
Supplementary Material for ”Combinatorial multi-armed bandit: general
framework, results and applications”, by Wei Chen, Yajun Wang, and Yang Yuan.

A. Full proof of Theorem 1

We use the following two well known bounds in our proofs.

Lemma 1 (Chernoff-Hoeffding bound). Let X1, · · · , Xn be random variables with common support [0, 1] and
E[Xi] = µ. Let Sn = X1 + · · ·+Xn. Then for all t ≥ 0,

Pr[Sn ≥ nµ+ t] ≤ e−2t2/n and Pr[Sn ≤ nµ− t] ≤ e−2t2/n

Lemma 2 (Bernstein inequality). Let X1, . . . , Xn be independent zero-mean random variables. If for all 1 ≤
i ≤ n, |Xi| ≤ k, then for all t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

]
≤ exp

{
− t2/2∑n

i=1 E[X2
i] + kt/3

}
.

For a given underlying arm i ∈ [m], Let Si,B be the set of all bad super arms containing arm i. We sort all bad

super arms in Si,B as S1
i,B, S

2
i,B, . . . , S

Ki

i,B in increasing order of their expected rewards, where Ki is the number
of bad super arms containing arm i. Define

∆i,j = α · optµ − rµ(Sji,B). (14)

Thus ∆i
max = ∆i,1 and ∆i

min = ∆i,Ki . Recall that ∆max = maxi∈[m] ∆i
max.

Theorem 1 (restated) The (α, β)-approximation regret of the CUCB algorithm in n rounds using an (α, β)-
approximation oracle is at most∑

i∈[m],∆i
min>0

(
6 lnn

(f−1(∆i
min))2

·∆i
min +

∫ ∆i
max

∆i
min

6 lnn

(f−1(x))2
dx

)
+

(
π2

3
+ 1

)
·m ·∆max

≤
∑

i∈[m],∆i
min>0

6 lnn

(f−1(∆i
min))2

·∆i
max +

(
π2

3
+ 1

)
·m ·∆max,

where f(·) is the bounded smoothness function.

Our proof depends on the fact that with high probability, the entire process behaves nicely. In other words, the
empirical mean of Xi is close to the actual expectation µi.

Definition 1 (Nice process). The process is nice at time horizon t if:

∀i ∈ [m], | µ̂i,Ti,t−1
− µi |<

√
3 ln t

2Ti,t−1
.

Lemma 3. The probability that the process is nice at time t is at least 1− 2mt−2.

Proof. By Chernoff-Hoeffding bound in Lemma 1, for any i ∈ [m],

Pr

[
| µ̂i,Ti,t−1 − µi |≥

√
3 ln t

2Ti,t−1

]
(15)

=

t−1∑
s=1

Pr

[{
| µ̂i,s − µi |≥

√
3 ln t

2s
, Ti,t−1 = s

}]

≤
t−1∑
s=1

Pr

[{
| µ̂i,s − µi |≥

√
3 ln t

2s

}]

≤t · 2e−3 ln t =
2

t2
. (16)

The lemma follows by taking union bound on i.

We now briefly explain the idea to prove Theorem 1, based on the refinement of the idea used to prove the
simplified regret bound in Eq.(4). In the proof of Eq.(4), we essentially show that if all arms are sufficiently
sampled with respect to ∆min, that is, sampled at least 6 ln t

(f−1(∆min))2 times, then the sample means are close

enough to their true mean values. As a result, by the monotonicity and bounded smoothness properties of the
expected reward function and by the property of the approximation oracle, we know that the probability that we
hit a bad super arm is very small. On the other hand, in a bad round, if the underlying arms are not sufficiently
sampled with respect to ∆min, we incur a regret of ∆max. Notice that there is a discrepancy in the analysis, i.e.,
the sufficiency of sampling is defined on ∆min while the regret is counted as ∆max. This makes our analysis of
regret bound in Eq.(4) not tight enough.

In this section, we refine the previous analysis. In particular, for each arm i, it has a series of bad super arms
S1
i,B, S

2
i,B, . . . , S

Ki

i,B containing i, and for each Sli,B, we define sufficient sampling of i with respect to Sli,B (or

equivalently with respect to ∆i,l) as i being sampled 6 lnn
(f−1(∆i,l))2 times and i’s counter Ni being incremented in

these sampled instances, where n is the time horizon. We show that when i is sufficiently sampled with respect
to Sli,B, the probability that Sli,B is selected by the oracle is very small. On the other hand, in a bad round when

i’s counter Ni is incremented, if i is under-sampled with respect to Sli,B, we incur a regret of at most ∆i,j for

some j ≤ l. In this way, we reduce the discrepancy between ∆min and ∆max to a much tighter ∆i,l and ∆i,j ,
which enables us to prove the much tighter bound given in Theorem 1.

Proof of Theorem 1. For variable Ti, let Ti,t be the value of Ti at the end of round t, that is, Ti,t is the number
of times arm i is played in the first t rounds. For variable µ̂i, let µ̂i,s be the value of µ̂i after arm i is played s
times, that is, µ̂i,s = (

∑s
j=1Xi,j)/s. Then, the value of variable µ̂i at the end of round t is µ̂i,Ti,t

. For variable
µ̄i, let µ̄i,t be the value of µ̄i at the end of round t, and let µ̄t = (µ1,t, µ2,t, . . . , µm,t) be the input vector to the
oracle at round t. Then, according to line 6 of Algorithm 1, we have

µ̄i,t = µ̂i,Ti,t−1 +

√
3 ln t

2Ti,t−1
. (17)

For the proof, we maintain counter Ni for each arm i after the m initialization rounds. Let Ni,t be the value of
Ni after the t-th round and Ni,m = 1. Note that

∑
iNi,m = m. Counters {Ni}mi=1 are updated in the following

way.

For a round t > m, let St be the super arm selected in round t by the oracle (line 7 of Algorithm 1). Round t is a
bad round if the oracle selects a super arm St ∈ SB, which is not an α-approximate super arm with respect to the
true mean vector µ. If round t is bad, let i = argminj∈St

Nj,t−1. We increment Ni by one, i.e., Ni,t = Ni,t−1 + 1.
In other words, we find the arm i with smallest counter in St and increase its counter. If i is not unique, we pick
an arbitrary arm with smallest counters in St. By definition Ni,t ≤ Ti,t. Notice that in every bad round, exactly
one counter in {Ni}mi=1 is increased.

Each time Ni gets updated, one of the bad super arms containing i is played. We further divide counter Ni into
more counters {N l

i}
Ki

l=1, whose value at round n, N l
i,n is defined as follows:

∀l ∈ [Ki], N
l
i,n =

n∑
t=m+1

I{St = Sli,B, Ni,t > Ni,t−1}.

Define `n(∆) = 6 lnn
(f−1(∆))2 , i.e., the number of sampling that is considered sufficient for a super arm with reward

∆ away from the α-approximation with respect to time horizon n. When counter N l
i is incremented at time t,

i.e., St = Sli,B and Ni,t > Ni,t−1, we inspect the value Ni,t−1. Notice that every arm in St must have been played
at least Ni,t−1 times by round t, since in our updating rule we choose the smallest counter value among arms in
St to update, and i is the chosen one. If Ni,t−1 > `n(∆i,l), we say that the bad arm Sli,B is sufficiently sampled.
Otherwise, it is under-sampled. Notice that our definition of sufficient sampling at a time t is with respect to
the value `n(∆i,l) related to the time horizon n, not the current time t. This is a bit different from the proof of
Eq.(4) in the main text, and it is needed in the analysis of the under-sampled case. In our analysis, the time t
considered is at most n.

We write as

N l,suf
i,n =

n∑
t=m+1

I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 > `n(∆i,l)},

N l,und
i,n =

n∑
t=m+1

I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 ≤ `n(∆i,l)}.

Then we have Ni,n = 1 +
∑
l∈[Ki]

(N l,suf
i,n +N l,und

i,n). Using this notation, the total reward at time horizon n is at
least

n · α · optµ − E

∑
i∈[m]

∆i,1 +
∑
l∈[Ki]

(N l,suf
i,n +N l,und

i,n) ·∆i,l

 , (18)

where ∆i,1 is for the initialization.

We claim that it is unlikely that a bad super arm is played when all the underlying arms are sufficiently sampled.
More specifically, we have the following claim.

Claim 1. For any time horizon n > m,

E

∑
i∈[m]

∑
l∈[Ki]

N l,suf
i,n

 ≤ (1− β)n+
π2

3
·m. (19)

Proof. By the definition of N l,suf
i,n , it is sufficient to show that for any n ≥ t > m,

E

 ∑
i∈[m],l∈[Ki]

I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 > `n(∆i,l)}


=

∑
i∈[m],l∈[Ki]

Pr{St = Sli,B, Ni,t > Ni,t−1,∀s ∈ Sli,B, Ns,t−1 > `n(∆i,l)}

≤(1− β) + 2mt−2.

Define Λi,t =
√

3 ln t
2Ti,t−1

(a random variable since Ti,t−1 is a random variable) and Λt = max{Λi,t | i ∈ St}. Define

Λi,l =
√

3 ln t
2`n(∆i,l)

(not a random variable).

Let Nt indicate the event that the process is nice at time t. Let Ft be the event that the oracle fails to produce
an α-approximate answer with respect to input vector µ̄t in round t. We have Pr[Ft] = E[I{Ft}] ≤ 1− β.

Notice that µ̄i,t = µ̂i,t +
√

3 ln t
2Ti,t−1

. We have the following properties.

Nt ⇒ ∀i ∈ [m], µ̄i,t − µi > 0, (20)

Nt ⇒ ∀i ∈ St, µ̄i,t − µi < 2Λt, (21)

∀i ∈ [m],∀l ∈ [Ki],
{
St = Sli,B, Ni,t > Ni,t−1,∀s ∈ St, Ns,t−1 > `n(∆i,l)

}
⇒ Λi,l > Λt. (22)

For any particular i ∈ [m] and l ∈ [Ki], if
{
Nt,¬Ft, St = Sli,B, Ni,t > Ni,t−1,∀s ∈ St, Ns,t−1 > `n(∆i,l)

}
holds at

time t, we have the following properties:

rµ(St) + f(2Λi,l) >rµ(St) + f(2Λt) strict monotonicity of f(·) and Eq.(22)

≥rµ̄t
(St) bounded smoothness property and Eq.(21)

≥α · optµ̄t
¬Ft ⇒ St is an α approximation w.r.t µ̄t

≥α · rµ̄t
(S∗µ) definition of optµ̄t

≥α · rµ(S∗µ) = α · optµ. monotonicity of rµ(S) and Eq.(20)

So we have

rµ(Sli,B) + f(2Λi,l) > α · optµ. (23)

Since `n(∆i,l) = 6 lnn
(f−1(∆i,l))2 , we have 2Λi,l = f−1(∆i,l) ·

√
ln t
lnn , which implies f(2Λi,l) ≤ ∆i,l by the monotonicity

of f(·) and t ≤ n. Therefore, Eq. (23) contradicts the definition of ∆i,l in Eq.(14). In other words,

∀i ∈ [m]∀l ∈ [Ki], Pr
{
Nt,¬Ft, St = Sli,B, Ni,t > Ni,t−1,∀s ∈ St, Ns,t−1 > `n(∆i,l)

}
= 0

⇒ Pr
{
Nt,¬Ft,∃i ∈ [m],∃l ∈ [Ki], St = Sli,B, Ni,t > Ni,t−1,∀s ∈ St, Ns,t−1 > `n(∆i,l)

}
= 0

⇒ Pr
{
∃i ∈ [m],∃l ∈ [Ki], St = Sli,B, Ni,t > Ni,t−1,∀s ∈ St, Ns,t−1 > `n(∆i,l)

}
≤ Pr[Ft ∨ ¬Nt] ≤ (1− β) + 2mt−2 (24)

⇒
∑

i∈[m],l∈[Ki]

Pr
{
St = Sli,B, Ni,t > Ni,t−1,∀s ∈ St, Ns,t−1 > `n(∆i,l)

}
≤ (1− β) + 2mt−2. (25)

The second inequality in Eq. (24) uses the facts that Pr{Ft} = (1− β) and Pr{¬Nt} ≤ 2mt−2 (Lemma 3). The
left side of Eq. (25) equals the left side of Eq. (24), because the events {St = Sli,B, Ni,t > Ni,t−1,∀s ∈ St, Ns,t−1 >

`t(∆
i,l)} for all i ∈ [m] and l ∈ [Ki] are mutually exclusive, which in turn is because in each round when St is

bad, only one arm i ∈ St gets to increment its counter Ni and thus Ni,t > Ni,t−1, and within arm i, only one
index l satisfies St = Sli,B.

Now we consider the bad super arms that are under-sampled when played. For a particular arm i, its counter
Ni will increase from 1 to `n(∆i,Ki). To simplify the notation, set `n(∆i,0) = 0. (Notice that Ni,m = 1 for all i.)
Before we go into the details, we discuss the essential idea behind Eqn.(28). We break the range of the counter
Ni into discrete segments, i.e., (`n(∆i,j−1), `n(∆i,j)] for j ∈ [Ki]. Let us assume that the round t is bad and
Ni is incremented. Assume Ni,t−1 ∈ (`n(∆i,j−1), `n(∆i,j)] for some j. Notice that we are only interested in the

case that St is under-sampled. In particular, if this is indeed the case, St = Si,lB for some l ≥ j. (Otherwise,
St is sufficiently sampled based on the counter value Ni,t−1.) Therefore, we will suffer a regret of ∆i,l ≤ ∆i,j

(Eqn.(26)). Consequently, for counter Ni,t in range (`n(∆i,j−1), `n(∆i,j)], we will suffer a total regret for those
under-sampled arms at most (`n(∆i,j)− `n(∆i,j−1)) ·∆i,j (Eqn.(27)) in rounds that Ni,t is incremented.

We implement the argument rigorously as follows. For any arm i in {i ∈ [m] | ∆i
min > 0}, we have,

∑
l∈[Ki]

N l,und
i,n ·∆i,l =

n∑
t=m+1

∑
l∈[Ki]

I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 ≤ `n(∆i,l)} ·∆i,l

=

n∑
t=m+1

∑
l∈[Ki]

l∑
j=1

I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (`n(∆i,j−1), `n(∆i,j)]} ·∆i,l

≤
n∑

t=m+1

∑
l∈[Ki]

l∑
j=1

I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (`n(∆i,j−1), `n(∆i,j)]} ·∆i,j (26)

≤
n∑

t=m+1

∑
l∈[Ki]

∑
j∈[Ki]

I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (`n(∆i,j−1), `n(∆i,j)]} ·∆i,j

=

n∑
t=m+1

∑
j∈[Ki]

I{St ∈ Si,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (`n(∆i,j−1), `n(∆i,j)]} ·∆i,j

=
∑
j∈[Ki]

n∑
t=m+1

I{St ∈ Si,B, Ni,t > Ni,t−1, Ni,t−1 ∈ (`n(∆i,j−1), `n(∆i,j)]} ·∆i,j

≤
∑
j∈[Ki]

(`n(∆i,j)− `n(∆i,j−1)) ·∆i,j (27)

=`n(∆i,Ki)∆i,Ki +

Ki−1∑
j=1

`n(∆i,j) · (∆i,j −∆i,j+1)

≤`n(∆i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

`n(x)dx. (28)

Last inequality comes from the fact that `n(x) is decreasing. Notice that by our definition, for arms that
j ∈ [m] \ {i ∈ [m] | ∆i

min > 0}, the counter Nj remains one after the initialization. Since they do not contribute
to any regret, we have Kj = 0 for all these arms. Therefore, combining with Eq.(19) and Eq.(28), the overall
regret of our algorithm is

RegAµ,α,β(n) ≤n · α · β · optµ −

α · n · optµ − E

∑
i∈[m]

∆i,1 +
∑
l∈[Ki]

(N l,suf
i,n +N l,und

i,n) ·∆i,l


≤∆max ·

m+ E

 ∑
i∈[m],l∈[Ki]

N l,suf
i,n

+
∑

i∈[m],∆i
min>0

(
`n(∆i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

`n(x)dx

)
− (1− β) · n · α · optµ

≤
(
π2

3
+ 1

)
·m ·∆max +

∑
i∈[m],∆i

min>0

(
`n(∆i,Ki)∆i,Ki +

∫ ∆i,1

∆i,Ki

`n(x)dx

)
.

The theorem follows directly.

Improving the coefficient of the leading term. In general, we can set µ̄i = µ̂i +
√
y/(2Ti) for some y in

line 6 in the CUCB algorithm. The corresponding regret bound obtained is∑
i∈[m],∆i

min>0

(
2 · y

(f−1(∆i
min))2

·∆i
min +

∫ ∆i
max

∆i
min

2 · y
(f−1(x))2

dx

)
+

(
1 +

n∑
t=m+1

2t

e−y

)
·m ·∆max.

What we need is to make sure the term
∑n
t=m+1

2t
e−y in the above regret bound converges. We can thus

set y appropriately to guarantee convergence while improving the constant in the leading term. One way is

setting y = (1 + c) ln t with a constant c > 1, or equivalently setting µ̄i = µ̂i +
√

(1 + c) ln t/(2Ti), so that∑n
t=m+1

2t
e−y = 2

∑n
t=m+1 t

−c ≤ 2ζ(c), where ζ(c) =
∑∞
t=1

1
tc is the Riemann’s zeta function, and has a finite

value when c > 1. Then the regret bound is

∑
i∈[m],∆i

min>0

(
2 · (1 + c) · lnn
(f−1(∆i

min))2
·∆i

min +

∫ ∆i
max

∆i
min

2 · (1 + c) · lnn
(f−1(x))2

dx

)
+ (2 · ζ(c) + 1) ·m ·∆max.

We can also further improve the constant factor from 2(1 + c) to 4 by setting µ̄i = µ̂i +
√

2 ln t+ln ln t
2Ti

at the cost

of a second order ln lnn term as in (Garivier & Cappé, 2011), with regret at most

∑
i∈[m],∆i

min>0

(
2 · (2 lnn+ ln lnn)

(f−1(∆i
min))2

·∆i
min +

∫ ∆i
max

∆i
min

2 · (2 lnn+ ln lnn)

(f−1(x))2
dx

)
+ (1 + 2 ln lnn) ·m ·∆max.

This is because
∑n
t=m+1

1
t ln t ≤

∫ n
m

1
t ln tdt ≤ ln lnn when m > e.

Theorem 2 (restated) Consider a CMAB problem with an (α, β)-approximation oracle. If the bounded
smoothness function f(x) = γ · xω for some γ > 0 and ω ∈ (0, 1], the regret of CUCB is at most:

2γ

2− ω
· (6m lnn)ω/2 · n1−ω/2 +

(
π2

3
+ 1

)
·m ·∆max.

In Theorem 1, when ∆i
min is extremely small, the regret would be approaching infinite. This is not applicable

since the number of samples needed to be sufficient is exceeding the time horizon. In what follows, we prove a
distribution-independent regret bound. The rough idea is, if ∆i

min ≤ 1/
√
n, it can only contribute

√
n regret at

time horizon n.

Proof. Following the proof of the main theorem, we only need to consider the bad arms that are played when
they are under-sampled. Following the intuition, we need to quantify when ∆ is too small. In particular, we
measure the threshold for ∆i

min based on Ni,n, i.e., the counter of arm i at time horizon n. Let {ni | i ∈ [m]}
be a set of possible counter values at time horizon n. Our analysis will then be conditioned on the event that
{Ni,n = ni}. The catch is, in our analysis for under-sampled super arms, that we only need counting based
arguments will be still applicable under any condition.

For an arm in {i | ∆i
min > 0}, we have

E[
∑
l∈[Ki]

N l,und
i,n ·∆i,l | {Nj,n = nj}] =

n∑
t=m+1

∑
l∈[Ki]

E[I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 ≤ `n(∆i,l) | {Nj,n = nj} }]·∆i,l

Define ∆∗(ni) =
(

6γ2/ω lnn
ni

)ω/2
, i.e., `n(∆∗(ni)) = ni. Now we consider two cases. Case (1): ∆i

min > ∆∗(ni).

Following the same counting steps as in Eq.(28), we have

E[
∑
l∈[Ki]

N l,und
i,n ·∆i,l | {Nj,n = nj}] ≤ 2

2− ω
· 6 · γ2/ω lnn

(∆i
min)

2
ω−1

≤ 2γ

2− ω
· (6 lnn)ω/2n

1−ω/2
i .

Case (2): ∆i
min ≤ ∆∗(ni). Let l∗ = min{l | ∆i,l > ∆∗(ni)}. Notice that ∆i,l∗ ≤

(
6γ2/ω lnn

ni

)ω/2
. Since the

counter cannot go beyond ni, we have

E[
∑
l∈[Ki]

N l,und
i,n ·∆i,l | {Nj,n = nj}] =

n∑
t=m+1

∑
l∈[Ki]

E[I{St = Sli,B, Ni,t > Ni,t−1, Ni,t−1 ≤ `n(∆i,l) | {Nj,n = nj} }] ·∆i,l

≤(`n(∆∗(ni))− `n(∆i,l∗−1)) ·∆∗(ni) +
∑

j∈[l∗−1]

(`n(∆i,j)− `n(∆i,j−1)) ·∆i,j

≤`n(∆∗(ni)) ·∆∗(ni) +

∫ ∆i,1

∆∗(ni)

`n(x)dx

≤ 2γ

2− ω
· (6 lnn)ω/2n

1−ω/2
i . (29)

Therefore, Eq.(29) holds in both cases. We then have

E

 ∑
{i|∆i

min>0}

∑
l∈[Ki]

N l,und
i,n ·∆i,l | {Nj,n = nj}

 ≤ 2γ

2− ω
· (6 lnn)ω/2 ·

∑
{i|∆i

min>0}

n
1−ω/2
i

≤ 2γ

2− ω
· (6m lnn)ω/2 · n1−ω/2.

The last inequality comes from Jesen’s inequality and
∑
i ni ≤ n. Since the final inequality does not depend on

ni, we can drop the conditional expectation above. The result then follows from Claim 1 and Eq.(18).

B. CMAB with Clustered Arms

In many applications, multiple arms are clustered and are always played together. For example, in the PMC
bandit problem, all arms (edges) incident to a node in L are always played together; in the influence maximization
bandit problem, all arms (outgoing edges) from the same node are always played together. In this section, we
show how to take advantage of such arm clusters to further improve the regret analysis.

We consider the following CMAB problem with clustered arms. Formally, each cluster C ⊆ [m] contains a set
of simple arms. Denote U as the set of all clusters. Notice that one arm may belong to multiple clusters. We
assume |U | < m. In this setting, each super arm S is a union of several clusters: S =

⋃
C∈g(S) C, where g(S) is

the set of clusters that forms S. When super arm S is played in round t, the outcomes of all arms in the clusters
in S will be revealed.

We will use the same CUCB algorithm with a minor change to the initialization rounds: In the first |U | rounds of
initialization, for each cluster C, we play a super arm S such that C ∈ g(S) and update variables µ̂i accordingly.

For a given cluster C ⊆ [m], we sort all bad super arms whose cluster set contains C as S1
C,B , S

2
C,B , · · · , S

KC

C,B by
increasing reward. Define

∆C,j = α · optµ − rµ(SjC,B), (30)

∆C
max = ∆C,1 and ∆C

min = ∆C,KC . If C does not belong to any bad super arm, KC = 0 and set ∆C
max = ∆C

min = 0.
Furthermore, define ∆max = maxC∈U ∆C

max.

Theorem 3. Consider the CMAB problem with the set of clusters U of arms. In n rounds the (α, β)-
approximation regret of the CUCB algorithm using an (α, β)-approximation oracle is at most

∑
C |∆C

min>0

(
6 lnn

(f−1(∆C
min))2

·∆C
min +

∫ ∆C
max

∆C
min

6 lnn

(f−1(x))2
dx

)
+

(
π2

3
+ 1

)
·m ·∆max.

Discussion. Comparing with the regret bound in Theorem 1, we are taking the summation over all clusters
instead of all underlying arms. Since we assume |U | < m, intuitively, we could be better off. However, it is not
clear how the ∆min’s of the underlying arms and clusters are correlated with each other. When clusters do not

intersect with one another and thus form a partition of the underlying arms, it is straightforward to show that
∆i

min = ∆C
min if the cluster C contains the arm i. In this case, the new regret bound of Theorem 3 is a strict

improvement over Theorem 1. The two applications discussed in this paper, i.e., the bandit PMC problem and
the bandit influence maximization problem, belong to this category and thus Theorem 3 could be applied and
obtain improved regret bounds.

Proof. The proof of this theorem is almost identical to Theorem 1. In addition to Ti, our analysis requires TC
which is the number of time cluster C is selected to play. Let TC,n be the value of TC at the end of round n,
that is, TC,n is the number of times cluster C is played in the first n rounds. Let Ti,n still be the value of Ti at
the end of round n, that is, Ti,n is the number of times arm i is played in the first n rounds. Since arm i might
be contained in multiple clusters, here Ti,n is larger than TC,n for any C containing i.

For the proof, we maintain counter NC for each cluster C after the U initialization rounds. Let NC,t be the value
of NC after the t-th round and NC,|U | = 1. Note that

∑
C NC,|U | = |U |. {NC} is updated in the following way.

For a round t > |U |, let St be the super arm selected in round t. Round t is bad if the oracle selects a super
arm St ∈ SB, which is not an α-approximate super arm. If round t is bad, let C = argminC∈g(St)NC,t−1 and
increment NC by one, i.e., NC,t = NC,t−1 + 1. In other words, we find the cluster C with smallest counter in
g(St) and increase its counter. If C is not unique, we pick an arbitrary cluster with the smallest counter in g(St).

By definition NC,t ≤ TC,t. The total number of bad rounds in the first n rounds is
∑
C NC,n.

Each time NC gets updated, one of the bad arm whose cluster set contains C is played. We further divide NC
into more counters as follows:

∀l ∈ [KC], N l
C,n =

n∑
t=|U |+1

I{St = SlC,B, NC,t > NC,t−1}.

Define `n(∆) = 6 lnn
(f−1(∆))2 . When counter N l

i,t is increased at time t, i.e., St = SlC,B , we inspect the counter

N l
C,t−1. Notice that N l

C,t−1 is the smallest time that all arms in St have been played. If Nc,t−1 > `n(∆C,l), we

call the bad arm SlC,B is sufficiently sampled. Otherwise, it is under-sampled. We write as

N l,suf
C,n =

n∑
t=m+1

I{St = SlC,B, NC,t > NC,t−1, NC,t−1 > `n(∆C,l)},

N l,und
C,n =

n∑
t=m+1

I{St = SlC,B, NC,t > NC,t−1, NC,t−1 ≤ `n(∆C,l)}.

Then we have NC,n = 1 +
∑
l∈[KC](N

l,suf
C,n +N l,und

C,n). Using this notation, the total reward at time horizon n is
at least

n · α · optµ − E

∑
C∈U

∆C,1 +
∑
l∈[KC]

(N l,suf
C,n +N l,und

C,n) ·∆C,l

 . (31)

Note that the total sampled time of underlying arms in one cluster will not be smaller than the total sampled
time of that cluster. We claim that it is unlikely that a bad super arm is played when all the underlying arms
are sufficiently sampled. In other words, for a bad super arm, if all its underlying arms are sufficiently sampled,
it should not be played in the first place. More specifically, we have the following claim.

Claim 2. For any time horizon n > m,

E

∑
C∈U

∑
l∈[KC]

N l,suf
C,n

 ≤ (1− β)n+
π2

3
·m (32)

Proof. By the definition of N l,suf
C,n , it is sufficient to show that for any t > m,

E

 ∑
C∈[m],l∈[KC]

I{St = SlC,B, NC,t > NC,t−1, NC,t−1 > `n(∆C,l)}


≤

∑
C∈[m],l∈[KC]

Pr{St = SlC,B, NC,t > NC,t−1,∀s ∈ SlC,B, Ts,t−1 > `n(∆C,l)}

≤(1− β) + 2mt−2

Define Λi,t =
√

3 ln t
2Ti,t−1

(a random variable since Ti,t−1 is a random variable) and Λt = max{Λi,t | i ∈ St}. Define

ΛC,l =
√

3 ln t
2`n(∆C,l)

.

Let Nt indicate the event that the process is nice at time t. Let Ft indicate the event that the oracle fails to
return an α-approximation with respect to the input vector at time t. For any particular C ∈ U and l ∈ [KC],
if
{
Nt,¬Ft, St = SlC,B,∀s ∈ St, Ts,t−1 > `n(∆C,l)

}
holds at time t, we have the following properties:

rµ(St) + f(2ΛC,l) >rµ(St) + f(2Λt) strict monotonicity of f(·) and Eq.(8)

≥rµ̄t
(St) bounded smoothness property and Eq.(7)

≥α · optµ̄t
¬Ft ⇒ St is an α approximation w.r.t µ̄t

≥α · rµ̄t
(S∗µ) definition of optµ̄t

≥α · rµ(S∗µ) = α · optµ. monotonicity of rµ(S) and Eq.(9)

So we have

rµ(SlC,B) + f(2ΛC,l) > α · optµ. (33)

Since `n(∆C,l) = 6 lnn
(f−1(∆C,l))2 , we have f(2ΛC,l) ≤ ∆C,l. Therefore, Eq. (33) contradicts the definition of ∆C,l.

In other words,

∀C ∈ [m]∀l ∈ [KC], Pr
{
Nt,¬Ft, St = SlC,B, NC,t > NC,t−1,∀s ∈ St, Ns,t−1 > `n(∆C,l)

}
= 0

⇒Pr
{
Nt,¬Ft,∃C ∈ U,∃l ∈ [KC], St = SlC,B, NC,t > NC,t−1,∀s ∈ St, Ns,t−1 > `n(∆C,l)

}
= 0

⇒Pr
{
∃C ∈ U,∃l ∈ [KC], St = SlC,B, NC,t > NC,t−1,∀s ∈ St, Ns,t−1 > `n(∆C,l)

}
≤ Pr[Ft ∨ ¬Nt] ≤ (1− β) + 2mt−2

⇒
∑

C∈U,l∈[KC]

Pr
{
St = SlC,B, NC,t > NC,t−1,∀s ∈ St, Ns,t−1 > `n(∆C,l)

}
≤ (1− β) + 2mt−2

The first inequality comes from Lemma 3. Last inequality comes from the fact that events{
St = SlC,B, NC,t > NC,t−1,∀s ∈ St, Ns,t−1 > `n(∆C,l)

}
are disjoint since for the cluster C whose counter is up-

dated at time t only one l satisfies St = SlC,B.

Now we consider the bad super arms that are under-sampled when played. To simplify the notation, define
`n(∆C,0) = 0. For a cluster C,

∑
l∈[KC]

N l,und
C,n ·∆C,l

=

n∑
t=|U |+1

∑
l∈[KC]

I{St = SlC,B, NC,t > NC,t−1, NC,t−1 ≤ `n(∆C,l)} ·∆C,l

=

n∑
t=|U |+1

∑
l∈[KC]

l∑
j=1

I{St = SlC,B, NC,t > NC,t−1, NC,t−1 ∈ (`n(∆C,j−1), `n(∆C,j)]} ·∆C,l

≤
n∑

t=|U |+1

∑
l∈[KC]

l∑
j=1

I{St = SlC,B, NC,t > NC,t−1, NC,t−1 ∈ (`n(∆C,j−1), `n(∆C,j)]} ·∆C,j

≤
n∑

t=|U |+1

∑
l∈[KC]

∑
j∈[KC]

I{St = SlC,B, NC,t > NC,t−1, NC,t−1 ∈ (`n(∆C,j−1), `n(∆C,j)]} ·∆C,j

=

n∑
t=|U |+1

∑
j∈[KC]

I{St ∈ SC,B, NC,t > NC,t−1, NC,t−1 ∈ (`n(∆C,j−1), `n(∆C,j)]} ·∆C,j

=
∑

j∈[KC]

n∑
t=|U |+1

I{St ∈ SC,B, NC,t > NC,t−1, NC,t−1 ∈ (`n(∆C,j−1), `n(∆C,j)]} ·∆C,j

≤
∑

j∈[KC]

(`n(∆C,j)− `n(∆C,j−1)) ·∆C,j

=`n(∆C,Ki)∆C,Ki +
∑

j∈[KC]

`n(∆C,j) · (∆C,j −∆C,j+1)

≤`n(∆C,KC)∆C,KC +

∫ ∆C,1

∆C,KC

`n(x)dx. (34)

Last inequality comes from the fact that `n(x) is decreasing. Notice that by our definition, for clusters that
Cj ∈ [m] \ {C | ∆C

min > 0}, the counter NC remains one after the initialization. Since they do not contribute to
any regret, we have KC = 0 for all these arms. Combining with Eq.(32) and Eq.(34), the overall regret of our
algorithm is

RegAµ,α,β(n)

≤n · α · β · optµ −

α · n · optµ − E

∑
C∈U

∆C,1 +
∑
l∈[KC]

(N l,suf
C,n +N l,und

C,n) ·∆C,l


≤∆max ·

m+ E[
∑

C∈U,l∈[KC]

N l,suf
C,n]

+
∑

C |∆C
min>0

(
∆C,1 + `n(∆C,KC)∆C,KC +

∫ ∆C,1

∆C,KC

`n(x)dx

)
− (1− β) · n · α · optµ

≤
(
π2

3
+ 1

)
·m ·∆max +

∑
C |∆C

min>0

(
`n(∆C,KC)∆C,KC +

∫ ∆C,1

∆C,KC

`n(x)dx

)
.

The theorem follows directly.

C. εt-Greedy algorithm
Unlike CUCB algorithm, εt-greedy algorithm exhibits the combination of exploration and exploitation more
explicitly. In the t-th round, with probability εt the algorithm performs exploration, i.e., chooses an arm i
uniformly at random, then select an arbitrary super arm S ∈ S containing i; with probability 1 − εt, the

1: For each arm i, maintain variable µ̂i as the mean of all outcomes Xi,∗’s of arm i observed so far.
2: n← 0
3: while true do
4: t← t+ 1; εt ← min{γt , 1}.
5: With probability εt, choose an arm i uniform at random, then play an arbitrary super arm S ∈ S containing

i; with probability 1− εt, get S = Oracle(µ̂1, µ̂2, . . . , µ̂m).
6: Play S and update all µ̂i’s.
7: end while

Algorithm 1: εt-greedy algorithm with computation oracle

algorithm performs exploitation, i.e., uses the approximation oracle to choose a super arm. As t grows, the
probability of performing exploration decreases so that the regret can be bounded. See Algorithm 1 for details.
Note that if an arm i has never been played, µ̂i could be any arbitrary value.

The appeal of the εt-greedy algorithm is its simplicity and match with intuition. However, as shown in the
following theorem, in order to have a theoretical guarantee on the regret bound, parameter γ needs to be set
appropriately and it depends on ∆min and function f(·). In constrast, the CUCB algorithm does not rely on the
knowledge of ∆min and f(·), and thus CUCB is applicable to more settings in this sense.

Theorem 4. For any constant c > 1, define γ = 3mmax
{

20c
3 , (c+ 1) · (f−1(∆min

2))−2
}

. In n rounds the
(α, β)-approximation regret of the εt-greedy algorithm using an (α, β)-approximation oracle is at most(

γ lnn+ 3 · ζ(c) ·m+ γ3
)

∆max,

where ζ(c) =
∑∞
t=1

1
tc is the Riemann’s zeta function.

Recall that the definition of ∆min is

∆min = α · optµ −max{rµ(S) | S ∈ SB}. (35)

Proof. Let Ri,t be the indicator for the event that i was chosen to explore in the t-th round and Ni,t be the
number of rounds that arm i is explored in the first t rounds. Set ϕ = γ

3m . For simplicity, we assume γ is integer.
We have:

E[Ni,n] =

n∑
t=1

E[Ri,t] =

n∑
t=1

εt
m

=
γ − 1

m
+

n∑
t=γ

3ϕ

t
> 3ϕ+

∫ n

γ

3ϕ

x
dx = 1 + 3ϕ ln(n/γ) (36)

When n > γ3, (36) is at least 2ϕ lnn+ 1. Now let Xi,t = Ri,t − E[Ri,t]. We have E[Xi,t] = 0, |Xi,t| ≤ 1, and

n∑
t=1

E
[
X2
i,t

]
=

n∑
t=γ

(
1− 3ϕ

t

)
3ϕ

t
< 3ϕ lnn.

By Bernstein inequality in Lemma 2, when n > γ3, we have

Pr

[∣∣∣∣∣
n∑
t=1

Xi,t

∣∣∣∣∣ > ϕ lnn

]
≤ exp

{
− ϕ2(lnn)2/2∑n

t=1 E[X2
i,t] + k(ϕ lnn)/3

}

≤ exp

{
− ϕ2(lnn)2/2

3ϕ lnn+ ϕ lnn/3

}
= e−

3
20ϕ lnn = n−

3
20ϕ ≤ n−c.

In other words, Pr[Ni,t ≤ ϕ ln t + 1] ≤ t−c. By union bound, Pr[∃i ∈ [m], Ni,t ≤ ϕ ln t + 1] ≤ mt−c. Let Pt
to be the indicator of the event that in the t-th round, all the arms have been played for at least ϕ ln t + 1

times. So, Pr[Pt = 0] ≤ mt−c. Set `t = (c+1) ln t(
f−1

(
∆min

2

))2 ≤ ϕ ln t. Note Pt = 1 indicates for every arm i,

Ti,t ≥ Ni,t ≥ ϕ ln t+ 1 > `t.

Let It be the event that we choose a bad arm St ∈ SB in the t-th round. Let Yt be the event that the action
taken in the t-th round is exploitation (not exploration). Let Ft be the event that the oracle failed to produce
an α-approximate answer in an exploitation round t. We have E[Ft | Yt] ≤ 1− β.

We have,

n∑
t=γ3+1

I{It} =

n∑
t=γ3+1

(I{It,¬Yt}+ I{It, Yt})

=

n∑
t=γ3+1

εt · I{It | ¬Yt}+

n∑
t=γ3+1

I{It, Yt}

≤ γ lnn+

n∑
t=γ3+1

I{It, Yt}

Consider the second term.

n∑
t=γ3+1

I{It, Yt}

≤
n∑

t=γ3+1

(I{Ft, Yt}+ I{¬Ft, It, Yt})

≤(1− β)(n− γ3) +

n∑
t=γ3+1

(I{¬Ft, It,¬Pt, Yt}+ I{¬Ft, It, Pt, Yt})

≤(1− β)n+

n∑
t=γ3+1

(
mt−c · I{It | ¬Ft,¬Pt, Yt}+ I{¬Ft, It, Pt, Yt}

)
≤(1− β)n+ ζ(c) ·m+

n∑
t=γ3+1

I{¬Ft, It, Pt, Yt}

=(1− β)n+ ζ(c) ·m+

n∑
t=γ3+1

I{¬Ft, Yt, St ∈ SB,∀i ∈ [m], Ti,t−1 > `t}

We claim that

Pr[{¬Ft, Yt, St ∈ SB,∀i ∈ [m], Ti,t−1 > `t}] ≤ 2 ·m · t−c.

We now prove this claim. Same as in the proof of Theorem 1, let Ti,n be the number of times arm i is played in
the first n rounds; let µ̂i,s be the value of µ̂i after arm i is played s times, that is, µ̂i,s = (

∑s
j=1Xi,j)/s. Then,

the value of variable µ̂i at the end of round n is µ̂i,Ti,n
. By Chernoff bound in Lemma 1, for any i ∈ [m],

Pr

[
|µ̂i,Ti,t−1 − µi| ≥

√
2 ln t+ ln ln t

2Ti,t−1

]
≤ t · 2e−2 ln t−ln ln t ≤ 2(t ln t)−1. (37)

Define ∆i,t =
√

2 ln t+ln ln t
2Ti,t−1

. Define Et = {∀i ∈ [m], |µ̂i,Ti,t−1
−µi| ≤ ∆i,t}. By union bound, Pr[¬Et] ≤ 2 ·m · t−c.

Let ∆ =
√

2 ln t+ln ln t
2`t

. Notice that when ∀i ∈ [m], Ti,t−1 > `t, we have ∆ > ∆t def
= max{∆i,t | i ∈ [m]}.

Let µ̂t = (µ̂1,T1,t−1 , . . . , µ̂m,Tm,t−1) be the random vector representing the estimated expectation vector at round
t before calling the oracle. Then, when {Et,¬Ft, Yt, St ∈ SB,∀i ∈ [m], Ti,t−1 > `t} holds, we have the following

properties:

rµ(St) + 2f(∆) > rµ(St) + (1 + α)f(∆t) monotonicity of f(·)
≥ rµ̂t

(St) + αf(∆t) bounded smoothness property with Et

≥ α · optµ̂t
+ αf(∆t) ¬Ft ⇒ St is an α approximation w.r.t µ̂t

≥
(
rµ̂t

(S∗µ) + f(∆t)
)
· α definition of optµ̂t

≥ α · rµ(S∗µ) = α · optµ. bounded smoothness property with Et

These above inequalities imply that when Et holds, we have

rµ(Sj) + 2f(∆) > α · optµ. (38)

Since `t = 2 ln t+ln ln t(
f−1

(
∆min

2

))2 , we have

2f(∆) = 2f

(
f−1

(
∆min

2

))
= ∆min.

With 2f(∆) = ∆min, Eq. (38) is in conflict with the definition of ∆min in Eq. (35). In other words,

Pr [{Et,¬Ft, Yt, St ∈ SB,∀i ∈ [m], Ti,t−1 > `t}] = 0⇒
Pr
[
{¬Ft, Yt, St = Sj ,∀i ∈ Sj ∪ S∗µ, Ti,t−1 = si}

]
≤ Pr[¬Et] ≤ 2 ·m · (t ln t)−1.

Thus,

E

[
n∑
t=1

I{It}

]

≤γ3 + γ lnn+ (1− β)n+ ζ(c) ·m+

n∑
t=γ3+1

2 ·m(t ln t)−1

≤γ3 + γ lnn+ (1− β)n+ ζ(c) ·m+ 2m ln lnn

That means, the regret is at most:

RegAµ,α,β(n) ≤ n · α · β · optµ −

(
n · α · optµ −∆max · E

[
n∑
t=1

I{It}

])
≤
(
γ3 + γ lnn+ (1− β)n+ 3 · ζ(c) ·m

)
∆max − (1− β) · n · α · optµ

≤
(
γ lnn+ 3 · ζ(c) ·m+ γ3

)
∆max.

References

Garivier, A. and Cappé, O. The KL-UCB algorithm for bounded stochastic bandits and beyond. In COLT, 2011.

