Log?: A Cost-Aware Logging Mechanism for Performance Diagnosis

Rui Ding!, Hucheng Zhou', Jian-Guang Lou', Hongyu Zhang', Qingwei Lin',
Qiang Fu?, Dongmei Zhang!, Tao Xie?
"Microsoft Research
>Microsoft
3University of Illinois at Urbana-Champaign

Abstract

Logging has been a common practice for monitoring and
diagnosing performance issues. However, logging comes
at a cost, especially for large-scale online service sys-
tems. First, the overhead incurred by intensive logging is
non-negligible. Second, it is costly to diagnose a perfor-
mance issue if there are a tremendous amount of redun-
dant logs. Therefore, we believe that it is important to
limit the overhead incurred by logging, without sacrific-
ing the logging effectiveness. In this paper we propose
Log?, a cost-aware logging mechanism. Given a “bud-
get” (defined as the maximum volume of logs allowed to
be output in a time interval), Log? makes the “whether to
log” decision through a two-phase filtering mechanism.
In the first phase, a large number of irrelevant logs are
discarded efficiently. In the second phase, useful logs are
cached and output while complying with logging budget.
In this way, Log” keeps the useful logs and discards the
less useful ones. We have implemented Log? and evalu-
ated it on an open source system as well as a real-world
online service system from Microsoft. The experimen-
tal results show that Log® can control logging overhead
while preserving logging effectiveness.

1 Introduction

Logging has been commonly adopted for monitoring and
diagnosing performance issues of online service systems,
such as web search engines and online banking systems.
Typically, performance logs record the end-to-end exe-
cution time of a service request as well as the execution
time of a component of the service system. Logging is
usually achieved by instrumenting source code with log-
ging statements and the resultant logs are stored on disks.
In practice, performance logs constitute a large propor-
tion of total logs. For example, our study of a Microsoft
online service system (described in Section 6) shows that
around 20%-40% of the total logs are performance logs.

Although logging is effective for performance diagno-
sis, it comes at a cost. Logging introduces overhead, such
as disk I/O bandwidth as well as CPU and memory con-
sumption. Intensive logging could further interfere with
the service’s normal execution. For example, web search
engines are sensitive to performance interference from
the logging system, which tends to generate huge vol-
ume of logs. Empirical results [20] show that if logging
is fully conducted, the average execution time of requests
in a search engine could increase by 16.3% and the aver-
age throughput could decrease by 1.48%. Therefore, it is
critical to reduce the performance interference by reduc-
ing the logging overhead. In addition, our survey (See
Section 2 for more details) of Microsoft engineers con-
firms this finding. About 80% of the survey participants
confirmed that they had experienced non-negligible per-
formance overhead caused by logging. Furthermore, in-
tensive logging could introduce a large amount of less
“useful” logs (i.e., the logs that are not useful for helping
diagnose the performance issue under investigation). A
study [9] on one large-scale online service system in Mi-
crosoft indicates that a high proportion of logs are useless
for diagnostic purposes. Our survey of Microsoft engi-
neers also confirms this observation.

Existing techniques for reducing logging overhead
include manually removing some logging statements,
changing the logging level (e.g., from “Verbose” to
“Medium”), and outputting logs in a sampling fash-
ion [20][6]. These techniques aim to reduce the num-
ber of logs to be output. However, these techniques are
insufficient for several reasons. First, they cannot guar-
antee to preserve logging effectiveness (i.e., preserving
the useful logs for diagnosis purposes). For instance, the
sampling technique could miss important events due to
randomness of the sampling. Second, there is no con-
trol mechanism on “whether to log” (whether or not the
executed logging statement should be output) over the
existing logging systems. Therefore, once developers
decide “where to log”, the logging system must strictly

output the logs after the execution of the placed logging
statements. The resultant logs could still contain many
useless ones. Finally, most of these existing techniques
do not consider the dynamic properties of a running sys-
tem. For a running system, the changes of workload and
throughput can influence the load of its logging system.
Simply using a single logging level or a sampling rate
may not be able to control the logging overhead dur-
ing workload spikes. Therefore, it is desirable to have
a new, overhead-constrained logging system for perfor-
mance diagnosis.

In this paper, we propose a cost-aware logging mech-
anism called Log?. Using Log?, developers predefine a
resource budget allowed for logging. At runtime, the
logging system decides “whether to log” such that the
logging overhead is constrained under the budget while
the logging effectiveness is maximized. The budget for
logging overhead is defined as logging bandwidth, which
is the maximum volume of logs allowed to be output
in a time interval (such as 1KB per second). There are
two reasons for choosing logging bandwidth as the bud-
get. First, according to our survey, I/O bandwidth is the
most concerning overhead in practice. Second, in gen-
eral, most logging overhead such as disk storage, net-
work I/O and CPU are directly or indirectly affected by
I/0 bandwidth. The logging effectiveness is measured
as the percentage of performance issues that can be cap-
tured by the resultant logs.

There are three challenges for realizing such a cost-
aware logging mechanism:

e It should be able to control logging overhead while
preserving logging effectiveness.

e It should incur low additional overhead such as CPU
and memory consumption.

e It should provide flexibility for developers to con-
figure it for different service scenarios, and should
be able to adapt to environmental changes dynami-
cally.

To address the above challenges, Log2 introduces a
two-phase filtering mechanism. In the first phase, a
large number of irrelevant logs are discarded efficiently.
In the second phase, useful logs are cached and out-
put while complying with the logging budget. The two-
phase mechanism is updated dynamically to address all
the challenges.

We evaluate Log? on BlogEngine, which is a popular
open source blogging platform. Furthermore, we per-
form an evaluation of Log? using real logs of ServiceX,
which is a large-scale online service system from Mi-
crosoft. The evaluation results confirm that Log? is ef-
fective and practical in real-world scenarios.

This paper makes the following main contributions:

e We propose a novel cost-aware logging mechanism
Log?, which helps achieve a balance between log-
ging overhead and effectiveness. Such a mechanism
incurs low additional overhead and is flexible.

e We design and implement Log>. We also evaluate
Log? on both a open source system and a large-scale
online service system from Microsoft.

The rest of the paper is organized as follows. Sec-
tion 2 describes a survey of logging practice in Mi-
crosoft, which motivates the design goals of Log” de-
scribed in Section 3. Section 4 describes the design and
implementation of Log®. Section 5 provides the detailed
evaluation of Log” on an open source system. Section 6
describes a case study on Microsoft ServiceX system.
We discuss the limitations and future work in Section 7.
Section 8 introduces the related work, and Section 9 con-
cludes the paper.

2 A Survey of Logging Practice in Mi-
crosoft

To better understand the current logging practice, we
conducted a comprehensive survey among hundreds of
engineers from five product teams in Microsoft. We re-
ceived responses from 84 engineers. According to the
survey, 81 out of 84 respondents are “expert” or “knowl-
edgeable” to logging systems. The survey aims to un-
derstand the participants’ experience in logging systems
and logging overhead. The details of survey questions
are available online [4].

In general, the logging systems used by Microsoft en-
gineers fall into three categories, including (1) internally
developed systems that directly output the executed log-
ging statements via a language-intrinsic component or
a wrapped API; (2) ETW logging [2], which writes the
buffered logs in a batch fashion, and (3) sampling-based
logging tools that are mainly designed for large-scale on-
line services sensitive to logging overhead.

2.1 Logging Overhead

According to our survey, 80% of the participants agreed
that logging overhead is a non-negligible issue. The
top three most commonly concerned types of overhead
are storage (60%), I/O bandwidth (58%), and CPU us-
age (56%). Among the participants, 59% of them have
suffered from the consequences incurred by the logging
overhead. Table 1 shows some of the experiences re-
ported by the surveyed engineers.

The top three most widely used approaches to control
the logging overhead include adjusting the logging level
(93%), manually removing unnecessary logs (64%), and

Table 1: Some of the experiences of the logging overhead

Category | Reported Experiences
Disk I/O Overuse of I/O caused perception of interference with core functionality.
bandwidth | The bandwidth requirement by enabling all logs is SMB/s, which however should be < 200KB/s.
OS slows down, other process that needs disk space may crash and even logging system could crash.
Storage
Storage is a critical component that may cause system crash, but it is often overlooked.
Service is slowed down significantly once the CPU usage of logging is increased to double digits.
CPU CPU usage of logging is very sensitive to our super-efficient system.
3%-5% is the upper bound for CPU usage of logging.
Memory Unexpected increases of memory usage of logging system was the root cause of one service incident.
Memory leak of logging system caused days of efforts on debugging.

archiving log files periodically (43%). However, about
65% of the participants replied that they are not satis-
fied with the existing approaches. For instance, remov-
ing logs by changing source code requires extra efforts
on re-compiling, testing, and re-deployment. Archiving
log files is often expensive because a large volume of data
needs to be transformed via network. All these existing
approaches are considered to be after-thoughts, and are
applied only when logging overhead starts to compro-
mise the system quality.

About 83% of the survey participants also agreed that
many log messages are redundant for diagnosing perfor-
mance issues, implying the feasibility to reduce logging
overhead while preserving sufficient logging effective-
ness. In addition, about 43% of all participants agreed
that logging overhead needs to be controlled, and they
considered resource budget for logging in their work.

2.2 Other Limitations of Existing Logging
Systems

A number of participants also shared with us additional
limitations of the existing logging systems and expressed
the needs for a cost-aware logging mechanism. These
comments and suggestions strongly motivated the design
of Log?:

Lack of cost-awareness during log instrumentation.
One participant complained about the lack of cost-
awareness during log instrumentation. He noticed that
some developers often had little idea about the result-
ing logging overhead when they planned to instrument
source code with new logging statements. A typical bad
logging practice is to insert logging statements in tight
loops (i.e., the loops which iterates intensively), which
could cause high overhead, especially in I/O throughput
and storage. He suggested a logging system for control-
ling the logging overhead transparently, so that devel-
opers can perform log instrumentation without worrying
about the overhead incurred.

Burden in log analysis. One participant commented that
too many logs make it challenging to analyze logs via

manual inspection. It would be helpful if a logging sys-
tem can collect all possible logs but do not flush all of
them. He also suggested a potential solution: logging
system should flush the logs only when some predefined
rules are violated.

In summary, the survey results motivate a new
overhead-constrained logging mechanism as we propose
in this paper.

3 The Design Goals of Log?

3.1 Cost-Aware Logging Mechanism

In this paper, we propose Log”, a cost-aware logging
mechanism that constraints logging overhead. Using this
mechanism, developer can perform logging by instru-
menting their programs, and predefine a resource budget
for logging. With the given budget, the logging mecha-
nism decides “whether to log” for each logging request
at runtime, makes sure that the logging overhead com-
plies with the predefined budget, and maximizes the log-
ging effectiveness at the same time. In addition, the log-
ging mechanism can support on-the-fly budget setting.
Therefore, the logging mechanism not only provides de-
velopers with the flexibility to strike the balance between
logging overhead and effectiveness, but also provides the
flexibility to configure different logging budgets for dif-
ferent service scenarios, or even the flexibility to dynam-
ically configure the logging budget. Furthermore, such
a cost-aware logging mechanism enables better planning
of maintenance resources [5], as the logging budget can
be determined in advance.

3.2 Design Goals

Log? is designed to realize such a cost-aware logging
mechanism. The budget for logging overhead in Log?
is defined as logging bandwidth, which is the maximum
volume of logs allowed to be output in a time interval.
Logging bandwidth is the most concerning logging over-
head according to engineers’ feedback. It is also the most

representative logging overhead, because other types of
logging overhead such as disk storage, network I/O and
CPU are often directly or indirectly affected by the log-
ging bandwidth.

We have identified four design goals for Log?, which
are listed below:

Cost-effectiveness: Log? should be able to achieve an
optimal balance between logging overhead and effec-
tiveness. The logging overhead, defined in terms of log
bandwidth, should be constrained under the budget. Al-
though the logging budget is under constraint, logging
effectiveness cannot be compromised, i.e., with respect
to performance diagnosis, the number of performance is-
sues detected by the reduced number of logs should be
similar to the number of issues detected by the total num-
ber of logs. In Log?, a ranking score named utility score
is defined to measure how much utility each logging re-
quest contributes to performance diagnosis. Log” then
selects the top-ranked logging requests and outputs them.
Other logging requests are filtered away. More details are
described in Section 4.3.

Low additional overhead. Log? should incur low addi-
tional overhead. The additional overhead brought by run-
time decision on “whether to log” (i.e., CPU usage and
memory consumption) should be negligible. The design
choices of Log? for minimizing CPU usage and memory
consumption are described in detail in Section 4.4.

Scalable. Log? should be scalable to the number of log-
ging requests. It is very common that thousands of re-
quests are processed per second, and considering that
many logging statements are executed when serving one
single request, the scale of the logging requests per sec-
ond is large. A traditional logging system, which makes
centralized decision, suffers since such centralized deci-
sion can delay the logging time as well as increasing the
corresponding memory buffer usage. In contrast, Log>
includes a two-phase filtering design to avoid the poten-
tial bottleneck. The details are described in Section 4.

Flexible. Log> should provide developers with the flex-
ibility to configure the system. First, Log> provides sev-
eral types of predefined utility scores, which are designed
for the most common diagnostic scenarios (to be de-
scribed in Section 4.3.1). It also allows developers to
configure a user-defined function for computing utility
scores. Such flexibility enables Log? to tackle various
types of performance issues. Second, the budget can be
configured on-the-fly. Such on-the-fly configuration en-
ables developers to select a proper logging bandwidth ac-
cording to the different resource plans in different scenar-
ios. Since there is no one-fit-for-all configuration for all
kinds of services, such flexibility is crucially important
for wide adoption in different scenarios. More details
are described in Section 4.3.2 and Section 4.4.2.

Log2.Begin(string McrName, ...); //begin
DoSomething () ;
Log2.End(string McrName, ...); //end

Figure 1: Logging API in Log?.

4 Design and Implementation of Log?

This section illustrates the detailed design and imple-
mentation of Log”. We first discuss the high level work-
flow of Log?, and then illustrate its two core components,
namely local filter and global filter. These core compo-
nents are essential for achieving the goals of Log?.

4.1 Logging Requests

For performance diagnosis, developers can specify an
area of code that should be monitored and logged.
We call such an area of code Monitored Code Region
(MCR). Examples of typical MCR include:

e Expensive system-level APIs, such as operations on
I/0, database, networking, etc.

e Loop blocks. Previous work [13] found that a sig-
nificant portion of real-world performance issues
are caused by inefficient loops.

e Function calls cross application-level component
boundaries, such as RPC or the connection between
GUI and backend services.

Performance logs should record two timestamps at the
beginning and end of a MCR, which are sufficient to
compute the execution time of the MCR. Log? provides
two logging APIs, Begin and End, to denote the begin-
ning and end of an MCR, respectively. The APIs com-
pute the execution time of an MCR and also record the
unique ID of the MCR. Figure 1 depicts the logging API
usage in Log?, where the execution time of DoSomething
is recorded. A pair of logs Begin and End form a logging
request, which will be further processed by Log? to de-
cide whether they should be filtered or output.

log s 7T ~mdjusted
requests threshgld
\

L,
adjysted
’ﬂlfeshold

Figure 2: The workflow of Log?.

4.2 Overall Workflow

The workflow of Log? is depicted in Figure 2. Two fil-
tering phases, local filter and global filter, are adopted
to decide whether or not the incoming logging requests
should be logged (whether to log). Such a two-phase
filtering mechanism is used to avoid the potential bottle-
neck of a single centralized filter, when a huge number
of log requests come in simultaneously. The local fil-
ters are responsible for discarding the trivial logging re-
quests, which are logging requests that have low utility
scores. The global filter is responsible for flushing the
top ranked logging requests to disk and in the meantime
complying with the logging budget.

Each thread of logging requests has a local filter. Only
the logging requests with utility scores (which are cal-
culated dynamically) higher than a global threshold can
pass through the local filter to a memory buffer in the
global filter. Other logging requests are discarded.

The global threshold is adjusted dynamically, to adapt
to environment dynamics, while optimizing the effec-
tiveness and efficiency of Log?. Usually, a significant
high portion of logging requests are discarded in the first
phase. In the global filter, the final decision on log out-
putting is made periodically to make sure that the bud-
get constraint is compliant. The logging requests from
all local filters during the last time window are cached
in memory. When a periodic event is triggered, the
cached logging requests are sorted according to their
utility scores. Only the top-ranked requests with total
volume equal to the logging budget are flushed to disk.
Meanwhile, the global threshold for utility scores is up-
dated by the global filter by considering the volume of
logging requests in recent time intervals. Lastly, the
global filter feeds the new threshold back to each local
filter.

Details about each component are described in the fol-
lowing subsections.

4.3 Local Filter

The major task of the local filter component is to com-
pute the utility score for each logging request. The util-
ity score measures the usefulness of a logging request
for performance diagnosis. Note that a local filter is ex-
ecuted in the same service thread being monitored. The
overhead for computing utility score should be kept low
to reduce the impact on the service.

4.3.1 Formula of utility score

To compute the utility score for each logging request, we
analyze the histogram of the execution time of the cor-
responding MCR. The intuition is that the utility score
should be higher if the execution time of a MCR de-
viates further away from its past behavior. For each

MCR, we can measure the degree of performance devia-
tion based on the histogram of the execution time of the
MCR. However, it is inefficient to maintain the complete
history of execution time for each MCR and compute the
histogram. In our work, we adopt the concept of method
of moments [15], which can be efficiently computed. Ac-
cording to statistical theory, moments can well approxi-
mate histogram [10]. The 1-order of moment is mean,
and the 2-order of moment (6?) is the square of standard
deviation (0).

Based on the mean (1) and the standard deviation ()
of execution time of an MCR, we propose three forms of
utility scores, given the current execution time ¢ of the

MCR:
t—pu—r

utility = (1)
utility =t 2)
utility=t—u—7 3)

In Equation (1), a constant value 7 is a tolerance factor,
which is used to further reduce false-positives for MCRs.
For example, execution time of Sms is significantly ab-
normal compared to lms as the average execution time,
but is ignorable for performance diagnosis. The default
value of 7 is 25ms.

Equation (2) simply uses the execution time as the util-
ity score, which is suitable when the users would like
to identify performance hotspots (e.g., those components
with the longest execution time). Equation (3) computes
utility score based on the mean execution time. Com-
pared with Equations (1) and (2), it considers the abnor-
mality (t-u) while ignores the fluctuation.

Besides the predefined utility formulas, we also allow
users to specify their own utility functions to cater for
their own scenarios.

4.3.2 Updating the utility scores dynamically

During performance monitoring, the execution time ¢ of
each MCR varies at runtime. Therefore, the mean and
standard deviation of t should be updated dynamically
over time. moments can be updated incrementally, with
the time complexity of O(1):

1 1
.un:(l_f).u'n—l‘kftn (4)
n n
= (-5 + -] 6
n n n—1 Py n—1

where n denotes the n'" update; ¢, is the n' execution
time.

We also modify the Equations (4) and (5) in a man-
ner similar to Exponential Smoothing[11]. Exponential
Smoothing can better capture the slow-varying system
dynamics. The corresponding formulas are as follows:

Hp = (1 - a).unfl + at, (6)

r%: (1_05)[6112—1“‘0‘(51_#%—1)2} @)

where o is a weighting factor, which is empirically set to
0.01.

4.4 Global Filter

In Log?, the global filter component performs two major
tasks: log flushing and utility-threshold adjusting.

4.4.1 Log flushing

Log flushing is triggered periodically, and such period
is called flush interval. When the timer is triggered,
Log? first sorts the buffered logs according to the util-
ity score, and then flushes the top ranked logs so that
the total flushed log volume does not exceed the logging
budget. All selected logs are packed together and are
flushed once in a batched fashion.

Buffer design. Proper buffer design is important for re-
ducing logging overhead, especially for reducing CPU
usage. Note that the buffer will be accessed by multiple
local filters with fast inserting operation, as well as the
global filter thread with slow sorting and flushing oper-
ations. To make sure that the latter one does not affect
the inserting performance and thus does not block work-
ing threads, Log? includes a data structure called swap
buffer, which has two buffers: one serves for inserting
operation, and the other serves for sorting and flushing
operations. These two buffers are swapped periodically
after a flush interval. A 0/1 flag is used to indicate which
buffer is currently used for insertion, and which one is
for flushing. Such mechanism guarantees that the two
threads work on different buffers without lock contention
except swapping the global flag.

Flush-interval selection. Long flush interval would
result in larger swap buffer, and thus more memory
consumption; while shorter interval benefits less from
batched flushing, and incurs frequent overhead in swap-
ping buffers. Log? currently sets the default flush interval
to 30 seconds, which works well in our experiments and
practice. Users are also allowed to configure the flush
interval on-the-fly.

4.4.2 Utility threshold adjustment

The utility threshold is used to control the volume of logs
to be inserted into the swap buffer. Because only the log-
ging requests with utility scores larger than the thresh-
old is cached, setting a proper threshold is very impor-
tant for Logz. Specifically, if the threshold is set too low,
massive logs could be inserted into the swap buffer, the
consequence is larger overhead. On the other hand, if
the threshold is set too high, only a small amount of logs
could be cached in the buffer, thus the important logs

could be missed, leading to unacceptable logging effec-
tiveness.

The optimal objective is to cache just budget-volume

logs by selecting a proper threshold. Choosing such an
optimal threshold value in one-shot in unrealistic, be-
cause either the environment dynamics or the frequency
of different utility scores is unknown. To address this
challenge, we design an iterative way for adjusting the
threshold by ‘learning from history’. The duration of
each iteration is called adjust interval. Intuitively, when
the volume of logs in the previous adjust interval is
higher than the budget, then the threshold should be in-
creased. The threshold should be decreased when the
volume of logs in the previous adjust interval is lower
than the budget. From both effectiveness and efficiency
perspectives, it is desirable that the adjusting algorithm
should converge quickly, and the volume of logs in the
buffer should not be too large (low overshoot [19]) in
any interval. We next illustrate the details of Log®’s
threshold-adjustment algorithm, which is agile and has
low overshoot.
Adjustment mechanism. Let us denote the threshold
and log volume as 7;, and V,,, respectively. Here n is the
index of the adjust interval. Let us denote B as the log-
ging budget. The threshold adjusting mechanism used in
Log2 is as follows (in the form of Secant Method [18]):

Tnfl - Tn72
=T, 1+V,-1 —B) X ——— ()
() Vn—l - Vn—2

Mathematically, the convergence of our algorithm is
super-linear, with an order of 1.618 [18]. More de-
tails about the mathematical deduction of our method are
available at our project website [4]. The interpretation is
that the ‘gain’ 7;, — 7}, on the threshold is proportional
to ‘error’ V,,_; — B, and coefficient % approxi-
mates the reciprocal of the derivative, if we treat V as
a function of 7.

In our implementation, to avoid a divide-by-zero error,
weadd 1ifV,,_1 —V,_»iscloseto 0. When 7,,_1 — T,,—»
is equal to zero, threshold updating can trap to a certain
number and never changes. To avoid such issue, we add
a very small value (0.01) under such situation.
Adjustment interval. To make the threshold adjustment
mechanism more effective, a properly chosen adjust-
ment interval is needed. The adjustment interval should
mitigate the fluctuation of environment change, i.e., the
workload varies slowly under the granularity of the cho-
sen adjustment interval. Therefore, the adjust interval
cannot be too short; otherwise, the transient random vari-
ation of workload will be significant, On the other hand,
a too long interval indicates longer time for convergence,
making Log? less agile. In our implementation, Log” sets
the adjust interval to 30 seconds, which is the same as the
Sflush interval.

4.5 Implementation Details

We have implemented Log” using the C# language.
Some details about the implementation are as follows.
Bounded memory usage. The maximum memory us-
age of Log? is set to SOMB in configuration, so that Log?
has negligible memory contention with normal service
operations. In our implementation, when the maximum
memory usage is reached, new logging requests will be
dropped in the same flushing interval. In fact, SOMB is
rarely reached in most cases. Specifically, two compo-
nents in Log? consume most memory usage. One is the
cache for maintaining y and o for all the MCRs. For a
large-scale online service, the number of MCRs is in a
magnitude of 100,000, so the corresponding memory us-
age is 100,000 x 2 x 8B = 1.6MB. The other component
that consumes most memory usage is the swap buffer.
Its size depends on both the budget size and flush inter-
val. The I/0 bandwidth of logging is 200KB/s (which is
20GB per day!) per machine for a typical large-scale on-
line service. Because the budget size does not exceed the
overall throughput, a much loose upper bound of mem-
ory usage on the swap buffer is 200KB/s x 60s x 2 =
24MB. In addition, the SOMB threshold has not been
reached in all of our experiments.

Handling system idle time. System idling is a spe-
cial circumstance that needs to be handled. Specifically,
when logging requests are rare, the budget will not be
reached no matter how the utility threshold is adjusted.
The consequence is that the utility threshold could be-
come extremely low, and thus the system will overshoot
dramatically (i.e., there will be a burst of flushing) when
the intensity of logging requests turns back to normal. In
order to avoid such circumstances, a lower bound on the
adjust interval is set. In our implementation, we set the
lower bound to 0. Such mechanism is commonly used in
the area of control engineering [8].

Nested instrumentation. To support nested instrumen-
tation, it is noteworthy that each local filter actually
maintains a timestamp stack to match the logging begin-
end pair, When a Begin is invoked, the corresponding
timestamp is pushed into the stack; and when an End is
invoked, the top element in the stack is popped, and is
matched as the Begin corresponding to the current End
invocation. As illustrated in Section 4.3.2, the histori-
cal information of each MCR is maintained separately,
therefore, dropping the outer log request will not directly
lead to the dropping of the inner log request.

5 Evaluation

In our evaluation, we intend to evaluate Log2 from the
following three aspects:
Logging throughput: How much I/O throughput (the

volume of logs flushed to disk within a time interval) can
be reduced by Log?, compared with the existing logging
system?

Logging effectiveness: How effective is Log” in diag-
nosing performance issues? The effectiveness is mea-
sured as the percentage of performance issues that can
be captured by the flushed logs.

Additional overhead: How much additional CPU and
memory overhead is incurred by Log>?

5.1 Experimental Subject and Setup

To evaluate Log?, we design experiments on BlogEngine
[1], which is a popular open-source, ASP.NET based
blogging platform. BlogEngine has received more than
1,000,000 downloads as of January 30, 2015. It supports
various blogging activities, such as writing blogs, adding
comments, sharing, and following. We choose the ver-
sion 2.8, as it is a recent stable version.

To evaluate Log®> on BlogEngine, we run the Blo-

gEngine as a service, and we simulate concurrent ac-
cess to the service via multiple synthetic users. We then
analyze the logs generated by Log> as well as the run-
time performance. We set up the experiment on Blo-
gEngine with four steps: instrumentation, deployment,
performance issue injection, and overhead monitoring.
Below are the detailed setup procedures.
Instrumentation. We perform program instrumenta-
tion guided by previous work [14] [13]. Specifically,
three types of code regions in BlogEngine are marked
as MCRs and logged, since they have relatively high po-
tential to cause performance issues. These three types of
MCRs include expensive system-level APIs, loop blocks,
and function calls. In summary, about 1000 MCRs are
identified and instrumented.
Deployment. We use one physical machine to deploy the
BlogEngine service, and two other physical machines are
configured as client nodes. Each machine runs Windows
Server 2012 R2, with CPU Intel(R) Xeon(R) E5-2650 v2
@ 2.60GHz (2 processors) and 192GB Memory.

We adopt a tool named WebTest [3] to simulate high
workload from multiple synthetic users to access the Blo-
gEngine service. WebTest is a new testing tool released
with Visual Studio 2012. It can be configured to gen-
erate mixed types of requests with user-specified loads.
In our experiment, we generate five typical types of re-
quests in WebTest - read blogs, write comments, search,
download files and upload files. These requests cover the
most common usage scenarios of BlogEngine.
Performance Issue Injection. In order to evaluate the
logging effectiveness of Log®, we inject three types of
performance issues, namely upload an extremely large
file, search a strange term, and exhaust CPU by other
process. Specifically, when uploading a file with size

larger than 100MB, the GUI on the client side starts to
hang (a possible fix is to put the uploading job in a back-
end thread). The response to the search operation be-
comes significantly slow when entering a strange query
term that is long and contains special characters (a pos-
sible fix is to pre-process the query term). Both of these
two performance issues can be directly pinpointed by the
corresponding logs.

We write a program named ResourceEater to con-
sume high CPU usage in a certain period to mimic the
third type of performance issues. When ResourceEater
is launched, it occupies CPU intensively. The runtime
performance of BlogEngine degrades significantly. Such
performance issues can be reflected in the corresponding
logs (e.g., the logs that mark the loop blocks).
Overhead monitoring. To measure the I/O throughput,
we record the number of logs flushed to disk per time
interval. To measure the additional CPU/Memory over-
head of Log?, we write a program named Per fMonitor
to periodically monitor the CPU and memory usage of
BlogEngine at every second. The CPU overhead is mea-
sured as the percentage of total CPU cycles Log? occu-
pies, and the memory overhead is measured as the bytes
of memory space Log” consumes.

5.2 Experimental Design

We design an experiment to evaluate Log>. We use the
WebTest tool [3] to simulate 101 synthetic users con-
currently accessing BlogEngine. The experiment runs
for two hours. Among the 101 users, 100 users mimic
the normal user behaviors, which fall into the five afore-
mentioned groups (read blogs, write comments, search,
download files and upload files). One user mimics the
abnormal usage to inject two types of performance is-
sues (upload an extremely large file and search a strange
term), which are generated 78 times during the 2-hour
experiment.

To inject the issues caused by exhausting CPU by
other process, the ResourceEater is triggered on the ser-
vice machine one hour after start, and lasts for 10 min-
utes.

We also evaluate the logging effectiveness of Log? us-
ing three utility scores: #, (f —u—1), (t —u—1)/0,
respectively.

In the experiment, we compare Log” with the baseline
approach, which directly outputs all executed logs with-
out considering cost-effectiveness. As we instrument all
the interested MCRs, the baseline approach is able to de-
tect all injected performance issues. We are interested in
knowing how Log? can detect similar number of issues
using fewer amount of logs.

In addition, we compare Log®> with two sampling-
based logging approaches, named Sampling-counter

5000

@ 4
w-l()()()
=
=
S 3000
=
2]
=
&= 2000
=] I'raditional logging
#]000 system
Log2
O_L—ww Vv var ¥
O ARXSILU TN A=A TN~ NS WG
AN TN OSSN TULECNROANDS =AM T
———————————— L e Bo B BN |
Elapsed time (30s)

Figure 3: Comparison of logging throughput. (budget =
120 logs/interval)

and Sampling-time, respectively. Sampling-counter is
counter-based, which uses a global counter to record
how many logging requests are processed. Only the logs
whose corresponding counter is divisible by the recipro-
cal of the sampling rate are flushed to disk. Sampling-
time is time-interval based, which uses a timer to control
when the logs are flushed to disk. Only the logs executed
when the timer is triggered are flushed.

5.3 Experimental Results

Logging throughput. Figure 3 shows the number of
logs flushed per time interval (30s) using Log? and the
baseline logging approach, respectively. The budget is
set to 120 logs/interval. The big drop on the number of
logging requests (around interval 118-136) is due to the
launching of ResourceEater.

Figure 3 shows that the logging throughput is signifi-
cantly reduced using Log®. The average number of logs
flushed per interval is 104 for Logz, while it is 3,800 for
the baseline logging approach. The reduction on log-
ging throughput is over 97%. In addition, the logging
throughput of Log? strictly complies with the budget con-
straint (< 120 logs/interval).

Logging effectiveness. The logging effectiveness is
inherently associated with the budget size, i.e., the log-
ging bandwidth. Higher logging bandwidth would in-
duce higher logging effectiveness. We evaluate the log-
ging effectiveness by varying the budget size. In addi-
tion, we also evaluate three alternative formulas of utility
scores (1,1 — U —T,and (t — U —1)/0).

Figure 4 illustrates how the logging effectiveness in-
creases as the budget size increases. All the three pro-
posed utility scores help achieve high effectiveness, i.e.,
the coverage of marked logs increases quickly to almost
100% when the budget size starts to increase. The results
indicate that Log? has strong ability to preserve high log-
ging effectiveness while reducing a significant amount of
logs.

100

g
© 80
o
2 60 —t
= ——t-p-t
£ -
« 40 (t-p-t)/o
(=]
&
@ 20
o ¢
>
S o
0 50 100 150 200 250

Budget (#logs/interval)

Figure 4: Logging effectiveness vs. budget size

100
80

60

40

Coverage (%)

—e— Sampling-counter

20
-=-¢--- Sampling-time

0 20 40 60 80
Sampling rate (%)

100

Figure 5: Logging effectiveness of two sampling-based
approaches

The results of two sampling-based logging systems,
Sampling-counter and Sampling-time, are illustrated in
Figure 5. The effectiveness of either Sampling-counter
or Sampling-time is approximately proportional to the
sampling rate, which is much lower than what Log?
achieves. It is worth noting that the budget size of
120 logs/interval is equivalent to the sampling rate of
3%. While Log? achieves almost 100% coverage with
such budget size, Sampling-counter and Sampling-time
achieve only 2% and 6% coverage, respectively.

For the issues injected by exhausting CPU by other
processes, there are in total 690,000 individual calls on
6 instrumented loop blocks during the experiment (note
that each loop block is one MCR). By using Log?, only
22,000 (97% reduction) calls on loop blocks are recorded
(budget size = 120 logs/interval), with the average execu-
tion time of 160ms. By inspecting the loop-related logs,
we found that the average execution time is 423ms when
ResourceEater is launched, which is significantly larger
than the average value (160ms) without the impact of Re-
sourceEater. Our inspection shows that the logs reflect-
ing loops with long execution time are recorded, which
demonstrates the capability of Log?® to detect the perfor-
mance issue due to exhausted CPU usage.

In summary, the experimental results show that Log? is
effective in detecting performance issues, while keeping
the volume of logs low.

Additional overhead. Log? works in the same
process of the BlogEngine service, hence its own
CPU/Memory usage cannot be measured directly. In or-
der to evaluate the overhead of Log?, we measure the
overall CPU/Memory usage of the BlogEngine system
integrated with Log?, and compare it with the overall us-
age of the BlogEngine system integrated with the base-
line logging approach (outputting all logs). We run the
experiment with each setting 7 times to overcome ran-
dom variations.

Table 2: Comparison on overall resource usage

Logging system | Memory(GB) | CPU(%)
Log? 4744021 | 63.44+3.0
Baseline 4.70+0.25 70.6+4.1

According to Table 2, the additional memory usage of
Log? over the baseline approach is not noticeable. When
integrated with Log?, the average CPU usage of Blo-
gEngine is slightly lower than that with the baseline log-
ging system. This is because using Log?, a large number
of logging requests are discarded at early stage, there-
fore a significant amount of processing (such as logging
state extraction or string conversions) as well as lock con-
tention are avoided, leading to reduced CPU usage.

600

logs inserted into swap buffer
— [8] w -
[= =) o®
= = = =

="

Elapsed time (30s)

Figure 6: Dynamics of swap buffer size

In order to evaluate the memory usage of Log?, we
monitor the size of the swap buffer over time. Figure 6
shows the number of logs inserted into the swap buffer
per flush interval. There is one peak at the beginning,
when the threshold for the utility score is not converged.
The peak is about 1.3 times higher than average, which
is far from the default maximum memory limit set in
Logz. In addition, it takes only five iterations to con-
verge, which shows that the small memory peak disap-
pears quickly. The variation of the curve is mostly caused
by the randomness in the workload.

6 An Application to Microsoft ServiceX

To further evaluate Log?, we have applied it to analyze
the performance logs of Microsoft ServiceX (the service
name is anonymized due to confidentiality). ServiceX is
a large-scale online service system, serving millions of
users globally.

Designed with a 3-tier architecture, ServiceX is run
on a large number of machines, each of which continu-
ously generates huge amount of logs. A typical front-end
machine usually generates logs with a speed of 30MB
per minute. Log aggregation from all the machines is
a heavy task, since each machine generates about 40GB
logs every day. ServiceX provides a logging API called
MoS for performance diagnosis. The corresponding logs
are called MoS logs (i.e., performance logs), which take
up 20%-40% of the total logs. Engineers of ServiceX
would like to reduce the large volume of MoS logs, since
most of them are not useful for performance diagnosis
and they simply incur overhead.

We apply Log? to evaluate its ability to reduce the vol-

ume of MoS logs.
Setup. Each MoS log entry contains the following in-
formation: log time, execution time of the MCR, code
region ID, and thread ID. Such information is sufficient
to re-construct the execution flows of all the MoS logs.
We randomly select 12 different datasets. Each dataset
contains logs generated during one continuous hour.

We focus on evaluating logging bandwidth and effec-

tiveness in our study. To do so, we identify performance
hotspots, which are the code regions that take most time
to execute. We choose the MoS logs having the top 0.3%
(i.e., 1 - 99.7%, which is a 3-sigma rule of thumb [22])
longest execution time as the performance hotspots. We
then apply Log” to see how many of these performance
hotspots can be successfully identified. We choose ¢ as
the utility formula. We evaluate logging effectiveness as
the coverage of the performance hotspots by varying the
budget size. Additionally, we also evaluate how the flush
interval affects the effectiveness.
Results. Figure 7 shows the logging effectiveness of
Log? by varying the budget size. Since we conduct ex-
periments on 12 datasets, the effectiveness on each bud-
get is represented by a range. As shown in Figure 7, the
coverage of performance hotspots quickly comes up to
100% when the budget size increases. Particularly, when
the budget is set to 100 logs/interval, which is equivalent
to the sampling rate of 0.77%, the coverage is already
98%. On the other hand, only 4.5 MB logs are recorded,
while the size of original MoS logs is S00MB for each
dataset.

Figure 8 shows the effectiveness of Log? under differ-
ent flush interval values. Here the budget is set to 120
logs/interval, which is equivalent to the sampling rate of

10

100

Detected Performance Issues (%)
8 & 2 S

<

100 200 300
Budget (# logs/interval)

Figure 7: Logging effectiveness vs. budget

1.0% . When the flush interval is very small, the cover-
age rate is relatively low, mainly due to the significance
of randomness on the workload. Setting the flush inter-
val to 30 seconds is satisfactory, since the coverage rate
here is almost 100%.

100 -
——

¥ T ¥

80

60

40

20

Detected Performance Issues (%)

20 30 40 50
Flush interval (s)

Figure 8: Logging effectiveness vs. flush interval

In summary, our case study on ServiceX has con-
firmed the applicability of Log? to real-world systems.

7 Discussion

Budget control for multiple services. In our current de-
sign, Log? is implemented as a runtime logging library
and can be dynamically linked to a service system un-
der monitoring. It controls the budget for only one single
service. As budget can be changed dynamically, it is pos-
sible to make Log? a standalone process, which manages
a set of budgets for multiple services. Such a centralized
budget control system can further enable dynamic budget
re-allocation to different services.

Supporting more types of performance analysis.
Log? is very effective for capturing performance hotspots
on-the-fly. In practice, there are other commonly re-
quired types of performance analysis. For example, to
understand the overall latency status of the system un-
der monitoring, the total number of times the latency hits
the 3-sigma threshold, the average latency of a compo-
nent, and so on. Log? has the ability to provide such
information. For example, Log> maintains the mean

and standard deviation values for each MCR. In addi-
tion, Log? can record how many times each MCR is up-
dated. Hence, many other measures of performance sta-
tus (such as the 3-sigma measures) can be easily derived
from these basic statistics. Additionally, all the data of
Log? can be dumped periodically and used by other per-
formance analysis tools. Analytical reports based on the
off-line processing of the data can produce comprehen-
sive information for postmortem analysis.

Multiple objectives. Currently we only define bud-
get in terms of I/O bandwidth, as it is mostly concerned
by our surveyed participants. It is possible to consider
more objectives, such as CPU and memory usage, and to
control logging overhead by performing multi-objective
optimization. We will address it in our future work.

Where to log. As described in Section 4.1, we iden-
tify MCRs for performance diagnosis. In this paper, we
focus on the problem of “whether to log”. Another im-
portant topic is “where to log”, i.e., the automatic identi-
fication of code regions that should be logged and moni-
tored. The two problems, “whether to log” and “where to
log” are closely related to each other. For example, the
logging mechanism we proposed enables “conservative
logging”, i.e., developers can instrument a large amount
of logging statements without concerning about the log-
ging cost. This is an important topic of our future work.

Leveraging non-performance logs. Although perfor-
mance logs are common in practice, there are also other
types of logs such as those for failure diagnostics. Two
adjacent log entries indicate the time spent on executing
code between the two log entries. It would be interesting
to leverage those logs for performance diagnosis.

Extension to failure diagnosis. Our current work fo-
cuses on analyzing performance logs for effective and ef-
ficient monitoring and diagnosis of performance issues.
Apart from performance logs, there are other types of
logs such as logs recording error and failure information.
These logs are mainly for diagnosing software failures
in production environment [24, 26, 27]. How to extend
our work to support failure diagnosis is important future
work.

8 Related Work

Performance monitoring and diagnosis has becoming in-
creasingly important, especially in the era of Internet-
based services and cloud computing. A large amount of
research has been conducted to characterize [13, 28, 16]
and improve system performance [14, 21, 23, 12, 7].

In production environment, logging is still the most
commonly used technique for performance monitoring
and diagnosis. Dapper [20] is a large-scale distributed
tracing infrastructure widely adopted by Google for
ubiquitous and continuous monitoring. Dapper is de-

11

signed to have low overhead, application-level trans-
parency and scalability. Log? shares the same design
goals with Dapper, and goes one-step forward with finer-
grained and more accurate control on logging overhead
to comply with the resource budget. Dapper flushes only
a fraction of all traces using a sampling (with a manu-
ally configured sampling rate) approach such that inter-
esting traces could be missed. Log? preserves useful logs
with significantly higher effectiveness. At the same time,
Log?* guarantees the resource budget constraints, which
can be violated in Dapper.

ETW (Event Tracing for Windows) [2] is a frame-
work that can log Windows kernel or application-specific
events to a log file. It has a buffering mechanism that
reduces the number of disk accesses for logging. How-
ever, ETW is not cost-aware: it cannot selectively record
a number of logs based on a given budget.

Paradyn [17] also controls its instrumentation over-
head dynamically. However, it depends on users to ex-
plicitly configure where to log, and predict whether to
log. Log? instead is user-transparent in that whether
to log decisions are dynamically made by the log-
ging mechanism. Excessive instrumentation is com-
monly adopted in the profiling domain. Matthew [6]
presents sampling based low-cost instrumentation to en-
able feedback-guided just-in-time optimization. Like
Dapper, logging based on random sampling would miss
interesting traces.

Yuan et al. [25, 26, 27] have pioneered the work on
log-based failure diagnosis. LogEnhancer [27] aims to
enhance the recorded contents in existing logging state-
ments by automatically identifying and inserting critical
variable values into them. ErrLog [26] utilizes a num-
ber of exception patterns that potentially cause system
failures, and then adds proactive logging code to auto-
matically log all of them. These work mainly address the
problems of “what to log” and “where to log”. Our work,
instead, focuses on “whether to log”.

9 Conclusion

In this paper, we have presented Log?, a cost-aware log-
ging system for making the optimal “whether to log”
decisions. Log® adopts a two-phase filtering mecha-
nism to selectively record useful logs based on a given
logging bandwidth. The experimental results on both
BlogEngine and ServiceX demonstrate the capability of
Log? to control logging overhead while preserving effec-
tiveness.

Currently, Log” analyzes performance logs for perfor-
mance monitoring and diagnosis. As we discussed in
Section 7, in the future we will extend Log? to support
more type of analysis, such as supporting other kinds of
logs for failure diagnosis.

References

[1
[2]

[3

=

[5

=

[6

=

[7

—

[8

[t

[9]

[10]

(11]

[12]

[13]

[14]

[15]

Blogengine, 2007. http://www.dotnetblogengine.net/.

Etw tracing, 2007. https://msdn.microsoft.com/en-
us/library/ms751538(v=vs.110).aspx.

Record and run a web performance test, 2013.
http://msdn.microsoft.com/en-us/library/ms182539.aspx.

Log2, an overhead-constrained logging system, 2014.

http://research.microsoft.com/en-us/projects/log2/default.aspx.

ANDERSON, E., HoBBS, M., KEETON, K., SPENCE, S.,
UYSAL, M., AND VEITCH, A. Hippodrome: Running circles
around storage administration. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (2002), FAST °02,
USENIX Association.

ARNOLD, M., AND RYDER, B. G. A framework for reducing
the cost of instrumented code. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation (2001), ACM
Press, pp. 168-179.

ARULRAJ, J., CHANG, P., JIN, G., AND LU, S. Production-run
software failure diagnosis via hardware performance counters. In
Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’13, Houston, USA (2013), pp. 101-112.

CHONG, K. H., Y., G. C., AND Y, L. Pid control system analy-
sis, design, and technology. In IEEE Trans Control Systems Tech
(2005).

DING, R., Fu, Q., Lou, J., LIN, Q., ZHANG, D., AND XIE,
T. Mining historical issue repositories to heal large-scale online
service systems. In 44th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, DSN 2014, Atlanta,
GA, USA (2014), pp. 311-322.

ERLING, A. Sufficiency and exponential families for discrete
sample spaces. In Journal of the American Statistical Association
(1970).

GOODELL, B. R. Smoothing Forecasting and Prediction of Dis-
crete Time Series. Englewood Cliffs, NJ: Prentice-Hall, 1963.

HAN, S., DANG, Y., GE, S., ZHANG, D., AND XIE, T. Perfor-
mance debugging in the large via mining millions of stack traces.
In 34th International Conference on Software Engineering, ICSE
2012, Zurich, Switzerland (2012), pp. 145-155.

JIN, G., SONG, L., SHI, X., SCHERPELZ, J., AND LU, S. Un-
derstanding and detecting real-world performance bugs. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12 (2012), pp. 77-88.

Jovic, M., ADAMOLI, A., AND HAUSWIRTH, M. Catch me if
you can: performance bug detection in the wild. In Proceedings
of the 2011 ACM international conference on Object oriented
programming systems languages and applications (New York,
NY, USA, 2011), OOPSLA 11, ACM, pp. 155-170.

L, W. All of statistics: A concise course in statistical inference.
New York: Springer, 2004.

12

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Liu, Y., XU, C., AND CHEUNG, S. Characterizing and detecting
performance bugs for smartphone applications. In 36th Interna-
tional Conference on Software Engineering, ICSE ’14, Hyder-
abad, India (2014), pp. 1013-1024.

MILLER, B., CALLAGHAN, M., CARGILLE, .,
HOLLINGSWORTH, J., IRVIN, R., KARAVANIC, K., KUN-
CHITHAPADAM, K., AND NEWHALL, T. The paradyn parallel
performance measurement tool. In IEEE Computer (1995).

MYRON, A., AND ELI, I. Numerical analysis for applied sci-
ence. John Wiley, Sons, 1998.

OGATA, K. Discrete-time control systems. Prentice-Hall, 1987.

SIGELMAN, B. H., BARROSO, L. A., BURROWS, M.,
STEPHENSON, P., PLAKAL, M., BEAVER, D., JASPAN, S., AND
SHANBHAG, C. Dapper, a large-scale distributed systems tracing
infrastructure. In Google technical report (2010).

SONG, L., AND Lu, S. Statistical debugging for real-world
performance problems. In Proceedings of the 2014 ACM In-
ternational Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA 2014, part of SPLASH
2014, Portland, OR, USA, (2014), pp. 561-578.

WHEELER, D. J., AND CHAMBERS, D. S. Understanding Sta-
tistical Process Control. SPC Press, 1992.

XU, W., HUANG, L., Fox, A., PATTERSON, D., AND JOR-
DAN, M. I. Detecting large-scale system problems by mining
console logs. In Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles (New York, NY, USA,
2009), SOSP *09, ACM, pp. 117-132.

YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND PA-
SUPATHY, S. Sherlog: error diagnosis by connecting clues from
run-time logs. In Proceedings of the International Conference on
Architecture Support for Programming Languages and Operating
Systems (March 2010).

YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND
PASUPATHY, S. Sherlog: Error diagnosis by connecting clues
from run-time logs. In ASPLOS (2010).

YUAN, D., PARK, S., HUANG, P., L1U, Y., LEE, M. M., ZHOU,
Y., AND SAVAGE, S. Be conservative: Enhancing failure diag-
nosis with proactive logging. In Proceedings of the 10th USENIX
conference on Operating Systems Design and Implementation
(2012), OSDI’12, USENIX Association.

YUAN, D., ZHENG, J., PARK, S., ZHOU, Y., AND SAVAGE, S.
Improving software diagnosability via log enhancement. In Pro-
ceedings of Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (Newport Beach, CA, March
2011).

ZAMAN, S., ADAMS, B., AND HASSAN, A. E. A qualitative
study on performance bugs. In 9th IEEE Working Conference
of Mining Software Repositories, MSR 2012, Zurich, Switzerland
(2012), pp. 199-208.

