directly related to semantic parsing. Moreover, most

state-of-the-art QA systems use supervised learning in their key components and/or require

domain-specific engineering efforts. The closest available system to USP in aims and ca-

pabilities is TextRunner [8], and we compare with it. TextRunner is the state-of-the-art

system for open-domain information extraction; its goal is to extract knowledge from text

without using supervised labels. Given that a central challenge to semantic parsing is re-

solving syntactic variations of the same meaning, we also compare with RESOLVER [117],

a state-of-the-art unsupervised system based on TextRunner for jointly resolving entities

and relations, and DIRT [67], which resolves paraphrases of binary relations. Finally, we

also compared to an informed baseline based on keyword matching.

Keyword: We consider a baseline system based on keyword matching. The question sub-

string containing the verb and the available argument is directly matched with the input

text, ignoring case and morphology. We consider two ways to derive the answer given a

match. The first one (KW) simply returns the rest of sentence on the other side of the

verb. The second one (KW-SYN) is informed by syntax: the answer is extracted from the

subject or object of the verb, depending on the question. If the verb does not contain the

expected argument, the sentence is ignored.

TextRunner: TextRunner inputs text and outputs relational triples in the form (R,A1, A2),

where R is the relation string, and A1, A2 the argument strings. Given a triple and a ques-

tion, we first match their relation strings, and then match the strings for the argument that

is present in the question. If both match, we return the other argument string in the triple

as an answer. We report results when exact match is used (TR-EXACT), or when the

triple string can contain the question one as a substring (TR-SUB).

RESOLVER: RESOLVER [117] inputs TextRunner triples and collectively resolves coref-

erent relation and argument strings. On the GENIA data, using the default parameters,

RESOLVER produces only a few trivial relation clusters and no argument clusters. This

is not surprising, since RESOLVER assumes high redundancy in the data, and will discard

any strings with fewer than 25 extractions. For a fair comparison, we also ran RESOLVER

using all extractions, and manually tuned the parameters based on eyeballing of clustering

quality. The best result was obtained with 25 rounds of execution and with the entity multi-
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ple set to 200 (the default is 30). To answer questions, the only difference from TextRunner

is that a question string can match any string in its cluster. As in TextRunner, we report

results for both exact match (RS-EXACT) and substring (RS-SUB).

DIRT: The DIRT system inputs a path and returns a set of similar paths. To use DIRT in

question answering, we queried it to obtain similar paths for the relation of the question, and

used these paths while matching sentences. We first used MINIPAR [66] to parse input text

using the same dependencies as DIRT. To determine a match, we first check if the sentence

contains the question path or one of its DIRT paths. If so, and if the available argument

slot in the question is contained in the one in the sentence, it is a match, and we return

the other argument slot from the sentence if it is present. Ideally, a fair comparison will

require running DIRT on the GENIA text, but we were not able to obtain the source code.

We thus resorted to using the latest DIRT database released by the author, which contains

paths extracted from a large corpus with more than 1GB of text. In our experiments, we

used the top three similar paths, as including more results in very low precision.

USP: We built a system for knowledge extraction and question answering on top of USP.

It generated Stanford dependencies [21] from the input text using the Stanford parser, and

then fed these to USP-Learn11, which produced an MLN with learned weights and the

MAP semantic parses of the input sentences. These MAP parses formed our knowledge

base (KB). To answer questions, the system first parses the questions12 using USP-Parse

with the learned MLN, and then matches the question parse to parses in the KB by testing

subsumption (i.e., a question parse matches a KB one iff the former is subsumed by the lat-

ter). When a match occurs, our system then looks for arguments of type in accordance with

the question. For example, if the question is “What regulates MIP-1alpha?”, it searches for

the argument type of the relation that contains the argument form “nsubj” for subject. If

such an argument exists for the relation part, it will be returned as the answer.
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Table 5.1: Comparison of question answering results on the GENIA dataset.

# Total # Correct Accuracy

KW 150 67 45%

KW-SYN 87 67 77%

TR-EXACT 29 23 79%

TR-SUB 152 81 53%

RS-EXACT 53 24 45%

RS-SUB 196 81 41%

DIRT 159 94 59%

USP 334 295 88%

5.5.3 Results

Table 5.1 shows the results for all systems. USP extracted the highest number of answers,

almost doubling that of the second highest (RS-SUB). It obtained the highest accuracy at

88%, and the number of correct answers it extracted is three times that of the second highest

system. The informed baseline (KW-SYN) did surprisingly well compared to systems other

than USP, in terms of accuracy and number of correct answers. TextRunner achieved

good accuracy when exact match is used (TR-EXACT), but only obtained a fraction of

the answers compared to USP. With substring match, its recall substantially improved, but

precision dropped more than 20 points. RESOLVER improved the number of extracted

answers by sanctioning more matches based on the clusters it generated. However, most of

those additional answers are incorrect due to wrong clustering.13 DIRT obtained the second

highest number of correct answers, but its precision is quite low because the similar paths

11α and β are set to −5 and −10.

12The question slot is replaced by a dummy word.

13We should note that both TextRunner and RESOLVER were developed for extraction from general web
text. In future work we plan to evaluate USP in many more domains.
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contain many errors.

5.5.4 Qualitative Analysis

Manual inspection shows that USP is able to resolve many nontrivial syntactic variations

without user supervision. It consistently resolves the syntactic difference between active and

passive voices. It successfully identifies many distinct argument forms that mean the same

(e.g., “X stimulates Y” ≈ “Y is stimulated with X”, “expression of X” ≈ “X expression”).

It also resolves many nouns correctly and forms meaningful groups of relations. Here are

some sample clusters in core forms:

{investigate, examine, evaluate, analyze, study, assay}

{diminish, reduce, decrease, attenuate}

{synthesis, production, secretion, release}

{dramatically, substantially, significantly}

An example question-answer pair, together with the source sentence, is shown below:

Q: What does IL-13 enhance?

A: The 12-lipoxygenase activity of murine macrophages.

Sentence: The data presented here indicate that (1) the 12-lipoxygenase activity of

murine macrophages is upregulated in vitro and in vivo by IL-4 and/or IL-13, . . .

5.6 User Guide to the USP Software and Dataset

The USP code and data are available online at alchemy.cs.washington.edu/usp. In this

section, we will provide step-by-step instructions for using the USP system in unsupervised

semantic parsing and question answering. Throughout this section, we assume that you are

at the directory where you unpack usp-code.tar.gz, and we will use the experiments in

this chapter as a running example to show how to apply USP to the GENIA dataset [49]

and answer questions about biological entities and relations.

5.6.1 File List

poon09.pdf: the paper on unsupervised semantic parsing and the USP system.
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questions.txt: the questions used in the question-answering evaluation.

usp.eval: the answers extracted by the USP system and labels.

usp-code.tar.gz: the USP code archive, which includes the following files:

usp.jar: Java executable for USP.

src/: source code for USP.

genia/: default data directory containing the input files for replicating the USP experi-

ments in [90]. It contains raw text and syntactic analyses (morphologies and Stanford

dependencies) of 1999 PubMed abstracts in GENIA [49].

results/: default directory for the output of USP.

eval/: default directory for the question files.

5.6.2 Input To USP

The input to USP consists of syntactic analyses of source text. In particular, USP assumes

that the data directory (genia in our example) contains three sub-directories:

text/ contains the raw text files.

morph/ contains input tokens, stems and POS tags.

dep/ contains the Stanford dependencies obtained with the format of collapsedTree.

5.6.3 Running USP

To run USP with the default directories, run:

java -mx20000m -cp usp.jar semantic.Parse genia results



75

This will generate the following files in results:

genia.mln contains counts tallied from the MAP parse, which implicitly represent the

learned parameters. Each cluster starts with a line containing the unique ID along

with core forms and counts. It is followed by a number of argument types, each of

which consists of three lines: first the ID and counts for various argument numbers,

second the argument forms and counts, third the argument clusters and counts.

genia.parse contains the MAP semantic parses. Every sentence is partitioned into subfor-

mulas, each of which is specified by four lines: first the unique ID (docId+sentenceId+partId)

and the text fragment, second the cluster ID and core form, third the ID of the parent

subformula and cluster, fourth the argument type ID along with the argument form

and ID.

genia.clustering contains the core forms of non-unit clusters. Each cluster is represented

by a line containing the core forms and counts.

The current implementation requires substantial amount of memory. With a heap size

of 20GB, it takes about 20 minutes on the GENIA dataset on a 64-bit linux machine with

Intel Xeon 2.3GHz processors. With a smaller heap size (e.g. -mx8000m), the running time

is substantially longer (e.g., 80 minutes). Running USP on the Penn-Treebank WSJ data

takes about 50 minutes on the same machine and requires about 25GB of memory. Running

USP on a 32-bit machine will result in out-of-memory error due to heap size limit. In future

work, we will seek to reduce memory requirement by making use of database engine and

distributed computing.

The exponential priors can be specified through optional parameters priorNumParam

and priorNumConj. For a full list of options, run the program without any parameter.

5.6.4 Question Answering

To replicate the question answering experiment with the learned model and MAP parses,

run
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java -cp usp.jar eval.USP eval results genia

This assumes that eval/ contains the question files, and results/ contains the learned

model and parses. The output consists of the answers extracted by USP for the questions.

Currently, our implementation only handles simple factoid questions as mentioned earlier

in the chapter.

5.7 Discussion

Traditional semantic parsers have been confined to well-circumscribed domains. For seman-

tic parsing to be more broadly applicable (e.g., to apply to machine reading from the web), it

is imperative to reduce the labeling cost by developing unsupervised or minimally supervised

approaches. The USP system is the first attempt in this direction and the experimental

results show that it is quite promising. However, much remains to be done.

First, for USP and semantic parsing to have significant impact in web-scale applications

such as machine reading, scalability is a key issue. The GENIA dataset used in our experi-

ments contains only thousands of abstracts, which is a far cry from millions in PubMed and

billions in the web. While USP could be more accurate than TextRunner, it still lags far

behind in scalability compared to TextRunner. Scaling up inference and learning in USP

remains a challenging open question.

Second, USP does not start from raw text and requires dependency parses generated

by supervised parsers.14 This limits the applicability of USP to domains for which a good

syntactic parser is available. USP is susceptible to errors in syntactic parsing15 and there

is no way to feed semantic information discovered by USP back to syntactic parsing. To

solve this problem, we can extend USP to conduct both syntactic and semantic parsing in

a joint process. (For example, by combining with unsupervised dependency parsing.) Dur-

14However, note that grammar induction or unsupervised syntactic parsing often assumes the input to be
POS tags generated by supervised taggers.

15However, when we conducted the same experiment using gold dependency parses available in GENIA,
there was no increase in accuracy or the number of correct answers.
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ing learning, existing resources in syntactic parsing can still be leveraged by treating them

as known labels for syntactic categories, similar to the way we incorporated known entity

information for pronouns and certain prefixes and suffixes in unsupervised coreference reso-

lution (see Section 4.3.1 and Section 4.4). Similarly, existing knowledge base and ontologies

can also be incorporated into USP as known labels for clusters and argument types (and

probably with uncertainty to allow for error correction).

Third, USP has not taken advantage of inference to incorporate extracted knowledge

into the model. Inference can potentially correct errors in semantic parsing by identifying

inconsistent interpretations. It can also infer implicit facts [96], which not only contribute to

the set of extracted knowledge, but also provide additional sources of evidence for detecting

distributional similarity.

The current USP model also has some known drawbacks in resolving synonymous varia-

tions. In particular, USP can not resolve the variations between a verb and its synonymous

nominal expression (e.g., “acquire” vs. “acquisition”). This is due to systematic variations

in the contexts for these two forms; verbal expressions usually contain more arguments

compared to nominal ones, rendering the signal in distributional similarity rather weak.

E.g., the patient argument may be realized as an object in a verbal expression, whereas in

a nominal expression it is probably realized as a prepositional argument (as in “acquisition

of A”), and the agent argument is often omitted in nominal expressions. To overcome this

problem, we can extend the model to postulate multiple facets for a meaning unit, each with

a distinct set of variations. To compensate for the weak signal from distributional contexts,

we can incorporate morphological information to associate a verb with its nominalization.

Finally, there are many linguistic phenomena that USP did not handle as of yet, such

as quantifiers, plurals, tense, temporal relations, superlatives, determiners, negation, word

senses, etc.16 Traditional semantic parsers can handle these phenomena if they can be

captured in manually engineered rules or learned from labeled examples. USP can leverage

these resources as well (if they are available) via semi-supervised learning as in [86]. By

16USP handles negation to an extent by recognizing certain function words such as “not”, “n’t”. Word
sense ambiguity can potentially be handled in USP by starting from tokens rather than types. Namely, the
initial clusters of atomic forms only contain individual tokens. Alternatively, we can add a new operator
for splitting a cluster that contains different senses of the same expressions.
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resolving synonymous variations using unlabeled text, USP can potentially make better use

of the available labeled examples since each example effectively becomes multiple examples

given the variations.

There is also an interesting scientific question whether some or even all of these regular-

ities can be learned in a mostly unsupervised way. In principle, this appears feasible with

the appropriate data and learning bias. For example, if for every statement “A and B” that

occurs in the text, the individual statements “A” and “B” can also be found in the text,

then the system can potentially discover the meaning of “and” by clustering the first pat-

tern along with the second. Whether this would work in practice is an empirical question.

Natural language texts are certainly very different from the aforementioned artificial one.

But there are still broad classes of regularities that can be leveraged. For example, facts

that can be inferred from common knowledge tend to be omitted. [102] applies this insight

to learning generic inference rules, achieving some initial success. Going forward, a particu-

larly exciting direction is to extend the USP model to incorporate discourse structures and

pragmatic criteria.

Since the publication of this work, there has been much work that aims to reduce labeling

cost in semantic parsing. [109] explores unsupervised semantic parsing in a non-parametric

Bayesian framework. [16] and [63] shows that it is possible to learn semantic parsers from

question-answer pairs for domains that are well-circumscribed and actionable, such as Geo-

Query [118]. [36] further explores learning semantic parsers without the question-answer

pairs by incorporating prior knowledge about the domain. In a separate line of work, [5]

shows that dialog discourse can be leveraged in semi-supervised learning to compensate for

missing labels in semantic parses.

5.8 Summary

This chapter introduces the first unsupervised approach for learning semantic parsers, which

represents a significant step forward in learning knowledge representation from data. Our

USP system is based on Markov logic, and recursively clusters expressions to abstract away

syntactic variations of the same meaning. We constructed an end-to-end machine reading

system using USP and successfully applied it to extract knowledge from biomedical text



79

and answer questions.
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Chapter 6

UNSUPERVISED ONTOLOGY INDUCTION FROM TEXT

6.1 Introduction

By clustering synonymous meaning units, the USP system can extract general formulas from

text and appears to be fairly robust to noise compared to previous state-of-the-art systems

such as TextRunner. However, the knowledge extracted by USP is simply a large set of

formulas without ontological structure, and the latter is essential for compact representation

and efficient reasoning [103]. This also limits the USP extractions to those with substantial

evidence in the corpus, and in most corpora most pieces of knowledge are stated only once

or a few times, making them very difficult to extract without supervision.

In this chapter, we introduce OntoUSP (Ontological USP), a system that learns an ISA

hierarchy over clusters of logical expressions, and populates it by translating sentences to

logical form. OntoUSP is encoded in a few formulas of higher-order Markov logic, and

can be viewed as extending USP with the capability to perform hierarchical (as opposed

to flat) clustering. This clustering is then used to perform hierarchical smoothing (a.k.a.

shrinkage), greatly increasing the system’s capability to generalize from sparse data.

6.2 Related Work

6.2.1 Ontology Learning

In general, ontology induction (constructing an ontology) and ontology population (mapping

textual expressions to concepts and relations in the ontology) remain difficult open prob-

lems [103]. Recently, ontology learning has attracted increasing interest in both NLP and

semantic-web communities [15, 70], and a number of machine learning approaches have been

developed (e.g., Snow et al. (2006) [101], Cimiano (2006) [15], Suchanek et al. (2008,2009)

[104, 105], Wu & Weld (2008) [116]). However, they are still limited in several aspects.

Most approaches induce and populate a deterministic ontology, which does not capture the
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inherent uncertainty among the entities and relations. Besides, many of them either boot-

strap from heuristic patterns (e.g., Hearst patterns [41]) or build on existing structured or

semi-structured knowledge bases (e.g., WordNet [27] and Wikipedia1), thus are limited in

coverage. Moreover, they often focus on inducing ontology over individual words rather

than arbitrarily large meaning units (e.g., idioms, phrasal verbs, etc.). Most importantly,

existing approaches typically separate ontology induction from population and knowledge

extraction, and pursue each task in a standalone fashion. While computationally efficient,

this is suboptimal. The resulted ontology is disconnected from text and requires addi-

tional effort to map between the two [110]. In addition, this fails to leverage the intimate

connections between the three tasks for joint inference and mutual disambiguation.

Our approach differs from existing ones in two main aspects: we induce a probabilistic

ontology from text, and we do so by jointly conducting ontology induction, population, and

knowledge extraction. Probabilistic modeling handles uncertainty and noise. A joint ap-

proach propagates information among the three tasks, uncovers more implicit information

from text, and can potentially work well even in domains not well covered by existing re-

sources like WordNet and Wikipedia. Furthermore, we leverage the ontology for hierarchical

smoothing and incorporate this smoothing into the induction process. This facilitates more

accurate parameter estimation and better generalization.

Our approach can also leverage existing ontologies and knowledge bases to conduct semi-

supervised ontology induction (e.g., by incorporating existing structures as hard constraints

or penalizing deviation from them).

6.2.2 Unsupervised Semantic Parsing

Chapter 5 considers the task of semantic parsing and introduced the USP system for un-

supervised semantic parsing. See Figure 6.1 for a quick recap by an example. Here, we

use a slightly different formulation of the USP and its MLN to facilitate the exposition of

OntoUSP. USP inputs dependency trees of sentences and first transforms them into quasi-

logical forms (QLFs) by converting each node to a unary atom and each dependency edge

1http : //www.wikipedia.org
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induces

protein CD11b

nsubj dobj

IL-4

nn

induces

protein CD11b

nsubj dobj

IL-4

nn

INDUCE

INDUCER INDUCED

IL-4

CD11B

INDUCE(e1)

INDUCER(e1,e2) INDUCED(e1,e3)

IL-4(e2) CD11B(e3)

IL-4 protein 

induces CD11b

Structured prediction: Partition + Assignment

Figure 6.1: An example of semantic parsing. Top: semantic parsing converts an input
sentence into logical form in Davidsonian semantics. Bottom: a semantic parse consists of
a partition of the dependency tree and an assignment of its parts.

to a binary atom (e.g., the node for “induces” becomes induces(e1) and the subject de-

pendency becomes nsubj(e1, e2), where ei’s are Skolem constants indexed by the nodes.).2

For each sentence, a semantic parse comprises of a partition of its QLF into subexpres-

sions, each of which has a naturally corresponding lambda form,3 and an assignment of

each subexpression to a lambda-form cluster.

The lambda-form clusters naturally form an ISPART hierarchy. See Figure 6.2 for an

example. An object cluster corresponds to semantic concepts or relations such as INDUCE,

and contains a variable number of property clusters. A special property cluster of core forms

maintains a distribution over variations in lambda forms for expressing this concept or re-

lation. Other property clusters correspond to modifiers or arguments such as INDUCER (the

2We call these QLFs because they are not true logical form (the ambiguities are not yet resolved). This
is related to but not identical with the definition in Alshawi (1990).

3The lambda form is derived by replacing every Skolem constant ei that does not appear in any unary
atom in the subexpression with a lambda variable xi that is uniquely indexed by the corresponding node
i. For example, the lambda form for nsubj(e1, e2) is λx1λx2.nsubj(x1, x2).
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Object Cluster: INDUCE

induces 0.1

enhances 0.4

…

……

Property Cluster: INDUCER

0.5

0.4

…

IL-4 0.2

IL-8 0.1

…

None 0.1

One 0.8

…

nsubj

agent

Core Form

Figure 6.2: An example of object/property clusters: INDUCE contains the core-form property
cluster and others, such as the agent argument INDUCER.

agent argument of INDUCE), each of which in turn contains three subclusters of property val-

ues: the argument-object subcluster maintains a distribution over object clusters that may

occur in this argument (e.g., IL−4), the argument-form subcluster maintains a distribution

over lambda forms that corresponds to syntactic variations for this argument (e.g., nsubj

in active voice and agent in passive voice), and the argument-number subcluster maintains

a distribution over total numbers of this argument that may occur in a sentence (e.g., zero

if the argument is not mentioned).

Effectively, USP simultaneously discovers the lambda-form clusters and an IS-PART hi-

erarchy among them. It does so by recursively combining subexpressions that are composed

with or by similar subexpressions. The partition breaks a sentence into subexpressions that

are meaning units, and the clustering abstracts away syntactic and lexical variations for

the same meaning. This novel form of relational clustering is governed by a joint prob-

ability distribution P (T,L) defined in higher-order4 Markov logic, where T are the input

dependency trees, and L the semantic parses. The main predicates are:

e ∈ c: expression e is assigned to cluster c;

SubExpr(s, e): s is a subexpression of e;

4Variables can range over arbitrary lambda forms.
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HasValue(s, v): s is of value v;

IsPart(c, i, p): p is the property cluster in object cluster c uniquely indexed by i.

In USP, property clusters in different object clusters use distinct index i’s. As we will

see later, in OntoUSP, property clusters with ISA relation share the same index i, which

corresponds to a generic semantic frame such as agent and patient.

The probability model of USP can be captured by two formulas:

x ∈ +p ∧ HasValue(x,+v)

e ∈ c ∧ SubExpr(x, e) ∧ x ∈ p⇒ ∃1i.IsPart(c, i, p).

All free variables are implicitly universally quantified. The “+” notation signifies that the

MLN contains an instance of the formula, with a separate weight, for each value combination

of the variables with a plus sign. The first formula is the core of the model and represents the

mixture of property values given the cluster. The second formula ensures that a property

cluster must be a part in the corresponding object cluster; it is a hard constraint, as signified

by the period at the end.

To encourage clustering, USP imposes an exponential prior over the number of param-

eters.

To parse a new sentence, USP starts by partitioning the QLF into atomic forms, and

then hill-climbs on the probability using a search operator based on lambda reduction until

it finds the maximum a posteriori (MAP) parse. During learning, USP starts with clusters

of atomic forms, maintains the optimal semantic parses according to current parameters,

and hill-climbs on the log-likelihood of observed QLFs using two search operators:

MERGE(c1, c2) merges clusters c1, c2 into a larger cluster c by merging the core-form clus-

ters and argument clusters of c1, c2, respectively. E.g., c1 = {“induce”}, c2 =

{“enhance”}, and c = {“induce”, “enhance”}.

COMPOSE(c1, c2) creates a new lambda-form cluster c formed by composing the lambda

forms in c1, c2 into larger ones. E.g., c1 = {“amino”}, c2 = {“acid”}, and c =

{“amino acid”}.
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Each time, USP executes the highest-scored operator and reparses affected sentences

using the new parameters. The output contains the optimal lambda-form clusters and

parameters, as well as the MAP semantic parses of input sentences.

6.3 An MLN for Unsupervised Ontology Induction

Amajor limitation of USP is that it either merges two object clusters into one, or leaves them

separate. This is suboptimal, because different object clusters may still possess substantial

commonalities. Modeling these can help extract more general knowledge and answer many

more questions. The best way to capture such commonalities is by forming an ISA hierarchy

among the clusters. For example, INDUCE and INHIBIT are both subconcepts of REGULATE.

Learning these ISA relations helps answer questions like “What regulates CD11b?”, when

the text states that “IL-4 induces CD11b” or “AP-1 suppresses CD11b”.

For parameter learning, this is also undesirable. Without the hierarchical structure,

each cluster estimates its parameters solely based on its own observations, which can be

extremely sparse. The better solution is to leverage the hierarchical structure for smoothing

(a.k.a. shrinkage [72, 32]). For example, if we learn that “super-induce” is a verb and that in

general verbs have active and passive voices, then even though “super-induce” only shows

up once in the corpus as in “AP-1 is super-induced by IL-4”, by smoothing we can still

infer that this probably means the same as “IL-4 super-induces AP-1”, which in turn helps

answer questions like “What super-induces AP-1”.

OntoUSP overcomes the limitations of USP by replacing the flat clustering process with

a hierarchical clustering one, and learns an ISA hierarchy of lambda-form clusters in addition

to the ISPART one. The output of OntoUSP consists of an ontology, a semantic parser,

and the MAP parses. In effect, OntoUSP conducts ontology induction, population, and

knowledge extraction in a single integrated process. Specifically, given clusters c1, c2, in

addition to merge vs. separate, OntoUSP evaluates a third option called abstraction, in

which a new object cluster c is created, and ISA links are added from ci to c; the argument

clusters in c are formed by merging that of ci’s.

The OntoUSP MLN can be obtained by modifying the USP MLN with three simple

changes. First, we introduce a new predicate IsA(c1, c2), which is true if cluster c1 is a
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subconcept of c2. For convenience, we stipulate that IsA is reflexive (i.e., IsA(c, c) is true

for any c). Second, we add two formulas to the MLN:

IsA(c1, c2) ∧ IsA(c2, c3)⇒ IsA(c1, c3).

IsPart(c1, i1, p1) ∧ IsPart(c2, i2, p2) ∧ IsA(c1, c2)⇒ (i1 = i2 ⇔ IsA(p1, p2)).

The first formula simply enforces the transitivity of ISA relation. The second formula

states that if the ISA relation holds for a pair of object clusters, it also holds between

their corresponding property clusters. Both are hard constraints. Third, we introduce

hierarchical smoothing into the model by replacing the USP mixture formula

x ∈ +p ∧ HasValue(x,+v)

with a new formula

ISA(p1,+p2) ∧ x ∈ p1 ∧ HasValue(x,+v)

Intuitively, for each p2, the weight corresponds to the delta in log-probability of v comparing

to the prediction according to all ancestors of p2. The effect of this change is that now the

value v of a subexpression x is not solely determined by its property cluster p1, but is also

smoothed by statistics of all p2 that are super clusters of p1.

Shrinkage takes place via interaction among the weights of the ISA mixture formula. In

particular, if the weights for some property cluster p are all zero, it means that values in p

are completely predicted by p’s ancestors. In effect, p is backed off to its parent.

6.4 Inference and Learning

Given the dependency tree T of a sentence, the conditional probability of a semantic

parse L is given by Pr(L|T ) ∝ exp (
∑

iwini(T, L)). The MAP semantic parse is sim-

ply argmaxL
∑

iwini(T, L). Directly enumerating all L’s is intractable. OntoUSP uses the

same inference algorithm as USP by hill-climbing on the probability of L; in each step, On-

toUSP evaluates the alternative semantic parses that can be formed by lambda-reducing a

current subexpression with one of its arguments. The only difference is that OntoUSP uses

a different MLN and so the probabilities and resulting semantic parses may be different.

Algorithm 4 gives pseudo-code for OntoUSP’s inference algorithm.
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Algorithm 4 OntoUSP-Parse(MLN, T )

Initialize semantic parse L with individual atoms in the QLF of T

repeat

for all subexpressions e in L do

Evaluate all semantic parses that are lambda-reducible from e

end for

L ← the new semantic parse with the highest gain in probability

until none of these improve the probability

return L

OntoUSP uses the same learning objective as USP, i.e., to find parameters θ that maxi-

mizes the log-likelihood of observing the dependency trees T , summing out the unobserved

semantic parses L:

Lθ(T ) = logPθ(L) = log
∑
L

Pθ(T, L)

However, the learning problem in OntoUSP is distinct in two important aspects. First,

OntoUSP learns in addition an ISA hierarchy among the lambda-form clusters. Second

and more importantly, OntoUSP leverages this hierarchy during learning to smooth the

parameter estimation of individual clusters, as embodied by the new ISA mixture formula

in the OntoUSP MLN.

OntoUSP faces several new challenges unseen in previous hierarchical-smoothing ap-

proaches. The ISA hierarchy in OntoUSP is not known in advance, but needs to be learned

as well. Similarly, OntoUSP has no known examples of populated facts and rules in the

ontology, but has to infer that in the same joint learning process. Finally, OntoUSP does

not start from well-formed structured input like relational tuples, but rather directly from

raw text. In sum, OntoUSP tackles a very hard problem with exceedingly little aid from

user supervision.

To combat these challenges, OntoUSP adopts a novel form of hierarchical smoothing

by integrating it with the search process for identifying the hierarchy. Algorithm 5 gives

pseudo-code for OntoUSP’s learning algorithm. Like USP, OntoUSP approximates the sum
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Algorithm 5 OntoUSP-Learn(MLN, T’s)

Initialize with a flat ontology, along with clusters and semantic parses

Merge clusters with the same core form

Agenda ← ∅

repeat

for all candidate operations O do

Score O by log-likelihood improvement

if score is above a threshold then

Add O to agenda

end if

end for

Execute the highest scoring operation O∗ in the agenda

Regenerate MAP parses for affected trees and update agenda and candidate operations

until agenda is empty

return the learned ontology and MLN, and the semantic parses

over all semantic parses with the most probable parse, and searches for both θ and the MAP

semantic parses L that maximize Pθ(T,L). In addition to MERGE and COMPOSE, OntoUSP

uses a new operator ABSTRACT(c1, c2), which does the following:

1. Create an abstract cluster c;

2. Create ISA links from c1, c2 to c;

3. Align property clusters of c1 and c2; for each aligned pair p1 and p2, either merge

them into a single property cluster, or create an abstract property cluster p in c and

create ISA links from pi to p, so as to maximize log-likelihood.

Intuitively, c corresponds to a more abstract concept that summarizes similar properties in

ci’s. See Figure 6.3 for an illustration.

To add a child cluster c2 to an existing abstract cluster c1, OntoUSP also uses an

operator ADDCHILD(c1, c2) that does the following:
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Figure 6.3: The ABSTRACT operator illustrated by an example. An abstract cluster is created
as the ISA parent and captures substantial similarity such as common argument types.

1. Create an ISA link from c2 to c1;

2. For each property cluster of c2, maximize the log-likelihood by doing one of the fol-

lowing: merge it with a property cluster in an existing child of c1; create ISA link

from it to an abstract property cluster in c; leave it unchanged.

For efficiency, in both operators, the best option is chosen greedily for each property

cluster in c2, in descending order of cluster size.

Notice that once an abstract cluster is created, it could be merged with an existing

cluster using MERGE. Thus with the new operators, OntoUSP is capable of inducing any ISA

hierarchy among abstract and existing clusters. (Of course, the ISA hierarchy it actually

induces depends on the data.)

Learning the shrinkage weights has been approached in a variety of ways; examples

include EM and cross-validation [72], hierarchical Bayesian methods [32], and maximum

entropy with L1 priors [24]. The past methods either only learn parameters with one or

two levels (e.g., in hierarchical Bayes), or requires significant amount of computation (e.g.,

in EM and in L1-regularized maxent), while also typically assuming a given hierarchy. In

contrast, OntoUSP has to both induce the hierarchy and populate it, with potentially many

levels in the induced hierarchy, starting from raw text with little user supervision.
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Therefore, OntoUSP simplifies the weight learning problem by adopting standard m-

estimation for smoothing. Namely, the weights for cluster c are set by counting its observa-

tions plus m fractional samples from its parent distribution. When c has few observations,

its unreliable statistics can be significantly augmented via the smoothing by its parent (and

in turn to a gradually smaller degree by its ancestors). m is a hyperparameter that can be

used to trade off bias towards statistics for parent vs oneself.

OntoUSP also needs to balance between two conflicting aspects during learning. On one

hand, it should encourage creating abstract clusters to summarize intrinsic commonalities

among the children. On the other hand, this needs to be heavily regularized to avoid mis-

taking noise for the signal. OntoUSP does this by a combination of priors and thresholding.

To encourage the induction of higher-level nodes and inheritance, OntoUSP imposes an

exponential prior β on the number of parameter slots. Each slot corresponds to a distinct

property value. A child cluster inherits its parent’s slots (and thus avoids the penalty on

them). OntoUSP also stipulates that, in an ABSTRACT operation, a new property cluster can

be created either as a concrete cluster with full parameterization, or as an abstract cluster

that merely serves for smoothing purposes. To discourage overproposing clusters and ISA

links, OntoUSP imposes a large exponential prior γ on the number of concrete clusters

created by ABSTRACT. For abstract cluster, it sets a cut-off tp and only allows storing a

probability value no less than tp. Like USP, it also rejects MERGE and COMPOSE operations

that improve log-likelihood by less than to. These priors and cut-off values can be tuned to

control the granularity of the induced ontology and clusters.

Concretely, given semantic parses L, OntoUSP computes the optimal parameters and

evaluates the regularized log-likelihood as follows. Let wp2,v denote the weight of the ISA

mixture formula ISA(p1,+p2) ∧ x ∈ p1 ∧ HasValue(x,+v). For convenience, for each

pair of property cluster c and value v, OntoUSP instead computes and stores w′
c,v =∑

ISA(c, a)wa,v, which sums over all weights for c and its ancestors. (Thus wc,v = w′
c,v −

w′
p,v, where p is the parent of c.) Like USP, OntoUSP imposes local normalization con-

straints that enable closed-form estimation of the optimal parameters and likelihood. Specif-

ically, using m-estimation, the optimal w′
c,v is log((m · ew′

p,v + nc,v)/(m + nc)), where p is

the parent of c and n is the count. The log-likelihood is
∑

c,vw
′
c,v · nc,v, which is then
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augmented by the priors.

6.5 Experiments

6.5.1 Methodology

Evaluating unsupervised ontology induction is difficult, because there is no gold ontology

for comparison. Moreover, our ultimate goal is to aid knowledge acquisition, rather than

just inducing an ontology for its own sake. Therefore, we used the same methodology and

dataset as the USP paper to evaluate OntoUSP on its capability in knowledge acquisition.

Specifically, we applied OntoUSP to extract knowledge from the GENIA dataset [49] and

answer questions, and we evaluated it on the number of extracted answers and accuracy.

GENIA contains 1999 PubMed abstracts.5 The question set contains 2000 questions which

were created by sampling verbs and entities according to their frequencies in GENIA. Sample

questions include “What regulates MIP-1alpha?”, “What does anti-STAT 1 inhibit?”. These

simple question types were used to focus the evaluation on the knowledge extraction aspect,

rather than engineering for handling special question types and/or reasoning.

6.5.2 Systems

OntoUSP is the first unsupervised approach that synergistically conducts ontology induc-

tion, population, and knowledge extraction. The system closest in aim and capability is

USP. We thus compared OntoUSP with USP and all other systems evaluated in Chapter 5.

Below is a brief description of the systems. (For more details, see Chapter 5.)

Keyword is a baseline system based on keyword matching. It directly matches the question

substring containing the verb and the available argument with the input text, ignoring case

and morphology. Given a match, two ways to derive the answer were considered: KW sim-

ply returns the rest of sentence on the other side of the verb, whereas KW-SYN is informed

by syntax and extracts the answer from the subject or object of the verb, depending on the

question (if the expected argument is absent, the sentence is ignored).

TextRunner [8] is the state-of-the-art system for open-domain information extraction. It

5http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi.
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inputs text and outputs relational triples in the form (R,A1, A2), where R is the relation

string, and A1, A2 the argument strings. To answer questions, each triple-question pair is

considered in turn by first matching their relation strings, and then the available argument

strings. If both match, the remaining argument string in the triple is returned as an answer.

Results were reported when exact match is used (TR-EXACT), or when the triple strings

may contain the question ones as substrings (TR-SUB).

RESOLVER [117] inputs TextRunner triples and collectively resolves coreferent relation

and argument strings. To answer questions, the only difference from TextRunner is that a

question string can match any string in its cluster. As in TextRunner, results were reported

for both exact match (RS-EXACT) and substring (RS-SUB).

DIRT [67] resolves binary relations by inputting a dependency path that signifies the rela-

tion and returns a set of similar paths. To use DIRT in question answering, it was queried

to obtain similar paths for the relation of the question, which were then used to match

sentences.

USP parses the input text using the Stanford dependency parser [51, 21], learns an MLN for

semantic parsing from the dependency trees, and outputs this MLN and the MAP semantic

parses of the input sentences. These MAP parses formed the knowledge base (KB). To an-

swer questions, USP first parses the questions (with the question slot replaced by a dummy

word), and then matches the question parse to parses in the KB by testing subsumption.

OntoUSP uses a similar procedure as USP for extracting knowledge and answering ques-

tions, except for two changes. First, USP’s learning and parsing algorithms are replaced

with OntoUSP-Learn and OntoUSP-Parse, respectively. Second, when OntoUSP matches

a question to its KB, it not only considers the lambda-form cluster of the question re-

lation, but also all its sub-clusters. For example, if the question asks: What does IL-2

control? In USP, the answers are derived by searching the knowledge base and matching

the lambda-form clusters for “control” and “IL-2”. So if “regulate” is in the same cluster

as “control”, and the KB contains a fact that IL-2 regulates 12-lipoxygenase activity, then

“12-lipoxygenase activity” will be returned as the answer. OntoUSP, however, will addi-

tionally check all the sub-clusters for the clusters of “control” and “IL-2”. So if the cluster

of “control” has a sub-cluster that contains “inhibit”, and if the KB contains a fact that
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Table 6.1: Comparison of question answering results on the GENIA dataset.

# Total # Correct Accuracy

KW 150 67 45%

KW-SYN 87 67 77%

TR-EXACT 29 23 79%

TR-SUB 152 81 53%

RS-EXACT 53 24 45%

RS-SUB 196 81 41%

DIRT 159 94 59%

USP 334 295 88%

OntoUSP 480 435 91%

IL-2 inhibits IKappaBAlpha, then “IKappaBAlpha” will be returned as an answer as well.

6.5.3 Results

Table 6.1 shows the results comparing OntoUSP with other systems. While USP already

greatly outperformed other systems in both precision and recall, OntoUSP further substan-

tially improved on the recall of USP, without any loss in precision. In particular, OntoUSP

extracted 140 more correct answers than USP, for a gain of 47% in absolute recall. Com-

pared to TextRunner (TR-SUB), OntoUSP gained on precision by 38 points and extracted

more than five times of correct answers.

Manual inspection shows that the induced ISA hierarchy is the key for the recall gain.

Like USP, OntoUSP discovered the following clusters (in core forms) that represent some

of the core concepts in biomedical research:

{regulate, control, govern, modulate}

{induce, enhance, trigger, augment, up-regulate}

{inhibit, block, suppress, prevent, abolish, abrogate, down-regulate}
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ISA ISA

INHIBIT

induce, enhance, 

trigger, augment, 

up-regulate

INDUCE

inhibit, block, suppress, 

prevent, abolish, 

abrogate, down-regulate

activate

regulate, control, govern, modulate

ISA

ACTIVATE

REGULATE

Figure 6.4: A fragment of the induced ISA hierarchy, showing the core forms for each cluster
(the cluster labels are added by the authors for illustration purpose).

However, USP formed these as separate clusters, whereas OntoUSP in addition induces ISA

relations from the INDUCE and INHIBIT clusters to the REGULATE cluster (Figure 6.4). This

allows OntoUSP to answer many more questions that are asked about general regulation

events, even though the text states them with specific regulation directions like “induce” or

“inhibit”. Below is an example question-answer pair output by OntoUSP; neither USP nor

any other system were able to extract the necessary knowledge.

Q: What does IL-2 control?

A: The DEX-mediated IkappaBalpha induction.

Sentence: Interestingly, the DEX-mediated IkappaBalpha induction was completely

inhibited by IL-2, but not IL-4, in Th1 cells, while the reverse profile was seen in Th2 cells.

OntoUSP also discovered other interesting commonalities among the clusters. For exam-

ple, both USP and OntoUSP formed a singleton cluster with core form “activate”. Although

this cluster may appear similar to the INDUCE cluster, the data in GENIA does not support

merging the two. However, OntoUSP discovered that the ACTIVATE cluster, while not com-

pletely resolvent with INDUCE, shared very similar distributions in their agent arguments. In

fact, they are so similar that OntoUSP merges them into a single property cluster. It found

that the patient arguments of INDUCE and INHIBIT are very similar and merged them. In
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turn, OntoUSP formed ISA links from these three object clusters to REGULATE, as well as

among their property clusters. Intuitively, this makes sense. The positive- and negative-

regulation events, as signified by INDUCE and INHIBIT, often target similar object entities

or processes. However, their agents tend to differ since in one case they are inducers, and in

the other they are inhibitors. On the other hand, ACTIVATE and INDUCE share similar agents

since they both signify positive regulation. However, “activate” tends to be used more of-

ten when the patient argument is a concrete entity (e.g., cells, genes, proteins), whereas

“induce” and others are also used with processes and events (e.g., expressions, inhibition,

pathways).

USP was able to resolve common syntactic differences such as active vs. passive voice.

However, it does so on the basis of individual verbs, and there is no generalization beyond

their clusters. OntoUSP, on the other hand, formed a high-level cluster with two abstract

property clusters, corresponding to general agent argument and patient argument. The

active-passive alternation is captured in these clusters, and is inherited by all descendant

clusters, including many rare verbs like “super-induce” which only occur once in GENIA

and for which there is no way that USP could have learned about their active-passive

alternations. This illustrates the importance of discovering ISA relations and performing

hierarchical smoothing.

6.5.4 Discussion

OntoUSP is a first step towards joint ontology induction and knowledge extraction. The

experimental results demonstrate the promise in this direction. However, we also notice

some limitations in the current system. While OntoUSP induced meaningful ISA relations

among relation clusters like REGULATE, INDUCE, etc., it was less successful in inducing ISA

relations among entity clusters such as specific genes and proteins. This is probably due to

the fact that our model only considers local features such as the parent and arguments. A

relation is often manifested as verbs and has several arguments, whereas an entity typically

appears as an argument of others and has few arguments of its own. As a result, in average,

there is less information available for entities than relations. Presumably, we can address
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this limitation by modeling longer-ranged dependencies such as grandparents, siblings, etc.

This is straightforward to do in Markov logic.

OntoUSP also uses a rather elaborate scheme for regularization. We hypothesize that

this can be much simplified and improved by adopting a principled framework such as [24].

6.6 Summary

This chapter introduced OntoUSP, the first unsupervised end-to-end system for ontology

induction and knowledge extraction from text. OntoUSP builds on the USP semantic parser

by adding the capability to form hierarchical clusterings of logical expressions, linked by

ISA relations, and using them for hierarchical smoothing. OntoUSP greatly outperformed

USP and other state-of-the-art systems in a biomedical knowledge acquisition task.
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Chapter 7

CONCLUSION

7.1 Contributions

In this dissertation, we propose a unifying approach for machine reading. At the core of

this approach is joint inference and the integration of learning with knowledge represen-

tation and deep reasoning. By combining logic and probability, Markov logic provides an

ideal framework for this approach: it offers an elegant way to leverage joint inference and

incorporate knowledge, and opens up new avenues to compensate for the lack of labeled

examples.

It is helpful to contrast our approach with the IBM DeepQA Project [30], which produced

the Watson system and achieved spectacular successes in competing with human champions

in the trivia game Jeopardy. In Jeopardy, factoid questions are given to the participants, who

compete to be the first in producing an accurate answer. The questions can be decomposed

into multiple “clues”, each of which associates the answer with some atomic fact (factoid).

This enables Watson to adopt a rather simplistic approach by converting each clue into a

statistical query, and training a classifier to combine the confidence scores to rank candidate

answers. To produce the scores, Watson combines hundreds of existing NLP modules and

vast amount of relevant resources, and uses past Jeopardy games as labeled examples. This

approach is quite effective for solving the Jeopardy game, but it does not address the general

challenges in machine reading and question answering. Most saliently, Watson has no deep

notions of knowledge or understanding. Consequently, it lacks the capability of inducing

meaning representations and acquiring complex knowledge for general machine reading.

Nor is it able to conduct long chains of reasoning that is necessary for answering general

questions.

In contrast, learning representations for and reasoning with general knowledge are at

the core of our approach. In the previous chapters, we took some initial steps in this
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direction by applying Markov logic to increasing challenging tasks for machine reading,

ranging from information extraction to coreference resolution to semantic parsing and end-

to-end machine reading. We show that Markov logic can compactly specify very large

and complex probabilistic models, and attain state-of-the-art accuracy using the generic

learning and inference algorithms (Chapter 3; also see [88]). In addition, by facilitating

joint inference and the use of prior knowledge, we show that Markov logic can have even

greater impact when labeled examples are absent (Chapter 4; also see [89]). In particular,

we can automatically induce a canonical meaning representation (Chapter 5; also see [90])

and learn ontological relations from text (Chapter 6; also see [92]). This results in an end-to-

end machine reading system (USP) that does not require labeled examples and substantially

outperforms state-of-the-art systems such as TextRunner.

7.2 Limitations of This Work

Despite the progress, we are still a long way from realizing the full potential of Markov logic

and solving machine reading.

First, although we have made significant progress in developing efficient inference and

learning algorithms, much remains to be done. While Markov logic provides a unifying way

to leverage joint inference and knowledge, the extent to which this power can be realized

crucially depends on the efficiency and accuracy of inference algorithms. Since exact in-

ference is intractable, the standard paradigm is to conduct approximate inference both in

learning (where inference is a subroutine) and at performance time (where inference com-

putes the answer to a query). Learning can be led astray by inaccurate inference results

[59]. At performance time, there is little guarantee on the quality and running time. Con-

sequently, although joint inference is intuitively appealing, it is often non-trivial to make it

work in practice. Moreover, the current scale of joint inference is minuscule compared to our

ultimate goal of reading the entire web. While USP can handle thousands of documents,

PubMed has millions of them, and the web has billions.

Second, while USP shows initial promise in learning the knowledge representation, many

challenges lie ahead. For example, how can we learn the representation to optimize perfor-

mance in a specific end task? How can we leverage existing ontologies, databases, and other
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legacy knowledge engineering works? For machine learning, this problem also represents a

new frontier with difficult open questions. For example, how can we tune the hyperparame-

ters in the absence of labeled examples? How do we overcome the limitations of the greedy

search procedures in USP learning and inference? Given that there is little labeled data,

what is the best way to evaluate our learning algorithms and foster progress?

Third, a key aspect of our vision is to close the loop between the extraction process

and reasoning with the extracted knowledge. This has not been achieved yet. Obviously, it

would require progress in large-scale joint inference and representation learning. Moreover,

we need to model additional linguistic phenomena such as quantifiers, temporal relations,

discourse structures, belief and sentiment, etc. And we need to incorporate knowledge

and reasoning, which are deeply intertwined with linguistic phenomena. (Consider, for

example, the knowledge about an event type and the discourse structure for describing such

an instance.)

7.3 Future Directions

Five research directions stand out due to their urgency and potential impact.

7.3.1 Learning for Efficient Inference

The complexity of inference is a key limiting factor for probabilistic graphical modeling

in general and Markov logic in particular. By incorporating computation into the model

and learning many layers of hidden variables for representing and reusing intermediate

computation, we can learn a probabilistic model that guarantees efficient inference while

minimizing approximation errors. Essentially, this will automatically construct the dynamic

programming structure to approximate data dependencies as close as possible, while subject

to the constraint on computation cost that is proportional to the size of the structure. The

key challenge is in learning such a deep, hidden architecture. USP successfully learns the

nested, hidden structures of semantic analyses. Lessons can potentially be drawn from USP

and used in learning the structures for efficient inference.
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7.3.2 Scale Joint Inference to the Web

A thought experiment helps illustrate the challenge in scaling up to the web. Suppose we

have extracted knowledge from half of the web, accumulated a gigantic knowledge base

(KB), and now set off to process the next document. The key to efficient joint inference lies

in quickly identifying relevant pieces in the existing KB for processing the new document. At

the web scale, even linear-time enumeration of the KB is infeasible. A promising direction

is to combine probabilistic ontology induction as used in USP with coarse-to-fine inference

[29, 84, 47]. At the abstract levels of the ontology, ambiguities are few and joint inference

can be done efficiently. When refining to the next level, we then use previous results to

prune away irrelevant branches. This can potentially reduce inference time to logarithmic

in the KB size, advancing a key step toward scaling up to the web.

7.3.3 Build a Complete NLP System

Language understanding involves many complex subtasks and is tightly coupled with knowl-

edge and reasoning. To solve machine reading, we need to build a complete NLP system

that incorporates all these aspects and benefits from massive scale of joint inference. USP

provides a natural starting point for this. But there are many challenges to overcome in

addition to efficiency issues. The system needs to model major linguistic phenomena. More-

over, it should leverage knowledge and reasoning in the NLP pipeline, which can happen in

two ways. First, the system should incorporate knowledge as it is acquired to resolve ambi-

guities. Second, texts often omit facts that can be inferred from common-sense knowledge,

and the system needs to fill them in using reasoning techniques such as abduction.

7.3.4 Harness Social Computing for Knowledge Extraction

We can leverage social computing to speed up the progress toward the grand goal of con-

structing a large knowledge base from the web [18]. A machine reading system can bootstrap

a user community by serving applications like question answering. It then keeps reading the

web, collecting error correction and knowledge donation from users, and using statistical

relational learning to incorporate all of these to improve service performance. A positive
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feedback loop thus forms: as service quality improves, the user base grows and becomes

more engaged, which in turn provides more information to help the system improve. To

do this, we can build on recent advances such as the collaborative approach to knowledge

base construction [93] and the never-ending learning paradigm [11], and use USP to build

an initial reading system.

7.3.5 Machine Reading for Machine Science

Scientific knowledge has been accumulated at an explosive rate, with PubMed being a

salient example from the biomedical domain. It has become infeasible for scientists to keep

abreast of such rapid progress by manual effort. Literature-based discovery (LBD) has

produced some surprising discoveries by assembling knowledge across subfields to propose

new hypotheses [106]. However, existing LBD methods tend to produce too many false

hypotheses, because they only use simple information such as keyword co-occurrence. As

a result, they still require much manual effort and domain expertise to filter out false

leads. With deeper understanding of the text, machine reading can help produce the next

generation of LBD methods and venture a key step toward the exciting prospect of machine

science for automating sciences [26].
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