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Abstract
In many real-world situations, different and often opposite opin-
ions, innovations, or products are competing with one another for
their social influence in a networked society. In this paper, we
study competitive influence propagation in social networks under
the competitive linear threshold (CLT) model, an extension to the
classic linear threshold model. Under the CLT model, we focus on
the problem that one entity tries to block the influence propagation
of its competing entity as much as possible by strategically select-
ing a number of seed nodes that could initiate its own influence
propagation. We call this problem the influence blocking maxi-
mization (IBM) problem. We prove that the objective function of
IBM in the CLT model is submodular, and thus a greedy algorithm
could achieve 1−1/e approximation ratio. However, the greedy al-
gorithm requires Monte-Carlo simulations of competitive influence
propagation, which makes the algorithm not efficient. We design
an efficient algorithm CLDAG, which utilizes the properties of the
CLT model, to address this issue. We conduct extensive simulations
of CLDAG, the greedy algorithm, and other baseline algorithms on
real-world and synthetic datasets. Our results show that CLDAG is
able to provide best accuracy in par with the greedy algorithm and
often better than other algorithms, while it is two orders of magni-
tude faster than the greedy algorithm.
Keywords: influence blocking maximization, competitive linear
threshold model, social networks

1 Introduction
With the increasing popularity of online social and infor-
mation networks such as Facebook, Twitter, LinkedIn, etc.,
many researchers have studied diffusion phenomenon in so-
cial networks, which includes the diffusion of news, ideas,
innovations, adoption of new products, etc. We generally re-
fer to such diffusions as influence diffusion or propagation.
One topic in influence diffusion that has been extensively
studied is influence maximization [14, 15, 16, 19, 6, 5, 25, 7].
Influence maximization is the problem of selecting a small
set of seed nodes in a social network, such that its overall in-
fluence coverage is maximized, under certain influence dif-
fusion models. Popular influence diffusion models include
the independent cascade (IC) model and the linear thresh-
old (LT) model, which was first summarized by Kempe et al.
in [14] based on prior research in social network analysis and
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particle physics. Both IC and LT models are stochastic mod-
els characterizing how influence are propagated throughout
the network starting from the initial seed nodes.

However, all of the above research works only study the
diffusion of a single idea in the social networks. In reality,
it is often the case that different and often opposite informa-
tion, ideas and innovations are competing for their influence
in the social networks. Such competing influence diffusion
could range from two competing companies engaging in two
marketing campaigns trying to grab people’s attentions, or
two political candidates of the opposing parties trying to in-
fluence their voters, to government authorities trying to in-
ject truth information to fight with rumors spreading in the
public, and so on.

Motivated by the above scenarios, several recent studies
have looked into competitive influence diffusion and its cor-
responding influence maximization problems [1, 17, 21, 24,
2, 3, 4]. Most of them propose some extensions to the exist-
ing influence diffusion models to incorporate competitive in-
fluence diffusion, and then either focus on the influence max-
imization problem for one of the competing parties, or study
the game theoretic aspects of competitive influence diffusion
(see Section 2 for more details on these related works). In
this paper, we concentrate on the problem of how to block
the influence diffusion of an opposing party as much as pos-
sible. For example, when there is a negative rumor spread-
ing in the social network about a company, the company may
want to react quickly by selecting seed nodes to inject posi-
tive opinions about the company to fight against the negative
rumor. Similar situations could occur when a political candi-
date tries to stop a negative rumor about him or her, or when
government or public officials try to stop erroneous rumors
about public health and safety, terrorist threat, etc. We call
the problem of selecting positive seed nodes in a social net-
work to minimize the effect of negative influence diffusion,
or to maximize the blocking effect on negative influence, the
influence blocking maximization (IBM) problem.

We study the IBM problem under a competitive linear



threshold (CLT) model, which we extend naturally from the
classic linear threshold model and is similar to a model pro-
posed independently in [2]. We prove that the objective func-
tion of IBM under the CLT model is monotone and submod-
ular, which means a standard greedy algorithm can achieve
an approximation ratio of 1 − 1/e − ε to the optimal solu-
tion, where ε is any positive number. However, the greedy
algorithm requires Monte-Carlo simulations of competitive
influence diffusion, which becomes very slow for large net-
works, if we want to keep ε above small. For example, in
our simulation, for a network with 6.4k nodes, the greedy
algorithm takes more than 8 hours to finish. This is espe-
cially problematic for the IBM problem, since blocking in-
fluence diffusion usually requires very swift decisions before
the negative influence propagates too far. To address the effi-
ciency issue, we utilize the efficient computation property of
the LT model for directed acyclic graphs (DAGs), and design
an efficient heuristic CLDAG for the IBM problem under the
CLT model. Because of the complex interaction in the com-
petitive influence diffusion under the CLT model, we need
a carefully designed dynamic programming method for in-
fluence computation in our CLDAG algorithm. To test the
efficiency and effectiveness of our CLDAG algorithm, we
conduct extensive simulations on three real-world networks
as well as synthetic networks. We compare the performance
of CLDAG with the greedy algorithm and other heuristic
algorithms. Our results show that (a) comparing with the
greedy algorithm, our CLDAG algorithm achieves matching
influence blocking effect while it runs two orders of magni-
tude faster; and (b) comparing with other heuristics such as
degree-based heuristics, our algorithm consistently performs
well and is often better than the other heuristics with a sig-
nificant margin.

To the best of our knowledge, our work is the first
to study the IBM problem under the competitive linear
threshold model. The study closest to our work is the one
in [3], but they study the IBM problem under an extension
of the independent cascade model, and due to the issue of
non-submodularity, their study only works for a restricted
extention to the IC model that is less natural. Moreover, their
work does not address the efficiency issue, which is vital to
influence blocking maximization.

The rest of the paper is organized as follows. We discuss
related works in Section 2. In Section 3, we specify the
competitive linear threshold model. In Section 4, we define
the influence blocking maximization problem, show that it is
NP-hard, and prove its submodularity under the CLT model.
We describe our CLDAG algorithm in Section 5, and then
provide our experimental evaluation results in Section 6. We
conclude the paper with discussions in Section 7. The full
version with complete proofs and the pseudocode of CLDAG
algorithm can be found in [12].

2 Related Work
Independent cascade model and linear threshold model are
two extensively studied influence diffusions models origi-
nally summarized by Kempe et al. [14], based on earlier
works of [11, 23, 10]. Kempe et al. prove that the gen-
eralized versions of these two models are equivalent [14].
Based on the IC and LT model, Kempe et.al [14, 15] pro-
pose a greedy algorithm to solve the influence maximization
problem (brought about by Richardson [22]) to maximize the
spreading of a single piece of ideas, innovations, etc. under
these two models. Many follow-up studies propose alter-
native heuristics and try to solve the influence maximization
problem more efficiently [16, 19, 6, 5, 7, 25]. In terms of effi-
cient algorithm design, our work follows the idea in [5, 7] of
finding efficient local graph structures to speed up the com-
putation. In particular, our CLDAG algorithm is similar to
the LDAG algorithm of [7], which is also based on the DAG
structure, but our CLDAG algorithm is novel in dealing with
competitive influence diffusion using the dynamic program-
ming method.

Recently, there are a number of studies on competitive
influence diffusion [1, 17, 21, 24, 2, 3, 4]. Bharathi et al,
extend the IC model to model competitive influence [1], but
they only provide a polynomial approximation algorithm for
trees. Kostka et al. study competitive rumor spreading [17]
on a more restricted model than IC and LT, and focused on
showing the hardness of computing the optimal solution for
the two competing parties. Pathak et al. study a model of
multiple cascades [21], which is an extension of a different
diffusion model called the voter model [8, 13], even though
they claim it to be a generalization of the linear threshold
model. They only study model dynamics and do not address
the influence maximization problem. Trpevski et al. [24]
propose another competitive rumor spreading model based
on the epidemic model of SIS and study the dynamics in
several classes of graphs, and they do not address the issue
of influence maximization either. Borodin et.al [2] extend
the LT model in several different ways to model competitive
influence diffusion, one of which is essentially our CLT
model except for a different tie-breaking rule. However,
they only study the influence maximization problem, not
the influence blocking maximization. In particular, they
show that influence maximization in the CLT model is not
submodular, which is an interesting contrast to our result
that influence blocking maximization under the CLT model
is submodular. We provide some reason in Section 7 on why
there is such a subtle difference. The work of Budak et al. [3]
is the only one we found that studies influence blocking
maximization (they call it eventual influence limitation),
but they study this problem under an extension of the IC
model. They show that the general extension of the IC
model in which positive influence and negative influence has
a separate set of parameters (same as the case in our CLT



model) is not submodular, and thus to achieve submodularity
they have to restrict the model such that positive propagation
probability is 1 or is the same as negative propagation
probability, which limits the expressiveness of the model.
Moreover, they only study the greedy algorithm and some
simple heuristics, and do not provide efficient and scalable
solution that maintains good accuracy at the same time.
Finally the work of [4] studies negative opinions emerging
from poor product or service qualities, not generated by
competitors. They study positive influence maximization
under an extension to the IC model, and thus different from
our study on blocking negative influence under the extension
of the LT model. The efficient influence maximization
algorithm in [4] also uses dynamic programming, which
bears some resemblance to our work.

3 Competitive Linear Threshold Model
Kempe et al. proposed the linear threshold model in [14]
as a stochastic model to address information cascade in a
network. In this model, a social network is considered
as a directed graph G = (V,E), where V is the set
of vertices representing individuals and E is the set of
directed edges representing influence relationships among
individuals. Each edge (u, v) ∈ E has a weight wuv ≥
0, indicating the importance of u in influencing v. For
convenience, for any (u, v) 6∈ E, wuv = 0. For each
v ∈ V , we have

∑
u∈V wuv ≤ 1. Each vertex v picks an

independent threshold θv uniformly at random from [0, 1].
Each vertex is either inactive or active, and once it is active, it
stays active forever. The diffusion process unfolds in discrete
time steps. At step 0 a seed set S ⊆ V is activated while all
other vertices are inactive. At any later step t > 0, a vertex
v is activated if and only if the total weight of its active in-
neighbors exceeds its threshold θv , that is

∑
u∈St−1

wuv ≥
θv , where St−1 ⊆ V is the set of active vertices by time t−1,
with S0 = S.

We now extend the LT model to incorporate competitive
influence diffusion. The idea is that we allow each vertex
to be positively activated or negatively activated, each of
which is determined by concurrent positive diffusion and
negative diffusion, respectively. In the case that a vertex is
both positively activated and negatively activated in the same
step, then negative activation dominates the result.

More precisely, we define competitive linear threshold
(CLT) model as an extension to the LT model in the follow-
ing way. Each vertex has three states, inactive, +active, and
-active, and it does not change state once it becomes +ac-
tive or -active. Each edge (u, v) has two weights, positive
weight w+

uv and negative weight w−uv . We can also think of
it as (u, v) splitting into two virtual edges, one positive edge
propagating positive influence and one negative edge propa-
gating negative influence. Each vertex v picks two indepen-
dent thresholds uniformly at random from [0, 1], one positive

threshold θ+v and one negative threshold θ−v . At step 0, there
are two disjoint seed sets, the positive seed set P0 and the
negative seed set N0. At each step t, positive influence and
negative influence propagate independently as in the origi-
nal LT model, using positive weights/thresholds and negative
weights/thresholds, respectively. If a vertex v is activated
only by positive diffusion (or resp. negative diffusion), then
v becomes +active (or resp. -active). If in step t v is activated
by both positive diffusion and negative diffusion, then nega-
tive diffusion dominates and v becomes -active. The negative
dominance rule reflects the negativity bias phenomenon well
studied in social psychology, and matches the common sense
that rumors are usually hard to fight with.

The CLT model defined here is essentially the same as
the separate threshold model of [2], except that we use the
negative dominance as the tie-breaking rule, while they use
the random rule — +active and -active status are picked
uniformly at random. We comment that the difference in
the tie-breaking rule is not essential for our study: the
submodularity property still holds and our algorithm can be
properly adapted for the random tie-breaking rule.

4 Influence Blocking Maximization Problem
In this section, we first define the influence blocking maxi-
mization (IBM) problem, then show that IBM under the CLT
model is NP-hard, and finally prove that the objective func-
tion of IBM is monotone and submodular, which leads to a
greedy approximation algorithm.

4.1 Problem definition. Informally, the IBM problem is
an optimization problem in which given a graphG = (V,E),
its positive and negative edge weights, a negative seed set
N0, and a positive integer k, we want to find a positive
seed set S of size at most k such that the expected number
of negatively activated nodes is minimized, or equivalently,
the reduction in the number of negatively activated nodes is
maximized.

More precisely, let ~θ+ and ~θ− be the vector of positive
thresholds and negative thresholds, respectively, for all ver-
tices inG. According to the CLT model, they are drawn from
the probability space [0, 1]|V | uniformly at random. When
~θ+ and ~θ− are fixed, all randomness in the CLT model is
fixed. Let IBS (S,N0 | ~θ+, ~θ−) be the set of nodes v in G
such that under thresholds ~θ+ and ~θ−, v is negatively acti-
vated if N0 is the negative seed set and positive seed set is
empty, while v is not negatively activated if N0 is the nega-
tive seed set and S is the positive seed set. Thus this set rep-
resents the set of nodes that have been blocked from negative
influence, and IBS stands for influence blocking set. Since
we always use N0 as the negative seed set, we will omit N0

from the notation for simplicity. When the context is clear,
we may also omit ~θ+ and ~θ− and only use IBS (S) to repre-
sent the influence blocking set. We define negative influence



reduction (NIR) of a positive seed set S, denoted as σNIR(S),
to be the expected value of the size of IBS (S | ~θ+, ~θ−), with
expectation taken over all ~θ+’s and ~θ−’s, that is,

σNIR(S) = E~θ+,~θ−(|IBS (S | ~θ
+, ~θ−)|).

Then the influence blocking maximization is the problem
of finding a positive seed set S of size at most k that
maximizes σNIR(S), i.e., computing

P ∗ = arg max
|S|≤k

σNIR(S).

We first show that the exact problem of IBM is NP-hard.

THEOREM 4.1. Under the CLT model, IBM problem is NP-
hard.

4.2 Submodularity of σNIR(S) and the greedy approx-
imation algorithm. To overcome the NP-hardness result of
Theorem 4.1, we look for approximation algorithms. The
submodularity of set function σNIR(S) provides a good way
to obtain an apporiximation algorithm for the IBM prob-
lem. We say that a set function f(S) with domain 2V is
submodular if for all S ⊆ T ⊆ V , and x 6∈ T , we have
f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T ). Intuitively,
submodularity of f means f has the diminishing marginal
return property. Moreover, we say that f is monotone if for
all S ⊆ T ⊆ V , f(S) ≤ f(T ).

We now show that σNIR(S) is monotone and submod-
ular. We follow the general methodology as in [14] for the
proof, but our proof is more involved because of the com-
plexity of our CLT model and the IBM problem. We first
construct an equivalent random process, and then use this
random process to prove the result.

From the original graph G = (V,E) with positive and
negative weights, we construct a random live-path graphGX
as follows. For each v ∈ V , we randomly pick one positive
in-edge (u, v) with probability w+

uv , and with probability
1 −

∑
u∈V w

+
uv no positive in-edge is selected; we also

randomly pick one negative in-edge (u, v) with probability
w−uv , and with probability 1−

∑
u∈V w

−
uv no negative in-edge

is selected. LetG+ be the subgraph ofGX consisting of only
positive edges, and let G− be the subgraph of GX consisting
of only negative edges. Given a positive seed set P0 and a
negative seed set N0, define dG+(P0, v) to be the shortest
graph distance from any node in P0 to v only through the
positive edges, and dG−(N0, v) to be the shortest graph
distance from any node in N0 to v only through the negative
edges. The above distance could be∞ if no such path exists.
Then in the random live-path graph, we say a node v is
+active if dG+(P0, v) <∞ and dG+(P0, v) < dG−(N0, v),
and v is -active if dG−(N0, v) < ∞ and dG−(N0, v) ≤
dG+(P0, v). The following lemma shows that the positive
and negative activation sets generated by the above random

process is equivalent to the corresponding one generated by
the CLT model.

LEMMA 4.1. For a given positive seed set P0 and negative
seed set N0, the distribution over +active sets and -active
sets is identical in the following two definitions.

1. distribution obtained by running CLT process,
2. distribution obtained from reachability defined above in

the live-path graph.

Proof. The activation process under the CLT model consists
of several iterations. In each iteration, some nodes change
from inactive to +active or -active. Thus we first define A+

t

to be the set of +active nodes at the end of iteration t and
A−t as the set of -active nodes at the end of iteration t, for
t = 0, 1, 2.... Here we consider a node v which has not been
activated by the end of iteration t, namely v 6∈ A+

t ∪ A−t .
Thus the probability v becomes +active in iteration t + 1
equals to the chance that the positive influence weights
in A+

t \A+
t−1 push it over the positive threshold while the

negative influence weights is still less than the negative
threshold. The above probability under the condition that
neither node v’s negative nor positive threshold is exceeded
already by step t is:

(
∑
u∈A+

t \A
+
t−1

w+
uv)(1−

∑
u∈A−

t \A
−
t−1

w−uv)

(1−
∑
u∈A+

t−1
w+
uv)(1−

∑
u∈A−

t−1
w−uv)

.

Similarly we can get the probability that node v becomes
-active in iteration t + 1 given than node v is inactive from
iteration 0 to t. The probability is:∑

u∈A−
t \A

−
t−1

w−uv

(1−
∑
u∈A+

t−1
w+
uv)(1−

∑
u∈A−

t−1
w−uv)

.

On the other hand, we consider the above discussed
probability when using the random live-path graph. We start
from seed set P0 and N0 and called them B+

0 and B−0 ,
respectively. For each t = 1, 2, . . ., we define B−t to be
the set containing any v 6∈ B+

t−1 ∪ B
−
t−1 such that v has one

in-edge from some node in B−t−1; we define B+
t to be the set

containing any v 6∈ B+
t−1∪B

−
t−1 such that v has one in-edge

from some node in B+
t−1 but no in-edge from any node in

B−t−1.
By the definition of the random live-path graph, the

probability that a node v is in B+
t+1 \ B

+
t conditioned on

that v is not in B+
t ∪B−t is

(
∑
u∈B+

t \B
+
t−1

w+
uv)(1−

∑
u∈B−

t \B
−
t−1

w−uv)

(1−
∑
u∈B+

t−1
w+
uv)(1−

∑
u∈B−

t−1
w−uv)

.

Similarly, the probability that a node v is in B−t+1 \ B
−
t

conditioned on that v is not in B+
t ∪B−t is∑

u∈B−
t \B

−
t−1

w−uv

(1−
∑
u∈B+

t−1
w+
uv)(1−

∑
u∈B−

t−1
w−uv)

.



The above conditional probabilities are the same as
derived from the CLT model. Since A+

0 = B+
0 and

A−0 = B−0 , by induction over the iterations, we reach at the
conclusion that the random live-path graph model produces
the same distribution over +active and -active sets as the CLT
model. �

With the equivalence shown in Lemma 4.1, we now
focus on showing the monotonicity and submodularity of
negative influence reduction in the random live-path graph
model. With a bit of abuse in notation, given a live-path
graph GX and a negative seed set N0, we also use IBS (S)
to denote the set of nodes in V which would be -active
if the positive seed set is empty but is not -active if the
positive seed set is S. Then the negative influence reduction
σNIR(S) = EGX

(|IBS (S)|).
Given a set S and a node u 6∈ S, we say that there is

a unique path from S to u if there exists some path from a
node in S to u, and for any two paths from any two nodes
in S to u, one path must be a sub-path of the other. In
addition, whenever we refer to the unique path from S to u,
we mean the unique shortest path from any node in S to u.
The following lemma shows a simple yet important property
of the live-path graph that leads to the submodularity proof.

LEMMA 4.2. In a live-path graphGX , for any node v, there
is a unique positive path from some node in the positive seed
set S to v, if dG+(S, v) <∞, and there is a unique negative
path from some node in the negative seed set N0 to v, if
dG−(N0, v) <∞.

Then we use next two lemmas to give the sufficient and
necessary conditions for v ∈ IBS (S) and v ∈ IBS (T ∪
{u})\IBS (T ) in a live-path graph GX .

LEMMA 4.3. The sufficient and necessary condition for v ∈
IBS (S) is:

1. There exist a unique negative path in G− from node set
N0 to v, namely dG−(N0, v) <∞, and

2. there exists at least one node u in the unique negative
path, such that dG+(S, u) < dG−(N0, u).

LEMMA 4.4. The sufficient and necessary condition for u ∈
IBS (T ∪ {v})\IBS (T ) is:

1. There exists a unique negative path from N0 to u,
2. there exists at least one node w on the unique negative

path from N0 to u, such that dG+(T ∪ {v}, w) <
dG−(N0, w), and

3. for all node t on the unique negative path from N0 to u,
there holds that dG+(T, t) ≥ dG−(N0, t).

LEMMA 4.5. The cardinality set function |IBS (S)| for a
live-path graph GX is monotone and submodular.

Proof. We first prove the monotonicity of |IBS (S)|, namely
for any node u ∈ V \(S ∪ N0) and subset S ⊆ V ,
|IBS (S)| ≤ |IBS (S ∪ {u})|. We prove the result by
showing that IBS (S) ⊆ IBS (S ∪ {u}). Consider any node
v ∈ IBS (S). By Lemma 4.3, we have dG−(N0, v) < ∞,
and there exists a node w in the unique negative path from
N0 to v such that dG+(S,w) < dG−(N0, w). It is also
clear that dG+(S ∪ {u}, w) ≤ dG+(S,w). Thus, we have
dG+(S ∪ {u}, w) < dG−(N0, w), and by Lemma 4.3, v ∈
IBS (S ∪ {u}).

We then prove submodularity of |IBS (S)| by showing:
For any subset S ⊆ V, T ⊆ V, S ⊆ T and v ∈ V \(T ∪N0),

IBS (T ∪ {v})\IBS (T ) ⊆ IBS (S ∪ {v})\IBS (S).

Given any u ∈ IBS (T ∪ {v})\IBS (T ), we prove that
u ∈ IBS (S ∪ {v})\IBS (S) by showing all three conditions
in Lemma 4.4 are satisfied. The satisfaction of 1 is obvious,
since dG−(N0, u) doesn’t change. As for condition 2, we
know that there exists a node w on the unique negative path
from N0 to u, dG+(T ∪ {v}, w) < dG−(N0, w) and for all
node t on path fromN0 to u, dG+(T, t) ≥ dG−(N0, t). Then
for node w, dG+(T ∪{v}, w) < dG−(N0, w) ≤ dG+(T,w),
which implies that dG+(T ∪ {v}, w) = dG+(v, w). Accord-
ing to Lemma 4.2, the positive influence can reach node w
only in the unique positive path from v to w. Thus dG+(S ∪
{v}, w) = dG+(v, w) = dG+(T ∪ {v}, w) < dG−(N0, w).
Then consider condition 3. For any node t in the unique neg-
ative path from N0 to u, dG+(T, t) ≥ dG−(N0, t). Since
S ⊆ T , it is easy to verify that dG+(S, t) ≥ dG+(T, t).
Therefore, dG+(S, t) ≥ dG−(N0, t) and condition 3 also
holds. �

THEOREM 4.2. For the CLT model, σNIR(S) is monotone
and submodular.

Proof. By Lemma 4.1, we know that the CLT model
is equivalent to the random live-path graph model. By
Lemma 4.5, we know that for each live-path graph, the size
of the influence blocking set is monotone and submodular.
Since σNIR(S) = EGX

(|IBS (S)|) and any convex com-
binations of monotone and submodular functions are still
monotone and submodular, we know that σNIR(S) is mono-
tone and submodular. �

We have shown that the influence blocking maximiza-
tion problem under CLT model is monotone and submodular.
Moreover, we have σNIR(∅) = 0. Then by the famous result
in [20], the greedy algorithm given in Algorithm 1 achieves
1 − 1/e approximation of the optimal solution. The algo-
rithm simply selects seed nodes one by one, and each time
it always selects the node that provides the largest marginal
gain to the negative influence reduction.

However, the greedy algorithm requires the evaluation
of σNIR(S), which cannot be done efficiently. The standard



Algorithm 1 Greedy(k,N0)
1: initialize S = ∅
2: for i = 1 to k do
3: select u = argmaxv∈V \(N0∪S)(σNIR(S ∪ {v}))
4: S = S ∪ {u}
5: end for
6: return S

way of using Monte-Carlo simulations to estimate σNIR(S)
is slow, especially when we need to simulate the interfering
propagation of competing influences. Even with powerful
optimization method such as the lazy forward optimization
of [18] or more advanced approach in [6], greedy algorithm
still takes unacceptable long time for large graphs of more
than 10k nodes. We address this efficiency issue in the next
section with our new algorithm CLDAG.

5 CLDAG Algorithm for the IBM Problem
Motivated by the extremely low efficiency of greedy al-
gorithm, we try to tackle this problem with an innovative
heuristic approach proposed by Chen et al. in [5, 7]. This
heuristic is characterized (a) by restricting influence compu-
tation of a node v to its local area to reduce computation cost;
and (b) by carefully selecting a local graph structure for v to
allow efficient and accurate influence computation for v un-
der this structure. For the LT model, Chen et al. use a local
directed acyclic graph (LDAG) structure [7], because it al-
lows linear computation of influence in a LDAG, as well as
efficient construction of LDAGs using an algorithm similar
in style to the Dijkstra’s shortest path algorithm. We repeat
the LDAG construction algorithm of [7] in our Algorithm 2
for completeness. We use Nin(x) to denote the set of in-
neighbors of node x and wuv for the weight of edge ~uv. The
θ in the algorithm is a threshold from 0 to 1 controlling the
size of the LDAG — the smaller the θ, the larger the LDAG.
The algorithm includes a node x only if its influence to v
through the LDAG edges are at least θ. The key update step
in line 7 is based on the important linear relationship of ac-
tivation probabilities in DAG structures shown in [7], and
repeated below:

(5.1) ap(x) =
∑

u∈Nin(x)

wux · ap(u),

where ap(x) is the activation probability of node x when a
seed set is fixed.

However, for the CLT model, negative and positive in-
fluence are propagated concurrently in the network and in-
terfere with each other. Thus we need to adjust our LDAG
construction and influence computation for the CLT model.
First, for each node v, we use Algorithm 2 to construct
two LDAGs, LDAG+(v) and LDAG−(v), using positive
weights and negative weights respectively. Second, we

Algorithm 2 Find-LDAG(G,v,θ),compute LDAG for v with
threshold θ

1: X = ∅;Y = ∅;∀v ∈ V, Inf (u, v) = 0;Inf (v, v) = 1
2: while maxv∈V \X Inf (u, v) ≥ θ do
3: x = argmaxu∈V \X Inf (u, v)
4: Y = Y ∪ {(x, u)|u ∈ X}
5: X = X ∪ {x}
6: for each node u ∈ Nin(x) do
7: Inf (u, v)+= wux ∗ Inf (x, v)
8: end for
9: end while

10: return D = (X,Y,w) as the LDAG(v,θ)

need to carefully compute the positive activation probabil-
ity ap+(v) and negative activation probability ap−(v), for
any node v under the CLT model, assuming positive and
negative influence are propagated through LDAG+(v) and
LDAG−(v) respectively. This involves a dynamic program-
ming formulation detailed in the following subsection.

5.1 Influence computation. We propose a dynamic pro-
gramming method, Inf-CLDAG, to compute the exact ac-
tivation probability of the central node v in local structure
LDAG+(v) and LDAG−(v). Under the CLT model, two
opposite influence diffusions correlate together when dis-
seminating in the graph, which makes it more tricky than
the computation in the origin LT model. In this case, num-
ber of steps taken to activate a node becomes an important
factor that must be taken into consideration when computing
the cascade result.

For the following computation, we assume that the
positive seed set S and the negative seed setN0 are fixed, and
influence to v only diffuses in LDAG+(v) and LDAG−(v).
For the IBM problem, we want to compute the negative
influence reduction under the positive seed set S. It is
essentially a computation of negative influence coverage,
which is given by

∑
v ap

−(v).
Let P+(v, t) be the probability that the summation

of the positive weights of in-edges of positively activated
neighbors of node v exceeds its positive threshold exactly
at time t, and similar for P−(v, t). Let ap+(v, t) be the
probability that v becomes positively activated exactly at
time t, and similar for ap−(v, t). Then we have ap+(v) =∑
t ap

+(v, t) and ap−(v) =
∑
t ap

−(v, t). We now show
how to compute ap+(v, t) and ap−(v, t).

By the definition of the CLT model, we have the follow-



ing for any v ∈ V \ (S ∪N0) and any t ≥ 1:

P+(v, t) =
∑
u∈LDAG+(v) w

+
uvap

+(u, t− 1),(5.2)

P−(v, t) =
∑
u∈LDAG−(v) w

−
uvap

−(u, t− 1),(5.3)

ap+(v, t) = P+(v, t)(1−
∑t
k=0 P

−(v, k)),(5.4)

ap−(v, t) = P−(v, t)(1−
∑t−1
k=0 P

+(v, k)).(5.5)

Equations (5.2) and (5.3) can be reached by subtracting
the probability that the summation of the weights of in-edges
of activated neighbors of node v exceeds threshold in any
round from 0 to t − 1 from the corresponding probability
for rounds from 0 to t. Equation (5.4) is derived from the
fact that if a node v becomes positively activated at round t,
then exactly at round t the summation of positive weights
must exceed the positive threshold, while by round t the
summation of negative weights does not exceed the negative
threshold (otherwise v would be negatively activated). The
case for Equation (5.5) is similar.

The boundary conditions of the above equations are (a)
for v ∈ S, ap+(v, 0) = 1,P+(v, 0) = 0, P+(v, t) =
ap+(v, t) = 0 for all t ≥ 1, P−(v, t) = ap−(v, t) = 0 for
all t ≥ 0; (b) for v ∈ N0, ap−(v, 0) = 1,P−(v, 0) = 0
P−(v, t) = ap−(v, t) = 0 for all t ≥ 1, P+(v, t) =
ap+(v, t) = 0 for all t ≥ 0; and (c) for v 6∈ S ∪ N0,
P+(v, 0) = ap+(v, 0) = P−(v, 0) = ap−(v, 0) = 0.
From the above equations together with the boundary con-
ditions, the dynamic programming algorithm can be applied
to compute the exact activation probability for every node
v. However, the naive implementation will take O(mD`D)
time, where mD is the size of LDAG+(v) and LDAG−(v)
and `D is the length of the longest path in LDAG+(v) and
LDAG−(v). With a careful planning, as described below,
we could reduce the time to O(mD) instead.

Algorithm 3 provides the pseudocode for our algo-
rithm Inf-CLDAG, which computes the negative influ-
ence ap−(v) to v from positive seed set S and nega-
tive seed set N0, through v’s LDAGs LDAG+(v) and
LDAG−(v). The key feature of the algorithm is the alter-
nating breadth-first-search (BFS) traversal on LDAG−(v)
and LDAG+(v). Starting from the negative seed set we do
one step BFS in LDAG−(v) and compute P−(x, 1)’s and
ap−(x, 1)’s for those traversed nodes. We then do one step
BFS in LDAG+(v) from the positive seeds, and compute
P+(x, 1)’s and ap+(x, 1)’s for the traversed nodes. We then
go back to LDAG−(v) to do one more layer of BFS and
then go back to LDAG+(v) for one more layer of BFS, and
so on. With this setup, we only need one BFS traversal of
LDAG+(v) and LDAG−(v) to compute all ap−(u, t)’s, and
thus save the running time to O(mD).

As an example, we show the computation for the struc-
ture of LDAG+(v) and LDAG−(v) of Figure 1. In the
example, d is the only positive seed while a and e are two
negative seeds. In initialization, ap+(d, 0), ap−(a, 0) and

Algorithm 3 Inf-CLDAG(v,LDAG+(v),LDAG−(v), S,N0)

1: Q+
0 := S ∩ V (LDAG+(v))

2: Q−0 := N0 ∩ V (LDAG−(v))
3: initialize ap+(u, t), ap−(u, t), P+(u, t), P−(u, t) for

all u and t to 0 or according to the boundary condition
// can do initialization just when needed, so no extra time
needed

4: set t = 0
5: while Q+

t 6= ∅ or Q−t 6= ∅ do
6: for all node u in Q−t do
7: for all node x in LDAG−(v) and w−ux 6= 0 and

x 6∈ S ∪N0 do
8: add node x into Q−t+1

9: P−(x, t+ 1) = P−(x, t+ 1) + w−uxap
−(u, t)

10: end for
11: end for
12: for all node x in Q−t+1 do
13: ap−(x, t+1) = P−(x, t+1)(1−

∑t
k=0 P

+(x, k))
14: end for
15: for all node u in Q+

t do
16: for all node x in LDAG+(v) and w+

ux 6= 0 and
x 6∈ S ∪N0 do

17: add node x into Q+
t+1

18: P+(x, t+ 1) = P+(x, t+ 1) + w+
uxap

+(u, t)
19: end for
20: end for
21: for all node x in Q+

t+1 do
22: ap+(x, t+1) = P+(x, t+1)(1−

∑t+1
k=0 P

−(x, k))
23: end for
24: set t = t+ 1
25: end while
26: ap−(v) =

∑
t ap

−(v, t)
27: return ap−(v)

Figure 1: A simple example of Inf-CLDAG algorithm (red
node d is the positive seed and blue nodes a and e are
negative seeds).

ap−(e, 0) are set to 1 and all other values are set to 0. In
the first iteration, we start from the negative seeds a and e
to do one level BFS traversal in LDAG−(v), and thus com-
pute P−(b, 1),P−(c, 1), P−(v, 1), ap−(b, 1),ap−(c, 1) and



ap−(v, 1). Next we go to LDAG+(v) and do one level
BFS traversal starting from the positive seed d, and com-
pute ap+(f, 1),ap+(c, 1) and ap+(v, 1), which use the val-
ues P−(c, 1) and P−(v, 1) computed. Then we start the
second iteration, which is second level BFS traversal in
LDAG−(v), and this only gives us node v, for which we
compute ap−(v, 2). We will do another BFS traversal on
LDAG+(v), and then we find that the BFS traversal has
reached all nodes in both LDAGs. The computation com-
pletes at this point.

5.2 CLDAG algorithm. Once we have the computation
of negative influence reduction for any seed set as given in
Algorithm 3, we can plug it into the greedy algorithm for
positive seed selection. We call this algorithm CLDAG. The
full pseudocode description of CLDAG can be found in [12].

The algorithm contains an initialization part and an
iteration part. In initialization, we construct LDAG+(v) and
LDAG−(v) for all nodes v. We also maintain an auxiliary
set OutLS+(v), which is the set of nodes to which v may
have positive influence, i.e., u ∈ OutLS+(v) if and only
if v ∈ LDAG+(u). Since positive seed set is changing in
the algorithm, we use ap−(v, S) to represent the negative
activation probability of v in its LDAGs under positive seed
set S. Then, for each node u ∈ LDAG+(v), we compute
the incremental influence reduction ap−(v, ∅)−ap−(v, {u})
when adding u ∈ LDAG+(v) as a positive seed, and
sum them up for each u to get DecInf(u), the overall
incremental influence reduction of node u.

In the main iteration, we iterate k times to select k seeds.
In each iteration, we select a new seed s with the largest
DecInf(s). Once s is selected, other nodes’ DecInf(u)
may need to be updated. Since s may positively influence
all nodes in OutLS+(s), thus all nodes u ∈ LDAG+(v)
with v ∈ OutLS+(s) needs to update their DecInf(u).
Note that here we take advantage of the local DAG structure,
so that we do not need to update the incremental influence
reduction of every node in the graph. The update is done by
using Algorithm 3.
Complexity Analysis. Let n = |V |, m+

iθ =
maxv |LDAG+(v)|, m−iθ = maxv |LDAG−(v)|, and n+oθ =
maxv |OutLS+(v)|. Let t+iθ and t−iθ be the time of effi-
cient construction of LDAG+(v)’s and LDAG−(v)’s, re-
spectively. Note that m+

iθ = O(t+iθ) and m−iθ = O(t−iθ), and
for sparse graphs, efficient Dijkstra shortest path algorithm
implementation could make t+iθ and t−iθ close to the order of
m+
iθ and m−iθ. We first analyze the complexity of storing all

LDAG structures.
In the initialization step, we need to compute

LDAG+(v)’s and LDAG−(v)’s for all nodes, and thus it
takes O(n(t+iθ + t−iθ)) time. We use a max-heap structure to
store DecInf(u)’s, and it takes O(n) time to initialize. The
DecInf(u) computation by Algorithm 3 takes O(n(m+

iθ +

m−iθ)) time. Overall, initialization takesO(n(t+iθ+t
−
iθ)) time.

For the iteration step, each iteration needs to update
DecInf(u)’s for at most n+oθm

+
iθ nodes, and each update

involves influence computation by Algorithm 3, which takes
O(m+

iθ +m−iθ) time, plus updating DecInf(u) on the max-
heap, which takes O(log n) time. Therefore, the iteration
step takes O(kn+

oθm
+
iθ(m

+
iθ +m−iθ + log n)) time.

Hence the total time complexity of the algorithm is
O(n(t+iθ + t−iθ) + kn+

oθm
+
iθ(m

+
iθ +m−iθ + log n)).

For space complexity, we store all LDAGs and
OutLS+(v)’s, so the space complexity isO(n(m+

iθ+m
−
iθ+

n+oθ)). In actual implementations one may not afford to store
all the LDAG structures (as in our implementation), so an al-
ternative is to store onlyOutLS+(v)’s and compute LDAGs
whenever needed. It is easy to see that in this case, the time
complexity is O(n(t+iθ + t−iθ)+ kn+

oθm
+
iθ(t

+
iθ + t−iθ + log n)),

which is not significantly worse than storing LDAGs, while
the space complexity is reduced to O(nn+oθ).

6 Experiments
To test the efficiency and effectiveness of CLDAG for influ-
ence blocking maximization problem under the CLT model,
we conduct experiments on three real-world datasets as well
as synthetic networks.

6.1 Experiment setting The three real-world datasets are
mobile network and collaboration networks. The mobile
network is a graph derived from a partial call detailed record
(CDR) data of a Chinese city from China Mobile, the largest
mobile communication service provider in China. In the
mobile network, every node corresponds to a mobile phone
user and the edges correspond to their phone calls between
one another. We use the number of calls between two
users as the edge weight and normalize it among all edges
incident to a node (the edge thus becomes directed with
asymmetric edge weights). The NetHEPT and NetPHY
are both collaboration networks extracted from the e-print
arXiv (http://www.arXiv.org). The former is extracted from
the ”High Energy Physics - Theory” section (form 1991 to
2003), and the latter is extracted from ”Physics” section,
and both are the same datasets used in [6]. The nodes in
both networks are authors and an edge between two nodes
means the two authors coauthored at least one paper. We
use the number of coauthored papers as the edge weight and
normalize it among all edges incident to a node. Some basic
statistics of these networks are shown in Table 1.

The edge weights described above do not differentiate
between positive and negative weights yet. To differentiate
them and study the effect of different diffusion strength
for positive and negative diffusions, we introduce positive
propagation rate p+ and negative propagation rate p−, both
of which are values from 0 to 1. We multiply edge weight
with p+ and p− of each edge to obtain its positive and



Table 1: Statistics of the three real-world networks.
Dataset Mobile NetHEPT NetPHY
Node 15.5K 15.2K 37.1K
Edge 37.0K 58.9K 231.5K

Average Degree 4.77 7.75 12.48

negative edge weight, respectively. The effect is that all
positive edge weights of in-edges of a node sums up to
p+, and thus with probability 1 − p+ the node will not
be activated even if all of its in-neighbors are positively
activated. The case for p− is similar.

We compare the performance of the following algorithm
and heuristics:

• CLDAG: Our CLDAG algorithm with θ = 0.01;1
• Greedy: Algorithm 1 under the CLT model with the

lazy-forward optimization of [18], and 10000 simula-
tion runs for each influence estimate.

• Degree: a baseline heuristic, simply choosing nodes
with largest degrees as positive seeds.

• Random: a baseline heuristic, simply choosing nodes at
random as positive seeds.

• Proximity Heuristic: A simple heuristic under which
we choose the direct out-neighbors of negative seeds as
positive seeds to block the negative influence. Among
these direct out-neighbors, we sort them by the negative
weights of their in-edges connecting them with negative
seeds, and select the top k nodes as the positive seeds.

Proximity heuristic introduced above is based on the
simple idea of trying to block the influence of negative
seeds at their direct neighbors. It should be noticed that
the proximity heuristic can be considered as a simplified
version of our CLDAG algorithm. In fact, for each node
v, if we construct its LDAG+(v) to be only the node v
itself, while its LDAG−(v) to be v itself if v has no in-
neighbors in the negative seed set N0, or else to be v with
one of v’s in-neighbors in N0 with the largest negative
edge weight to v. It is easy to verify that our CLDAG
algorithm under these LDAG structures exactly matches the
proximity heuristic. Therefore, proximity heuristic can be
treated as an intermediate algorithm between the baseline
random algorithm and the full-blown CLDAG algorithm, and
is helpful for understanding the features of CLDAG.

Since the CLT model is a probabilistic model, when
we evaluate the blocking effect for any given positive and
negative seed sets, we test it for 1000 times and take their
average as the result. The negative seeds in N0 are chosen
either randomly or from nodes with the largest degrees. The
scalability test is run on Intel Xeon E5504 2G*2 (4 cores for

1We found that θ < 0.01 will not have significant improvement for the
blocking effect, for all networks tested.

(a)Mobile (b)NetHEPT

(c)Running time for selecting 200 seeds

Figure 2: Experiment result of comparison with Greedy
algorithm.

every CPU), 36G memory server, while all others are run on
Dell D630 laptop with 2G memory. All experiment code is
written in C++.

6.2 Results with the greedy algorithm. We first run tests
that include the greedy algorithm. Since the greedy algo-
rithm runs very slow on large graphs, we extract two sub-
graphs from the datasets for comparison. One subgraph is a
1000 node graph extracted from the mobile network, and an-
other is a 5000 node graph extracted from the NetHEPT net-
work. The extraction is done by randomly selecting a node
in the graph and doing BFS from the node until we obtain the
desired number of nodes, and we include all edges for these
nodes in the subgraph. We choose 50 nodes with the high-
est degrees as negative seeds and select 200 positive seeds
to block their influence. Both p+ and p− are set to 1. The
experiment result are showed in Figure 2.

From Figure 2 (a) and (b), we can see that the CLDAG
algorithm consistently matches the performance of the
greedy algorithm for both datasets, i.e. our CLDAG achieves
more than 90% blocking effect of greedy algorithm in the
1000 nodes mobile network and more than 95% in the 5000
nodes Hep network on average. In the 1000-node mobile
network test, CLDAG significantly outperforms the Proxim-
ity heuristic, e.g., when CLDAG completely blocks all nega-
tive influence with 130 seeds, proximity heuristic still allows
negative influence to reach about 30 more nodes. In term of
negative influence reduction, this is (120−50)/(120−80) =
175% improvement. In the 5000-node NetHEPT dataset,
proximity heuristic performs as well as CLDAG and the



(a)result with log-log scale (b)result with log-normal scale

Figure 3: Experiment result on algorithm scalability.

greedy algorithm. In both cases, random and degree heuris-
tic perform badly, essentially having no blocking effect at
all. This is in contrast with degree heuristic result for influ-
ence maximization reported in the previous papers [6, 5, 7],
where degree heuristic still have moderate gain when select-
ing more seeds. Our interpretation is that for influence block-
ing maximization, knowing where the negative seeds are be-
comes very important, and thus proximity heuristic could be-
have reasonably well while degree heuristic oblivious to the
location of negative seeds becomes useless.

From Figure 2 (c), we see that CLDAG is much faster
than the greedy algorithm, with more than two orders of
magnitude speedup. With 5000 nodes, the greedy algorithm
already takes more than five hours, while CLDAG only takes
one minute to select 200 seeds.

We further compare the scalability of CLDAG with the
greedy algorithm. For this test, we use a family of synthetic
power-law graphs generated by the DIGG package [9]. We
generate graphs with doubling number of nodes, from 0.2K,
0.4K, up to 6.4K, using power-law exponent of 2.16. Each
size has 10 different random graphs and our running time
result is the average among the runs on these 10 graphs. We
randomly choose 50 nodes as negative seeds and find 50
positive seeds to block the negative influence. We set both
p+ and p− to 1. The scalability result is shown in Figure 3.

The result clearly shows that CLDAG is two orders of
magnitude faster than the greedy algorithm and its running
time has linear relationship with the size of the graph,
which indicates good scalability of the CLDAG algorithm.
Therefore, comparing with the greedy algorithm, CLDAG
matches the blocking effect of the greedy algorithm while
has at least two orders of magnitude speedup in running time.

6.3 Results on larger dataset without the greedy algo-
rithm. We conduct experiments on the full graphs of the
three datasets, but we do not include the greedy algorithm
since its running time becomes too slow. The initial negative
seeds are chosen either randomly or with highest degrees.
We first set p+ and p− to 1.

As shown in Figure 4 (a) to (f), the performance of
CLDAG strictly dominates the proximity heuristic in all
cases. For random negative seed selection, the negative

(a)NetHEPT: Max degree (b) NetHEPT:Random

(c)Mobile: Max degree (d) Mobile:Random

(e)NetPHY: Max degree (f) NetPHY:Random

(g) Running Time of CLDAG algorithm on real networks

Figure 4: Experiment result of CLT model on three real
dataset. We choose 200 negative seeds with max degree
in experiment (a),(c),(e) and 400 random negative seeds in
experiment (b),(d),(f).

influence reduction of CLDAG is on average 78.24% higher
than that of the proximity algorithm (percentage taken as the
average of results from 1 seed to 200 seeds). For max-degree
negative seed selection, CLDAG improves the performance
of proximity heuristic even more, for 80.75% on average.
Degree and random heuristic still show no blocking effect on
all test cases. The running time of CLDAG is consistently
low, as shown in Figure 4 (g). The results demonstrate
that across all networks and all negative seed selection
methods, CLDAG has consistently good performance in



(a) p+ = 0.5, p− = 1 (b) p+ = 1, p− = 0.5

Figure 5: Experiment result of CLT model on propagation
rate p+ and p−.

negative influence reduction over other heuristics, and it
achieves this good performance efficiently.

Next, we vary propagation rate p+ and p− to check their
effect on influence dissemination and the performance of our
algorithm. For simplicity, we only present experiment result
on the NetHEPT network. We choose 200 nodes with max
degree as negative seeds and select 200 positive nodes to
block their influence. In one test we have p+ = 0.5 and
p− = 1, and thus negative influence diffusion is stronger,
while in the second test, we use p+ = 1 and p− = 0.5,
making positive influence diffusion stronger.

Figure 5 reports our simulation results. First, as ex-
pected, when the negative influence is stronger, more nodes
become negative without positive influence (1350 nodes vs.
560 nodes in our two test cases). More importantly, we see
that our CLDAG algorithm performs much better than the
proximity heuristic when the negative influence is stronger
(Figure 5 (a)). This is because in this case negative diffu-
sion can traverse long paths and thus simply placing positive
seeds next to the negative seeds may not block the negative
diffusion well. On the other hand, when the negative influ-
ence is weak (Figure 5 (b)), negative influence could be ef-
fectively blocked by placing positive seeds next to them, and
thus proximity heuristic performs close to CLDAG.

To summarize, our results show that CLDAG has the
best performance among tested heuristics across all graphs,
and especially when negative influence diffusion is strong.
Proximity heuristic as a simplified version of CLDAG has
reasonable performance in a few cases especially when
negative influence diffusion is weak, and can be used as a
fast alternative to CLDAG in this case. However, there are
situations in which proximity heuristic is significantly worse
than CLDAG. Traditional degree heuristic cannot be used for
influence blocking maximization at all from our test results.

6.4 Effectiveness of influence blocking at different neg-
ative seed size. Finally, we test the effectiveness of influ-
ence blocking with CLDAG, when the size of negative seeds
increases. We vary the negative seed size from 1 to 1000,

Table 2: Result on the effectiveness of influence blocking

|N0| σN (∅, N0) |S| σN (S,N0)

1 72.8979 23 6.7396
2 77.4516 68 6.0182
5 156.48 145 15.6667

10 213.077 199 20.6628
20 581.366 557 57.6617
50 963.633 926 95.8451
100 1006.37 1000 108.823
200 1669.85 1000 680.518
500 3635.95 1000 2640.8

1000 5836.48 1000 4845.58

and see how many positive seeds are required by CLDAG
to reduce negative influence to 10%. We cap the number of
positive seeds at 1000. For this test, we use the NetHEPT
network, select negative seeds with largest degrees, and set
p+ = p− = 1. The results are shown in Table 2, where
σN (S,N0) denotes the expected number of negative activa-
tions with positive seeds S and negative seeds N0.

The result shows that it requires about 20 to 30 times
of positive seeds to reduce negative influence to about 10%
level, and it becomes increasingly hard to block negative
influence. For example, with 1000 negative seeds, we spend
an equal number of 1000 positive seeds but can only reduce
17% negative influence. Therefore, first mover has a clear
advantage, and the best way to block negative influence is
before it becomes pervasive.

7 Conclusion and Discussions
In this work, we study influence blocking maximization
problem under the competitive linear threshold model. We
show that the objective function of the IBM problem is
submodular under the CLT model, and thus the greedy
approximation algorithm is available. We then design an
efficient algorithm CLDAG to overcome the slowness of the
greedy algorithm. Our simulation results demonstrate that
CLDAG matches the greedy algorithm in the blocking effect
while significantly improving running time. CLDAG also
outperforms other heuristic algorithms such as proximity
heuristic that selects direct neighbors of negative seeds,
showing that CLDAG is a stable and robust algorithm for
the IBM problem.

Finally, we compare two closely related results in the
literature, which showing some interesting subtleties in com-
petitive influence diffusion. First, in [3], Budak et al. study
the IBM problem for the extended IC model. They show,
however, that when we extend the IC model to allow positive
and negative diffusions having two set of different param-



eters, the IBM is not submodular. This indicates a subtle
difference between different diffusion models. In this sense,
CLT model is more expressive, since it is easier to model
different diffusion strength in the CLT model and see its ef-
fect, as we did in our evaluation (Figure 5). They also show
that when restricting the positive weights to be 1, or to be the
same as negative weights, the problem becomes submodular.
For these cases, we are able to design efficient algorithms
close to MIA and MIA-N of [5, 4], and our simulations re-
sults are similar when comparing with the greedy algorithm
and other heuristics, but we do not report them here.

Second, in [2], Borodin et al. propose several competi-
tive diffusion models extended from the LT model. In partic-
ular, their separate threshold model is essentially the CLT
model in this paper (with a slightly different tie-breaking
rule). Interestingly, they show that the problem of maxi-
mizing positive influence given a fixed negative seed set is
not submodular (applicable to our CLT model), while we
show here that influence blocking maximization is submod-
ular. Intuitively, this is because even though a positive seed
x blocks the negative influence, to maximize positive influ-
ence it may also need other positive seeds to activate nodes
that are blocked from negative influence by node x. There-
fore, the marginal gain of x is larger for the positive influence
maximization objective when there are other positive seeds
corporating with x, making it not submodular.

Several improvements and future directions are possi-
ble. One direction is looking into even faster and more
space-efficient algorithms for influence blocking maximiza-
tion. Another direction is to tackle the IBM problem in
other competitive diffusion models, especially models with-
out submodularity property.
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