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ABSTRACT 

System logs are widely used in various tasks of software system 

management. It is crucial to avoid logging too little or too much. 

To achieve so, developers need to make informed decisions on 

where to log and what to log in their logging practices during 

development. However, there exists no work on studying such 

logging practices in industry or helping developers make informed 

decisions. To fill this significant gap, in this paper, we 

systematically study the logging practices of developers in 

industry, with focus on where developers log. We obtain six 

valuable findings by conducting source code analysis on two large 

industrial systems (2.5M and 10.4M LOC, respectively) at 

Microsoft. We further validate these findings via a questionnaire 

survey with 54 experienced developers in Microsoft. In addition, 

our study demonstrates the high accuracy of up to 90% F-Score in 

predicting where to log.  

Categories and Subject Descriptors 

B.2.3 [Arithmetic and Logic Structures]: Reliability, Testing, 

and Fault-Tolerance – diagnostics and error-checking 

General Terms 

Reliability, Standardization 

Keywords 

Logging practice, automatic logging, developer survey 

1. INTRODUCTION 
Logging is a conventional programming practice that saves 

important runtime information by adding statements in source 

code as shown below: 

Log (level, “logging message %s”, variable);  

A logging statement typically consists of a logging function and 

its parameters, including text messages, variables, and a verbosity 

level (e.g., fatal/error/info) to specify the severity of the logged 

event. 

The importance of logging can be widely identified by the various 

usages of logs in software system management tasks, including 

anomaly detection [26, 27], error debugging [8], performance 

diagnosis [11, 24], workload modeling [17], system behavior un-

derstanding [28], etc. Additionally, its importance is also reflected 

by our survey results with 54 experienced developers in Microsoft 

(more details on the survey are in Section 2). Almost all the 

participants (96%) strongly-agree/agree that logging statements 

are important in system development and maintenance. About 

96% of the participants think that logs are a primary source for 

problem diagnosis. Furthermore, 93% of the participants answer 

that they take good consideration in practice when adding a 

logging statement.   

Given the importance of logging, it is crucial to avoid logging too 

little, which may miss necessary runtime information (e.g., error 

sites) needed for postmortem analysis. On the other hand, it is also 

crucial to avoid logging too much for three main reasons. First, 

logging incurs both system runtime overhead (e.g., CPU 

consumption and I/O operations) and storage cost. For instance, 

one of our studied software systems produces about 2 gigabytes of 

logs per machine per day on average. Second, arbitrarily placed 

logging statements likely generate a lot of trivial logs that may be 

redundant or useless, thus masking the truly important 

information in logs. Third, logging itself incurs cost of code 

development and maintenance. 

To avoid both logging too little and logging too much, developers 

need to make informed decisions on where to log and what to log 

in their logging practices during development. However, to the 

best of our knowledge, there exists no work on studying such 

logging practices in industry (e.g., how such decisions are made in 

practice) or helping developers make informed decisions. 

To fill this significant gap, in this paper, we systematically study 

the logging practices of developers in industry, with focus on 

where developers log. Where to log has a great impact on log 

quality because logging locations reveal execution code paths, 

which have been shown helpful in postmortem analysis [23]. This 

study helps understand the current logging practices of developers 

and serves as the first step towards improving the logging 

practices in industry. 
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Our study considers developers’ logging behaviors from the point 

of view of each logging statement and its logged code snippet. 

Such logged code snippet is a block of source code whose 

behavior the logging statement intends to log. In the study, we 

investigate where to log by studying whether to log for a code 

snippet, through the following three research questions: 

RQ1: What categories of code snippets are logged? Specifically, 

we intend to investigate the logging statements and their logged 

code snippets to figure out the categories of the logged snippets. 

RQ2: What factors are considered for logging? Specifically, what 

are characteristics of logged code snippets and unlogged code 

snippets, respectively? What factors do developers consider to 

determine whether to log or not? 

RQ3: Is it possible to automatically determine where to log? In 

particular, is it potentially feasible to implement a logging-

suggestion tool to assist developers to determine where to log? 

Our study includes both source code analysis and a questionnaire 

survey with developers in Microsoft. In particular, we select two 

industrial software systems at Microsoft for study. These two 

systems have been deployed to serve users globally for a long 

time, and their logging instrumentation has been well tuned and 

refined. 

Through detailed source code analysis on these software systems, 

we obtain a number of insightful findings regarding the logging 

practices of developers. Furthermore, we validate these findings 

with survey responses from 54 experienced developers in 

Microsoft. The results of our study show that there are generally 

five categories of logged snippets (Finding 1), in which about half 

of them are used to record unexpected situations (e.g., exceptions 

or function return errors), and the other half records normal 

execution information at critical execution points (Finding 2). 

Developers add logging statements to only a small percentage of 

situations related to exceptions or checked function calls (Finding 

3), by considering factors such as exception types and context 

information (Findings 4~5). In addition, we evaluate the potential 

feasibility of predicting whether to log for a code snippet. The 

high prediction accuracy implies that predicting where to log is 

feasible (Finding 6). 

In summary, our paper makes the following main contributions:  

 We conduct an empirical study on logging practices in industry 

by both source code analysis for industrial software systems 

and a questionnaire survey with 54 experienced developers in 

Microsoft. 

 We summarize five categories of logged snippets, including 

assertion-check logging, return-value-check logging, exception 

logging, logic-branch logging, and observing-point logging, 

covering all the scenarios of logging observed in our study. 

 We characterize both logged and unlogged code snippets of 

catch blocks and return-value-check snippets, in which we find 

important factors on logging decisions, such as exception type 

and context factors. 

 We demonstrate the potential feasibility of predicting where to 

log, which is valuable for further exploration.  

The rest of this paper is organized as follows. Section 2 introduces 

our study methodology. Sections 3-5 discuss three research 

questions on what categories of code snippets are logged, what 

factors are considered for logging, and the feasibility of predicting 

where to log. Then Section 6 suggests some potential directions 

for improving logging practices. Sections 7 and 8 discuss threats 

to validity and related work, respectively, and finally Section 9 

concludes this paper. 

2. STUDY METHODOLOGY 
In our study, we investigate two large industrial software systems, 

denoted as System-A and System-B, respectively, for the sake of 

confidentiality. Both of them are online service systems deployed 

globally in Microsoft data centers to serve a huge number of users. 

These online service systems provide rich features to enable 

diverse use scenarios, thus gaining high complexity. Table 1 

presents the details of the two software systems. Both of them are 

selected due to their high popularity and long history of 

development. In addition, to allow the research community to 

reproduce or apply our study methodology on other systems, on 

our project website1 , we release the detailed study materials and 

results of applying our study methodology on MonoDevelop, a 

large open-source project with 9 years of development history.  

Table 1. Details of the studied software systems 

Software     

systems 
Description LOC 

# of logging 

statements  

% logging 

statements 

System-A Online service 2.5M 23.5K 0.94% 

System-B Online service 10.4M 95.3K 0.92% 

 

The development of the two systems was supposed to incorporate 

good logging practices for two reasons. First, these systems have 

been serving users worldwide for a long time, and their generated 

logs have successfully met the requirement of system testing, 

debugging, and operating. Second, our previous work [7] studied 

the logs of one of the systems, and proposed a solution for 

effectively diagnosing system failures by using the logs, indirectly 

reflecting the high quality of the logs. 

Most parts of the two studied software systems are written in the 

C# programming language. While some other languages (e.g., 

ASP, C) exist in these systems, we focus on only the C# parts. C# 

is an object-oriented programming language that supports the 

exception-handling mechanism. In C#, the common practice of 

error handling is throwing exceptions instead of returning error 

codes. Thus, exceptions attract a lot of attention in our study. 

We characterize the logging practices from both quantitative and 

qualitative aspects: statistical source code analysis and empirical 

developer survey. 

Source Code Analysis. We first investigate the logging character-

istics from the point of view of source code. To achieve this goal, 

we analyze the logging statements and their logged code snippets 

through both manual inspection and automatic analysis via a static 

analysis tool. 

Because logging statements and their logged code snippets are 

quite diverse, we first define feasible criteria for categorizing 

logged snippets to make each category coherent for detailed in-

depth category-specific analysis. 

In order to identify factors that developers consider to determine 

where to log, we further characterize both logged and unlogged 

code snippets, especially for catch blocks, to reveal detailed log-

                                                                 
1http://research.microsoft.com/en-us/projects/loggingpractice/ 
default.aspx 
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ging statistics. We further extract the identified logging factors as 

key features to predict where to log.  

For our study, we develop automatic C# code analysis based on 

Roslyn [16], a static analysis tool released by Microsoft. By lever-

aging Roslyn, we conduct both syntax analysis and semantic anal-

ysis for source code. 

Developer Survey. To further validate and elaborate our findings 

from source code analysis, we conduct a questionnaire survey, as 

well as some follow-up discussions via emails, with developers in 

Microsoft. 

The questionnaire (available on our project website1) consists of 

21 questions, which can be divided into four parts, including 

background information of participants, importance of logging, 

current logging practices, and improving current practices. While 

most of the questions have a list of choices, the participants can 

also write down their additional answers in a free-text form. Addi-

tionally, some open-ended questions are provided to enable the 

participants to add or elaborate their own ideas.  

This questionnaire survey was conducted in August 2013, and we 

received 54 survey responses from developers with an average of 

5.3 years of working experience at Microsoft. The participants 

work on various types of products including standalone desktop 

applications (9%), Web applications (20%), mobile applications 

(3%), software/Web services (59%), and some others (9%). When 

necessary, follow-up discussions were also held with participants 

via emails to help us understand their survey answers.  

3. CATEGORIES OF LOGGED SNIPPETS 
To understand the logging practices in terms of where to log, the 

first step is to investigate what categories of code snippets are 

usually logged (RQ1). We answer RQ1 with two steps to make 

the categorization effort manageable: (1) manually categorizing a 

randomly sampled set of logging statements and their logged code 

snippets; (2) automatically classifying the full set of logging 

statements and their logged snippets into those categories via a 

static analysis tool.  

3.1 Manual Categorization  
We randomly sampled 100 logging statements from source code 

of System-A, and manually examined each logging statement and 

its logged code snippet to conduct categorization. Based on the 

syntax and structure of each logged snippet, we identified five 

categories. Table 2 presents the category names and the number of 

samples in each category.  

Table 2. Categories from 100 sampled logged code snippets 

Category Samples  #Votes % of 
votes  

Unexpected  

situations 

 Assertion-check logging 19/100 27/54 50% 

 Return-value-check logging 14/100 34/54 63% 

 Exception logging 27/100 43/54 80% 

Execution 

points 

 Logic-branch logging 16/100 36/54 67% 

 Observing-point logging 24/100 44/54 81% 

 

We next illustrate the details of each category as below: 

(1) Assertion-check logging. In this category, developers use 

Assert (or similar functions) to perform assertion checking in the 

source code to identify errors. Failed assert statements automati-

cally log the failure messages before execution termination. 

Example 1 in Figure 1 illustrates a real-world logging statement in 

this category to assert whether site is null. Out of the 100 samples 

in our study, 19 samples belong to this category. 

/* Example 1: Assertion-check logging */ 

ULS.AssertTag(site != null, "site cannot be null"); 

/* Example 2: Return-value-check logging */ 

if (String.IsNullOrEmpty(tokenReference)) 
    ULS.SendTraceTag(ULSTraceLevel.Unexpected, "Missing token reference 
value."); 

/* Example 3: Exception logging */ 

try { 
    RemoveOfflineAddressBooks(); 
} 
catch(AccountUnauthorizedException e) { 
    Logger.LogMessage("Removing failed with exception: {0}", e); 
} 

/* Example 4: Logic-branch logging */ 

if (instanceName.IsSqlExpressInstalled) { 
    Tracer.TraceLogInfo("Detect sql express instance. No need to in-
stall."); 
} 
else { 
    Tracer.TraceLogInfo("No sql express instance. Do fresh install."); 
    res = SqlCleanInstall(); 
} 

/* Example 5: Observing-point logging */ 

Tracer.TraceLogInfo("Creating the tab order for form {0}", base.Name); 

Figure 1. Real-world examples of logging statements 

 

(2) Return-value-check logging. In this category, logging 

statements are used to log potential function return errors after 

performing a return-value check. We find that incorrect return 

values of function calls (e.g., system/library calls) are widely used 

indicators of potential errors. It is a common practice to have a 

check on the return value of a function call, as illustrated by 

Example 2. By explicitly checking for contingencies using special 

return values (e.g., -1, false, null, and empty), developers can 

identify the unexpected errors (e.g., the null or empty token 

reference in Example 2) and log them accordingly. In our study, 

14 samples belong to this category. 

(3) Exception logging. In this category, developers log the 

exception context after an exception occurs (e.g., in a catch block 

or right before a throw statement). Exceptions are widely used 

mechanisms to capture errors in modern programming languages 

(e.g., C#, Java). Example 3 depicts a detailed example of 

exception logging, in which the exception thrown by function 

RemoveOfflineAddressBooks is captured in the try bock and then 

logged in its corresponding catch block. 27 samples in our study 

belong to this category. 

(4) Logic-branch logging. In this category, logging statements 

are leveraged to record the runtime execution information at logic 

branch points, i.e., the code execution path. Logic branches in 

source code are typically generated by using a branch statement 

such as if or switch, which leads to different code execution paths. 

Log messages at critical branch points can help identify causally-

related code execution paths and facilitate backward inference for 

root-cause identification of failures. Example 4 provides one of 

the 16 samples in this category, in which two branches are both 

logged to record the execution-path information. 

(5) Observing-point logging. Except the above-mentioned 

categories of logged code snippets, we categorize all the other 

logged code snippets as observing-point logging. This category  



Table 3. Categorization criteria 

Category Criteria 

Assertion-check logging The logging statement is triggered by an Assert statement.  

Return-value-check logging 

The logging statement is contained in a clause following a branch statement (e.g., if, if-else, switch), while one or more 

function return values are checked in the branch condition. In addition, the logging statement is not enclosed by any catch 

block within the clause. 

Exception logging The logging statement is contained either in a catch block or right before a throw statement. 

Logic-branch logging 
The logging statement is contained in a clause following a branch statement (e.g., if, if-else, switch), while the branch con-

dition does not contain any check on a function return value. 

Observing-point logging All the other situations that exclude the above categories. 

 

has various scenarios for logging. It may log at the entry/exit point 

of a function, record an important transaction, and report critical 

events (e.g., heartbeats) to ensure that the system is running as 

expected. We consider these logging points as observing points to 

observe and understand the runtime states of systems. In our study, 

24 samples belong to this category. 

In summary, we find that the first three categories of logged code 

snippets record unexpected situations that should not occur in 

normal executions, while the last two categories record normal 

execution information at critical execution points. In summary, 

two types of information are usually recorded: 

 Unexpected situations. Assertion check, return-value check, 

and exceptions (i.e., the first three categories) are usually used 

to identify the unexpected situations, where the system 

potentially runs into an error. These points are typically logged, 

since the generated logs are greatly helpful in identifying error 

sites of the system when a failure happens. 

 Execution points. Logic branch points and other observing 

points are informative execution points of the code flow. As a 

result, recording important execution information (e.g., 

execution path, system runtime states) by logging at these 

critical execution points can facilitate root-cause identification 

of an occurred failure.  

In practice, when a failure occurs, developers usually identify the 

error site from the logs related to unexpected situations, and then 

trace back to identify the root cause of the failure based on the 

logs that record code execution path and states at a series of 

important execution points. 

Survey results. To obtain developers' opinions about the 

identified categories, we have two questions in our developer 

survey.  

First, we ask participants to tick the most common categories 

among the categories we have identified from the above manual 

categorization (via a multiple-choice question). The result is pro-

vided in Table 2 as “#Votes”, which indicates the number of 

participants who consider the category as common. “% of votes” 

is the ratio between “#Votes” and the total number of participants. 

The top two with the highest votes are exception logging and 

observing-point logging, which suggests the great importance and 

ubiquity of recording exception context and runtime information 

of critical execution points. 

Second, the participants are asked to list any additional categories 

not covered by our categorization. In the collected responses, 

some participants stated that calling an external component (e.g., 

RPC call or SQL request) is usually logged. Actually, we 

categorize this case into the observing-point logging. Another 

response is that entry/exit points of critical function calls are 

usually logged to record latency. Similarly, we also consider this 

case as observing-point logging. In fact, observing-point logging 

can be further divided into multiple sub-categories, which we plan 

to investigate in our future work.  

 

3.2 Automatic Categorization  
In this subsection, we study the distribution of different categories 

of logged snippets in our studied software systems. For a logging 

statement, the categorization criteria are defined based on the syn-

tax and structure of its logged code snippet. Table 3 shows the 

formal syntax definitions that describe how to automatically iden-

tify each category in source code.  

For any given logging statement and its logged snippets, we ex-

amine whether they satisfy one of the five criteria one by one, 

from assertion-check logging to observing-point logging with the 

order in Table 3. Note that all these criteria are checked within the 

scope of the function that contains the logging statement. Once a 

logging statement and its logged snippet are judged as satisfying 

one criterion, the logged snippet is categorized into the corre-

sponding category, and is not further checked against the remain-

ing subsequent conditions.  

Table 4. Categorization of logged snippets 

Category System-A System-B 

Assertion-check 5,476 (23%) 20,186 (21%) 

Return-value-check 2,716 (12%) 8,959 (9%) 

Exception 4,333 (18%) 8,399 (9%) 

Subtotal:  
Unexpected situations 12,525 (53%) 37,544 (39%) 

Logic-branch  3,807 (16%) 16,658 (18%) 

Observing-point 7,170 (31%) 41,138 (43%) 

Subtotal:  
Execution points 10,977 (47%) 57,796 (61%) 

Total 23,502 95,340 

 

Table 4 presents the categorization results. It is observed that all 

categories of logged snippets are pervasive in the two software 

systems. The category of observing-point logging has the highest 

number of logged snippets among the five categories, since this 

category contains various logging scenarios. In addition, almost 

half (39%~53%) of logged snippets are used to handle unexpected 

situations and record the needed information, while the other half 

Finding 1: There are five categories of logged code snippets, 

i.e., assertion-check logging, return-value-check logging, excep-

tion logging, logic-branch logging, and observing-point logging. 



(47%~61%) record execution information at critical execution 

points, reflecting their importance in log analysis. 

 

In the subsequent sections, we focus on logging characteristics of 

unexpected situations, because they usually indicate error sites, 

and take up about half the logged snippets. Although logging at 

critical execution points is also important, especially for identify-

ing root causes, it is not the focus of this paper. In fact, identifying 

root causes is a subsequent problem after finding error sites, 

which we leave for our future work.  

4. FACTORS FOR LOGGING DECISION 
Unexpected situations are often exposed under some typical pat-

terns (i.e., assertion check, return-value check, and exception). 

Among these typical patterns, we mainly focus on two of them: 

catch blocks and return-value check. We do not study assertion-

check snippets because all of the assertions are actually logged. 

For clarity, we denote code snippets of catch blocks and return-

value-check snippets as focused code snippets.  

Note that NOT every focused code snippet reveals an unexpected 

situation and is worth logging. For example, not all exceptions are 

unexpected. In many cases, exceptions are caught to indicate 

normal branch conditions, thus not being logged, as shown in 

Section 4.3. 

We extract all the focused code snippets (i.e., catch blocks and re-

turn-value-check snippets) from source code, and further analyze 

what factors are considered for logging (RQ2) at certain focused 

code snippets, by characterizing both logged code snippets and 

unlogged code snippets, respectively. In more details, Section 4.1 

discusses the overall logging statistics of focused code snippets. 

Section 4.2 and 4.3 present the in-depth analysis on logged and 

unlogged focused code snippets, respectively. Finally, Section 4.4 

discusses some other factors such as contextual information.  

4.1 Logging Statistics of Focused Code Snippets 
We extract every catch block from the source code, and record its 

corresponding exception type. For instance, AccountUnauthorize-

dException is the exception type of the catch block in Example 3 

of Figure 1. Especially, for those catch blocks with no explicitly 

specified exception types (i.e., no arguments in their catch 

statements), we denote their exception types as System.Exception. 

Then, we identify whether a catch block is logged by checking the 

existence of any logging statement in it. Similarly, for return-

value-check code snippets, we identify all the function call sites in 

the source code, and record their function types. Note that we 

refer to a function type as a function prototype, e.g., bool 

String.IsNullOrEmpty(string) in Example 2 of Figure 1. We then 

check whether the return value of each function is checked in an if 

or switch statement. If checked, we further identify whether it is 

logged. 

Table 5 shows the detailed statistics of catch blocks and return-

value-check snippets. About 30%~42% of catch blocks are logged, 

while the logging ratio of checked function-call sites is only 

8%~9%. The results show that only a small portion of focused 

code snippets are logged in practice. 

We next study the detailed characteristics of logged/unlogged 

catch blocks and return-value-check snippets, respectively. 

However, we report the results for only catch blocks here due to 

the space limit, whereas the findings on return-value-check 

snippets are similar. 

Table 5. Logging statistics of unexpected situations 

Statistics System-A System-B 

Catch 

block 

Exception types 225 1657 

Catch blocks 7,582 21,656 

Logged catch blocks 3,222 (42%) 6,410 (30%) 

Return 

value 

check 

Function types 21,813 155,444 

Function call-sites 131,390 723,691 

Checked call-sites 34,464 104,167 

Logged call-sites 2,716 (8%) 8,959 (9%) 

 

 

4.2 Characterizing Logged Catch Blocks 
To further understand the logging characteristics of catch blocks, 

we conduct an in-depth analysis on logged catch blocks with re-

gard to exception types, considering that an exception type indi-

cates one type of unexpected situations with specific semantic 

meanings. For a certain exception type, we count its correspond-

ing number of catch blocks, and the number of logged catch 

blocks as well. Based on these numbers, we derive the logging ra-

tio of each exception type, i.e., the number of logged catch blocks 

divided by the number of catch blocks in each exception type.  
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Figure 3. The distribution of catch blocks over logging ratio 

 

Figure 2 illustrates the distribution of exception types with respect 

to the logging ratio at an interval of 10%. For better visualization, 

we normalize the number of exception types into the correspond-

ing percentage out of the total number of exception types, as 

shown in the vertical axis. Note that all the numbers are calculated 

separately for the two software systems. As we can observe, a 

large percentage of exception types have either quite high (>90%) 

Finding 2: About half of the logged snippets are logged due to 

unexpected situations, while the other half are due to recording 

normal execution information at critical execution points. 

Finding 3: Only a small portion of focused code snippets are 

logged, including 30%~42% of the catch blocks and 8%~9% of 

the checked function-call sites. This observation (i.e., not all the 

focused code snippets need to be logged) calls for examination 

of the validity of the assumption made by Errlog [20]. 



or quite low (<10%) logging ratios. Specifically, an exception 

type with a high logging ratio means that developers log nearly 

every catch block of this exception type (e.g., System.OutOfMe-

moryException, and Microsoft.BusinessData.Runtime.Authentic-

ationException in Software-A). In contrast, an exception type 

with a low logging ratio indicates that the catch blocks with this 

exception type are rarely logged (e.g., Microsoft.DuplicateValues-

FoundException, System.EntryPointNotFoundException in Sys-

tem-A). Consequently, these exception types have high correla-

tion (i.e., either positive correlation or negative correlation) with 

the logging decisions of developers. 

Additionally, we present the distribution of catch blocks across 

the logging ratio corresponding to each exception type in Figure 3. 

The vertical axis is also normalized to the percentage of catch 

blocks. It is shown that most of the catch blocks (including 91% 

in System-A and 82% in System-B) correspond to the exception 

types with a medium logging ratio, i.e., 10%~90% in our study. 

Only a small portion of catch blocks have exception types with 

quite high (>90%) or quite low (<10%) logging ratios. For exam-

ple, in Software-A, 35% (79/225) of the exception types have low 

logging ratios, but the percentage of catch blocks with these ex-

ception types is only 3% (247/7,582).  

These results indicate that although there are many exception 

types highly correlated with logging, they actually take up only a 

small portion of catch blocks. In other words, developers do not 

make the logging decisions merely based on the caught exception 

types for most of the catch blocks. 

Survey results. To validate this result, we ask participants what 

factors they often consider to log in a catch block. The answers 

indicate that 57% of participants take the exception type as an im-

portant factor for logging, while some other factors are also con-

sidered (see Figure 5). 

 

4.3 Characterizing Unlogged Catch Blocks 
In this section, we focus on those unlogged catch blocks, in order 

to investigate factors for not logging, i.e., potential reasons why 

developers do not log in a specific catch block. 

According to the results in Table 5, the majority of catch blocks 

(e.g., 58% in System-A) are not logged in practice. We randomly 

select 70 unlogged catch blocks from System-A to characterize 

potential reasons of not logging. 

We summarize the reasons by examining the related code snippets 

and understanding the code logic. In many cases, we are able to 

understand the code logic by reading only the specific function 

that contains the catch block. However, for some complicated 

samples, we need to further read the caller functions or ask for the 

help of code owners in order to understand the code logic.  

Table 6 summarizes three categories of reasons, as well as their 

corresponding distribution over 70 samples. We next provide the 

description on each of these categories. 

Table 6. Reasons of NOT logging in catch blocks 

Reasons of not logging Samples 
% of  

samples 
#Votes % of  

votes 

Logging decisions are made 

by subsequent operations 
29/70 41% 34/54 63% 

Exceptions are not critical 32/70 46% 7/54 13% 

Exceptions are recoverable 9/70 13% 17/54 31% 

 
/* Example 6: An exception used to determine logic branch*/ 
void AccountConfig(MONOAccount user, string propertyName) {  
    ... 

bool userHasRights = true;      
    try { 
        user.DeleteAccountProperty(propertyName);  
    } 
    catch (UnauthorizedAccessException) { 
        userHasRights = false;  
    } 
    if (userHasRights) { 
        ... 
    } 
} 

/* Example 7: An exception re-thrown */ 

try { 
Type t = Type.GetTypeFromID(guid); 
object instance = Activator.CreateInstance(t); 

} 
catch (Exception e) { 

throw new TestFailedException("Fail to create Com interface.\t: "  
+ Tester.GetExceptionDetails(e)); 

} 

/* Example 8: An exception recovered by retrying */ 

void DWAppOverride(...) { 
   ... 

   Uri UriNew = null; 
   try { 
      UriNew = new Uri(wApp); 
   } 
   catch (UriObjectFormatException) { 
    // Assume http is the scheme and the URL param is the machine name 
      if (UriNew == null) { 
         try { 
            UriNew = new Uri("http://" + wApp); 
         } 
      } 
   } 

} 

Figure 4. Real-world examples of unlogged catch blocks 

(1) Logging decision is made by subsequent operations. 29 

samples are not logged because the catch blocks only execute 

some operations (e.g., setting properties/flags, re-throwing the ex-

ceptions or returning special values to their caller) to indicate ex-

ceptional states; while their subsequent operations determine 

whether to log for the exceptional states under certain context. 

Example 6 in Figure 4 provides an example of this category in 

which the catch block is used to catch the “UnauthorizedAcces-

sException” exception. Then, the program sets the flag “us-

erHasRights” to false, and then directs the execution to the subse-

quent logic branch. In Example 7, the caught Exception e is re-

thrown to its caller as a TestFailedException, and its callers de-

termine whether to log the exceptions at a higher level.  

(2) Exceptions are not critical. 32 samples are not logged be-

cause the caught exceptions do not have critical impacts on sub-

sequent executions. For example, the execution on a code snippet 

continues normally to process the input requests even though an 

exception is thrown by a subtask. 

(3) Exceptions are recoverable. 9 samples are not logged be-

cause the caught exceptions are recoverable, and the system exe-

cutes the recovery actions to cope with these exceptions. Accord-

ing to our examination, we find two kinds of recovery actions: (a) 

Finding 4: Many exception types have high correlations with 

developers’ logging decisions in their catch blocks. However, 

the catch blocks corresponding to such exception types take up 

only a small portion of catch blocks. In other words, most catch 

blocks correspond to the exception types that are not highly cor-

related with developers’ logging decisions.  



the system retries the same or alternative operations for the same 

purpose until it succeeds or exceeds the maximal retry times (or 

time limit) and thus throws a new exception; (b) instead of retry, 

the system executes exception-handling operations, to bypass the 

failed operations. Example 8 illustrates an example of an excep-

tion recovered by retry. When the program fails to create an Uri 

object, it uses the default scheme http to create the object again. 

Survey results. To obtain developers' opinions about the reasons 

of not logging, we ask participants to tick the most common ones 

based on the categories we have found from the above manual ex-

amination of unlogged snippets (via a multiple-choice question). 

The result is provided in Table 6 as “#Votes”, which indicates the 

number of participants who consider the reason category as com-

mon. The first category has the highest votes, while the second 

category has the lowest votes, since it is actually difficult to iden-

tify whether the exception is critical, which largely depends on the 

domain knowledge of developers. 

In addition, the participants are asked to write any additional rea-

sons of not logging. No additional category of reasons is identi-

fied from their detailed answers. 

 

4.4 Other Factors for Logging Decision 
From the preceding analysis, we observe that developers do not 

make a logging decision according to only the caught exception 

type (Finding 4). In addition, contextual information, such as 

whether the caught exceptions are critical or recoverable, is also 

taken into consideration (Finding 5). In other words, the decision 

to log for a code snippet is often highly related to the semantic 

functionality of the whole code snippet. 

To validate this intuition, we conduct a case study by investigat-

ing 20 samples randomly sampled from the catch blocks with 

FileNotFoundException in System-A. The overall logging ratio 

for the catch blocks with FileNotFoundException is 35%. After 

examining the source code of these 20 code-snippet samples, we 

found that some contextual keywords are highly correlated to the 

decisions on whether to log a code snippet. For example, for try 

blocks containing the keyword “delete”, the exceptions of File-

NotFoundException are often not logged. The reason is that if the 

main task of a try block is to delete a file, it does not bring a nega-

tive effect for ignoring the message “the file does not exist” (i.e., 

FileNotFoundException). In our case study, there are also some 

other extracted keywords that are highly related to logging deci-

sions, e.g., “remove” (20%), “load” (100%), “get” (100%), where 

the numbers denote their corresponding logging ratios. 

Survey results. To further facilitate our understanding in how de-

velopers usually make logging decisions, we have two specific 

questions in our survey: what scope of source code and what fac-

tors do developers mostly consider to determine whether to log? 

For the source-code scope, we present the survey results in Figure 

5(a). The results show that most of the participants consider in the 

scope of function level (69%) and block level (61%). In other 

words, when encountering an exception, the function containing 

the exception (function level) or the corresponding try block 

(block level) is likely considered. Others such as the statement 

that throws the exception (statement level), the class containing 

the exception (class level), and the whole application logic (appli-

cation level) are less considered by developers. With regard to the 

decision factors as shown in Figure 5(b), most participants con-

sider the exception type (57%) and the function calls related to the 

exception (46%). In contrast, other factors, such as the related 

variables (37%), exception-handling operations (31%), security 

factors (20%), and performance overhead (28%), are less consid-

ered for logging decision. 

 

(a) Scope 

 

(b) Factors 

Figure 5. Scope and factors considered for logging decision 

5. AUTOMATIC LOGGING 
Based on the findings described in Section 4, it is valuable to 

know whether it is possible to automatically predict where to log. 

If possible, such automatic prediction on where to log would 

greatly reduce the effort that developers spend on logging deci-

sion, and also improve their logging practices. In this section, we 

propose an automatic classification approach to predict whether to 

log for a code snippet, in order to demonstrate the potential feasi-

bility of predicting where to log (RQ3).  

This approach extracts the contextual information as features, and 

learns a classifier from the training code snippets. With the 

learned classifier, the approach predicts whether new code snip-

pets need to be logged. 

To achieve this goal, we need to first extract the contextual infor-

mation related to logging decisions. Through our study, we find 

that the source code in our studied software systems is in good 

coding styles. Most of the functions, identifiers, etc., are well 

named using related semantic keywords in a good format. Conse-

quently, in most cases, the functionality of a code snippet can be 

well understood based on the names of all the functions in this 

code snippet, the name of the function containing this snippet, the 

name of the class containing this snippet, and the keywords of the 

surrounding comment strings (if they exist). Therefore, we extract 

and segment these names and strings to a bag of words, and use 

them as features to learn a classifier for prediction of where to log. 

Finding 5: The majority (58%~70% shown in Table 5) of catch 

blocks are not logged mainly because (1) passing the logging de-

cision to subsequent operations, (2) exceptions are recoverable, 

and (3) exceptions are not critical. 



More specifically, the approach is designed as a two-step proce-

dure as follows. 

Step1: Extracting contextual keywords. For each code snippet 

(i.e., try-catch block or return-value-check snippet), we denote the 

function that contains this snippet as its container function and the 

class containing this snippet as its container class. To extract the 

contextual keywords, we segment all names of the functions in 

each code snippet, as well as its container function name and its 

container class name, into a set of separate words. Specifically, for 

a catch block, we extract function names from the corresponding 

try block; while for a return-value-check snippet, we extract all 

the function names from the beginning of the container function 

to the statement of return-value check. As almost all the names 

used in our studied systems are well formatted (i.e., separating 

words using capital letters), we employ the following simple yet 

effective technique to address the word-segmentation problem: (a) 

We use Roslyn to transform the instance name to its prototype 

name. For example, the function name “user.DeleteAccountProp-

erty” in Example 6 is transformed to “MONOAccount.DeleteAcc-

ountProperty”. (b) We leverage the locations of upper-case letters 

and non-letter characters (e.g., dot or underscore) to split the 

name into words. Especially, for consecutive capital letters, we 

take them together as a single word (e.g., “MONO”). (c) Normal-

ize each word to its lower-case format. In the preceding example, 

the function name is segmented and normalized into four words, 

i.e., “mono”, “account”, “delete” and “property”. Meanwhile, we 

calculate the term frequency for each word. For example, in the 

above example, the frequency of the word “account” is 3 (twice in 

the function name in the try block and once in its container func-

tion). As a result, we obtain a bag of (contextual) words and their 

corresponding term frequency as features for each code snippet. 

Note that other sophisticated techniques (e.g., stemming, stop-

ping-word removal) can also be used to further enhance the accu-

racy of contextual keyword extraction.  

Step2: Learning logging classifier. Each code snippet is labeled 

as one of the two classes: logged/unlogged. As observed in Table 

5, the logged code snippets are much fewer than the unlogged 

snippets (i.e., unbalanced classes). Therefore, we use the subsam-

pling technique to address this problem. In other words, we ran-

domly sample the unlogged code snippets to get an equal number 

with logged snippets. Then we feed these features with their labels 

into a decision-tree learner C4.5 [15] to learn a classifier. As a re-

sult, the logging status of each testing code snippet can be pre-

dicted as logged or unlogged by this classifier. Note that we ex-

tract only the function names and class names as features in our 

evaluation, since we find that the semantic functionality of a code 

snippet generally can be well denoted by their related functions, 

while all the others such as variables and parameters likely in-

crease noises. 

Result analysis. We employ the 10-fold cross-validation [29] to 

evaluate the accuracy of our prediction. Two groups of experi-

ments are conducted, while one group uses the exception type 

(catch block)/function type (return-value-check snippet) as fea-

tures, and the other group enriches these features with the extract-

ed contextual keywords by following the preceding procedure. 

Table 7 provides the experimental results with respect to both 

catch blocks and return-value-check snippets in our studied soft-

ware systems. Metrics including precision, recall and F-score are 

used to evaluate the prediction accuracy. As we can see, the sec-

ond group of experiments outperforms the first group of experi-

ments, which achieves high precision of 81.1%~90.2% and high  

Table 7. Prediction results  

Logging decision 

factors 
Metrics 

System-A System-B 

Catch 
block 

Return-
value-check 

Catch 
block 

Return-
value-check 

Type 

(Exception type 

 /Function type) 

Precision 0.700 0.792 0.614 0.860 

Recall 0.785 0.724 0.812 0.766 

F-Score 0.740 0.757 0.699 0.810 

Type & Contex-

tual information 

Precision 0.902 0.870 0.811 0.882 

Recall 0.899 0.899 0.808 0.904 

F-Score 0.901 0.884 0.809 0.893 

 

recall of 80.8%~90.4%. The results show that, in contrast to using 

only type information (exception type/function type), by using a 

simple processing of contextual information, we are able to cover 

as many worth-logging points as before, and decrease false posi-

tives, leading to fewer noisy, unhelpful logs at runtime. The re-

sults further demonstrate that both the type information and the 

contextual information are useful for logging decision.  

The experimental results demonstrate the potential feasibility of a 

logging-support tool that would enable automatic logging deci-

sion/suggestion if implemented. We believe that, with some pow-

erful NLP techniques [9], it is possible to further improve the pre-

diction accuracy by extracting significant features from the con-

text and semantics of the code snippets. However, it is outside the 

scope of this paper and we leave it for future work.  

 

6. IMPROVING CURRENT PRACTICES 
In our survey, we provide an open-ended question to ask partici-

pants to describe their needs or suggestions for improving current 

logging practices. By analyzing their valuable feedback, we next 

summarize a number of directions that deserve further exploration 

for improving current logging practices. 

Automatic logging tool for developers. As mentioned in Section 

1, logging is important in system development and maintenance. 

However, a great challenge faced by developers is making logging 

decision on where to log. Neither logging too much nor logging 

too little is desirable. Consequently, developers are in great need 

of automatic logging tool support. As one participant explicitly 

stated, “…need to be more automatic for writing logs, instead of 

writing all by myself.” In this regard, despite its simplicity, our re-

sult on logging prediction in Section 5.2 demonstrates the poten-

tial feasibility of automatic logging. Indeed, more research efforts 

are needed in future work.  

On-demand logging in production. Traditionally, logging state-

ments are statically inserted to source code, and print log messag-

es at specific fixed program locations. However, this type of log-

ging has drawbacks. First, it may generate too many useless logs, 

in which valuable logs may be obscured by the heavy noises. Sec-

ond, fixed program locations for logging may miss valuable in-

formation necessary for investigation. One promising direction is 

to log on demand. That is, each program location for logging can 

be dynamically enabled (or disabled) to generate logs when a spe-

cific condition is satisfied (or not satisfied). For example, at a log-

ging point of a Remote Procedure Call (RPC), only latency above 

Finding 6: A classifier learnt using type information and contex-

tual information as features achieves good prediction accuracy 

on whether to log for a code snippet. 



a threshold value is symptomatic for logging as a performance 

anomaly, whereas latencies of normal calls can be ignored. Note 

that DTrace [4] can be a potential solution towards on-demand 

logging.     

End-to-end tracing. Modern software systems are generally 

composed of various components, which may be deployed as dis-

tributed systems. As one participant stated, “The logs we are us-

ing are still points in the timeline, not containing calling se-

quences, especially for asynchronous calls.” To address this prob-

lem, end-to-end tracing can provide a detailed picture of how a 

request was serviced through the whole system, and thus can as-

sist in understanding the behaviors of a complex system.    

Log filtering. “I think we are doing too much logging on redun-

dant stuff that is useless…” With a system scaling up, more and 

more logs are produced, e.g., at a rate of about 50 gigabytes 

(around 120-200 million lines) per hour [10]. Hence, finding use-

ful information under the huge volume of logs is referred to collo-

quially as “finding the needles in the haystack”. Two solutions 

can be used for removing redundant logs:  logging on-demand and 

filtering logs by employing post-processing. 

Log categorization. “Logs should be categorized by source, type, 

and function.” Log categorization can help achieve better log un-

derstanding and postmortem analysis. Consequently, a good log-

ging infrastructure should offer the ability of automatic categori-

zation. One such good example is the Unified Logging System 

(ULS) in Microsoft, which supports automatic tagging of logs, 

such as event ID and request ID. With these automatically record-

ed tags, logs can be easily categorized with respect to an event 

type or a request. However, more of such similar infrastructure 

features are needed. For example, since we have more and more 

cross workloads, it would be quite helpful for troubleshooting if 

logs can be correlated to different workloads (i.e., request type). 

Log analysis and visualization. Log analysis and visualization 

are an important step in log management. “We need more power-

ful tool to view log.” Due to lacking deep knowledge of the sys-

tem behaviors, system administrators can benefit from automatic 

tool support for log search, log analysis, and log visualization. 

However, because logs may usually be distributed in different ma-

chines and have a huge volume, how to query and visualize large-

scale logs efficiently and effectively is challenging. Existing work, 

such as the commercial Splunk [18] tool, and open-source 

Logstash [6] and Kibana [5] tool, has provided initial solutions 

towards this goal. 

7. THREATS TO VALIDITY 
Threats to internal validity. Subjectiveness in the categorization 

of logged snippets is inevitable due to the large manual effort in-

volved in both the empirical study and survey. In addition, there 

also might be human errors in collecting statistics, etc. These 

threats are mitigated by double-checking all manual work. We en-

sure that the results are individually verified and agreed upon by 

at least two authors. These threats could be further reduced by in-

volving third-party people who have experiences on logging prac-

tices to verify our results. 

Threats to external validity. The threats to external validity pri-

marily include the degree to which the subject software systems 

are representative of true practice. Our study was conducted on 

two large industrial software systems written in C#. We believe 

that our findings on the logging practices from a leading software 

company such as Microsoft should be generalizable to many other 

industrial software systems. Future studies on more industrial 

software systems (along with open source systems) and their de-

velopers can help reduce such threats to external validity. 

8. RELATED WORK 
Log analysis. A large body of research work focuses on 

postmortem analysis of logs [12], which leverages techniques 

such as data mining, machine learning, and static analysis to 

analyze system logs. A wealth of useful information has been 

retrieved from logs, including event correlations [11, 25], 

resource usage [17], component dependency [13], and causal 

paths [22], to facilitate their diverse usage. The first important 

step towards effective log analysis is to ensure log quality. Our 

logging practice study aims to help achieve better logging, and 

thus can benefit the work on log analysis. 

Logging practices. Despite great importance of logging, few 

efforts have been spent on studying logging practices. Yuan et al. 

have conducted prior work [20, 21, 22] on how to perform better 

logging. For example, their LogEnhancer tool [22] can 

automatically identify important variable values and insert them 

into the existing logging statements, in order to enrich the content 

recorded in logging statements. Their study conducted for their 

Errlog tool [20] investigates 250 real-world failure reports and 

summarizes a set of code patterns that suggest additional logging 

points to cover failure sites. However, their study considers only 

buggy code samples that caused field failures and were in need of 

being logged; it does not consider code samples that did not cause 

field failures (yet) but were still in need of being logged. In 

addition, their study does not include code samples that were not 

in need of being logged. Another piece of related work is a 

characteristic study [21] that investigates logging-statement 

modifications made by developers, by mining the revision 

histories of four open-source software projects. In contrast, our 

work differs from these studies in three main aspects. (1) Studied 

software systems. Industrial software systems are mainly used for 

our study, whereas all of the aforementioned work is conducted 

on open-source systems. (2) Study methodologies. Instead of 

studying revision histories [21] (e.g., code modifications) of 

logging statements or studying the limited samples of buggy code  

with field failures and in need of logging [20], we investigate 

logging practices by conducting source code analysis and an 

empirical survey study. (3) Research problems. Other than 

studying logging-statement modifications or potential logging 

improvement, we focus primarily on understanding developers’ 

logging practices with respect to where to log. 

Logging guidelines. There are no (or at least no standard) logging 

guidelines for developers. However, by searching the Internet, we 

found a number of technical blog posts [1, 2, 3, 14, 19] on 

logging tips. These posts are written by developers with deep 

domain expertise. For example, experiences of optimal logging at 

Google are discussed [14]. In general, these articles provide 

logging tips with regard to what to log, verbosity level, logging 

format, etc. Our work complements these high-level logging tips 

with comprehensive and detailed logging characteristics in 

development practices. 

9. CONCLUSION 
To avoid logging too little or too much, developers need to make 

informed decisions on where to log in their logging practices 

during development. However, there exists no work on studying 



such logging practices in industry or helping developers make 

informed decisions. To fill this significant gap, this paper presents 

our studies on logging practices of two large-scale online service 

systems at Microsoft. We focus on studying developers’ logging 

practices with regard to where to log. We provide six valuable 

findings on the categories of logged code snippets, factors 

considered for logging decisions, and the feasibility of automatic 

logging. In addition, some potential directions for improving 

current logging practices are discussed, which are valuable for 

further exploration. This study facilitates better understanding the 

current logging practices of developers and serves as the first step 

towards improving the logging practices in industry. 
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