Bounded Cost Algorithms for Multivalued Consensus
Using Binary Consensus Instances

Jialin Zhang* Wei Chen
Tsinghua University Microsoft Research Asia
zhanggl02@mails.tsinghua.edu.cn weic@microsoft.com
Abstract

In this paper, we present two bounded cost algorithms that solve multivalued consensus using binary
consensus instances. Our first algorithm uses [log, n] number of binary consensus instances where n is
the number of processes, while our second algorithm uses at most 2k binary consensus instances, where
k is the maximum length of the binary representation of all proposed values in the run. Both algorithms
are significant improvements over the previous algorithm in [6], where the number of binary consensus
instances needed to solve one multivalued consensus is unbounded.

Keywords: distributed computing, fault tolerance, binary consensus, multivalued consensus.

1 Introduction

Consensus is a fundamental problem to solve when building fault-tolerant distributed systems. Informally,
consensus abstracts the basic agreement problem one often sees in distributed systems as follows: Each
process in a system proposes some value, and through communication they eventually need to decide on one
value proposed, and the decision is irrevocable. Many important distributed tasks, such as atomic broadcast,
data replication, mutual exclusion, atomic commit, etc., can use consensus as one of the core components
in their implementations. Therefore, consensus has been extensively studied from various angles in the
distributed computing community.

One basic form of consensus is binary consensus, in which processes may only propose 0 or 1 and
the decision is one of the two values. Binary consensus is a form used in studying both impossibility and
lower bound results (e.g., [2, 4]) and consensus algorithms (e.g., [1, 3]). However, solving the general
multivalued consensus using binary consensus is not trivial. In [7], Turpin and Coan provide an algorithm
reducing multivalued consensus to binary consensus in synchronous systems with Byzantine failures. In [6],
Mostefaoui et al. provide a reduction algorithm in asynchronous systems with crash failures. Our work is a
direct improvement of the work in [6].

In the algorithm of [6], every process runs a series of binary consensus instances sequentially to solve
multivalued consensus. However, the number of the binary consensus instances needed to solve one multi-
valued consensus instance is unbounded, and it depends on the message delay among the processes. As long
as each proposed value is delayed in reaching at least one process, it is possible that all processes may keep

*This work was supported in part by the National Natural Science Foundation of China Grant 60553001, and the National Basic
Research Program of China Grant 2007CB807900,2007CB807901.

running an arbitrarily many number of binary consensus instances without solving the multivalued consen-
sus. Since the actual implementation of binary consensus is usually costly, it is certainly undesirable to
invoke an unbounded number of binary consensus instances to solve one instance of multivalued consensus.

In this paper, we provide bounded cost algorithms that solve multivalued consensus using a bounded
number of binary consensus instances. In our first algorithm, every process invokes exactly [log, n| num-
ber of binary consensus instances to solve one multivalued consensus instance, where n is the number of
processes in the system. The idea is to use binary consensus to agree on a [log, n] bit long process iden-
tifier bit by bit, such that the decision value is the proposal value of this process. In our second algorithm,
every process invokes at most 2k binary consensus instances, where k is the maximum length of the binary
representation of all proposed values in the run. The idea is to use binary consensus to agree on the decision
value directly bit by bit, but we need to address the issue of when to terminate the binary consensus instances
since processes do not know in advance the number of bits they need to agree on. The second algorithm is
adaptive to the actual length of proposed values in a run, and it is more efficient than the first algorithm if
we know in advance that the length of proposed values are at most [logy n]/2.

Our paper focuses on bounding the cost for asynchronous systems. In synchronous systems, the al-
gorithm in [6] is better since it only needs one binary consensus instance while our algorithms still needs
[logy n] or 2k binary consensus instances.

2 The model and the problem

We consider a distributed system consisting of n processes {p1, p2, . . . , Pn } Processes may fail by crashing,
i.e., stop taking any actions. We say that a process is faulty in a run if it crashes in the run and a process is
correct if it is not faulty.

The problem to solve is multivalued consensus, in which every process proposes a value from an arbi-
trary range of values, and makes an irrevocable decision on one value. It needs to satisfy the following three
properties:

e Validity: If a process decides v, then v has been proposed by some process.
o Uniform Agreement: No two processes (correct or not) decide differently.

e Termination: If all correct processes propose, eventually all correct processes decide. !

In this paper, we show how to solve multivalued consensus using binary consensus, which is a special
form of multivalued consensus in which processes may only propose 0 or 1. Note that in this paper we
are interested in the uniform version of consensus, i.e., it satisfies the Uniform Agreement property. In
our algorithms, we use B-Consensus(v) to represent a binary consensus instance, where v is the proposal
value. When there are multiple binary consensus instances used in the algorithm, we use array notation like
B-Consensus[k]() to differentiate different consensus instances.

The communication primitive we use in this paper is uniform reliable broadcast [5], which is also used
in [6]. In uniform reliable broadcast, a process broadcasts a value v, which is associated with an attribute
sender(v) to denote the initiator of the broadcast of v, and eventually correct processes should deliver v.
More precisely, it should satisfy the following properties:

' An alternative specification may not require that all correct processes propose, and only require that all correct processes that
propose eventually decide. It is easy to check that our algorithm satisfies this alternative requirement if the underlying binary
consensus satisfies the same requirement.

e Uniform Integrity: For any value v, any process (correct or faulty) delivers v at most once, and only
if v was previously broadcast by sender(v).

e Validity: If a correct process broadcasts v, then it eventually delivers v.

o Uniform Agreement: If a process (correct or faulty) delivers a value v, then all correct processes
eventually deliver value v.

In our algorithms, we use UR-Broadcast(v) to denote the uniform reliable broadcast of value v, and
UR-Deliver(v) to denote the uniform reliable delivery of v.

We do not use any other communication primitives. Therefore, we do not need to further clarify if our
model is based on the message-passing model or the shared-memory model. In fact, the uniform reliable
broadcast abstraction can be implemented in both models. In the message-passing model with reliable
links, it can be implemented using the algorithms in [5]. In the shared-memory model, it can be simply
implemented as follows: When a process wants to broadcast v, it writes v into a shared single-writer multi-
reader atomic register dedicated to this process, since once v is written, all other processes can read it and it
will not be lost. Subsequent broadcasts by the same process can be implemented by piggybacking all values
that have been broadcasted by the process together and write into one shared register.

3 Algorithms from binary consensus to multivalued consensus

In this section, we present two algorithms that solve multivalued consensus using binary consensus instances
and uniform reliable broadcast. The number of binary consensus instances used in the first algorithm is
linear to the length of process identifiers, while the number of binary consensus instances used in the second
algorithm is linear to the lengths of proposed values in the run. Therefore, the algorithms can be used for
different situations to achieve the best efficiency.

For many variables in our algorithms, we need to operate on both their integer representations and bit
string representations. To keep the simplicity and the clarity of the presentation, we use the following
conventions in both algorithms. All simple variables in the algorithms, such as ¢, j, [, and d, are treated
as non-negative integers by default. For an integer variable j, we suppose the binary representation of the
value of j iS jimJjm—1 - - - j1Jjo, such that j € {0,1},k = 0,1,...,m, and j,,, = 1if j > 0 (j,,, is the most
significant bit and thus is always 1 except when j = 0). For any non-negative integer k, we use j[k| to
represent the k-th bit of j: When reading j[k]|, the return value is jj if 0 < k < m and 0 if & > m; when
writing a bit b to j[k], the result is changing the integer value of j such that the k-th bit j[k] becomes b and
all other bits remain unchanged. We also use j[k..0] to represent the bit string j[k] - j[k — 1] --- j[1] - j[0].
By convention, if & < 0, j[k..0] is the empty string. For example, if j = 101 (i.e., integer 5), then j[1] = 0,
J2] = 1, j[5] = 0, j[1..0] = 01, j[2..0] = 101, 5[5..0] = 000101, and setting j[3] to 1 changes j to 1101
(integer 13).

3.1 Algorithm linear to the length of process identifiers

We first give an algorithm (Figure 1) that uses [log, n] sequential calls to binary consensus instances to
solve multivalued consensus. The idea is for the processes to agree on the identifier of a process, and
the proposed value of that process would be used as the decision value. To do so, processes use binary
consensus instances to agree on the binary representation of the process identifier bit by bit, starting from

Local variables on process p;:

1 v, input proposal value of process p;

2 prop|0..n — 1], array storing the proposed values of processes, initially L for all entries
3 [, non-negative integer storing the process identifier to be decided, initally O

Code for process p;:
4 UR-Broadcast(v;)

s wait until [prop[i] # L]

6 J—1

7 fork =0to [logyn] —1

8 l[k] < B-Consensus[k](j[k])

9 repeat j < (j+ 1) mod n

10 until [prop[j] # L and [[k..0] = j[k..0]]
11 endfor

12 return prop[l] /* decide on propll] */

13 Upon UR-Deliver(v) with sender(v) = p;:
4 proplj] «— v

Figure 1: Algorithm linear to the length of process identifiers

the least significant bit. The key mechanism in the algorithm is to guarantee that after deciding on a process
identifier [, every process also know the proposed value of process p.

In the algorithm, v; is the proposal of process p;. Each process p; first uniformly broadcasts its own
proposed value (line 4). Whenever p; uniformly delivers a proposed value from p;, it stores it into prop|j]
(lines 13—14). Process p; waits until it delivers its own proposed value (line 5), then sets variable j to 7
(line 6). Variable j is the process identifier such that at the beginning of the k-th iteration of the for-loop
(lines 7-11), prop[j] # L and j[k — 1..0] = [[k — 1..0], where variable [stores the process identifier on
which all processes should eventually agree. In the for-loop (lines 7—11), processes fill in [as a bit string bit
by bit starting from the least significant bit. In the k-th round (i.e., the k-th iterations of the for-loop with
kE=0,1,...,[logyn]|—1), process p; first proposes to the k-th binary consensus instance B-Consensus[k|()
with the k-th bit of 5 (line 8). The decision of this instance is used to fill the k-th bit of /. Then p; waits for
a proposed value from a process p; such that the current identifier / (with bits up to the k-th bit filled) is the
same as j, that is, [[k..0] = j[k..0] (line 9— 10). The loop ends when it has gone through all bits of process
identifiers. At this point [is the final identifier, and p; then decide on p;’s proposed value (line 12).

Theorem 1 The algorithm in Figure I solves multivalued consensus problem based on the binary consen-
sus.

Proof. We show that the algorithm satisfies the Validity, Uniform Agreement, and Termination properties
of consensus.

Validity: Suppose process p decides on prop|l]. First, in the last round of process p, p has already checked
in line 10 that prop[j] # L and l[[logn]| — 1..0] = j[[logn| — 1..0], which means [= j and prop[l] # L.
Thus p decides on prop|l] = v # L. The value of prop[l] becomes v only after p uniformly delivers value v
with sender(v) = p;. By the Uniform Integrity of the uniform reliable broadcast, p; broadcasts v. According
to the algorithm, v = v; is the proposal value of p;.

Uniform Agreement: Suppose process p and q (either correct or not) both return some decision value
in line 12. Thus, both of them complete all [log, n| rounds without crashing in between. In each round
k=0,1,...,[logyn| — 1, they run the same binary consensus instance B-Consensus|k]() to determine the
k-th bit of [. By the Uniform Agreement of the binary consensus instances, we know that they have the same

4

value [after they complete all rounds. Moreover, on both p and ¢, prop[l] can only contain the proposed
value v; from process p;. Therefore, p and ¢ can only decide on the same value v;.

Termination: First, for every correct process p;, by the Validity of the uniform reliable broadcast, after
p; broadcasts v; in line 4, p; eventually delivers v; and sets prop[i] to v; (line 14). Thus, p; will not be
blocked at line 5 forever. Suppose, for a contradiction, that some correct process p does not decide. Then p
is blocked forever in some round k.

Let £ € {0,1,...,[loggn] — 1} be the earliest round number in which some correct process is
blocked forever. We first show that no correct process can be blocked at the binary consensus instance
B-Consensus[k]() in line 8. Since no correct process is blocked in the previous round by the definition
of k, all correct processes eventually propose to B-Consensus[k](). By the Termination property of bi-
nary consensus, all correct processes eventually decide in B-Consensus[k](). We then show that no correct
process can be blocked forever in the repeat-until loop in lines 9-10 in round k. For every correct pro-
cess p;, p; has already run the binary consensus instance B-Consensus|k]() to determine bit [[k]. By the
Validity of binary consensus, some process ¢ must have proposed [[k]. If & > 0, we consider the (k — 1)-
th round on process g. According to line 10, on process ¢ there exists j, such that prop[j,] # L and
[k — 1..0] = jq[k — 1..0] and then ¢ proposes j,[k] to binary consensus instance B-Consensus[k](). So
l[k] = jqk] means [[k..0] = j4[k..0]. If k = 0, suppose the identifier of ¢ is j,. Then according to lines 5-6,
process ¢ proposes j,[0] = [[0], and prop[j,| # L on process g. So, in both cases, we can find j, such
that prop[j,] # L on some process ¢ and {[k..0] = j,[k..0]. By the Uniform Agreement of uniform reliable
broadcast, eventually on p; prop|[j,] is also non-_L. After this time point, the repeat-until loop in lines 9-10
of round k on process p; will end since p; can at least find j = j, that matches the condition in line 10. So,
p; will not be blocked in this repeat-until loop. Therefore, no correct process is blocked forever in any round
k, which means eventually all correct processes must decide. O

It is clear that in the algorithm, every process runs exactly [log, n| binary consensus instances sequen-
tially to decide for the multivalued consensus. It is an improvement comparing to the algorithm in [6],
in which the number of sequential binary consensus instances needed is unbounded and is affected by the
synchrony and the speed of the uniform reliable broadcast algorithm.

3.2 Algorithm linear to the length of the proposed values

The algorithm in Figure 1 uses binary consensus instances to determine the process identifier bit by bit.
Using the similar structure, we can also determine the decision value directly bit by bit. The advantage is
that when the bit representations of the proposed values are much shorter than [logy 1| (the length of the bit
representations of process identifiers), multivalued consensus terminates with less number of invocations to
binary consensus instances. The difficulty, however, is that we do not know in advance what are the values
to be proposed, and thus it is difficult to set an upper bound on the number of binary consensus instances
needed to determine all bits. If we use a large fixed bound based on the number of all possible proposed
values, it could be very large or even infinite. To deal with this problem, we use another binary consensus
instance to determine if the algorithm should terminate after choosing each bit of the decision value. The
resulting algorithm is adaptive in the sense that the number of binary consensus instances needed is linear
to the maximum length of proposed values in the run, and it is not related to the total number of possible
proposed values in all runs.

Figure 2 shows the algorithm that determines the decision value bit by bit, starting from the least sig-
nificant bit. In the algorithm, the proposal value v; of process p; is a non-negative integer value. Any
finite-length string can be encoded by a non-negative integer, so using non-negative integers does not lose

Local variables on process p;:

1 v;, non-negative integer storing the input proposal value of process p;

2 prop[0..n — 1], array storing the proposed values of processes, initially L for all entries
3 d, non-negative integer storing the decision value, initially O

Code for process p;:

4 UR-Broadcast(v;)
5 wait until prop[i] # L
6 k«—0;7«—1
7 repeat

8 d[k] < B-Consensus|0][k](prop[j][k])

9 repeat j < (j+ 1) mod n

10 until [d[k..0] = prop[j][k..0]]

11 if d = prop[j] then finish = 1 else finish = 0
12 1« B-Consensus[1][k](finish)

13 k—k+1

14 untilr =1

15 returnd /* decide on d */

16 Upon UR-Deliver(v) with sender(v) = pj:
17 proplj] v

Figure 2: Algorithm linear to the length of the proposed values

the generality of the solution. Similar to the first algorithm, each process first uniformly broadcasts its own
proposed value and stores all received proposed values in array prop|]. Variable d is an integer variable used
to store the final decision value. Processes decide the decision value d bit by bit from d[0], d[1], and so on.
In round £, i.e., the k-th iteration of the repeat-until loop in lines 7-14 with & > 0, processes decide on
d[k], the k-th bit of d. Process p; first uses the k-th bit of prop|j] to be the proposal of the binary consensus
B-Consensus|[0][k]() (line 8) where j is chosen in the previous round (initially, j is set to p;’s own identifier
i). Then process p; finds a non-empty proposal prop|[j] such that d[k..0] = prop[j][k..0] (lines 9-10), This
is to ensure that the final decision value is from one of the proposed values, i.e., to ensure the Validity prop-
erty of consensus. Finally, process p; uses another binary consensus instance B-Consensus|[1][k]() to decide
whether or not the procedure should terminate (line 12). The input to this binary consensus instance is 1 if
p; finds that the integer d is the same as prop[j], or 0 otherwise (line 11). If the decision of this instance is
1, then the multivalued consensus terminates with the decision d.

Theorem 2 The algorithm in Figure 2 solves multivalued consensus problem based on the binary consen-
sus.

Proof. We show that the algorithm satisfies the Validity, Uniform Agreement, and Termination properties
of consensus.

Validity: Suppose d is the decision value returned by process p. By line 14, p breaks from the repeat-
until loop with » = 1 in some round k. This means at least one process g proposes finish = 1 in the binary
consensus instance B-Consensus[1][k]() in line 12. So d = prop]j] for some j when process ¢ runs line 11.
By the Uniform Integrity of the uniform reliable broadcast, some p; broadcasts prop|[j], and thus p; proposes
d for its multivalued consensus instance. The Validity property holds.

Uniform Agreement: Suppose process p and ¢ (either correct or not) both return some decision value in
line 15. Thus, neither of them crashes or is blocked before making a decision. We first prove that for any
k > 0, if process p runs the binary consensus instance B-Consensus[0][k](), process ¢ also runs the binary
consensus instance B-Consensus[0][k](). If not, there must exist ¥’ < k, process ¢ breaks from repeat-until

loop in line 14 after running the binary consensus instance B-Consensus[1][k'](). Thus, B-Consensus[1][k']()
returns 1 in line 12. But process p also runs the binary consensus instance B-Consensus[1][k'](). By the
Uniform Agreement property of the binary consensus, process p should get the return value 1 from instance
B-Consensus|1][k'](), which means it should break from the repeat-until loop in line 14 in round £’ < k,
which contradicts to the fact that p runs the binary consensus instance B-Consensus[0][k](). So processes p
and ¢ run the same set of binary consensus instances B-Consensus[0][k](). The k-th bit of the decision value
d returned by p and ¢ are decided by the binary consensus instance B-Consensus|0][k](), which means that
the k-th bit decided by p and ¢ are the same. So decision value returned by process p is the same as the
decision value returned by process g. This proves the Uniform agreement property.

Termination: First, by the same argument as in Theorem 1, no correct process p is blocked in line 5.
We then prove that no correct process is blocked inside the repeat-until loop (line 7— 14). If not, let k be
the earliest round number in which some correct process is blocked forever. We first show that no correct
process p; is blocked at the binary consensus instance B-Consensus[0][k]() in line 8. If k = 0, then j = ¢
for process p;. So prop[j] # L by line 5. If k > 0, since process p; is not blocked in the previous round,
prop[j] # L by line 10. Therefore, all correct processes eventually propose to B-Consensus[0][k](). By the
Termination property of binary consensus, all correct processes eventually decide in B-Consensus|0][k]().
We then show that no correct process p; is blocked forever in the repeat-until loop in lines 9-10 in round
k. By the Validity of binary consensus, the decision value d[k] in round % is proposed by some process
g. So d[k] = prop[j,|[k] for some j, on ¢q. If k& > 0, in the (k — 1)-th round of process ¢, according to
line 10, we have d[k — 1..0] = prop[jq|[k — 1..0]. So d[k..0] = prop[j,][k..0] and prop[j,| # L on process
g. If k = 0, suppose the identifier of ¢ is j,. Then we have prop[j,] # L and d[0..0] = prop[j,][0..0] on
process ¢. In both cases, we have prop[j,] # L on process ¢ and d[k..0] = prop[j,|[k..0]. By the Uniform
Agreement of uniform reliable broadcast, eventually on p;, prop[j,] is also non-_L. After this time point,
the repeat-until loop in lines 9-10 of round k on process p; will end since p; can at least find j = j, that
matches the condition in line 10. So, p; will not be blocked in this repeat-until loop. Therefore, all correct
processes eventually propose to B-Consensus|[1][k](). By the Termination property of binary consensus, all
correct processes eventually decide in B-Consensus[1][k](). Therefore, no correct process is blocked forever
in any round k.

Finally, let [v;| = 1if v; = 0, and |v;| = max{j | v;[j] = 1} + 1, i.e. |v;] is the length of the binary
representation of v;. Let & = max{|v;| | ¢ = 1,2,...,n}, i.e., k is the maximum length of the binary
representations of all proposed values. We prove that for any process p that finishes round k-1, p must
decide at the end of this round and terminate the multivalued consensus. When p executes line 11 in round
k—1, we have d[k—1..0] = - proplj] [k —1..0] for some j according to line 10. By the definition of &, propl[j]
has no bit higher than the (k — 1)-th bit that is 1, so d = prop|j]. Therefore, process p can only propose
finish = 1 to the binary consensus instance B-Consensus|[1] [k — 1]() according to line 11. Since no process
can propose 0 to B-Consensus[1][k — 1](), by the Validity of binary consensus the decision of this instance
can only be 1. Therefore p will decide at the end of round k — 1 and terminates. Since we know that all
correct processes will reach the end of round k — 1 if they have not decided earlier, we know that all correct
processes eventually decide by the end of round £ — 1. O

From the proof of Termination, it is clear that the algorithm in Figures 2 solves multivalued consensus
with at most 2k sequential calls to binary consensus instances, where £ is the maximum length of the binary
representation of all proposed values in the run. Therefore, when k < [log, n /2, this algorithm is preferred
over the algorithm in the previous section.

4 Conclusion

In this paper we present two bounded cost algorithms that solve multivalued consensus problem using bi-
nary consensus instances and uniform reliable broadcast primitives. In the first algorithm every processes
invokes [log,] number of binary consensus instances where n is the number of processes, while in the
second algorithm every processes invokes 2k binary consensus instances, where k is the maximum length
of the binary representation of all proposed values in the run. Both algorithms significantly improve the
worst-case cost of the previous algorithm in [6] in which processes may invoke an unbounded number of
binary consensus instances. Finally, we remark that, even though our definition of consensus is for deter-
ministic algorithms, our results can be certainly extended to include randomized algorithms. Therefore,
we can directly use the randomized binary consensus algorithms in [1, 3] to solve randomized multivalued
consensus.

References

[1] M. K. Aguilera and S. Toueg. Failure detection and randomization: A hybrid approach to solve consen-
sus. SIAM Journal on Computing, 28(3):890-903, 1998.

[2] M. K. Aguilera and S. Toueg. A simple bivalency proof that ¢-resilient consensus requires ¢ + 1 rounds.
Information Processing Letters, T1(3-4):155-158, 1999.

[3] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols. In
Proceedings of the 2nd ACM Symposium on Principles of Distributed Computing, pages 27-30, Aug.
1983.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374-382, Apr. 1985.

[5] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related problems.
Technical Report 94-1425, Department of Computer Science, Cornell University, Ithaca, New York,
May 1994.

[6] A. Mostefaoui, M. Raynal, and F. Tronel. From binary consensus to multivalued consensus in asyn-
chronous message-passing systems. Information Processing Letters, 73(5-6):207-212, 2000.

[7] R. Turpin and B. A. Coan. Extending binary byzantine agreement to multivalued byzantine agreement.
Information Processing Letters, 18(2):73-76, 1984.

