Realizing the fault-tolerance promise of cloud storage using locks with intent

Srinath Setty Chunzhi Su*
Hao Chen*

Parveen Patel

Jacob R. Lorch Lidong Zhou
Jinglei Ren

Microsoft Research

Abstract

Cloud computing promises easy development and deploy-
ment of large-scale, fault tolerant, and highly available
applications. Cloud storage services are a key enabler
of this, because they provide reliability, availability, and
fault tolerance via internal mechanisms that developers
need not reason about. Despite this, challenges remain for
distributed cloud applications developers. They still need
to make their code robust against failures of the machines
running the code, and to reason about concurrent access
to cloud storage by multiple machines.

We address this problem with a new abstraction, called
locks with intent, which we implement in a client library
called Olive. Olive makes minimal assumptions about
the underlying cloud storage, enabling it to operate on
a variety of platforms including Amazon DynamoDB
and Microsoft Azure Storage. Leveraging the underly-
ing cloud storage, Olive’s locks with intent offer strong
exactly-once semantics for a snippet of code despite fail-
ures and concurrent duplicate executions.

To ensure exactly-once semantics, Olive incurs the un-
avoidable overhead of additional logging writes. However,
by decoupling isolation from atomicity, it supports consis-
tency levels ranging from eventual to transactional. This
flexibility allows applications to avoid costly transactional
mechanisms when weaker semantics suffice. We apply
Olive’s locks with intent to build several advanced storage
functionalities, including snapshots, transactions via op-
timistic concurrency control, secondary indices, and live
table re-partitioning. Our experience demonstrates that
Olive eases the burden of creating correct, fault-tolerant
distributed cloud applications.

1 Introduction

Cloud platforms such as Amazon AWS, Google Cloud,
and Microsoft Azure are becoming popular choices for
deploying applications because they permit elastic scal-
ing, handle various operational aspects, and offer high
reliability and availability. As a common practice, cloud
platforms offer reliable storage services with simple APIs
that hide the distributed nature of the underlying storage.
Application developers are thereby freed from handling

*Work done during an internship at Microsoft Research. Chunzhi Su
is affiliated with The University of Texas at Austin, and Hao Chen is
affiliated with Shanghai Jiao Tong University.

distributed-systems issues such as data partitioning, fault
tolerance, and load balancing. Examples include Ama-
zon’s DynamoDB [1], Google’s Cloud Storage [8], and
Microsoft’s Azure Storage [3]. This has led to a new
paradigm for architecting applications where compute
and storage components of an application are separated:
applications store data on cloud storage, and perform
computation on a set of client virtual machines (VMs).

This emerging architecture for applications poses an
interesting new problem: Although cloud storage is made
reliable by cloud service providers via fault-tolerance pro-
tocols [38, 49], it does not completely solve the problem
of maintaining application-level consistency in face of
failures. After all, clients running an application can fail,
application processes on those clients can crash, and the
network connecting those clients to the underlying storage
can drop or reorder messages. Such issues can potentially
leave the underlying storage in an inconsistent state, or
block progress of application processes on other clients.

This problem is made even more challenging by the
fact that cloud storage services tend to offer limited, low-
level APIs. For example, the Azure Table storage service
allows atomic batch update only on objects in the same
partition [7, 21]. Cloud providers offer such APIs to allow
efficient storage implementations, to offer applications
the freedom to choose the right balance between perfor-
mance and consistency, and to help themselves internally
manage complexity and operational challenges. However,
a limited API makes it hard for programmers of cloud
applications to reason about correctness, given that clients
can issue concurrent storage operations and can fail.

We address this problem with a new abstraction called
locks with intent. The key insight behind this abstraction
is that much of the complexity in handling failures and
concurrency can be encapsulated in a simple intent con-
cept that can be used in conjunction with locks. An intent
is an arbitrary snippet of code that can contain both cloud
storage operations and local computation, but with a key
property that, when an intent execution completes, each
step in the intent is guaranteed to have executed exactly
once, despite failures, recovery, or concurrent executions.

A lock with intent lets a client lock an object in cloud
storage as long as it first provides an intent describing
what it plans to do while holding the lock. Once locked,
the intent gains exclusive access to the object, just as

a traditional lock in a shared memory model. However,
unlike a traditional lock, a locked object will eventually
be unlocked even if the client holding the lock crashes,
as long as the application is deadlock-free. Furthermore,
before the lock is unlocked, each step in the associated
intent is guaranteed to have been executed exactly once.

We implement this abstraction in a client library called
Olive. Olive’s design and implementation makes minimal
assumptions about the underlying storage, which it en-
capsulates in the form of a common storage model. This
model fits many existing cloud storage services as well
as other large-scale distributed storage systems such as
Apache Cassandra and MongoDB. Thus, Olive can work
with any such storage service unchanged by using a shim
that translates the service’s API to the model’s API.

To provide exactly-once execution semantics, Olive
leverages the underlying storage’s fault-tolerance proper-
ties. It stores each intent, with a unique identifier, in the
underlying cloud storage system itself. Olive further intro-
duces distributed atomic affinity logging (DAAL). DAAL
colocates the log entry that corresponds to executing an
intent step with the object changed by that step.

Olive also includes mechanisms to ensure progress.
Because Olive provides exactly-once semantics even if
multiple clients concurrently execute the same intent, any
client can acquire any locked object by executing the
associated intent. To ensure liveness for all intents, not
just those associated with locks other clients wish to ac-
quire, Olive introduces a special process called an intent
collector that periodically completes unfinished intents.

Using Olive’s locks with intent, we implement several
libraries that provide advanced features on top of cloud
storage. These include consistent snapshots, live table re-
partitioning, secondary indices, and ACID transactions.
Our experience with these case studies suggests that Olive
significantly reduces the burden on programmers tasked
with making code robust to failures and concurrency. Fur-
thermore, Olive’s well-defined semantics make it easy
to reason about correctness of application code despite
failures and concurrency (§4, §5).

Our work makes the following contributions:

* We propose locks with intent, a new abstraction to
simplify handling failures and concurrency in cloud
applications built atop cloud storage services.

* We introduce a novel logging scheme called distributed
atomic affinity logging (DAAL), and the idea of an
intent collector. Together, they ensure exactly-once se-
mantics despite failures and/or multiple clients execut-
ing the same intent.

* We demonstrate the feasibility of locks with intent by
implementing them in Olive and making Olive compat-
ible with a variety of cloud storage services.

* We demonstrate the generality and usability of locks
with intent by using them to build several useful li-
braries and reason about their correctness.

* We experimentally evaluate Olive on Microsoft’s Azure
Storage to determine the performance cost of using
locks with intent compared to baselines providing sim-
ilar fault-tolerance guarantees.

2 Building cloud applications: challenges

Cloud applications typically run on multiple client VMs
and store state on cloud storage: the client VMs are used
only for computation and are effectively stateless. Such
applications are fundamentally distributed and must cope
with distributed-systems challenges such as asynchrony,
concurrency, failure, and scaling.

The underlying reliable distributed cloud storage aims
to alleviate the difficulty of building cloud applications.
Its API thus generally hides the complexity of concur-
rency control, elasticity, and fault tolerance. Nevertheless,
the developer of a cloud application still has to handle
VM failures. She must also bridge the gap between rich
application semantics and the cloud storage’s simple API.

2.1 A common storage model

Different cloud storage services offer different, constantly-
evolving APIs. But, we want Olive to operate on any cloud
service without requiring significant reworking each time
a provider decides to make changes. Thus, we introduce a
common storage model, an API that has enough features
to support Olive but is simple enough to be implemented
by any cloud storage service. In particular, it is easily
implemented by popular cloud storage systems such as
Microsoft’s Azure tables and Amazon’s DynamoDB, and
by large-scale distributed storage systems such as Apache
Cassandra and MongoDB. By stripping away functional-
ity unique to certain services and focusing only on basic
operations, we enable broad applicability for Olive.

Our model is that of a storage system providing schema-
less tables. Each table row, also called an object, consists
of a key and a set of attribute/value pairs. A table may be
divided into partitions to satisfy a system-imposed limit
on maximum partition size.

APIL. The model’s API includes operations to
Create, Read, Update, and Delete rows (CRUD).
It also includes Scan, UpdateIfUnchanged, and
AtomicBatchUpdate, described in the next paragraphs.

Scan takes a table and a predicate as parameters, and
returns a stream providing all rows in that table satisfying
that predicate. For instance, the predicate might be “has a
count attribute with value > 5.” Every row that satisfies
the predicate throughout the scan is guaranteed to be
included. A row that only satisfies the condition some
time during the scan (e.g., because it was created, updated,

or deleted during the scan) may or may not be included.

UpdateIfUnchanged is like Update, except it does
nothing if the object to be updated has been updated or
deleted since a certain previous operation on that object.
That previous operation is identified by a handle passed to
UpdateIfUnchanged. The application can obtain such
handles because each Create, Read, and Update opera-
tion returns a handle representing that operation.

AtomicBatchUpdate lets the application perform
multiple update and insert operations atomically. In other
words, despite possible failures, either all or none of the
operations will happen. However, this atomicity guaran-
tee only works at a certain granularity: objects passed
to AtomicBatchUpdate must be in the same atomicity
scope, where the scope is a system-specific parameter.

Such a storage model is supported not only by cloud
storage services, such as Amazon DynamoDB (with rows
as the atomicity scope) and Microsoft Azure table storage
(with partitions as the atomicity scope), but also by popu-
lar storage systems, such as MongoDB (with documents
as the atomicity scope) and Cassandra (with partitions as
the atomicity scope). Azure Table supports ETags, which
can be considered as handles; DynamoDB supports condi-
tional update. MongoDB supports Update if Current and
Cassandra supports the IF keyword in INSERT, UPDATE
and DELETE statements for conditional updates, which
can be considered as generalizations of the conditional up-
date primitive in our model. Such common capabilities are
chosen by different storage services because they provide
simple and flexible primitives for concurrency-control and
fault-tolerance support, and because they can be supported
at a manageable cost and complexity. The cost and com-
plexity consideration leads to a somewhat limited API.
For example, Cassandra chooses to support partition-level
atomicity because “the underlying Paxos implementation
works at the granularity of the partition” [5].

Invisible entries. In our model, it is always possible to
put invisible entries in a scope. That is, a library inter-
posing on the API between the application and the cloud
storage can put entries in a scope, but hide them from the
application by stripping them from returned results. Even
if the only scope available is an object, this can be done
by adding special attributes to it. If scopes are larger, such
as partitions or tables, the library can use special rows.
Invisible entries should be used sparingly since they re-
duce performance and capacity. They reduce performance
when an access to a real entry necessitates one or more ac-
cesses to invisible entries. They reduce capacity by using
space that could otherwise be used for application data. In
particular, a cloud storage system often places an upper
bound on the size of a scope, e.g., a maximum row or
partition size. By using invisible entries, the interposing
library reduces the effective maximum size from the ap-
plication’s perspective. Indeed, when the application asks

1 def updateObject(key, newObj):

2 obj = curTable.Read(key)

3 lastSnapshot = curTable.Read(LAST_SNAP).value

4 curEpoch = lastSnapshot + 1

5

6 if (obj != None and obj.version <= lastSnapshot):
7 snapshotTables[lastSnapshot] .Update(key, obj)

8
9

newObj.version = curEpoch
10 curTable.UpdateIfUnchanged(key, newObj)

FIGURE 1—Pseudocode for the object-update routine in a buggy
snapshot design. It sometimes requires extra work because a
snapshot table is being lazily populated.

C1 Update, lines 2-4

C2 Create snapshot 5
C3 | Update, lines 2-7

Update, lines 9-10

time '

FIGURE 2—Execution trace exposing a bug in the Figure 1 code.
Client C1, a slow updater, performs update lines 2—4, looking
up a certain key and finding version #5. Since the last snapshot
epoch is #4, the object is up to date and no copy-on-write is
needed so it skips to line 9. Update lines 9—10, which happen
later, update the current table with new contents but still version
#5. Meanwhile, client C2 creates a new snapshot, and client
C3 does an update involving a copy-on-write to snapshot table
#5. At the end of this trace, the snapshot invariant is violated:
snapshot table #5 contains contents that do not reflect the latest
update, just performed by C1.

for the maximum allowable size of a scope, the library
must provide a lower number than the underlying storage
system to account for this.

Lock. The primitives provided by the storage interface
can be used to implement other useful client functionality.
For example, we can implement an object lock by adding
an invisible Boolean attribute called 1ocked to the object.
To acquire the lock, a client reads the object and gets
a handle. If the locked bit is not set, the client issues
a conditional update with the returned handle to set the
locked bit. It gets the lock if and only if that update
succeeds. To release the lock, the client resets the locked
bit via another update.

2.2 A case study: supporting snapshots

As a case study, we present the example of support-
ing storage snapshots using the common storage model
described earlier. A resulting table-snapshotting (or STa-
ble) service allows clients to create snapshots of a table
without interrupting normal operations on the table, in
addition to the standard CRUD operations. This is func-
tionality we have actually designed and implemented for
a production scenario.

To demonstrate how easy it is to accidentally introduce
bugs when designing snapshot tables, we show one of

our earliest designs and the bug it contained. This design
implements snapshotting tables directly on cloud storage,
instead of using primitives like locks with intent.

Buggy STable design. In this design, each snapshot is
implemented as an actual table. However, rather than fully
populating this table when a snapshot is created, the table
is populated lazily. This makes snapshot creation quick,
which prevents snapshot creation from making the table
unavailable for an extended period of time.

Snapshots are numbered in increasing order, with the
first one being snapshot 1. Snapshots divide time into
epochs, with epoch 1 preceding snapshot 1, epoch 2 com-
ing between snapshots 1 and 2, etc. An invisible entry is
put into each object to represent its version, defined as
the last epoch it was updated in. An invisible entry is put
into the table to represent the number of the last snapshot
taken. The current epoch is one more than this number.

To lazily populate a snapshot, we use a snapshot-aware
routine for updating objects, as shown in Figure 1. If it
finds that the object version in the current table belongs in
an earlier snapshot (i.e., smaller than the current snapshot
number of the table), it copies the object to a snapshot
table before overwriting it. This makes the current table
essentially copy-on-write after a new snapshot is taken. A
key snapshot invariant for STable is that, if snapshot table
i has a row with key k, then that row contains the contents
of the last update to key k made with version i.

Figure 2 illustrates an example execution demonstrat-
ing a bug in this design that violates the snapshot invariant.
The subtle bug surfaces because a client holds on to an
old snapshot number for the STable and completes its up-
date only after a new snapshot is created and after another
client performs a copy-on-write. This delayed update as-
sociates different object contents with the version copied
to the snapshot, thereby violating the snapshot invariant.
The use of conditional update does not help because copy-
on-write is a multi-object operation.

One way to fix this bug is for the client to acquire a
lock on the object for the duration of the code in Figure 1.
This would prevent multiple updates from interleaving.
While implementing a lock is feasible as shown earlier,
one challenge is to ensure liveness when a lock holder
fails. To relieve developers from worrying about these
subtle issues and to help reason about correctness despite
concurrency and failures, we introduce a new primitive
called locks with intent, which the next section elaborates.

3 Locks with intent

As shown in the STable example of §2, the main challenge
in developing cloud applications is to ensure correctness
in the face of client failures and concurrent cross-scope
client operations. Olive therefore introduces locks with
intent, which ensures exactly-once execution (despite fail-

Virtual machine

Application's
computation

Application's
computation

Application's
computation

Locks with intent Locks with intent Locks with intent

Common storage Common storage

model (§2.1) model (§2.1) model (§2.1)

NN

Distributed storage layer (e.g., Amazon DynamoDB, Azure
tables, Cassandra, MongoDB, ...)

Common storage

FIGURE 3—Olive’s high level architecture. Olive exposes the
abstraction of locks with intent (§3) to higher-level applica-
tion in the form of a library. The abstraction provides eventual
exactly-once execution semantics despite failures of nodes run-
ning the Olive library. Olive provides such strong semantics
by leveraging the fault-tolerance properties of the underlying
distributed storage layer.

ures) and mutual exclusion (for concurrent operations).

We intend Olive to be used by both application and
infrastructure developers. Since our approach is flexible
enough to support a transaction library, as we will show
in §4.4, users can always use that library to have the same
simplicity offered by transactions. But, crucially, our de-
sign also allows sophisticated users to write more efficient
implementations, by reducing complexity via automatic
failure handling and simplification of concurrency.

Figure 3 depicts Olive’s high level architecture. Olive’s
locks with intent provide a new abstraction for cloud ap-
plications to handle failures and concurrency elegantly.
This abstraction is built atop the common storage model
described in §2.1, which can be mapped to different cloud
storage or distributed storage systems. Olive does not
modify the storage layer, so it preserves the performance
and scalability characteristics of existing storage services.
Furthermore, Olive does not require direct distributed
coordination among clients running an application’s com-
putation: all interactions are through cloud storage, con-
forming to the existing cloud application model.

3.1 Intents: Exactly-once execution

An intent is a request for a certain code snippet to be
executed exactly once. The snippet may contain loops or
recursive calls, but must terminate in a bounded number
of steps. An intent can involve both local computation and
operations on cloud storage. The code snippet is arbitrary,
but usually it is a critical section protected by a lock.

Determinism. Besides bounded run time, the main re-
striction on intent code is that it be deterministic. That is,
it must produce the same result when executed with the
same inputs and in the same state. Determinism makes
it possible to replay an execution after a failure by pre-

cisely reproducing results up to the failure point and then
continuing execution. Non-determinism is permitted only
in Olive-provided routines, where Olive can track the
sources of non-determinism and return the same result
deterministically. For instance, Olive provides a routine
for generating random numbers; the developer must use
it instead of the system random number generator.

The code must be deterministic even if run by different
clients. For instance, it should not depend on any special
privileges possessed only by a subset of clients. §6 will
discuss removing this restriction in future work.

Non-deterministic code in an intent constitutes a bug.
Olive cannot detect this error; it simply does not guarantee
exactly-once semantics in this case.

Tracking and executing intents. Exactly-once execu-
tion of an intent is challenging because (i) the initiating
client may fail partway through executing it, and (ii) other
clients attempting to recover from the initiator’s failure
may lead to multiple, possibly concurrent, clients execut-
ing the intent. After all, failure detection may be imperfect,
so one client may incorrectly believe another has failed
and attempt to recover from that apparent failure. Olive
deals with these challenges as follows.

Olive assigns a unique intentId to each intent, and
uses this as a key when storing the intent in the intents
table. To ensure exactly-once execution semantics, Olive
must log the steps any client executes as part of an intent.
This way, if the client fails, another client will know where
to continue from during recovery. Olive does this logging
in a table named executionLog. For each step requir-
ing logging, Olive adds a new row to executionLog,
using a key combining intentId and the step number
within the intent. For local non-deterministic operations,
such as those done by Olive-provided random-number-
generation routines, Olive stores any non-deterministic
choices in executionLog. For cloud-storage operations
that return results (e.g., reads), Olive stores those results
in executionLog. This logging allows any future re-
execution of an intent to return the same result.

Due to the limited storage model described in §2.1,
Olive cannot atomically read an object from cloud stor-
age and write it to executionLog. Fortunately, it does
not have to, because read operations have no immediate
externally visible effect. In fact, for better performance,
Olive defers logging until right before it executes an ex-
ternally visible operation. As a result, a client could crash
immediately after issuing a read operation to the cloud
storage, but before logging to executionLog. In that
case, if a client resumes executing the intent, it will re-
execute the read operation, potentially getting a different
value from the cloud storage. This is safe because only
the new execution leads to externally visible effects.

DAAL. We have so far treated executionLog as if
it were a single standalone database table, but as we
will now discuss it is only logically a single table. To
achieve exactly-once semantics, when we update data
we must also, in one atomic action, log that update to
executionLog. But, as discussed in §2.1, most cloud
storage services do not support atomic actions across
tables. Thus, while it is possible to store logs of read oper-
ations in a single table, each log of a write operation must
be in the same table as the object being written.

To solve this problem, Olive introduces a novel logging
scheme called distributed atomic affinity logging (DAAL).
With DAAL, executionLog consists of two parts. The
first part, which stores the results of completed read opera-
tions, is a regular table. The second part, which stores log
entries corresponding to writes, is a set of invisible entries
distributed among the scopes in the system. To perform
an AtomicBatchUpdate that both updates an object and
inserts an executionLog entry, Olive chooses a scope
for the entry that includes the updated object.

Olive deterministically derives each entry’s identifier
from the intentId, the current intent step number, and
the key of the modified object. This ensures that, if an-
other client later tries to perform the update a second
time, it will fail because the invisible log entry already
exists. If the log entry is a row, then the second inser-
tion will fail because of a key conflict. If the log entry
is an attribute, the second insertion will fail because the
client will first do a read to ensure the absence of the
attribute, then will perform the attribute insertion using
UpdateIfUnchanged.

Olive also logs progress information in the central
intents table—one column of each intent’s row indi-
cates how many update steps of that intent have been
executed. The steps recorded in the intents table must
actually have been performed although additional steps
may have been executed that are not yet recorded. This is
just an optimization to avoid clients wasting time attempt-
ing to re-perform already-executed steps. Not recording
an already-executed step does not compromise correct-
ness because DAAL ensures that no client will be able to
successfully execute any update a second time.

Note that the first part of executionLog, the single
table holding logs of read operations, is accessed by every
client performing an intent. To prevent this table from
becoming a throughput bottleneck, or from exceeding ca-
pacity limits, Olive partitions it on intentId. The degree
of partitioning is configurable.

Liveness. Exactly-once semantics requires more than
just never executing any intent more than once. It also
requires executing each intent at least once. We ensure
this liveness property as follows.

First, we put another requirement on intent code besides
non-determinism and bounded run time. The developer

must ensure that, as long as the code is retried repeatedly,
it eventually completes.

Given this requirement, all Olive must do to achieve
liveness is to retry each intent repeatedly. To ensure such
repeated retries, Olive uses an intent collector. This spe-
cial background process periodically scans the intents
table to identify incomplete intents and complete them.

Such an intent collector guarantees liveness as long as
it never stops. Fortunately, cloud providers offer mecha-
nisms to monitor core services and to restart them if they
fail; such a mechanism should be used for the intent col-
lector. Even if this causes multiple instances of the intent
collector to coexist briefly, this is safe because of Olive’s
assurance of at-most-once semantics for each intent.

Indeed, it may be desirable to always run multiple in-
stances of the intent collector, so that if one fails and the
failure takes time to be detected and rectified, intents are
still completed promptly. Multiple instances may, for effi-
ciency, be designed to partition work among themselves,
but we have not yet implemented such partitioning.

3.2 Mutual exclusion with exactly-once semantics

Intents can be combined with locks to ensure both mutual
exclusion and exactly-once semantics, leading to a power-
ful new primitive called locks with intent. A “lock” in this
context is like a typical lock in that it restricts access to
an object or set of objects. However, the access restriction
is not to a single client but to a single intent: only clients
performing that intent are permitted access. That intent
has a step that acquires the lock, then steps that access the
locked objects, then a step that releases the lock.

From the developer’s perspective, the lock is easy to use
since it acts like a regular lock that restricts object access
to only a single client. In reality, locked objects are acces-
sible to multiple clients, but, because of the exactly-once
semantics of intents, all those clients’ object accesses are
equivalent to accesses by a single client. Thus, semanti-
cally, acquiring one of our locks is equivalent to acquiring
a lock that limits access only to a single client.

Even though our locks are semantically equivalent to
normal locks, they are safer to use. An object locked with
anormal lock can only be accessed by the client who locks
it. This is dangerous since the client may fail, rendering
the object forever unavailable. However, by allowing any
client performing the intent to access the locked object,
the developer no longer has to worry about this concern.
Locks cannot be tied up indefinitely; they will eventually
be released by the intent collector.

Despite this, a client that needs to access an object may
still have to wait a long time for the collector to release an
intent lock on it. Thus, as an additional optimization, we
introduce the following mechanism. When code within an
intent acquires a lock, we associate the intent’s intentId
with that lock using an invisible attribute. When the code

1 def updateObject_IntentCode(key, newObj):
obj = curTable.Read(key)
if obj == None:
return NOT_FOUND

2
3

4

5

6 table.Lock(obj.key)
7 lastSnapshot = curTable.Read(LAST_SNAP).value

8 curEpoch = lastSnapshot + 1

9

10 if (obj.version <= lastSnapshot):

11 snapshotTables[lastSnapshot].Update(key, obj)

13 newObj.version = curEpoch

14 curTable.UpdateIfUnchanged(key, newObj)
15 table.Unlock(obj.key)

16 return SUCCESS

FIGURE 4—Pseudocode for the intent code to update an object.

later releases the lock, we remove the association with
the intent’s intentId. This way, if another client needs
the lock but finds it unavailable, it can tell whether the
lock is held by an intent. If so, the blocked client can
take responsibility for immediately completing the intent,
thereby allowing itself to make progress.

4 Applications and experience

Locks with intent make it easy to reason about desirable
correctness and fault-tolerance properties of software. To
demonstrate their general utility, this section will describe
how we use them to build several components.

Note that these components are themselves generally
useful. That is, each is a library that provides applications
with a storage API richer than that of the underlying cloud
storage system. In §4.1, we discuss our STable library,
which augments the cloud storage API with a facility for
snapshotting tables. In §4.2, we discuss a library that adds
the ability to do live table re-partitioning. In §4.3, we
show how to add support for secondary indices. Finally,
in §4.4, we show how to add the ability to form ACID
transactions out of arbitrary sequences of operations.

4.1 Snapshots

One component we build is the STable library, which pro-
vides applications with the ability to take snapshots of
tables. In §2.2, we discussed how the complexity of table
snapshotting can lead to subtle bugs. In particular, the
code in Figure 1 can lead to a violation of our snapshot
invariant. The fundamental reason the bug arises is the dif-
ficulty of reasoning about the many possible interleavings
of concurrent clients.

Fortunately, intents provide a straightforward way to
reduce the possible interleavings. That is, we can create
an intent that locks obj while executing the code from
Figure 1; the resulting intent code is shown in Figure 4.
Because the intent locks obj, executions of intents on

the same obj are serialized; i.e., they do not overlap.
Furthermore, we do not have to worry about liveness
issues arising from introducing locks, because locks with
intent automatically defend against failing lock holders.

Here is an argument that the snapshot invariant is main-
tained by this approach. Because the intent locks obj, all
executions of the intent on the same obj are serialized,
i.e., they do not overlap. Consider any run of the intent
that copies the contents of obj to snapshot table i. Be-
cause this copy occurs in the middle of an intent, and
all intents to obj are serialized, the copy must reflect all
earlier executions of the intent. That is, it must reflect the
last update performed so far, and the snapshot invariant
holds. We must also demonstrate that the invariant contin-
ues to hold, i.e., that a later update will not violate it by
writing to the current table with version i. To demonstrate
this, we observe that any subsequent run of the intent for
obj will be serialized afterward. Those runs will read
a lastSnapshot > i, causing them to use a curEpoch
> i+ 1. Thus, the snapshot invariant is maintained.

Note that the only object we lock is obj; we do not lock
the special row with key LOCK_SNAP. Thus, we do not
conflict with concurrent operations that update the current
snapshot number. If we were to use transactions instead
of locks with intent, we would have such a conflict.

Our STable implementation offers stronger properties
than just the snapshot invariant. For instance, it ensures
that any two reads of the same key from the same snapshot
will return the same object contents. It also offers further
functionality, like the ability to garbage-collect old snap-
shots and to roll back to earlier snapshots. These facilities
also became easier to build with locks with intent.

4.2 Live table re-partitioning

Another component we build is a library that exports
a facility for live re-partitioning of tables. This function-
ality is crucial if a table may grow to the point where it
exceeds system-imposed size limits. It can also help re-
lieve “hot spots” by dividing a frequently-accessed tables
into multiple tables with consequently greater throughput.
By building this library, we do for general cloud storage
what Zephyr [28] did for transactional storage.

A straightforward approach would be to lock the
table for the duration of re-partitioning. However, re-
partitioning potentially involves an enormous amount of
data movement, taking seconds or minutes. So, it is unrea-
sonable to block clients during re-partitioning; we must
allow concurrent operations during re-partitioning.

This concurrency requirement poses challenges for cor-
rect development. The developer must now reason about
all the possible interleavings of client operations with
steps of re-partitioning. Failure to do so can lead to bugs.

To illustrate this, Figure 5 depicts a buggy design aimed
at enabling object updates during live re-partitioning of

1 def migratePartitionToNewTable(pKey, futTable):
curTable = metaTable.Read(pKey) .value
metaTable.Update(pKey, [curTable, futTable])

objectsToMove =
Scan(curTable, partitionKey == pKey)
for (obj in ObjectsToMove):
futTable.Create(obj.key, obj)
metaTable.Update(pKey, [futTable])

o - NNV N SR}

11 def updateObject(key, newObj):

12 # get partition key associated with the key
13 pKey = getPartitionKey(key)

14 tablesList = metaTable.Read(pKey).value

16 # check if this table is being re-partitioned
17 if (tablesList.len == 1):

18 curTable = tablesList[0]
19 curTable.Update (key, newObj)
20 else:

FIGURE 5—Pseudocode for the object-update routine and a
migration routine in a buggy live re-partitioning design.

tables. The bug arises in the following scenario. Sup-
pose that, when a client starts executing updateObject
for key k, there is no ongoing re-partitioning job, so the
client reaches line 17. At this point, a re-partitioning job
commences, and successfully migrates key k to the new
partition. The client then continues from line 17, writ-
ing its update only to a table that will soon be obsolete.
Eventually, the re-partitioning job reaches line 9 without
realizing there is useful data it missed in the current table.
So, when it updates the metaTable, it effectively and
incorrectly rolls back the client’s update.

Fortunately, such challenges and reasoning can be sub-
stantially mitigated due to locks with intent. Our general
strategy is to break the job of re-partitioning into small
tasks, each of which is short enough that it is acceptable
to block clients for its duration. We then use a lock with
intent for each such task, and a lock with intent for each
client operation on the table.

In this way, we do not have to reason about arbitrary
interleavings between clients and the re-partitioning job.
We only have to reason about interleavings at the coarse
scale of tasks. For instance, a client operation can overlap
the re-partitioning job, but it cannot overlap a task that
accesses the same object. More specifically, each task
corresponds to migrating one object from one partition
to another partition. This involves replacing the object
in the old partition with a marker that redirects clients
with outdated views to the new partition. Figure 6 depicts
pseudocode for the migration routine as well the object-
update procedure in the re-partitioning service that uses
locks with intent.

With this migrator design, the object-update routine
does not use locks. If an object is locked for migra-

1 def migrateIntent(curTable, futTable, obj):
2 curTable.Lock(obj.key)

3 futTable.Create(obj.key, obj)

4 obj.migrated = True

5 curTable.Update(obj.key, obj)

6 curTable.Unlock(obj.key)

s def migratePartitionToNewTable(pKey, futTable):
9 curTable = metaTable.Read(pKey) .value
10 metaTable.Update(pKey, [curTable, futTable])

11 objsToMove =

12 Scan(curTable, partitionKey == pKey)
13 for (obj in ObjsToMove):

14 migrateIntent (curTable, futTable, obj)

15 metaTable.Update(pKey, [futTable])

17 def updateObject(key, newObj):

18 pKey = getPartitionKey(key)

19 tablesList = metaTable.Read(pKey).value
20 curTable = tablesList[0]

21 if (tablesList.len == 1):

2 curTable.UpdateIfUnchanged(key, newObj)
23 elif (tablesList.len == 2):

24 futTable = tablesList[1]

25 0l1dObj = curTable.Read(key)

2 if (oldObj.migrated == True):

27 futTable.UpdateIfUnchanged(key, newObj)
28 elif (0ldObj.locked == True):

29 migrateIntent(curTable, futTable, 0ldObj)
30 futTable.UpdateIfUnchanged(key, newObj)
31 else:

0 curTable.UpdateIfUnchanged(key, newObj)

FIGURE 6—Pseudocode for the migration routine and the
object-update routine in the live table re-partitioning service
based on Olive’s locks with intent.

tion, it assists the migrator by executing the associated
intent, before performing its update. Otherwise, it uses
UpdateIfUnchanged to modify the object in the old par-
tition (if the object is not migrated or if no migration in
progress), or in the new partition (if the object is already
migrated). If a client holds an outdated view (e.g., it in-
correctly thinks no migration is in progress or an object is
not migrated), the UpdateIfUnchanged fails, causing it
to retry, which will update its view. Furthermore, unlike
in the buggy design shown earlier, it is safe for the object-
update routine to update an object in the old partition as
long as it has not been migrated because the migrator will
eventually move the updated object to the new partition.

Of course, locks with intent are not a panacea. There
are still several tricky cases to consider, such as how to
avoid conflict between a re-partitioning task and a client
with an outdated view attempting to insert an object with
the same key. However, we find that the number of cases
to consider is much smaller thanks to the coarsening of
operations enabled by locks with intent.

4.3 Secondary indices

Another component we build is a library that supports
constructing, maintaining, and using secondary indices.
A secondary index for a table T is a separate table T’
designed to allow quick lookups into T using a non-key
attribute Attr. Each row of T’ consists of an Attr value
and a T key. However, T’ uses the Attr values as its keys.

The main challenge in building secondary-index sup-
port is maintaining consistency between T and T’. Be-
cause cloud storage systems typically do not support
multi-table atomic transactions, there are necessarily
times when the two tables’ contents are not consistent
with each other. For example, a row may exist in T with-
out a corresponding row in T’ .

To see the challenge more concretely, consider the fol-
lowing naive algorithm for updating an object in T:

1. Update the corresponding row in T.

2. Insert a row into T’ mapping the new Attr value to
the key of the updated row.

3. Delete the row from T’ with the former Attr value.

Unfortunately, this logic is not robust to failures: if a
process running the above procedure crashes after step
1 but before completing steps 2 and 3, it will leave the
underlying storage in an inconsistent state.

We could address this with “cleanup” processes that
run in the background to periodically find and fix inconsis-
tencies between T and T’ . However, in addition to compli-
cating deployment and wasting resources by continuously
scanning for inconsistencies, such cleanup processes can
actually introduce inconsistency, as in the following sce-
nario. First, a client updates an object to change Attr
from OLD to NEW, but crashes before step 3. Next, a
cleanup process notices this and decides to delete the row
in T’ with Attr=0OLD. Next, another client decides to
change Attr back to OLD, and completes steps 1 through
3. Finally, the cleanup process acts on its earlier decision
and deletes the row in T’ corresponding to OLD, not real-
izing that this is actually now a useful row. This leaves T’
without any row corresponding to the object.

Olive provides a natural solution to eventually consis-
tent secondary indices. We perform steps 1-3 described
earlier in an intent that also locks the object from T. Be-
cause secondary indices are eventually consistent when
the intents complete their executions, we do not have
to worry about inconsistencies caused by intermediate
failures, like the one discussed earlier. Additionally, the
intent collector in this solution has to do less work than
the cleaner process described earlier. After all, the cleaner
process must scan all rows changed since the last time it
ran, but the intent collector only has to scan the intents
table for outstanding incomplete intents.

1 def atomicCommit(objectsRead, objectsModified):
> for (obj in objectsModified):

3 table.Lock(obj.key)

4

5 success = True

¢ for (obj in objectsRead): # verify read set

7 retrievedObj = table.Read(obj.key)

8 if (retrievedObj.version != obj.version):
9 success = False

10 break

12 if (success): # commit and unlock

13 for (obj in objectsModified):
14 obj.locked = False

15 table.Update(obj.key, obj)
16 else: # abort and unlock

17 for (obj in objectsModified):
18 table.Unlock(obj.key)

FIGURE 7—Pseudocode for atomic commit in OCC-based trans-
actions.

4.4 Transactions

The last component we build is a library that augments
the cloud storage API with the ability to form transac-
tions out of an arbitrary collection of operations. This is
valuable because, as described in §2.1, most cloud stor-
age systems do not support transactions across tables. We
will see that Olive’s locks with intent make it simple to
build a client-side library that exports APIs to execute
general-purpose ACID transactions [16, 33, 40, 55].

Our design of this transaction library is based on op-
timistic concurrency control (OCC), which has three
phases: shadow execution, verification, and update in
place [37]. To guarantee ACID semantics, an OCC pro-
tocol requires that the last two steps happen atomically.
In particular, they must be isolated from updates of other
transactions. Furthermore, all changes made by the trans-
action must be either committed or aborted in their en-
tirety. Thus, a core piece of a distributed transaction pro-
tocol is the atomic-commit mechanism. To satisfy these
requirements, distributed systems that implement transac-
tions use the following techniques: a special transaction
coordinator process uses a shadow write-ahead log to
ensure atomicity, and uses locks during the verification
step to ensure isolation from other transactions [27].

We observe that these techniques can be naturally im-
plemented by using Olive’s locks with intent. Figure 7
depicts pseudocode that can be wrapped in an intent to
execute the atomic commit mechanism with the afore-
mentioned properties. The mutual exclusion property of
Olive’s locks with intent provides the desirable isolation,
and the intent’s execution log acts as a write-ahead log.
That is, it contains all the information needed to commit
or abort a transaction. Most importantly, for liveness we
require that transaction coordinators never fail; we ensure
this by using intents as our transaction coordinators.

service without Olive with Olive
snapshots 987 665
OCC-transactions 2,201 408
live re-partitioning 2,116 474

FIGURE 8—Comparison of code line counts for services we
built with and without Olive.

Baseline /3

. 30 Olive

E 20

>

o z

g 10

E E‘ooo
0 :

Update

FIGURE 9—Latency of executing a storage operation, either
inside an intent or directly on the raw storage interface. The
logging required to ensure exactly-once execution semantics
adds up to 6-7x the baseline latency. (See text for details.)
Figure 10 depicts how these overheads are amortized when an
intent contains more than one storage operation.

4.5 Evaluation: ease of development

Before we designed Olive’s locks with intent, we created
some of the cloud services described in this section by
building directly atop the raw cloud-storage interface. It
was both tedious and error-prone as we had to reason
about many failure scenarios and consider many inter-
leavings of code steps by different clients. To concretely
demonstrate how Olive makes it easy to develop such
cloud services, we now compare the complexity of devel-
oping such cloud services with and without Olive. We use
lines of code as a proxy for code complexity.

Figure 8 depicts our results. These results demonstrate
that Olive reduces lines of code written, and thus likely
reduces complexity. This finding, in combination with our
experience (§4.1-4.4), suggests that Olive makes it signif-
icantly easier to build these services. Note that one of the
artifacts that does not use Olive (live re-partitioning) was
built by a different team with a very different approach
to making code robust to failures and concurrency. (We
note this because the comparison and feature set may not
be fully apples-to-apples.) For the case of OCC-based
transactions, as discussed in §4.4, Olive makes it simple
to express a transactional protocol.

5 Experimental evaluation

The previous section demonstrated that Olive’s locks with
intent make it easy to design, and to reason about the cor-
rectness of, new cloud services that are robust to failures
and concurrency. This section experimentally evaluates
Olive to understand its costs and benefits.

g

> 25

E 20 . :

= 15

g 10

S 5 RS N

g 0 SN 22NN

E k=1 k=4 k=16 k=1 k=4 k=16 k=1 k=4 k=16 k=1 k=4 k=16
Read (Baseline) Read (Olive) Update (Baseline) Update (Olive)

FIGURE 10—Per-operation latency when executing a sequence of k storage operations both normally and within an Olive intent.
As the number of operations per intent increases, the per-intent costs (e.g., registering an intent, storing the final result, etc.) are
amortized, and the per-operation latencies approach those of operations directly on the raw storage interface.

5.1 Implementation

We implement Olive as a client library in approximately
2,000 lines of C# code, including all features described in
§3. As discussed there, although we have built an intent
collector capable of coexisting with other instances of
itself, our implementation does not support partitioning
work among such instances for greater efficiency.

To allow Olive to work on multiple underlying storage
systems, we implement it atop an abstract C# interface
that exposes the storage model described in §2.1. We then
build concrete C# classes that call cloud storage systems’
APIs to implement the abstract interface. We implement
two such concrete mappings. The first maps to Azure
Table storage; it is only 38 lines of code because our
abstract storage interface maps one-to-one to its API. The
second maps to Amazon DynamoDB; it is 107 lines of
code. DynamoDB provides atomicity at the granularity of
individual objects [4], so our concrete class only allows
AtomicBatchUpdate for object scopes.

5.2 Setup and method

We experiment on Olive with Microsoft Azure Table ser-
vice as the cloud storage. For computation, we use a
G3 VM instance (8-core Intel Xeon ES v3 family with
112 GB RAM) running Windows Server 2012 R2 in the
same availability zone as the storage service.

The principal goal of our evaluation is to understand the
costs of robustness due to Olive’s mechanisms relative to
alternative mechanisms. To do so, we compare the perfor-
mance of Olive-based artifacts with baselines providing
similar fault-tolerance guarantees. For these comparisons,
our performance metric is the latency of storage opera-
tions. In each experiment, we report the mean of at least
1,000 measurements along with the 95% confidence inter-
val for that mean. For these end-to-end experiments, we
use YCSB [25] to generate workloads.

5.3 Cost of Olive’s exactly-once semantics

To understand the costs of Olive’s logging for ensuring
exactly-once semantics, we experiment with a series of
microbenchmarks. We write two intents, one of which
issues a single Read on an object and the other of which
issues a single Update. Each object consists of a random
64-byte key and a random 1-KB value. Our baseline for
this is a snippet of code that issues the same operations
but without using Olive’s intent-execution machinery. We
run these intents and the associated baselines 1,000 times,
and measure the latency of the aforementioned operations.
Figure 9 depicts our results.

As expected, Olive pays significant latency overhead
compared to a baseline that does not ensure exactly-once
semantics. The reason is that Olive has to register its intent
by writing to the intents table, then insert DAAL en-
tries. Furthermore, our implementation writes an entry to
another results table when an intent execution is com-
plete. The last operation is not crucial to Olive, but stores
a succinct summary of the intent execution including the
final return value of the intent. Our implementation does
this so that other clients can quickly learn the final return
value of an intent by simply doing a lookup on this table.

Amortizing setup costs. Much of this overhead (regis-
tering an intent, saving the final results, etc.) is per-intent
cost. Thus, to understand the costs of Olive’s intent exe-
cution in a comprehensive manner, we run another set of
experiments in which we vary the number of operations k
per intent, setting k=1,4, and 16. Figure 10 depicts our
results. As expected, the aforementioned per-intent costs
amortize over multiple operations, and the per-operation
cost of a storage operation in an intent is comparable to
that of directly executing the operation without Olive.

Varying object sizes. We experiment with Olive and the
baseline under varying value sizes (16 bytes, 128 bytes,
and 1 KB) and with varying k. We find that neither Olive’s
costs nor the baseline’s costs grow with value size, so we
do not depict these results.

—

. o

150 Baseline o
z 120 Olive
— 90 585]
>
Q ﬂ- 0%0%%%%
g OFr 22 g = © 2
< Q& Qo N A \ S o X8
= ViEmm fwwm o3 T4 SEn o
Create first Create Read first Read Update first Update

after snapshot

after snapshot after snapshot

FIGURE 11—Latency of Create, Read, and Update operations using two snapshotting services: (i) a baseline that uses a cloud
database’s native support for creating snapshots, and (ii) the Olive-based artifact. Under Olive, the latency of an Update immediately
after taking a snapshot takes 5 as long as a normal Update; the baseline incurs only 2 x higher latency due to native support for
snapshots. The Olive-based artifact is competitive with the baseline for non-Update operations.

5.4 End-to-end performance: snapshots

To understand the performance of an Olive-based artifact,
we experiment with the snapshotting service we built.
Two reasonable alternative approaches for building this
artifact in a cloud environment are: (i) create a snapshot-
ting service atop a cloud storage system similar to the
Olive-based artifact, but, instead of using DAAL, put all
the application data as well as snapshots of that data in
the same atomicity scope; and (ii) employ a cloud stor-
age system that natively supports creating snapshots, e.g.,
Azure SQL or Amazon Aurora.

Alternative (i) can exploit AtomicBatchUpdate to cre-
ate snapshots of application data, without having to incur
difficulties we discussed earlier (§2.2). Unfortunately, for
most cloud applications, this is truly not an option. It
severely limits throughput and scalability, because each
atomicity scope supports only a few thousand requests
per second. It also limits capacity, because each atomicity
scope supports only a certain amount of data. Further-
more, in some cloud storage systems (e.g., Amazon Dy-
namoDB), the atomicity scope is a single object, thereby
rendering this option infeasible. We thus use alternative
(ii) for our baseline; specifically, we use Azure SQL. Of
course, this baseline supports far more features than our
artifact, but we find that it is the closest alternative with
similar functionality in a cloud environment.

In our measurements, a client process first preloads a
table created by YCSB’s benchmarking tool; the table
contains 1,000 objects, each having ten attributes with
100-byte values. The client process then runs a series of
experiments, in which it uses YCSB’s core workloads
a—d to generate a stream of 1,000 requests with varying
mixtures of Read, Create, and Update operations. We
also run another set of experiments, in which the client
process creates a snapshot between preloading the table
with data and running the workloads. This causes each
Update operation in the experiments to perform copy-on-
write. Figure 11 summarizes our results.

For operations other than Update, the Olive-based arti-
fact’s performance is competitive with the baseline. The
largest difference is that, under Olive, the first Update
immediately after taking a snapshot incurs 5x higher la-
tency than a normal Update; for the baseline, it is only 2 x
higher. The primary reason is that, while the baseline re-
quires only a single round trip to the database server, Olive
incurs additional round trips and extra logging to ensure
the exactly-once semantics. Furthermore, the database
service likely uses complex machinery to implement the
snapshotting feature efficiently.

Finally, because the Olive-based snapshotting service
uses a NoSQL cloud storage system instead of the base-
line’s SQL database service, it likely incurs much lower
monetary cost. Unfortunately, the pricing models of these
cloud services are complex and hard to compare, so we
now provide only a rough comparison.

Azure’s table service charges on two axes: amount
of data stored and number of operations performed. For
example, in the West-US data center, it costs $0.045-0.12
per GB of data per month (depending on amount of data
stored and the desired geo-replication level), and $0.036
per million cloud storage operations [2].

On the other hand, Azure SQL charges for de-
sired throughput, measured in database transaction units
(DTUs) [6], and amount of data stored. A DTU is much
more complex than the number of cloud storage opera-
tions because it accounts for the number of disk opera-
tions and the amount of processing consumed by a SQL
query. As an example, for 5 DTUs and 2 GB of data, the
charge is $5/month. This increases to $465/month with
125 DTUs and 500 GB of data.

A rough comparison using these figures suggests that
the cost of a SQL database is at least an order of mag-
nitude higher than Azure’s table store. As a result, the
Olive-based artifact reaps lower monetary costs from its
underlying store while providing a snapshotting feature
with comparable performance.

5.5 End-to-end performance: live re-partitioning

To understand the benefits of the flexible isolation proper-
ties of Olive’s locks with intents, we evaluate two Olive-
based implementations of the live re-partitioning service
(§4.2): one using the Olive-based transaction library (§4.4)
and the other using intents directly for fine-granularity
isolation. Such a comparison will also help demonstrate
the flexibility of locks with intent: developers can build
their service atop our transaction library first for simplic-
ity and then later optimize it by writing that service with
intents directly for performance.

We run experiments in which a client process first
preloads a table with 1,000 objects and then issues a
stream of Create, Read, and Update operations gener-
ated via YCSB’s core workloads a—d. Figure 12 depicts
the performance of the intent-based artifact and compares
it with a transaction-based implementation. We find that
in all cases the intent-based artifact performs better than,
or as well as, the transaction-based one.

A notable scenario where Olive’s locks with intent en-
able us to optimize the re-partitioning service is in the
implementation of its Update operation. In the intent-
based artifact, this operation does not need to lock any
objects, but the transaction library cannot avoid locking.
In particular, the intent-based artifact implements this by
exploiting the UpdateIfUnchanged API supported by
the underlying cloud storage system. As a result, the la-
tency goes down by roughly 6. Similarly, for Create
and the data-migration routine, the intent-based artifact
locks fewer objects, enabling it to achieve better perfor-
mance than the transaction-based one.

Finally, because the migration routine in the re-
partitioning service locks and migrates one object at a
time, if a normal table operation (e.g., Read) observes
that an object is locked, it has to block for the duration of
data migration. (Figure 12 does not depict this case.)

5.6 Storage overheads

Up to this point, we have measured the latency overhead
Olive incurs to ensure exactly-once semantics. We now
evaluate Olive’s storage overhead. We do this by running
a microbenchmark with our re-partitioning service. In
particular, we use the data-migration routine depicted
in Figure 6. For the experiment, we preload data into a
table and use YCSB’s core workload a, which inserts
1,000 objects each having ten attributes with 100-byte
values. We then run Olive’s migration routine to move
those objects to a new table. We measure the total size of
all tables before and after the migration.

The application data inserted by the workload is
roughly 1 MB. Before the migration runs, we find that
the total size of the tables is 2.6 MB. The 2.6x over-
head comes from the internal use of an intent in the table
re-partitioning service’s Create operation. This intent

280
240
200
160
120

80

40

g
w
o E
[e) o)}
—~ ©

2]

=
I\
=)}

latency (ms)

Update Migration
FIGURE 12—Comparison of the performance of table oper-
ations in two implementations of the re-partitioning service
(§4.2), one using Olive’s transaction library and another using
Olive’s intents directly. The intent-based artifact achieves better
performance because we carefully optimize the set of objects
that get locked, whereas the implementation based on Olive’s
transaction library (naively) locks all the objects affected by a
table operation. (See text for details.)

serializes the object to be inserted and stores it in the
intents table (as the initial state of the intent). As a re-
sult, it doubles the size of data in tables. The remaining
overhead is due to DAAL entries and invisible attributes
(e.g., Llocked). After the migration procedure completes,
the total size of the data in the tables increases to 5.5 MB,
which again is due to the use of intents. Fortunately, most
of this overhead is ephemeral: after garbage collection and
deletion of objects in the old table, the storage overhead
is less than 8% of the application-data size.

5.7 Summary

While Olive incurs unavoidable latency and storage over-
heads to ensure exactly-once semantics (§5.3), our expe-
rience suggests that Olive’s strong semantics make it easy
to quickly build cloud services that are correct and fault-
tolerant (§4). Furthermore, our end-to-end experiments
show that Olive-based artifacts have performance compa-
rable to baselines that provide similar fault-tolerance guar-
antees. Finally, even when a feature is offered by some
cloud storage system, building the feature with Olive can
save significant money by enabling the use of a less ex-
pensive cloud storage system.

6 Discussion

Comparison to transactions. Transactions are arguably
simpler to use than intents, but offer less flexibility. In-
tents can support both strong consistency and eventual
consistency, can avoid full isolation when not required,
and can support exactly-once semantics which are often
not provided by transactions. Indeed, as shown in §4.4,
intents are general enough to support transactions, so de-
velopers who want a simple experience can always use
the transaction library Olive provides.

Liveness of intents. The liveness of Olive’s locks with
intent hinges on the liveness of intents. Just as with code,

developers must ensure that an intent does not contain
bugs leading to infinite loops, crashes, or deadlocks. A
more subtle concern is that Olive may amplify such bugs.
For example, testing often misses bugs occurring in rare
scenarios. So, Olive may trigger latent bugs by exercising
the rare scenario in which an intent is executed not by its
owner but by another client or the intent collector.

It is possible to automatically recover from deadlock
bugs in intents. After all, Olive’s locks with intent can be
used to encode deadlock recovery logic inside an intent,
e.g. by undoing the effects of the intent to release a lock.
Olive’s semantics ensure that such recovery logic inside
an intent is executed exactly once. As an example, our
OCC-based transaction library (§4.4) includes such logic
to abort a transaction if it detects read-write conflicts
during the verification step.

Garbage collection of intent logs. Entries in the
intents table, as well as DAAL entries, need to be
garbage-collected. But, this must be done with care, be-
cause a recovering client uses the existence of an entry
to decide whether to execute a step in an intent. A slow
client that attempts to execute a step in an intent might
mistakenly re-execute it because the corresponding entries
have been garbage collected. One solution is to introduce
the notion of epochs for intents, with a mandate that an
intent created in epoch n must be completed by the end
of epoch n + 1 and is considered outdated in epoch n + 2
and beyond. It this case, is safe to garbage-collect entries
for outdated intents. The exact duration of an epoch can
be application-specific (e.g., a day).

Security and privacy. Olive assumes that all clients shar-
ing an intents table belong to the same application, and
thus any client can complete any other client’s intent.
However, for some applications this is not possible due
to security restrictions. For instance, a client serving user
Alice may downgrade its capabilities, to ensure it can-
not accidentally leak information to Alice about other
users. So, that client may be unable to complete an intent
running on behalf of another user Bob.

Differences in clients’ permissions can also lead to pri-
vacy violations. For instance, a client running on Alice’s
behalf may write Alice’s private data into the intents
table. Then, another client running on Bob’s behalf may
read her data from that table and leak it to Bob.

For these reasons, Olive is suitable only for applications
with clients in equivalent security domains. In future work,
we plan to address this limitation, e.g., by propagating
clients’ security restrictions to the intents table.

Cloud support. We have designed Olive under the as-
sumption that cloud providers are unwilling or unable
to change their APIs. However, a cloud provider could
choose to add locks with intent to its external API. Af-
ter all, unlike richer primitives like transactions, locks

with intent would not require significant changes to cloud-
storage internals. By adding locks with intent natively,
and having more efficient execution paths for performing
and completing intents, the cloud provider might achieve
better performance than Olive.

7 Related work

Olive is related to a host of techniques that provide a
substrate for building fault-tolerant services. It is also
related to work that makes reasoning about concurrency
easier for programmers.

State machine replication [38, 49] is a classic technique
for building fault-tolerant services. A cloud application
can use replication directly for fault tolerance. Olive in-
stead takes a different approach by leveraging the under-
lying cloud storage, which is already made fault tolerant
by using replication internally. Olive’s approach avoids
consensus at the application layer and maintains reliable
persistent states only in cloud storage.

There is also a long line of work on recovering compu-
tation from failures [22-24, 42, 43]. Compared with this
work, nodes in Olive maintain and share state via cloud
storage, which makes recovering from failed computa-
tion harder. Even with microreboots [22, 23], maintaining
persistent state consistently despite failures is left to ap-
plications, which Olive addresses.

Write-ahead logging [46] is a well-known technique,
widely used in database systems [9, 14, 18, 47], to pro-
vide atomicity and durability in the presence of failures.
Olive’s intent executionLog is logically a write-ahead
redo log, but Olive uses DAAL to achieve exactly-once
semantics and to cope with concurrent executions of the
same intent. A related technique, journaling, is also widely
used in file system implementations [44, 45, 50] to ensure
data consistency despite inopportune machine crashes.

Transactions, another popular primitive, provide strong
ACID properties. Transactions simplify concurrency con-
trol by providing strong isolation [11, 17, 40, 41] among
concurrently executing transactions. Recognizing the per-
formance overheads imposed by general-purpose trans-
actions in a distributed system, Sinfonia [13] proposes
a restricted form of transactions called minitransactions.
Sagas [31], on the other hand, proposes to split long-lived
transactions into smaller pieces to enhance concurrency.
It relies on user-defined compensating transactions to
recover the database to a consistent state if individual
transactions fail. Like Sagas, Salt [53] allows developers
to improve performance by gradually weakening the se-
mantics of performance-critical transactions. In the last
few years, several works [12, 16, 26, 27, 55] have built
distributed storage systems with general-purpose transac-
tional features, sometimes exploiting modern hardware
such as RDMA [27], a cluster of flash devices [15, 16],
and TrueTime [26]. Olive takes a different approach since

distributed transactions on cloud storage would be ex-
pensive. The lock with intent in Olive has the benefits
of a transactional primitive (automated failure handling,
robustness to concurrency), but exposes a simple concur-
rency primitive that can be implemented without the full
machinery and expense of transactions.

Leases [32], another popular distributed-system primi-
tive, ensure exclusive access to a data object for a config-
urable amount of time. Chubby [20] and ZooKeeper [10]
each implements a reliable lock service with lease-like
expiration, enabling nodes in a distributed system to coor-
dinate, usually at a coarse granularity. Like Olive’s locks
with intent, the failure of a lease owner will not block the
entire system forever, as leases eventually expire. How-
ever, when a lease owner crashes, lease expiration does
not automatically restore cloud storage to a consistent
state, a key problem that locks with intent address.

Revocable locks [34] provide the abstraction of non-
blocking locks in a shared-memory model on a single ma-
chine. To get non-blocking semantics for locks, a thread
can revoke a lock from its current owner and direct that
lock owner’s thread to execute a predefined recovery code
block. Olive’s locks with intent are similar in spirit. How-
ever, Olive does not require that the user write and reason
about recovery logic. Also, Olive goes beyond a single-
machine context to solve issues arising from machine fail-
ure and asynchrony in a distributed system. Such a design
is crucial in Olive’s context given the distributed-systems
setting where accurate failure detection and synchroniza-
tion among clients is hard.

Exactly-once semantics and idempotence have been
recognized as critical properties in various systems
for simplifying application development and achieving
stronger semantics [35]. Exactly-one semantics has been
used as a correctness criterion for replicated services [30],
for building three-tier Web services [29], and for dis-
tributed message delivery systems [36]. It has also been
incorporated into database systems via queued transaction
processing [19]. Recognizing the power of such seman-
tics, Ramalingam and Vaswani [48] design a program-
ming language monad that uses idempotence and exactly-
once semantics to tolerate process failures and message
loss in a distributed system. However, they neither con-
sider concurrency control primitives in the presence of
failures, nor use automatic failure detection and retry
mechanisms, leading to different design decisions. For
example, in Olive’s locks with intent, we find it crucial
to track all intents associated with a locked object via
cloud storage and to let any client execute any intent in
the system. We also achieve a useful liveness property via
an intent collector, which is not covered in their work.

In more recent work, RIFL [39] implements a reusable
module to enhance the semantics of a key-value storage
system’s interface from at-least-once to exactly-once. An

application that builds atop such a storage service can han-
dle server failures more easily. Olive’s locks with intent
provide similar exactly-once semantics, but in a stronger
sense: the improved semantics are useful to tolerate fail-
ures in the application layer, and they are guaranteed for
arbitrary snippets of code rather than only for RPCs.
Besides fault tolerance and concurrency control, there
are many works that enhance other properties of cloud
services, such as the following. Tombolo [54] proposes
the use of cloud gateways to reduce the latency of cloud
data accesses. CosTLO [52] reduces the latency variance
of cloud storage services. SPANStore [51] helps develop-
ers manage the use of multiple cloud storage services, to
reduce service cost while still meeting the latency, data
consistency, and fault tolerance requirements.

8 Conclusion

Cloud applications atop distributed reliable cloud storage
services represent a new model of building fault-tolerant
distributed systems, where all coordination at the applica-
tion layer goes through cloud storage, without the need to
re-implement consensus protocols.

Devising the right programming abstraction in this
model involves the art of balancing a set of attributes,
such as simplicity, programmability, expressiveness, ef-
ficiency, and generality. Olive’s lock with intent strikes
such a delicate balance: its exactly-once semantics and
mutual exclusion property are simple to understand and
to use when reasoning about correctness; it is easy for
developers to program with because it reuses common
constructs such as locks, with an intent just as an arbi-
trary code snippet; it can be used to implement both weak
eventual consistency and strong transactional consistency,
allowing an efficient design without excessive constraints;
it is generally applicable to a set of cloud storage services
and popular distributed storage systems with the use of a
common storage APIL. The result is a powerful new prim-
itive that allows us to develop a set of useful advanced
functionalities easily, correctly, and efficiently.

Acknowledgments

We thank Mahesh Balakrishnan, Albert Greenberg, Rama
Kotla, Ashwin Murthy, and Doug Terry for creating the
Azure Replicated Table (RTable) project, which inspired
us to investigate foundational primitives for building re-
liable cloud applications. We thank John Erickson and
Matt McCutchen for introducing us to the live table re-
partitioning problem described in §4.2. We thank Sebas-
tian Angel, Natacha Crooks, Thomas Moscibroda, Lenin
Sivalingam, and the anonymous reviewers for their com-
ments and discussions, which substantially improved this
work. We are particularly grateful to our shepherd Peter
Druschel for his insightful suggestions and guidance.

References

(1]
(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]
(10]

(1]

[12]

[13]

[14]

[15]

(16]

(17]

Amazon DynamoDB.
https://aws.amazon.com/dynamodb/.

Azure Storage Pricing.
https://azure.microsoft.com/en-
us/pricing/details/storage/tables/.

Azure Table storage.
https://azure.microsoft.com/en-
us/documentation/articles/storage-dotnet-
how-to-use-tables/.

BatchWriteltem.
http://docs.aws.amazon.com/amazondynamodb/
latest/APIReference/API_BatchWriteItem.html.
CQL for Cassandra/BATCH.
https://docs.datastax.com/en/cql/3.3/cql/cql_
reference/batch_r.html.

Database Transaction Units (DTUs).
https://azure.microsoft.com/en-
us/documentation/articles/sql-database-
what-is-a-dtu/.

Entity group transactions.
https://msdn.microsoft.com/en-
us/library/azure/dd894038.aspx.

Google cloud Bigtable.
https://cloud.google.com/bigtable/docs/.
PostgreSQL. http://www.postgresql.org/.

Apache ZooKeeper.
https://zookeeper.apache.org/, 2008.

A. Adya, B. Liskov, and P. O. Neil. Generalized isolation
level definitions. In International Conference on Data
Engineering (ICDE), pages 67-78, 2000.

M. K. Aguilera, J. B. Leners, and M. Walfish. Yesquel:
scalable SQL storage for web applications. In ACM
Symposium on Operating Systems Principles (SOSP),
2015.

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. In ACM Symposium on
Operating Systems Principles (SOSP), pages 159-174,
2007.

M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A.
Lorie, P. R. McJones, J. W. Mehl, et al. System R:
relational approach to database management. ACM
Transactions on Database Systems (TODS), 1(2):97-137,
1976.

M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler,
M. Wei, and J. D. Davis. CORFU: A shared log design
for flash clusters. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 1-14,
2012.

M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,

V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: Distributed data structures over a shared
log. In ACM Symposium on Operating Systems Principles
(SOSP), pages 325-340, 2013.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil. A critique of ANSI SQL isolation levels.

(18]
[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

In ACM SIGMOD, pages 1-10, 1995.

P. A. Bernstein and E. Newcomer. Principles of
transaction processing. Morgan Kaufmann, 2009.

P. A. Bernstein and E. Newcomer. Principles of
transaction processing. Morgan Kaufmann, 2009.

M. Burrows. The Chubby lock service for
loosely-coupled distributed systems. In USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

B. Calder, J. Wang, A. Ogus, N. Nilakantan,

A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,

A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,

A. Agarwal, M. F. u. Haq, M. L. u. Haq, D. Bhardwaj,

S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure Storage: A
highly available cloud storage service with strong
consistency. In ACM Symposium on Operating Systems
Principles (SOSP), pages 143-157, 2011.

G. Candea, J. Cutler, and A. Fox. Improving availability
with recursive microreboots: A soft-state system case
study. Perform. Eval., 56(1-4):213-248, Mar. 2004.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and

A. Fox. Microreboot — a technique for cheap recovery.
In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

K. M. Chandy and C. V. Ramamoorthy. Rollback and
recovery strategies for computer programs. /[EEE
Transactions on Computers, 100(6):546-556, 1972.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. In ACM Symposium on Cloud Computing (SOCC),
pages 143-154, 2010.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 251-264, 2012.

A. Dragojevié¢, D. Narayanan, E. B. Nightingale,

M. Renzelmann, A. Shamis, A. Badam, and M. Castro.
No compromises: Distributed transactions with
consistency, availability, and performance. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 54-70, 2015.

A.J. Elmore, S. Das, D. Agrawal, and A. El Abbadi.
Zephyr: Live migration in shared nothing databases for
elastic cloud platforms. In ACM SIGMOD, pages
301-312, 2011.

S. Frglund and R. Guerraoui. Transactional exactly-once.
Technical report, Hewlett-Packard Laboratories, 1999.

S. Frglund and R. Guerraoui. X-ability: A theory of
replication. In ACM Symposium on Principles of
Distributed Computing (PODC), 2000.

H. Garcia-Molina and K. Salem. Sagas. In Proceedings of
ICMD, pages 249-259, 1987.

https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/pricing/details/storage/tables/
https://azure.microsoft.com/en-us/pricing/details/storage/tables/
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/
https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-tables/
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/batch_r.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/batch_r.html
https://azure.microsoft.com/en-us/documentation/articles/sql-database-what-is-a-dtu/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-what-is-a-dtu/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-what-is-a-dtu/
https://msdn.microsoft.com/en-us/library/azure/dd894038.aspx
https://msdn.microsoft.com/en-us/library/azure/dd894038.aspx
https://cloud.google.com/bigtable/docs/
http://www.postgresql.org/
https://zookeeper.apache.org/

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

C. G. Gray and D. R. Cheriton. Leases: An efficient
fault-tolerant mechanism for distributed file cache
consistency. In ACM Symposium on Operating Systems
Principles (SOSP), 1989.

J. Gray. The transaction concept: Virtues and limitations
(invited paper). In International Conference on Very
Large Data Bases (VLDB), pages 144—154, 1981.

T. Harris and K. Fraser. Revocable locks for non-blocking
programming. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), pages 72-82, 2005.

P. Helland. Idempotence is not a medical condition.
Communications of the ACM, 55(5):56-65, 2012.

Y. Huang and H. Garcia-Molina. Exactly-once semantics
in a replicated messaging system. In International
Conference on Data Engineering (ICDE), pages 3—12,
2001.

H.-T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database
Systems (TODS), 6(2):213-226, 1981.

L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems (TOCS), 16(2):133-169, 1998.

C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and

J. Ousterhout. Implementing linearizability at large scale
and low latency. In ACM Symposium on Operating
Systems Principles (SOSP), pages 71-86, 2015.

B. Liskov. Distributed programming in Argus.
Communications of the ACM, 31(3):300-312, 1988.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifer.
Implementation of Argus. In ACM Symposium on
Operating Systems Principles (SOSP), 1987.

D. E. Lowell, S. Chandra, and P. M. Chen. Exploring
failure transparency and the limits of generic recovery. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 20-20, 2000.

D. E. Lowell and P. M. Chen. Discount checking:
Transparent, low-overhead recovery for general
applications. Technical report, Technical Report
CSE-TR-410-99, University of Michigan, 1998.

C. Mason. Journaling with ReisersFS. Linux Journal,
2001(82es):3, 2001.

A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
and L. Vivier. The new ext4 filesystem: current status and
future plans. In Proceedings of the Linux symposium,
volume 2, pages 21-33, 2007.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on
Database Systems (TODS), 17(1):94-162, 1992.

M. A. Olson, K. Bostic, and M. 1. Seltzer. Berkeley DB.
In USENIX Annual Technical Conference (USENIX ATC),
pages 183-191, 1999.

G. Ramalingam and K. Vaswani. Fault tolerance via
idempotence. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages
249-262, 2013.

F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM

[50]

[51]

[52]

(53]

[54]

[55]

Computing Surveys (CSUR), 22(4):299-319, Dec. 1990.
S. C. Tweedie. Journaling the Linux ext2fs filesystem. In
The Fourth Annual Linux Expo, 1998.

Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha. SPANStore: Cost-effective
geo-replicated storage spanning multiple cloud services.
In ACM Symposium on Operating Systems Principles
(SOSP), 2013.

Z. Wu, C. Yu, and H. V. Madhyastha. CosTLO:
Cost-effective redundancy for lower latency variance on
cloud storage services. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2015.

C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining acid and base
in a distributed database. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 495-509, 2014.

S. Yang, K. Srinivasan, K. Udayashankar, S. Krishnan,
J. Feng, Y. Zhang, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Tombolo: Performance enhancements
for cloud storage gateways. In IEEE Conference on
Massive Data Storage (MSST), 2016.

1. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. K. Ports. Building consistent transactions with
inconsistent replication. In ACM Symposium on
Operating Systems Principles (SOSP), pages 263-278,
2015.

	1 Introduction
	2 Building cloud applications: challenges
	2.1 A common storage model
	2.2 A case study: supporting snapshots

	3 Locks with intent
	3.1 Intents: Exactly-once execution
	3.2 Mutual exclusion with exactly-once semantics

	4 Applications and experience
	4.1 Snapshots
	4.2 Live table re-partitioning
	4.3 Secondary indices
	4.4 Transactions
	4.5 Evaluation: ease of development

	5 Experimental evaluation
	5.1 Implementation
	5.2 Setup and method
	5.3 Cost of Olive's exactly-once semantics
	5.4 End-to-end performance: snapshots
	5.5 End-to-end performance: live re-partitioning
	5.6 Storage overheads
	5.7 Summary

	6 Discussion
	7 Related work
	8 Conclusion

