
Where Do Developers Log?

An Empirical Study on Logging Practices in Industry

Qiang Fu
1
, Jieming Zhu

2
, Wenlu Hu

3
, Jian-Guang Lou

1
, Rui Ding

1
, Qingwei Lin

1
,

Dongmei Zhang
1
, Tao Xie

4

1
Microsoft Research Asia,

Beijing, China

{qifu,jlou,juding,qlin,dongmeiz}
@microsoft.com

 2
The Chinese University

of Hong Kong,
HK, China

jmzhu@cuhk.edu.hk

3
Carnegie Mellon

University,
PA, USA

wenlu@cmu.edu

4
University of Illinois at
Urbana-Champaign,

IL, USA

taoxie@illinois.edu

ABSTRACT

System logs are widely used in various tasks of software system

management. It is crucial to avoid logging too little or too much.

To achieve so, developers need to make informed decisions on

where to log and what to log in their logging practices during

development. However, there exists no work on studying such

logging practices in industry or helping developers make informed

decisions. To fill this significant gap, in this paper, we

systematically study the logging practices of developers in

industry, with focus on where developers log. We obtain six

valuable findings by conducting source code analysis on two large

industrial systems (2.5M and 10.4M LOC, respectively) at

Microsoft. We further validate these findings via a questionnaire

survey with 54 experienced developers in Microsoft. In addition,

our study demonstrates the high accuracy of up to 90% F-Score in

predicting where to log.

Categories and Subject Descriptors

B.2.3 [Arithmetic and Logic Structures]: Reliability, Testing,

and Fault-Tolerance – diagnostics and error-checking

General Terms

Reliability, Standardization

Keywords

Logging practice, automatic logging, developer survey

1. INTRODUCTION
Logging is a conventional programming practice that saves

important runtime information by adding statements in source

code as shown below:

Log (level, “logging message %s”, variable);

A logging statement typically consists of a logging function and

its parameters, including text messages, variables, and a verbosity

level (e.g., fatal/error/info) to specify the severity of the logged

event.

The importance of logging can be widely identified by the various

usages of logs in software system management tasks, including

anomaly detection [26, 27], error debugging [8], performance

diagnosis [11, 24], workload modeling [17], system behavior un-

derstanding [28], etc. Additionally, its importance is also reflected

by our survey results with 54 experienced developers in Microsoft

(more details on the survey are in Section 2). Almost all the

participants (96%) strongly-agree/agree that logging statements

are important in system development and maintenance. About

96% of the participants think that logs are a primary source for

problem diagnosis. Furthermore, 93% of the participants answer

that they take good consideration in practice when adding a

logging statement.

Given the importance of logging, it is crucial to avoid logging too

little, which may miss necessary runtime information (e.g., error

sites) needed for postmortem analysis. On the other hand, it is also

crucial to avoid logging too much for three main reasons. First,

logging incurs both system runtime overhead (e.g., CPU

consumption and I/O operations) and storage cost. For instance,

one of our studied software systems produces about 2 gigabytes of

logs per machine per day on average. Second, arbitrarily placed

logging statements likely generate a lot of trivial logs that may be

redundant or useless, thus masking the truly important

information in logs. Third, logging itself incurs cost of code

development and maintenance.

To avoid both logging too little and logging too much, developers

need to make informed decisions on where to log and what to log

in their logging practices during development. However, to the

best of our knowledge, there exists no work on studying such

logging practices in industry (e.g., how such decisions are made in

practice) or helping developers make informed decisions.

To fill this significant gap, in this paper, we systematically study

the logging practices of developers in industry, with focus on

where developers log. Where to log has a great impact on log

quality because logging locations reveal execution code paths,

which have been shown helpful in postmortem analysis [23]. This

study helps understand the current logging practices of developers

and serves as the first step towards improving the logging

practices in industry.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page. To copy other-

wise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India.

Copyright 2014 ACM 978-1-4503-2768-8/14/05 …$15.00.

Our study considers developers’ logging behaviors from the point

of view of each logging statement and its logged code snippet.

Such logged code snippet is a block of source code whose

behavior the logging statement intends to log. In the study, we

investigate where to log by studying whether to log for a code

snippet, through the following three research questions:

RQ1: What categories of code snippets are logged? Specifically,

we intend to investigate the logging statements and their logged

code snippets to figure out the categories of the logged snippets.

RQ2: What factors are considered for logging? Specifically, what

are characteristics of logged code snippets and unlogged code

snippets, respectively? What factors do developers consider to

determine whether to log or not?

RQ3: Is it possible to automatically determine where to log? In

particular, is it potentially feasible to implement a logging-

suggestion tool to assist developers to determine where to log?

Our study includes both source code analysis and a questionnaire

survey with developers in Microsoft. In particular, we select two

industrial software systems at Microsoft for study. These two

systems have been deployed to serve users globally for a long

time, and their logging instrumentation has been well tuned and

refined.

Through detailed source code analysis on these software systems,

we obtain a number of insightful findings regarding the logging

practices of developers. Furthermore, we validate these findings

with survey responses from 54 experienced developers in

Microsoft. The results of our study show that there are generally

five categories of logged snippets (Finding 1), in which about half

of them are used to record unexpected situations (e.g., exceptions

or function return errors), and the other half records normal

execution information at critical execution points (Finding 2).

Developers add logging statements to only a small percentage of

situations related to exceptions or checked function calls (Finding

3), by considering factors such as exception types and context

information (Findings 4~5). In addition, we evaluate the potential

feasibility of predicting whether to log for a code snippet. The

high prediction accuracy implies that predicting where to log is

feasible (Finding 6).

In summary, our paper makes the following main contributions:

 We conduct an empirical study on logging practices in industry

by both source code analysis for industrial software systems

and a questionnaire survey with 54 experienced developers in

Microsoft.

 We summarize five categories of logged snippets, including

assertion-check logging, return-value-check logging, exception

logging, logic-branch logging, and observing-point logging,

covering all the scenarios of logging observed in our study.

 We characterize both logged and unlogged code snippets of

catch blocks and return-value-check snippets, in which we find

important factors on logging decisions, such as exception type

and context factors.

 We demonstrate the potential feasibility of predicting where to

log, which is valuable for further exploration.

The rest of this paper is organized as follows. Section 2 introduces

our study methodology. Sections 3-5 discuss three research

questions on what categories of code snippets are logged, what

factors are considered for logging, and the feasibility of predicting

where to log. Then Section 6 suggests some potential directions

for improving logging practices. Sections 7 and 8 discuss threats

to validity and related work, respectively, and finally Section 9

concludes this paper.

2. STUDY METHODOLOGY
In our study, we investigate two large industrial software systems,

denoted as System-A and System-B, respectively, for the sake of

confidentiality. Both of them are online service systems deployed

globally in Microsoft data centers to serve a huge number of users.

These online service systems provide rich features to enable

diverse use scenarios, thus gaining high complexity. Table 1

presents the details of the two software systems. Both of them are

selected due to their high popularity and long history of

development. In addition, to allow the research community to

reproduce or apply our study methodology on other systems, on

our project website1 , we release the detailed study materials and

results of applying our study methodology on MonoDevelop, a

large open-source project with 9 years of development history.

Table 1. Details of the studied software systems

Software

systems
Description LOC

of logging

statements

% logging

statements

System-A Online service 2.5M 23.5K 0.94%

System-B Online service 10.4M 95.3K 0.92%

The development of the two systems was supposed to incorporate

good logging practices for two reasons. First, these systems have

been serving users worldwide for a long time, and their generated

logs have successfully met the requirement of system testing,

debugging, and operating. Second, our previous work [7] studied

the logs of one of the systems, and proposed a solution for

effectively diagnosing system failures by using the logs, indirectly

reflecting the high quality of the logs.

Most parts of the two studied software systems are written in the

C# programming language. While some other languages (e.g.,

ASP, C) exist in these systems, we focus on only the C# parts. C#

is an object-oriented programming language that supports the

exception-handling mechanism. In C#, the common practice of

error handling is throwing exceptions instead of returning error

codes. Thus, exceptions attract a lot of attention in our study.

We characterize the logging practices from both quantitative and

qualitative aspects: statistical source code analysis and empirical

developer survey.

Source Code Analysis. We first investigate the logging character-

istics from the point of view of source code. To achieve this goal,

we analyze the logging statements and their logged code snippets

through both manual inspection and automatic analysis via a static

analysis tool.

Because logging statements and their logged code snippets are

quite diverse, we first define feasible criteria for categorizing

logged snippets to make each category coherent for detailed in-

depth category-specific analysis.

In order to identify factors that developers consider to determine

where to log, we further characterize both logged and unlogged

code snippets, especially for catch blocks, to reveal detailed log-

1http://research.microsoft.com/en-us/projects/loggingpractice/
default.aspx

http://research.microsoft.com/en-us/projects/loggingpractice/default.aspx
http://research.microsoft.com/en-us/projects/loggingpractice/default.aspx

ging statistics. We further extract the identified logging factors as

key features to predict where to log.

For our study, we develop automatic C# code analysis based on

Roslyn [16], a static analysis tool released by Microsoft. By lever-

aging Roslyn, we conduct both syntax analysis and semantic anal-

ysis for source code.

Developer Survey. To further validate and elaborate our findings

from source code analysis, we conduct a questionnaire survey, as

well as some follow-up discussions via emails, with developers in

Microsoft.

The questionnaire (available on our project website1) consists of

21 questions, which can be divided into four parts, including

background information of participants, importance of logging,

current logging practices, and improving current practices. While

most of the questions have a list of choices, the participants can

also write down their additional answers in a free-text form. Addi-

tionally, some open-ended questions are provided to enable the

participants to add or elaborate their own ideas.

This questionnaire survey was conducted in August 2013, and we

received 54 survey responses from developers with an average of

5.3 years of working experience at Microsoft. The participants

work on various types of products including standalone desktop

applications (9%), Web applications (20%), mobile applications

(3%), software/Web services (59%), and some others (9%). When

necessary, follow-up discussions were also held with participants

via emails to help us understand their survey answers.

3. CATEGORIES OF LOGGED SNIPPETS
To understand the logging practices in terms of where to log, the

first step is to investigate what categories of code snippets are

usually logged (RQ1). We answer RQ1 with two steps to make

the categorization effort manageable: (1) manually categorizing a

randomly sampled set of logging statements and their logged code

snippets; (2) automatically classifying the full set of logging

statements and their logged snippets into those categories via a

static analysis tool.

3.1 Manual Categorization
We randomly sampled 100 logging statements from source code

of System-A, and manually examined each logging statement and

its logged code snippet to conduct categorization. Based on the

syntax and structure of each logged snippet, we identified five

categories. Table 2 presents the category names and the number of

samples in each category.

Table 2. Categories from 100 sampled logged code snippets

Category Samples #Votes % of
votes

Unexpected

situations

 Assertion-check logging 19/100 27/54 50%

 Return-value-check logging 14/100 34/54 63%

 Exception logging 27/100 43/54 80%

Execution

points

 Logic-branch logging 16/100 36/54 67%

 Observing-point logging 24/100 44/54 81%

We next illustrate the details of each category as below:

(1) Assertion-check logging. In this category, developers use

Assert (or similar functions) to perform assertion checking in the

source code to identify errors. Failed assert statements automati-

cally log the failure messages before execution termination.

Example 1 in Figure 1 illustrates a real-world logging statement in

this category to assert whether site is null. Out of the 100 samples

in our study, 19 samples belong to this category.

/* Example 1: Assertion-check logging */

ULS.AssertTag(site != null, "site cannot be null");

/* Example 2: Return-value-check logging */

if (String.IsNullOrEmpty(tokenReference))
 ULS.SendTraceTag(ULSTraceLevel.Unexpected, "Missing token reference
value.");

/* Example 3: Exception logging */

try {
 RemoveOfflineAddressBooks();
}
catch(AccountUnauthorizedException e) {
 Logger.LogMessage("Removing failed with exception: {0}", e);
}

/* Example 4: Logic-branch logging */

if (instanceName.IsSqlExpressInstalled) {
 Tracer.TraceLogInfo("Detect sql express instance. No need to in-
stall.");
}
else {
 Tracer.TraceLogInfo("No sql express instance. Do fresh install.");
 res = SqlCleanInstall();
}

/* Example 5: Observing-point logging */

Tracer.TraceLogInfo("Creating the tab order for form {0}", base.Name);

Figure 1. Real-world examples of logging statements

(2) Return-value-check logging. In this category, logging

statements are used to log potential function return errors after

performing a return-value check. We find that incorrect return

values of function calls (e.g., system/library calls) are widely used

indicators of potential errors. It is a common practice to have a

check on the return value of a function call, as illustrated by

Example 2. By explicitly checking for contingencies using special

return values (e.g., -1, false, null, and empty), developers can

identify the unexpected errors (e.g., the null or empty token

reference in Example 2) and log them accordingly. In our study,

14 samples belong to this category.

(3) Exception logging. In this category, developers log the

exception context after an exception occurs (e.g., in a catch block

or right before a throw statement). Exceptions are widely used

mechanisms to capture errors in modern programming languages

(e.g., C#, Java). Example 3 depicts a detailed example of

exception logging, in which the exception thrown by function

RemoveOfflineAddressBooks is captured in the try bock and then

logged in its corresponding catch block. 27 samples in our study

belong to this category.

(4) Logic-branch logging. In this category, logging statements

are leveraged to record the runtime execution information at logic

branch points, i.e., the code execution path. Logic branches in

source code are typically generated by using a branch statement

such as if or switch, which leads to different code execution paths.

Log messages at critical branch points can help identify causally-

related code execution paths and facilitate backward inference for

root-cause identification of failures. Example 4 provides one of

the 16 samples in this category, in which two branches are both

logged to record the execution-path information.

(5) Observing-point logging. Except the above-mentioned

categories of logged code snippets, we categorize all the other

logged code snippets as observing-point logging. This category

Table 3. Categorization criteria

Category Criteria

Assertion-check logging The logging statement is triggered by an Assert statement.

Return-value-check logging

The logging statement is contained in a clause following a branch statement (e.g., if, if-else, switch), while one or more

function return values are checked in the branch condition. In addition, the logging statement is not enclosed by any catch

block within the clause.

Exception logging The logging statement is contained either in a catch block or right before a throw statement.

Logic-branch logging
The logging statement is contained in a clause following a branch statement (e.g., if, if-else, switch), while the branch con-

dition does not contain any check on a function return value.

Observing-point logging All the other situations that exclude the above categories.

has various scenarios for logging. It may log at the entry/exit point

of a function, record an important transaction, and report critical

events (e.g., heartbeats) to ensure that the system is running as

expected. We consider these logging points as observing points to

observe and understand the runtime states of systems. In our study,

24 samples belong to this category.

In summary, we find that the first three categories of logged code

snippets record unexpected situations that should not occur in

normal executions, while the last two categories record normal

execution information at critical execution points. In summary,

two types of information are usually recorded:

 Unexpected situations. Assertion check, return-value check,

and exceptions (i.e., the first three categories) are usually used

to identify the unexpected situations, where the system

potentially runs into an error. These points are typically logged,

since the generated logs are greatly helpful in identifying error

sites of the system when a failure happens.

 Execution points. Logic branch points and other observing

points are informative execution points of the code flow. As a

result, recording important execution information (e.g.,

execution path, system runtime states) by logging at these

critical execution points can facilitate root-cause identification

of an occurred failure.

In practice, when a failure occurs, developers usually identify the

error site from the logs related to unexpected situations, and then

trace back to identify the root cause of the failure based on the

logs that record code execution path and states at a series of

important execution points.

Survey results. To obtain developers' opinions about the

identified categories, we have two questions in our developer

survey.

First, we ask participants to tick the most common categories

among the categories we have identified from the above manual

categorization (via a multiple-choice question). The result is pro-

vided in Table 2 as “#Votes”, which indicates the number of

participants who consider the category as common. “% of votes”

is the ratio between “#Votes” and the total number of participants.

The top two with the highest votes are exception logging and

observing-point logging, which suggests the great importance and

ubiquity of recording exception context and runtime information

of critical execution points.

Second, the participants are asked to list any additional categories

not covered by our categorization. In the collected responses,

some participants stated that calling an external component (e.g.,

RPC call or SQL request) is usually logged. Actually, we

categorize this case into the observing-point logging. Another

response is that entry/exit points of critical function calls are

usually logged to record latency. Similarly, we also consider this

case as observing-point logging. In fact, observing-point logging

can be further divided into multiple sub-categories, which we plan

to investigate in our future work.

3.2 Automatic Categorization
In this subsection, we study the distribution of different categories

of logged snippets in our studied software systems. For a logging

statement, the categorization criteria are defined based on the syn-

tax and structure of its logged code snippet. Table 3 shows the

formal syntax definitions that describe how to automatically iden-

tify each category in source code.

For any given logging statement and its logged snippets, we ex-

amine whether they satisfy one of the five criteria one by one,

from assertion-check logging to observing-point logging with the

order in Table 3. Note that all these criteria are checked within the

scope of the function that contains the logging statement. Once a

logging statement and its logged snippet are judged as satisfying

one criterion, the logged snippet is categorized into the corre-

sponding category, and is not further checked against the remain-

ing subsequent conditions.

Table 4. Categorization of logged snippets

Category System-A System-B

Assertion-check 5,476 (23%) 20,186 (21%)

Return-value-check 2,716 (12%) 8,959 (9%)

Exception 4,333 (18%) 8,399 (9%)

Subtotal:
Unexpected situations 12,525 (53%) 37,544 (39%)

Logic-branch 3,807 (16%) 16,658 (18%)

Observing-point 7,170 (31%) 41,138 (43%)

Subtotal:
Execution points 10,977 (47%) 57,796 (61%)

Total 23,502 95,340

Table 4 presents the categorization results. It is observed that all

categories of logged snippets are pervasive in the two software

systems. The category of observing-point logging has the highest

number of logged snippets among the five categories, since this

category contains various logging scenarios. In addition, almost

half (39%~53%) of logged snippets are used to handle unexpected

situations and record the needed information, while the other half

Finding 1: There are five categories of logged code snippets,

i.e., assertion-check logging, return-value-check logging, excep-

tion logging, logic-branch logging, and observing-point logging.

(47%~61%) record execution information at critical execution

points, reflecting their importance in log analysis.

In the subsequent sections, we focus on logging characteristics of

unexpected situations, because they usually indicate error sites,

and take up about half the logged snippets. Although logging at

critical execution points is also important, especially for identify-

ing root causes, it is not the focus of this paper. In fact, identifying

root causes is a subsequent problem after finding error sites,

which we leave for our future work.

4. FACTORS FOR LOGGING DECISION
Unexpected situations are often exposed under some typical pat-

terns (i.e., assertion check, return-value check, and exception).

Among these typical patterns, we mainly focus on two of them:

catch blocks and return-value check. We do not study assertion-

check snippets because all of the assertions are actually logged.

For clarity, we denote code snippets of catch blocks and return-

value-check snippets as focused code snippets.

Note that NOT every focused code snippet reveals an unexpected

situation and is worth logging. For example, not all exceptions are

unexpected. In many cases, exceptions are caught to indicate

normal branch conditions, thus not being logged, as shown in

Section 4.3.

We extract all the focused code snippets (i.e., catch blocks and re-

turn-value-check snippets) from source code, and further analyze

what factors are considered for logging (RQ2) at certain focused

code snippets, by characterizing both logged code snippets and

unlogged code snippets, respectively. In more details, Section 4.1

discusses the overall logging statistics of focused code snippets.

Section 4.2 and 4.3 present the in-depth analysis on logged and

unlogged focused code snippets, respectively. Finally, Section 4.4

discusses some other factors such as contextual information.

4.1 Logging Statistics of Focused Code Snippets
We extract every catch block from the source code, and record its

corresponding exception type. For instance, AccountUnauthorize-

dException is the exception type of the catch block in Example 3

of Figure 1. Especially, for those catch blocks with no explicitly

specified exception types (i.e., no arguments in their catch

statements), we denote their exception types as System.Exception.

Then, we identify whether a catch block is logged by checking the

existence of any logging statement in it. Similarly, for return-

value-check code snippets, we identify all the function call sites in

the source code, and record their function types. Note that we

refer to a function type as a function prototype, e.g., bool

String.IsNullOrEmpty(string) in Example 2 of Figure 1. We then

check whether the return value of each function is checked in an if

or switch statement. If checked, we further identify whether it is

logged.

Table 5 shows the detailed statistics of catch blocks and return-

value-check snippets. About 30%~42% of catch blocks are logged,

while the logging ratio of checked function-call sites is only

8%~9%. The results show that only a small portion of focused

code snippets are logged in practice.

We next study the detailed characteristics of logged/unlogged

catch blocks and return-value-check snippets, respectively.

However, we report the results for only catch blocks here due to

the space limit, whereas the findings on return-value-check

snippets are similar.

Table 5. Logging statistics of unexpected situations

Statistics System-A System-B

Catch

block

Exception types 225 1657

Catch blocks 7,582 21,656

Logged catch blocks 3,222 (42%) 6,410 (30%)

Return

value

check

Function types 21,813 155,444

Function call-sites 131,390 723,691

Checked call-sites 34,464 104,167

Logged call-sites 2,716 (8%) 8,959 (9%)

4.2 Characterizing Logged Catch Blocks
To further understand the logging characteristics of catch blocks,

we conduct an in-depth analysis on logged catch blocks with re-

gard to exception types, considering that an exception type indi-

cates one type of unexpected situations with specific semantic

meanings. For a certain exception type, we count its correspond-

ing number of catch blocks, and the number of logged catch

blocks as well. Based on these numbers, we derive the logging ra-

tio of each exception type, i.e., the number of logged catch blocks

divided by the number of catch blocks in each exception type.

0%

15%

30%

45%

60%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f
E

x
c
e

p
ti
o

n
 T

y
p

e
s

Logging Ratio

 System-A

 System-B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 2. The distribution of exception types over logging ratio

0%

15%

30%

45%

60%

75%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f
C

a
tc

h
 B

lo
c
k
s

Logging Ratio

 System-A

 System-B

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 3. The distribution of catch blocks over logging ratio

Figure 2 illustrates the distribution of exception types with respect

to the logging ratio at an interval of 10%. For better visualization,

we normalize the number of exception types into the correspond-

ing percentage out of the total number of exception types, as

shown in the vertical axis. Note that all the numbers are calculated

separately for the two software systems. As we can observe, a

large percentage of exception types have either quite high (>90%)

Finding 2: About half of the logged snippets are logged due to

unexpected situations, while the other half are due to recording

normal execution information at critical execution points.

Finding 3: Only a small portion of focused code snippets are

logged, including 30%~42% of the catch blocks and 8%~9% of

the checked function-call sites. This observation (i.e., not all the

focused code snippets need to be logged) calls for examination

of the validity of the assumption made by Errlog [20].

or quite low (<10%) logging ratios. Specifically, an exception

type with a high logging ratio means that developers log nearly

every catch block of this exception type (e.g., System.OutOfMe-

moryException, and Microsoft.BusinessData.Runtime.Authentic-

ationException in Software-A). In contrast, an exception type

with a low logging ratio indicates that the catch blocks with this

exception type are rarely logged (e.g., Microsoft.DuplicateValues-

FoundException, System.EntryPointNotFoundException in Sys-

tem-A). Consequently, these exception types have high correla-

tion (i.e., either positive correlation or negative correlation) with

the logging decisions of developers.

Additionally, we present the distribution of catch blocks across

the logging ratio corresponding to each exception type in Figure 3.

The vertical axis is also normalized to the percentage of catch

blocks. It is shown that most of the catch blocks (including 91%

in System-A and 82% in System-B) correspond to the exception

types with a medium logging ratio, i.e., 10%~90% in our study.

Only a small portion of catch blocks have exception types with

quite high (>90%) or quite low (<10%) logging ratios. For exam-

ple, in Software-A, 35% (79/225) of the exception types have low

logging ratios, but the percentage of catch blocks with these ex-

ception types is only 3% (247/7,582).

These results indicate that although there are many exception

types highly correlated with logging, they actually take up only a

small portion of catch blocks. In other words, developers do not

make the logging decisions merely based on the caught exception

types for most of the catch blocks.

Survey results. To validate this result, we ask participants what

factors they often consider to log in a catch block. The answers

indicate that 57% of participants take the exception type as an im-

portant factor for logging, while some other factors are also con-

sidered (see Figure 5).

4.3 Characterizing Unlogged Catch Blocks
In this section, we focus on those unlogged catch blocks, in order

to investigate factors for not logging, i.e., potential reasons why

developers do not log in a specific catch block.

According to the results in Table 5, the majority of catch blocks

(e.g., 58% in System-A) are not logged in practice. We randomly

select 70 unlogged catch blocks from System-A to characterize

potential reasons of not logging.

We summarize the reasons by examining the related code snippets

and understanding the code logic. In many cases, we are able to

understand the code logic by reading only the specific function

that contains the catch block. However, for some complicated

samples, we need to further read the caller functions or ask for the

help of code owners in order to understand the code logic.

Table 6 summarizes three categories of reasons, as well as their

corresponding distribution over 70 samples. We next provide the

description on each of these categories.

Table 6. Reasons of NOT logging in catch blocks

Reasons of not logging Samples
% of

samples
#Votes % of

votes

Logging decisions are made

by subsequent operations
29/70 41% 34/54 63%

Exceptions are not critical 32/70 46% 7/54 13%

Exceptions are recoverable 9/70 13% 17/54 31%

/* Example 6: An exception used to determine logic branch*/
void AccountConfig(MONOAccount user, string propertyName) {
 ...

bool userHasRights = true;
 try {
 user.DeleteAccountProperty(propertyName);
 }
 catch (UnauthorizedAccessException) {
 userHasRights = false;
 }
 if (userHasRights) {
 ...
 }
}

/* Example 7: An exception re-thrown */

try {
Type t = Type.GetTypeFromID(guid);
object instance = Activator.CreateInstance(t);

}
catch (Exception e) {

throw new TestFailedException("Fail to create Com interface.\t: "
+ Tester.GetExceptionDetails(e));

}

/* Example 8: An exception recovered by retrying */

void DWAppOverride(...) {
 ...

 Uri UriNew = null;
 try {
 UriNew = new Uri(wApp);
 }
 catch (UriObjectFormatException) {
 // Assume http is the scheme and the URL param is the machine name
 if (UriNew == null) {
 try {
 UriNew = new Uri("http://" + wApp);
 }
 }
 }

}

Figure 4. Real-world examples of unlogged catch blocks

(1) Logging decision is made by subsequent operations. 29

samples are not logged because the catch blocks only execute

some operations (e.g., setting properties/flags, re-throwing the ex-

ceptions or returning special values to their caller) to indicate ex-

ceptional states; while their subsequent operations determine

whether to log for the exceptional states under certain context.

Example 6 in Figure 4 provides an example of this category in

which the catch block is used to catch the “UnauthorizedAcces-

sException” exception. Then, the program sets the flag “us-

erHasRights” to false, and then directs the execution to the subse-

quent logic branch. In Example 7, the caught Exception e is re-

thrown to its caller as a TestFailedException, and its callers de-

termine whether to log the exceptions at a higher level.

(2) Exceptions are not critical. 32 samples are not logged be-

cause the caught exceptions do not have critical impacts on sub-

sequent executions. For example, the execution on a code snippet

continues normally to process the input requests even though an

exception is thrown by a subtask.

(3) Exceptions are recoverable. 9 samples are not logged be-

cause the caught exceptions are recoverable, and the system exe-

cutes the recovery actions to cope with these exceptions. Accord-

ing to our examination, we find two kinds of recovery actions: (a)

Finding 4: Many exception types have high correlations with

developers’ logging decisions in their catch blocks. However,

the catch blocks corresponding to such exception types take up

only a small portion of catch blocks. In other words, most catch

blocks correspond to the exception types that are not highly cor-

related with developers’ logging decisions.

the system retries the same or alternative operations for the same

purpose until it succeeds or exceeds the maximal retry times (or

time limit) and thus throws a new exception; (b) instead of retry,

the system executes exception-handling operations, to bypass the

failed operations. Example 8 illustrates an example of an excep-

tion recovered by retry. When the program fails to create an Uri

object, it uses the default scheme http to create the object again.

Survey results. To obtain developers' opinions about the reasons

of not logging, we ask participants to tick the most common ones

based on the categories we have found from the above manual ex-

amination of unlogged snippets (via a multiple-choice question).

The result is provided in Table 6 as “#Votes”, which indicates the

number of participants who consider the reason category as com-

mon. The first category has the highest votes, while the second

category has the lowest votes, since it is actually difficult to iden-

tify whether the exception is critical, which largely depends on the

domain knowledge of developers.

In addition, the participants are asked to write any additional rea-

sons of not logging. No additional category of reasons is identi-

fied from their detailed answers.

4.4 Other Factors for Logging Decision
From the preceding analysis, we observe that developers do not

make a logging decision according to only the caught exception

type (Finding 4). In addition, contextual information, such as

whether the caught exceptions are critical or recoverable, is also

taken into consideration (Finding 5). In other words, the decision

to log for a code snippet is often highly related to the semantic

functionality of the whole code snippet.

To validate this intuition, we conduct a case study by investigat-

ing 20 samples randomly sampled from the catch blocks with

FileNotFoundException in System-A. The overall logging ratio

for the catch blocks with FileNotFoundException is 35%. After

examining the source code of these 20 code-snippet samples, we

found that some contextual keywords are highly correlated to the

decisions on whether to log a code snippet. For example, for try

blocks containing the keyword “delete”, the exceptions of File-

NotFoundException are often not logged. The reason is that if the

main task of a try block is to delete a file, it does not bring a nega-

tive effect for ignoring the message “the file does not exist” (i.e.,

FileNotFoundException). In our case study, there are also some

other extracted keywords that are highly related to logging deci-

sions, e.g., “remove” (20%), “load” (100%), “get” (100%), where

the numbers denote their corresponding logging ratios.

Survey results. To further facilitate our understanding in how de-

velopers usually make logging decisions, we have two specific

questions in our survey: what scope of source code and what fac-

tors do developers mostly consider to determine whether to log?

For the source-code scope, we present the survey results in Figure

5(a). The results show that most of the participants consider in the

scope of function level (69%) and block level (61%). In other

words, when encountering an exception, the function containing

the exception (function level) or the corresponding try block

(block level) is likely considered. Others such as the statement

that throws the exception (statement level), the class containing

the exception (class level), and the whole application logic (appli-

cation level) are less considered by developers. With regard to the

decision factors as shown in Figure 5(b), most participants con-

sider the exception type (57%) and the function calls related to the

exception (46%). In contrast, other factors, such as the related

variables (37%), exception-handling operations (31%), security

factors (20%), and performance overhead (28%), are less consid-

ered for logging decision.

(a) Scope

(b) Factors

Figure 5. Scope and factors considered for logging decision

5. AUTOMATIC LOGGING
Based on the findings described in Section 4, it is valuable to

know whether it is possible to automatically predict where to log.

If possible, such automatic prediction on where to log would

greatly reduce the effort that developers spend on logging deci-

sion, and also improve their logging practices. In this section, we

propose an automatic classification approach to predict whether to

log for a code snippet, in order to demonstrate the potential feasi-

bility of predicting where to log (RQ3).

This approach extracts the contextual information as features, and

learns a classifier from the training code snippets. With the

learned classifier, the approach predicts whether new code snip-

pets need to be logged.

To achieve this goal, we need to first extract the contextual infor-

mation related to logging decisions. Through our study, we find

that the source code in our studied software systems is in good

coding styles. Most of the functions, identifiers, etc., are well

named using related semantic keywords in a good format. Conse-

quently, in most cases, the functionality of a code snippet can be

well understood based on the names of all the functions in this

code snippet, the name of the function containing this snippet, the

name of the class containing this snippet, and the keywords of the

surrounding comment strings (if they exist). Therefore, we extract

and segment these names and strings to a bag of words, and use

them as features to learn a classifier for prediction of where to log.

Finding 5: The majority (58%~70% shown in Table 5) of catch

blocks are not logged mainly because (1) passing the logging de-

cision to subsequent operations, (2) exceptions are recoverable,

and (3) exceptions are not critical.

More specifically, the approach is designed as a two-step proce-

dure as follows.

Step1: Extracting contextual keywords. For each code snippet

(i.e., try-catch block or return-value-check snippet), we denote the

function that contains this snippet as its container function and the

class containing this snippet as its container class. To extract the

contextual keywords, we segment all names of the functions in

each code snippet, as well as its container function name and its

container class name, into a set of separate words. Specifically, for

a catch block, we extract function names from the corresponding

try block; while for a return-value-check snippet, we extract all

the function names from the beginning of the container function

to the statement of return-value check. As almost all the names

used in our studied systems are well formatted (i.e., separating

words using capital letters), we employ the following simple yet

effective technique to address the word-segmentation problem: (a)

We use Roslyn to transform the instance name to its prototype

name. For example, the function name “user.DeleteAccountProp-

erty” in Example 6 is transformed to “MONOAccount.DeleteAcc-

ountProperty”. (b) We leverage the locations of upper-case letters

and non-letter characters (e.g., dot or underscore) to split the

name into words. Especially, for consecutive capital letters, we

take them together as a single word (e.g., “MONO”). (c) Normal-

ize each word to its lower-case format. In the preceding example,

the function name is segmented and normalized into four words,

i.e., “mono”, “account”, “delete” and “property”. Meanwhile, we

calculate the term frequency for each word. For example, in the

above example, the frequency of the word “account” is 3 (twice in

the function name in the try block and once in its container func-

tion). As a result, we obtain a bag of (contextual) words and their

corresponding term frequency as features for each code snippet.

Note that other sophisticated techniques (e.g., stemming, stop-

ping-word removal) can also be used to further enhance the accu-

racy of contextual keyword extraction.

Step2: Learning logging classifier. Each code snippet is labeled

as one of the two classes: logged/unlogged. As observed in Table

5, the logged code snippets are much fewer than the unlogged

snippets (i.e., unbalanced classes). Therefore, we use the subsam-

pling technique to address this problem. In other words, we ran-

domly sample the unlogged code snippets to get an equal number

with logged snippets. Then we feed these features with their labels

into a decision-tree learner C4.5 [15] to learn a classifier. As a re-

sult, the logging status of each testing code snippet can be pre-

dicted as logged or unlogged by this classifier. Note that we ex-

tract only the function names and class names as features in our

evaluation, since we find that the semantic functionality of a code

snippet generally can be well denoted by their related functions,

while all the others such as variables and parameters likely in-

crease noises.

Result analysis. We employ the 10-fold cross-validation [29] to

evaluate the accuracy of our prediction. Two groups of experi-

ments are conducted, while one group uses the exception type

(catch block)/function type (return-value-check snippet) as fea-

tures, and the other group enriches these features with the extract-

ed contextual keywords by following the preceding procedure.

Table 7 provides the experimental results with respect to both

catch blocks and return-value-check snippets in our studied soft-

ware systems. Metrics including precision, recall and F-score are

used to evaluate the prediction accuracy. As we can see, the sec-

ond group of experiments outperforms the first group of experi-

ments, which achieves high precision of 81.1%~90.2% and high

Table 7. Prediction results

Logging decision

factors
Metrics

System-A System-B

Catch
block

Return-
value-check

Catch
block

Return-
value-check

Type

(Exception type

 /Function type)

Precision 0.700 0.792 0.614 0.860

Recall 0.785 0.724 0.812 0.766

F-Score 0.740 0.757 0.699 0.810

Type & Contex-

tual information

Precision 0.902 0.870 0.811 0.882

Recall 0.899 0.899 0.808 0.904

F-Score 0.901 0.884 0.809 0.893

recall of 80.8%~90.4%. The results show that, in contrast to using

only type information (exception type/function type), by using a

simple processing of contextual information, we are able to cover

as many worth-logging points as before, and decrease false posi-

tives, leading to fewer noisy, unhelpful logs at runtime. The re-

sults further demonstrate that both the type information and the

contextual information are useful for logging decision.

The experimental results demonstrate the potential feasibility of a

logging-support tool that would enable automatic logging deci-

sion/suggestion if implemented. We believe that, with some pow-

erful NLP techniques [9], it is possible to further improve the pre-

diction accuracy by extracting significant features from the con-

text and semantics of the code snippets. However, it is outside the

scope of this paper and we leave it for future work.

6. IMPROVING CURRENT PRACTICES
In our survey, we provide an open-ended question to ask partici-

pants to describe their needs or suggestions for improving current

logging practices. By analyzing their valuable feedback, we next

summarize a number of directions that deserve further exploration

for improving current logging practices.

Automatic logging tool for developers. As mentioned in Section

1, logging is important in system development and maintenance.

However, a great challenge faced by developers is making logging

decision on where to log. Neither logging too much nor logging

too little is desirable. Consequently, developers are in great need

of automatic logging tool support. As one participant explicitly

stated, “…need to be more automatic for writing logs, instead of

writing all by myself.” In this regard, despite its simplicity, our re-

sult on logging prediction in Section 5.2 demonstrates the poten-

tial feasibility of automatic logging. Indeed, more research efforts

are needed in future work.

On-demand logging in production. Traditionally, logging state-

ments are statically inserted to source code, and print log messag-

es at specific fixed program locations. However, this type of log-

ging has drawbacks. First, it may generate too many useless logs,

in which valuable logs may be obscured by the heavy noises. Sec-

ond, fixed program locations for logging may miss valuable in-

formation necessary for investigation. One promising direction is

to log on demand. That is, each program location for logging can

be dynamically enabled (or disabled) to generate logs when a spe-

cific condition is satisfied (or not satisfied). For example, at a log-

ging point of a Remote Procedure Call (RPC), only latency above

Finding 6: A classifier learnt using type information and contex-

tual information as features achieves good prediction accuracy

on whether to log for a code snippet.

a threshold value is symptomatic for logging as a performance

anomaly, whereas latencies of normal calls can be ignored. Note

that DTrace [4] can be a potential solution towards on-demand

logging.

End-to-end tracing. Modern software systems are generally

composed of various components, which may be deployed as dis-

tributed systems. As one participant stated, “The logs we are us-

ing are still points in the timeline, not containing calling se-

quences, especially for asynchronous calls.” To address this prob-

lem, end-to-end tracing can provide a detailed picture of how a

request was serviced through the whole system, and thus can as-

sist in understanding the behaviors of a complex system.

Log filtering. “I think we are doing too much logging on redun-

dant stuff that is useless…” With a system scaling up, more and

more logs are produced, e.g., at a rate of about 50 gigabytes

(around 120-200 million lines) per hour [10]. Hence, finding use-

ful information under the huge volume of logs is referred to collo-

quially as “finding the needles in the haystack”. Two solutions

can be used for removing redundant logs: logging on-demand and

filtering logs by employing post-processing.

Log categorization. “Logs should be categorized by source, type,

and function.” Log categorization can help achieve better log un-

derstanding and postmortem analysis. Consequently, a good log-

ging infrastructure should offer the ability of automatic categori-

zation. One such good example is the Unified Logging System

(ULS) in Microsoft, which supports automatic tagging of logs,

such as event ID and request ID. With these automatically record-

ed tags, logs can be easily categorized with respect to an event

type or a request. However, more of such similar infrastructure

features are needed. For example, since we have more and more

cross workloads, it would be quite helpful for troubleshooting if

logs can be correlated to different workloads (i.e., request type).

Log analysis and visualization. Log analysis and visualization

are an important step in log management. “We need more power-

ful tool to view log.” Due to lacking deep knowledge of the sys-

tem behaviors, system administrators can benefit from automatic

tool support for log search, log analysis, and log visualization.

However, because logs may usually be distributed in different ma-

chines and have a huge volume, how to query and visualize large-

scale logs efficiently and effectively is challenging. Existing work,

such as the commercial Splunk [18] tool, and open-source

Logstash [6] and Kibana [5] tool, has provided initial solutions

towards this goal.

7. THREATS TO VALIDITY
Threats to internal validity. Subjectiveness in the categorization

of logged snippets is inevitable due to the large manual effort in-

volved in both the empirical study and survey. In addition, there

also might be human errors in collecting statistics, etc. These

threats are mitigated by double-checking all manual work. We en-

sure that the results are individually verified and agreed upon by

at least two authors. These threats could be further reduced by in-

volving third-party people who have experiences on logging prac-

tices to verify our results.

Threats to external validity. The threats to external validity pri-

marily include the degree to which the subject software systems

are representative of true practice. Our study was conducted on

two large industrial software systems written in C#. We believe

that our findings on the logging practices from a leading software

company such as Microsoft should be generalizable to many other

industrial software systems. Future studies on more industrial

software systems (along with open source systems) and their de-

velopers can help reduce such threats to external validity.

8. RELATED WORK
Log analysis. A large body of research work focuses on

postmortem analysis of logs [12], which leverages techniques

such as data mining, machine learning, and static analysis to

analyze system logs. A wealth of useful information has been

retrieved from logs, including event correlations [11, 25],

resource usage [17], component dependency [13], and causal

paths [22], to facilitate their diverse usage. The first important

step towards effective log analysis is to ensure log quality. Our

logging practice study aims to help achieve better logging, and

thus can benefit the work on log analysis.

Logging practices. Despite great importance of logging, few

efforts have been spent on studying logging practices. Yuan et al.

have conducted prior work [20, 21, 22] on how to perform better

logging. For example, their LogEnhancer tool [22] can

automatically identify important variable values and insert them

into the existing logging statements, in order to enrich the content

recorded in logging statements. Their study conducted for their

Errlog tool [20] investigates 250 real-world failure reports and

summarizes a set of code patterns that suggest additional logging

points to cover failure sites. However, their study considers only

buggy code samples that caused field failures and were in need of

being logged; it does not consider code samples that did not cause

field failures (yet) but were still in need of being logged. In

addition, their study does not include code samples that were not

in need of being logged. Another piece of related work is a

characteristic study [21] that investigates logging-statement

modifications made by developers, by mining the revision

histories of four open-source software projects. In contrast, our

work differs from these studies in three main aspects. (1) Studied

software systems. Industrial software systems are mainly used for

our study, whereas all of the aforementioned work is conducted

on open-source systems. (2) Study methodologies. Instead of

studying revision histories [21] (e.g., code modifications) of

logging statements or studying the limited samples of buggy code

with field failures and in need of logging [20], we investigate

logging practices by conducting source code analysis and an

empirical survey study. (3) Research problems. Other than

studying logging-statement modifications or potential logging

improvement, we focus primarily on understanding developers’

logging practices with respect to where to log.

Logging guidelines. There are no (or at least no standard) logging

guidelines for developers. However, by searching the Internet, we

found a number of technical blog posts [1, 2, 3, 14, 19] on

logging tips. These posts are written by developers with deep

domain expertise. For example, experiences of optimal logging at

Google are discussed [14]. In general, these articles provide

logging tips with regard to what to log, verbosity level, logging

format, etc. Our work complements these high-level logging tips

with comprehensive and detailed logging characteristics in

development practices.

9. CONCLUSION
To avoid logging too little or too much, developers need to make

informed decisions on where to log in their logging practices

during development. However, there exists no work on studying

such logging practices in industry or helping developers make

informed decisions. To fill this significant gap, this paper presents

our studies on logging practices of two large-scale online service

systems at Microsoft. We focus on studying developers’ logging

practices with regard to where to log. We provide six valuable

findings on the categories of logged code snippets, factors

considered for logging decisions, and the feasibility of automatic

logging. In addition, some potential directions for improving

current logging practices are discussed, which are valuable for

further exploration. This study facilitates better understanding the

current logging practices of developers and serves as the first step

towards improving the logging practices in industry.

10. REFERENCES
[1] 7 Good Rules to Log Exceptions. http://codemonkeyism.co-

m/7-good-rules-to-log-exceptions/

[2] 7 More Good Tips on Logging. http://codemonkeyism.com-

/7-more-good-tips-on-logging/

[3] 10 Tips for Proper Application Logging. http://www.java-

codegeeks.com/2011/01/10-tips-proper-application-

logging.html

[4] B. Gregg and J. Mauro. 2011. DTrace: Dynamic Tracing in

Oracle Solaris, Mac OS X, and FreeBSD. Prentice Hall

Press.

[5] Kibana – make sense of a mountain of logs. http://kibana.org

[6] Logstash – open-source log management. http://logstash.net/

[7] R. Ding, J. J. Shen, Q. Fu, J. G. Lou, Q. Lin, D. Zhang, and

T. Xie. 2012. Healing online service systems via mining his-

torical issue repositories. In Proc. of 27th IEEE/ACM Inter-

national Conference on Automated Software Engineering

(ASE’12), pages 318-321.

[8] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgo-

van, G. Nichols, D. Grant, G. Loihle, and G. C. Hunt. 2009.

Debugging in the (very) large: ten years of implementation

and experience. In Proc. of the 22nd ACM Symposium on

Operating Systems Principles (SOSP’09), pages 106-116.

[9] C. D. Manning, and H. Schütze. 2001. Foundations of statis-

tical natural language processing. The MIT Press.

[10] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai. 2013.

Towards fine-grained, unsupervised, scalable performance

diagnosis for production cloud computing systems. IEEE

Transactions on Parallel and Distributed Systems (TPDS),

24(6):1245-1255.

[11] K. Nagaraj, C. Killian, and J. Neville. 2012. Structured com-

parative analysis of systems logs to diagnose performance

problems. In Proc. of the 9th USENIX Conference on Net-

worked Systems Design and Implementation (NSDI’12).

[12] A. J. Oliner, A. Ganapathi, and W. Xu. 2012. Advances and

challenges in log analysis. Communications of ACM (CACM),

55(2):55-61.

[13] A. J. Oliner and A. Aiken. 2011. Online detection of multi-

component interactions in production systems. In Proc. of

the 41st IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN'11), pages 49-60.

[14] Optimal Logging. http://googletesting.blogspot.com/2013/-

06/optimal-logging.html

[15] J. R. Quinlan. 1993. C4.5: programs for machine learning.

Morgan Kaufmann Publishers.

[16] Roslyn. http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

[17] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and

C. R. Das. 2011. Modeling and synthesizing task placement

constraints in Google compute clusters. In Proc. of the 2nd

ACM Symposium on Cloud Computing (SOCC'11).

[18] Splunk – log management. http://www.splunk.com/

[19] The Art of Logging. http://www.codeproject.com/Articles/-

42354/The-Art-of-Logging

[20] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, Y. Zhou, and S.

Savage. 2012. Be conservative: enhancing failure diagnosis

with proactive logging. In Proc. of the 10th USENIX Confer-

ence on Operating Systems Design and Implementation

(OSDI'12), pages 293-306.

[21] D. Yuan, S. Park, and Y. Zhou. 2012. Characterizing logging

practices in open-source software. In Proc. of the 34th Inter-

national Conference on Software Engineering (ICSE’12),

pages 102-112.

[22] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. 2012.

Improving software diagnosability via log enhancement.

ACM Transaction on Computer Systems (TOCS), 30(1).

[23] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasu-

pathy. 2010. SherLog: error diagnosis by connecting clues

from run-time logs. In Proc. of the 15th International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS’10), pages 143-

154.

[24] R. Sambasivan, A. Zheng, M. Rosa, E. Krevat, S. Whitman,

M. Stroucken, W. Wang, L. Xu, and G. Ganger. 2011. Diag-

nosing performance changes by comparing request flows. In

Proc. of 8th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI’11), pages 4-4.

[25] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, G. Lu. 2012. Log-

Master: mining event correlations in logs of large-scale clus-

ter systems. In Proc. of IEEE 31st Symposium on Reliable

Distributed Systems (SRDS'12), pages 71-80.

[26] Q. Fu, J.G. Lou, Y. Wang, and J. Li. 2009. Execution

anomaly detection in distributed systems through unstruc-

tured log analysis. In Proc. of 9th IEEE International Con-

ference on Data Mining (ICDM’09), pages 149-158.

[27] J.G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. 2010. Mining in-

variants from console logs for system problem detection. In

Proc. of 2010 USENIX Annual Technical Conference

(ATC’10).

[28] Q. Fu, J.G. Lou, Q. Lin, R. Ding, D. Zhang, and T. Xie.

2013. Contextual analysis of program logs for understanding

system behaviors. In Proc. of 10th Working Conference on

Mining Software Repositories (MSR’13), pages 397-400.

[29] S. Geisser. 1993. Predictive inference: an introduction.

Chapman and Hall, New York, ISBN 0-412-03471-9.

